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1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
er

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Energy scales ((Thouless, 1972))
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Metal – insulator transition in 3D
All states are localized for d=1,2
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1. Disorder  (× − impurities)
2. Complex  geometry

e
e
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How to deal with disorder?
•Solve the Shrodinger equation exactly

•Make statistical analysis 

What if there in no disorder?



Random Matrices, Anderson Random Matrices, Anderson 
Localization, and Quantum ChaosLocalization, and Quantum ChaosTodayToday

LaterLater Interaction between electrons in Interaction between electrons in 
mesoscopicmesoscopic systemssystems

Weak Localization and Weak Localization and 
MesoscopicMesoscopic FluctuationsFluctuationsBeforehandBeforehand
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Eα - spectrum (set of eigenvalues)

- mean level spacing

- ensemble averaging

- spacing between nearest 
neighbors

- distribution function of nearest 
neighbors spacing between

Spectral Rigidity

Level repulsion
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RANDOM MATRIX THEORY

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

Spectral 
statstics



Noncrossing rule (theorem)
Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)                                     . . . .

Usually textbooks present a simplified version of the justification 
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. I., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989

( )0 0P s = =



In general, a multiple spectrum in 
typical families of quadratic forms 
is observed only for two or more 
parameters, while in one-
parameter families of general 
form the spectrum is simple for 
all values of the parameter. Under 
a change of parameter in the 
typical one-parameter family the 
eigenvalues can approach 
closely, but when they are 
sufficiently close, it is as if they 
begin to repel one another. The 
eigenvalues again diverge, 
disappointing the person who 
hoped, by changing the 
parameter to achieve a multiple 
spectrum.

Arnold V.I., Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989
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Orthogonal 
β=1

Poisson – completely 
uncorrelated 
levels

Wigner-Dyson; GOE
Poisson

Gaussian
Orthogonal
Ensemble

Unitary
β=2

Simplectic
β=4



RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary

simplectic

Dyson Ensembles

    β

    1

    2
    

4

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices



1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 0P s → 0 :s →Reason for                           when
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Finite size quantum physical systems

Atoms
Nuclei
Molecules
.
.
.

Quantum 
Dots



ATOMS

NUCLEI

Main goal is to classify the eigenstates in 
terms of the quantum numbers

For the nuclear excitations this program does 
not work

E.P. Wigner: Study spectral statistics of a particular
quantum system – a given nucleus

• Particular quantum system

• Spectral averaging (over α)

• Ensemble

• Ensemble averaging

Atomic NucleiRandom Matrices

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics

Spectra: {Eα}



sP(s)

Particular 
nucleus

166Er

Spectra of 
several 
nuclei 
combined 
(after 
spacing)
rescaling 
by the 
mean level

P(s)

N. Bohr, Nature 
137 (1936) 344.



Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Original 
answer:

These are systems with a large 
number of degrees of freedom, and 
therefore the  “complexity” is high

Later it
became
clear that

there exist very “simple” systems 
with as many as 2 degrees of 
freedom (d=2), which demonstrate  
RMT - like spectral statistics



Integrable 
Systems

Classical (h =0) Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion

ExamplesExamples
1. A ball inside rectangular billiard; d=2
• Vertical motion can be 

separated from the  
horizontal one

• Vertical and horizontal
components of the 

momentum, are both 
integrals of motion

2. Circular billiard; d=2
• Radial motion can be 

separated from the  
angular one

• Angular momentum 
and energy are the 
integrals of motion



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated [ d one-dimensional 
problems [d integrals of motion

Chaotic 
Systems

The variables can not be separated [ there is only one 
integral of motion - energy

ExamplesExamples



Stadium

Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated [ d one-dimensional 
problems [d integrals of motion

Chaotic 
Systems

The variables can not be separated [ there is only one 
integral of motion - energy

ExamplesExamples

Sinai billiard

Kepler problem 
in magnetic field 

B



Classical Chaos 
h =0

•Nonlinearities
•Exponential dependence on 
the original conditions (Lyapunov 

exponents)

•Ergodicity

Q: What does it mean Quantum Chaos ?

Quantum description of any System Quantum description of any System 
with a finite number of the degrees with a finite number of the degrees 
of freedom is a linear problem of freedom is a linear problem ––
Shrodinger equation Shrodinger equation 



Bohigas – Giannoni – Schmit conjecture

Chaotic 
classical analog

Wigner- Dyson 
spectral statistics

0≠h

No quantum 
numbers except 

energy



Chaotic
classical 
analog

Two possible definitions

Wigner -
Dyson-like 
spectrum

Q: What does it mean Quantum Chaos ?



Wigner-
Dyson

?
Classical

Poisson

Quantum

?
Chaotic

Integrable



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities

••As well as in the case of Random Matrices As well as in the case of Random Matrices 
((RMRM) there is a luxury of ensemble averaging.) there is a luxury of ensemble averaging.

••The problem is much richer than The problem is much richer than RMRM theorytheory
••There is still a lot of universality.There is still a lot of universality.

Anderson 
localization (1958) 

At strong enough  At strong enough  
disorder all eigenstates disorder all eigenstates 
are are localizedlocalized in spacein space



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =
I   i and j are nearest 

neighbors

0 otherwise
-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition



I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

The eigenstates, which  are 
localized at different places 

will not repel each other

Any two extended 
eigenstates repel each other

Poisson spectral statistics Wigner – Dyson spectral statistics

Strong disorder Weak disorder



Disorder W

Zharekeschev & Kramer.
Exact diagonalization of the Anderson model



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
er

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Energy scales ((Thouless, 1972))



g10
Localized states 

Insulator
Extended states 

Metal
Poisson spectral

statistics
Wigner-Dyson

spectral statistics

Thouless Conductance and
One-particle Spectral Statistics

Transition at g~1.
Is it sharp?



Conductance g

100100100 ××
Anderson model cube



Anderson transition in terms of 
pure level statistics

P(s)



β - function ( )g
Ld
gd

β=
log
log

β(g)

g

3D

2D

1D-1

1

1≈cg

unstable
fixed point

Var s can be used instead of g



Suggested problem:

Consider ( ) ( )gd
dVV
log

~
≡β

where 22 sssVarV −≡≡

Is                  universal function?

Sketch this function

( )Vβ
~



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

g10
Localized states 

Insulator
Extended states 

Metal
Poisson spectral

statistics
Wigner-Dyson

spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots 
with Thouless 

conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Spectral Statistics



Square
billiard

Sinai
billiard

Disordered 
localized

Disordered 
extended

Integrable Chaotic
All chaotic 
systems 
resemble 
each other.

All integrable 
systems are 
integrable in 
their own way



Disordered 
Systems:

Is it a generic scenario for the  
Wigner-Dyson to Poisson crossoverQ: ?

Speculations

Anderson metal; 
Wigner-Dyson spectral statistics

Anderson insulator; 
Poisson spectral statistics

Consider an integrable system. Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of quantum numbers. The 
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements 
of the hopping between different sites (Anderson model !?)



Consider an integrable system. Each state is 
characterized by a set of quantum  numbers.

It can be viewed as a point in the space of quantum 
numbers. The whole set of the states forms a lattice in 
this space.

A perturbation that violates the integrability provides 
matrix elements of the hopping between different sites 
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson

Does Anderson localization provide  
a generic scenario for the  Wigner-
Dyson to Poisson crossover

Q: ?



The very definition of the localization is 
not invariant – one should specify in which 
space the eigenstates are localized.

Level statistics is invariant:

Poissonian 
statistics

basis where the 
eigenfunctions are localized

Wigner -Dyson 
statistics

basis the eigenfunctions 
are extended



Ly

e

Example 1 Doped semiconductor
Low concentration 
of donors

Electrons are localized on 
donors [ Poisson

Higher donor
concentration

Electronic states are 
extended[ Wigner-Dyson

Example 2
Rectangular billiard

Lx

Two 
integrals 
of motion x

y
x

x L
mp

L
np ππ

== ;

Lattice in the 
momentum space
py

px

Line (surface) 
of constant 
energy Ideal billiard   – localization in the 

momentum space
[ Poisson

Deformation or 
smooth random 
potential

– delocalization in the 
momentum space 
[ Wigner-Dyson



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion

ε=0.01
g=0.012

ε=0.1
g=4

Poisson

Wigner-Dyson



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Angular momentum 
is not conserved

Angular momentum is 
the integral of motion

Poisson

Wigner-Dyson



1D Hubbard Model on a periodic chain
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Onsite 
interaction

n. neighbors 
interaction

Hubbard 
model integrable0=V

extended 
Hubbard 

model
nonintegrable0≠V

12 sites
3 particles
Zero total spin
Total momentum π/6

U=4  V=0 U=4  V=4

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993



J=t J=2t J=5t

N=16; one hole

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D t-J model on 
a periodic chain

t

J

forbidden

exchange

hopping

1d t-J
model



Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Spectra of Many-Body excitations !



Chaos in Nuclei – Delocalization?

Fermi Sea

generations
1 2 3 4 5 6

. . . .
Delocalization 
in Fock space





E.P. Wigner, Conference on Neutron Physics by 
Time of Flight, November 1956

P.W. Anderson, “Absence of Diffusion in Certain 
Random Lattices”; Phys.Rev., 1958, v.109, p.1492

L.D. Landau, ”Fermi-Liquid Theory” Zh. Exp. Teor. 
Fiz.,1956, v.30, p.1058

J. Bardeen, L.N. Cooper & J. Schriffer, “Theory of 
Superconductivity”; Phys.Rev., 1957, v.108, p.1175.

ORIGINSORIGINS



What does it mean - non-Fermi liquid ?

The difference is the same as between 
bananas and non-bananas.

What is the difference between 
Fermi-liquid and non-Fermi liquid

What does it mean Fermi liquid ?



2. Substantial renormalizations. For example, in a Fermi gas

It means thatIt means that
1. Excitations are similar to the excitations in a Fermi-gas:

a) the same quantum numbers – momentum, spin ½ , charge e
b) decay rate is small as compared with the excitation energy

BgTcn µχγµ ,, =∂∂

§ Fermi statistics
§ Low temperatures
§ Not too strong interactions
§ Translation invariance

Fermi
Liquid

are all equal to the one-particle density of states ν .
These quantities are different in a Fermi liquid



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Signatures of the Fermi  - Liquid state  ?!

…The increase of the resistance caused by the interaction between 
the electrons is proportional to T2 and at low temperatures exceeds 
the usual resistance, which is proportional to T5.

… the sum of the momenta of the interaction electrons can change
by an integer number of the periods of the reciprocal lattice. 
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by 
the thermal oscillations of the lattice. 



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Umklapp electron – electron scattering dominates the 
charge transport (?!) 

Signatures of the Fermi  - Liquid state  ?!

( ) ( )pi
ZpG

n
r

r

ξε
ε

−
=,

( )pn r

p
Fp

Fermi liquid = 0<Z<1 (?!)

2. Jump in the momentum distribution 
function at T=0.

2a. Pole in the one-particle Green function



Landau Fermi  - Liquid theory

( )
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Momentum

Momentum distribution

Total energy

Quasiparticle energy

Landau f-function
Can Fermi – liquid survive without the momenta
Does it make sense to speak about the Fermi – liquid
state in the presence of a quenched disorder



1. Momentum is not a good quantum number – the
momentum uncertainty is inverse proportional to the
elastic mean free path, l. The step in the momentum 
distribution function is broadened by this uncertainty

( )pn r

p
Fp

l
h~

Nevertheless even in the presence of the disorderNevertheless even in the presence of the disorder
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

2. Neither resistivity nor its temperature dependence is determined by the umklapp 
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a 
function of the energy, ε. The residue , Z, makes no sense.

Does it make sense to speak about the Fermi –
liquid state in the presence of a quenched disorder



Quantum  Dot
e

×

×
×

×

1. Disorder  (×impurities)
2. Complex  geometry

e
e

e

e

×

×

Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•

3. e-e interactions



Zero Dimensional Fermi LiquidZero Dimensional Fermi Liquid
Finite Thouless
System energy ET

ε << ET 0Ddef

At the same time, we want the typical energies, ε , to 
exceed the mean level spacing, δ1 :

TE<<<< εδ1
1

1

>>≡
δ

TEg



Plan:
•Try to describe the e-e interaction effects in 
Quantum Dots in the limit

•Calculate/estimate corrections when 

∞→g

∞<<< g1

Interaction is not supposed to be weak !



The same statistics of the random 
spectra and one-particle wave 

functions (eigenvectors)

g10
Localized states 

Insulator
Extended states 

Metal
Poisson spectral

statistics
Wigner-Dyson

spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots with
dimensionless 
conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Quantum Mechanics


