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Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Thouless Conductance and One-particle Spectral Statistics

Quantum particle in 
random quenched
potential

e

Quantum particle in 
a chaotic billiard

Stadium

Consider an integrable system. Each state is 
characterized by a set of quantum  numbers.

It can be viewed as a point in the space of quantum 
numbers. The whole set of the states forms a lattice in 
this space.

A perturbation that violates the integrability provides 
matrix elements of the hopping between different sites 
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson

Does Anderson localization provide  
a generic scenario for the  Wigner-
Dyson to Poisson crossover

Q: ?
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Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion

ε=0.01
g=0.012

ε=0.1
g=4

Poisson

Wigner-Dyson

1D Hubbard Model on a periodic chain
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Onsite 
interaction

n. neighbors 
interaction

Hubbard 
model integrable0=V

extended 
Hubbard 

model
nonintegrable0≠V

12 sites
3 particles
Zero total spin
Total momentum π/6

U=4  V=0 U=4  V=4

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993
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Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra ?

Spectra of Many-Body excitations !

Wigner-Dyson random matrix statistics
follows from the delocalization.

1. Momentum is not a good quantum number – the
momentum uncertainty is inverse proportional to the
elastic mean free path, l. The step in the momentum 
distribution function is broadened by this uncertainty

( )pn r

p
Fp

l
h~

Nevertheless even in the presence of the disorderNevertheless even in the presence of the disorder
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

2. Neither resistivity nor its temperature dependence is determined by the umklapp 
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a 
function of the energy, ε. The residue , Z, makes no sense.

Does it make sense to speak about the Fermi –
liquid state in the presence of a quenched disorder
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Continue.Continue.
Universal Hamiltonian, 0DUniversal Hamiltonian, 0D
Inelastic relaxation rates. Inelastic relaxation rates. 

TodayToday

BeforehandBeforehand Anderson Localization, Anderson Localization, 
MesoscopicMesoscopic Fluctuations,Fluctuations,
Random Matrices, and Random Matrices, and 
Quantum ChaosQuantum Chaos
Fermi liquidFermi liquid

ZeroZero--dimensionaldimensional

Fermi LiquidFermi Liquid
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Zero Dimensional Fermi LiquidZero Dimensional Fermi Liquid
Finite Thouless
System energy ET

ε << ET 0Ddef

At the same time, we want the typical energies, ε , to 
exceed the mean level spacing, δ1 :

TE<<<< εδ1
1

1

>>≡
δ

TEg

The same statistics of the random 
spectra and one-particle wave 

functions (eigenvectors)

g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots with
dimensionless 
conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Quantum Mechanics



7

εα -one-particle orbital energies Mαβγδ -interaction matrix elements

e

e e

e

αγ

δ β
Μ

|α,σ>TwoTwo--Body Body 
InteractionsInteractions

∑∑
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++ ==

σσ
δγβα

σδσγσβσααβγδ
α

σασααε
,

,,,
,,,,int,,0

ˆˆ aaaaMHaaH

Set of one particle states. σ
and α label correspondingly 
spin and orbit.

∑
′

′
+

′
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σσ
δγβα

σδσγσβσααβγδ

,
,,,

,,,,int
ˆ aaaaMH

αβγδM
Diagonal Diagonal - α,β,γ,δ are equal pairwise
α=γ and β=δ or α=δ and β=γ or α=β and γ=δ

Offdiagonal Offdiagonal - otherwise

It turns 
out that
in the limit

• Diagonal matrix elements are much bigger
than the offdiagonal ones

• Diagonal matrix elements in a particular 
sample  do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>

∞→g

Matrix ElementsMatrix Elements
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is a random function 
that rapidly oscillates

as long as
T-invariance 
is preserved

electron
wavelength

Toy model:Toy model: Short range e-e
interactions ( ) ( )rrU rr δ

ν
λ

=

( ) ( ) ( ) ( )rrrrrdM rrrrr
δγβααβγδ ψψψψ

ν
λ

∗∗= ∫
( )rrαψ

one-particle
eigenfunctions

r

ψα

( )rrαψ

( ) 2
0rαψ ≥

r

( )2 0rαψ ≥
r

In the limit • Diagonal matrix elements are much bigger than 
the offdiagonal ones

• Diagonal matrix elements in a particular sample  
do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>∞→g

( ) ( )22
rrrdM rrr

βααβαβ ψψ
ν
λ

∫=

( )
volume

12 ⇒rrαψ
1λδαβαβ =M}

More general:More general: finite range interaction potential   U
r 
r ( )

  
Mαβαβ =

λ
ν

ψ α
r 
r 1( )∫

2
ψ β

r 
r 2( )

2
U

r 
r 1 −

r 
r 2( )dr 

r 1d
r 
r 2

The same 
conclusion
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Eα - spectrum
ψα (i) – i-th component of α-th eigenvector

( ) ( ) 1
iji j

Nα γ αγψ ψ δ δ∗ =

Random Random 
Matrices:Matrices:

( ) ( ) 2
iji j

Nα γ αγ
βψ ψ δ δ−

=

in the limit N → ∞

Components of the different eigenvectors 
as well as different components of the 
same eigenvector are not correlated 

Exact  wavefunctions at energy in
chaotic systems behave as sums of plane 
waves with and random coefficients:

≈ εF

 

r 
k ≈ kF

  
ψα

∗ r 
r 1( )ψ γ

r 
r 2( ) =

δαγ

V
f

2π r r 1 − r r 2
D

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 
ψα

r 
r 1( )ψγ

r 
r 2( ) = 2 − β( )δαγ

V
f

2π r r 1 − r r 2
D

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

Berry Berry 
Conjecture:Conjecture:

when     increases     decays       
quickly enough for the integral 

to converge
Only local correlations

( ) ( )2 1

1 2

2 d

ddf x x J x−

−⎛ ⎞= Γ ⎜ ⎟
⎝ ⎠

d is # of dimensions, 
Jμ(x) is Bessel function

Important:Important:

f x( )x

f x( )
0

∞

∫ x d−1dx!
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AFRICA BILLIARD - a conformal image of a unit circle

ω z( ) = R
z + bz2 + ceiδ z 3

1 + 2b2 + 3c3

0.2;
1.5; 1

b c
Rδ

= =
= =

 
Mαβγδ = d

r 
r ψ α∫

r 
r ( )ψ β

r 
r ( )ψα

∗ r 
r ( )ψ β

∗ r 
r ( )

Distribution of the 
matrix elements

Open boxes -
levels from 20 to 30

Closed circuits –
levels from 30 to 40
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Mαβγδ =

1
π

d
r 
r ψα∫

r 
r ( )ψ β

r 
r ( )ψα

∗ r 
r ( )ψ β

∗ r 
r ( )

 
Vαβγδ ∝

d
r 
r 1d

r 
r 2r 

r 1 −
r 
r 2

ψα∫
r 
r 1( )ψ β

r 
r 2( )ψ α

∗ r 
r 1( )ψ β

∗ r 
r 2( )

short range

Coulomb

Distribution 
function of 
diagonal
and 
offdiagonal
matrix 
elements

All correlation functions are  invariant under  
arbitrary  orthogonal transformation:

( ) ( ) ( )∑∫=
ν

ν
ν
μμ ψψ 111 ,~ rrrOrdr rrrrr

( ) ( ) ( )rrrrOrrOrd ′−=′∫
rrrrrrr δδ μη

η
ν

ν
μ ,, 111

Universal (Random Matrix) limit - Random 
Matrix symmetry of the correlation functions:
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There are only three operators, which are quadratic in 
the fermion operators      ,      , and invariant under RM
transformations:

a+
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21

1

r

a

total number of particles

total spin

????

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Charge conservation
(gauge invariance) -no ˆ T ˆ T + ˆ T ˆ T +or

Invariance under 
rotations in spin space

- no ˆ S 2ˆ S 

Therefore, in a very general case

Only three coupling constants describe all of 
the effects of e-e interactions

only

only
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In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

.ˆˆˆˆˆˆ

ˆˆ

22
int

int

TTSJnEneVH

HnH

BCSc
++++=

+= ∑
λ

ε
α

αα

I.L. Kurland, I.L.Aleiner & B.A., 2000
See also
P.W.Brouwer, Y.Oreg & B.I.Halperin, 1999
H.Baranger & L.I.Glazman, 1999
H-Y Kee, I.L.Aleiner & B.A., 1998

For a short range interaction with a coupling constant λ

In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

Ec =
λδ1

2
J = −2λδ1 λBCS = λδ1 2 − β( )

where       is the one-particle mean level spacingδ1

.ˆˆˆˆˆˆ

ˆˆ

22
int

int

TTSJnEneVH

HnH

BCSc
++++=

+= ∑
λ

ε
α

αα
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ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

determines the charging energy 
(Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
pairing

Ec

J

λBCS

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn’t it a Fermi liquid ?
Fermi liquid behavior  follows from the fact that Fermi liquid behavior  follows from the fact that 

different wave functions are almost uncorrelateddifferent wave functions are almost uncorrelated

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int
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Example 1: Coulomb Blockade

valley peak

0.08

0.06

0.04

0.02

0

g 
(e

2

/h
)

-300 -280 -260 -240 -220
Vg (mV)

1 µm

6.2
6.0
5.8
5.6
5.4
5.2

Δ

-400 -350 -300 -250
Vg (mV)

 B =  30 mT
 B = -30 mT

Coulomb Blockade Peak Spacing
Patel, et al. PRL 80 4522 (1998)
(Marcus Lab)

2eg
h

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Example 2: Spontaneous Magnetization

e e

e e

e

× ×

×
×

×

1. Disorder 
(×impurities)

2. Complex 
geometry

3. e-e interactions

}chaotic
one-particle
motion

Q: ?What is the spin of the Quantum 
Dot in the ground state

How to measure the Magnetization – motion of the Coulomb 
blockade peaks in the parallel magnetic field
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SBSJnH
rrr
ˆˆˆ

int •++= ∑ 2

α
ααε

Scaling: the probability to find a ground state at a given 
magnetic field, B, with a given spin, S, depends on 
the combination rather than on B and J separately

X = J + gμB
B

2S

In the presence of magnetic field

Probability to observe a triplet 
state as a function of the 
parameter X

- results of the calculation 
based on the universal 
Hamiltonian with the RM one-
particle states

The rest – exact diagonalization 
for Hubbard clusters with 
disorder. No adjustable 
parameters 
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ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations uncorrelated

Inelastic processesInelastic processes

DecoherenceDecoherence
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Small decay rate

•Why is it small

•What is it equal to

•What is the connection    
between the decay rate 
of the quasiparticles 
and the dephasing rate

Q: ?

ε′+ω

Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid.

ε−ω

ε′
Fermi Sea

ε

( ) 3
22

constant

coupling =⎟
⎠
⎞⎜

⎝
⎛∝

−

d
Fee ε

ε
ετ

h

Reasons:Reasons:
• At small ε the energy transfer, ω , is small and the integration 
over ε′ and ω gives the factor ε2. 
…………………………………………………………………
•The momentum transfer, q , is large and thus the scattering 
probability at given ε′ and ω does not depend on ε′ , ω or ε

I. I. d=3d=3
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Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid. 

II. II. Low dimensionsLow dimensions
Small momenta transfer, q , become important at 
low dimensions because the scattering probability is 
proportional to the squared time of the interaction, 
(qvF. )-2

e vF

1/q

( ) ( ) ( )

1

2log

3

2

2

=

=

=

∝
−

d

d

d

FF

F

ee

ε

εεεε

εε

ετ
h

Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid. 

III. III. ApplicabilityApplicability

( ) ( ) ( )

1

2log

3

2

2

=

=

=

∝
−

d

d

d

FF

F

ee

ε

εεεε

εε

ετ
h

Conclusions:Conclusions:
1. For d=3,2 from ε<< ε F it follows that ετe-e << h, i.e., that 

the qusiparticles are well determined and the Fermi-liquid 
approach is applicable.

2. For d=1 ετe-e is of the order of h, i.e., that the Fermi-liquid 
approach is not valid for 1d systems of interacting fermions. 

Luttinger liquids
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Quasiparticle decay rate at T = 0 in a ODOD Fermi Liquid.

ε′+ωε−ω

ε′
Fermi Sea

ε
Electronic spectrum is discrete

Need offdiagonal matrix elements

Quasiparticle decay is beyond 
the “universal Hamiltonian”

Quasiparticle decay 
rate is small as  g-1
Quasiparticle decay 
rate is small as  g-1

( )
ε

ετ hgee ≥

CONCLUSIONS
One-particle chaos + moderate interaction of the electrons a
to a rather simple Hamiltonian of the system, which can be 
called Zero-dimensional Fermi liquid.
The main parameter that justifies this description is the 
Thouless conductance, which is supposed to be large
Excitations are characterized by their one-particle energy, 
charge and spin, but not by their momentum.
These excitations have the lifetime, which is proportional to 
the Thouless conductance, i.e., is long.
This approach allows to describe Coulomb blockade 
(renormalization of the compressibility), as well as the 
substantial renormalization of the magnetic susceptibility and 
effects of superconducting pairing  
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ε

ε’

ε−ω
ε’+ ω

Offdiagonal
matrix 
element

Quasiparticle relaxation rate in 0D case T=0

( ) 1
1,, δδεεω <<∝′

g
M

Fermi 
Golden 
Rule

0D case:

Quasiparticle relaxation rate in 0D case

( )
( ) 2

0 0e-e 1

, ,Mh
ω ε ω ε

ω ε ε
τ ε δ′< < − < <

′
∝ ∑ ∑

•M ∝ δ1(L)/g
•Each ∑ gives

L < Lε , i.e., ε < ET

( )

2

1
e-e T

h
E
εδ

τ ε
⎛ ⎞

∝ ⎜ ⎟
⎝ ⎠

( U.Sivan, Y.Imry & A.Aronov,1994 )

T=0

hDLε ε
=

1

ε
δ

≈
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L > Lε , i.e., ε > ET

0D case: L < Lε , i.e., ε < ET

( )

2

1
e-e T

h
E
εδ

τ ε
⎛ ⎞

∝ ⎜ ⎟
⎝ ⎠

( ) ( )1
e-e

h Lεδ
τ ε

∝d>0 case:

hDLε ε
=

Quasiparticle relaxation rate in disordered conductors

( )
( ) 2

0 0e-e 1

, ,Mh
ω ε ω ε

ω ε ε
τ ε δ′< < − < <

′
∝ ∑ ∑

T=0
Fermi 
Golden 
Rule

At           the rate is of the order of the mean 
level spacing     . This relation should not 
change, when we keep increasing the system 
size, i.e. decreasing the Thouless energy ET.

L Lε≈

1δ

( ) ( )e-e

h
g Lε

ε ε
τ ε

∝ << A. Schmid 1973
B.A. & A.Aronov 1979

L > Lε , i.e., ε > ET

0D case: L < Lε , i.e., ε < ET
( )

2

1
e-e T

h
E
εδ

τ ε
⎛ ⎞

∝ ⎜ ⎟
⎝ ⎠

( ) ( )1
e-e

h Lεδ
τ ε

∝d>0 case:

hDLε ε
=

Quasiparticle relaxation rate in disordered conductors

( )
( ) 2

0 0e-e 1

, ,Mh
ω ε ω ε

ω ε ε
τ ε δ′< < − < <

′
∝ ∑ ∑

T=0
Fermi 
Golden 
Rule
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( )
( )

2

0
1

, ,M
L ω

ω ε ε
δ →

′
⎯⎯⎯→ ∞

Matrix elements at large, ε,ω >> ET , energies

( )
( ) 2

0 0e-e 1

, ,Mh
ω ε ω ε

ω ε ε
τ ε δ′< < − < <

′
∝ ∑ ∑ ( ) ( )e-e

h
g Lε

ε ε
τ ε

∝ <<

( ) ( ) ( )3 2 22 1 1
2 2, ,

d

d

L L
M

D
ωδ δ ωω ε ε

ω

− +

′ ∝ ∝

Quasiparticle relaxation rate in disordered conductors

( )
( ) 2

0 0e-e 1

, ,Mh
ω ε ω ε

ω ε ε
τ ε δ′< < − < <

′
∝ ∑ ∑

T>0

( ) ( ) ( ) ( ) 2

e-e 1

, ,
1 1

,
Mh n n n

T ε ω ε ω ε ω
ω ε

ω ε ε
τ ε δ′ ′− + +

′

′
∝ − −∑ ∑ T>0

T=0

1

exp 1n
Tε
ε −

⎡ ⎤= −⎢ ⎥⎣ ⎦

Fermi 
distribution 
function

( )
2 2

2

2, ,
d

dM
D

ωω ε ε
− +

′ ∝
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a) T=0 -no problems: and converges

Quasiparticle relaxation rate in disordered conductors

( )
( ) 2

0 0e-e 1

, ,Mh
ω ε ω ε

ω ε ε
τ ε δ′< < − < <

′
∝ ∑ ∑

T>0

T>0

T=0

1

exp 1n
Tε
ε −

⎡ ⎤= −⎢ ⎥⎣ ⎦

Fermi 
distribution 
function

ω
∑

ε

ω
′

∝∑
b) T>0 -a problem: and diverges !

Abrahams, Anderson, Lee & Ramakrishnan 1981
ω
∑T

ε ′

∝∑

( ) ( ) ( ) ( ) 2

e-e 1

, ,
1 1

,
Mh n n n

T ε ω ε ω ε ω
ω ε

ω ε ε
τ ε δ′ ′− + +

′

′
∝ − −∑ ∑

( )
2 22

2, ,
d

dM
D

ωω ε ε
− +

′ ∝

Divergence of is not a catastrophe:
1/τe-e has no physical meaning

E.g., for energy relaxation of hot 
electrons processes with small 
energy transfer ω are irrelevant. 

T>0 -a problem: 1/τe-e diverges

( )
h

g Lε ε

ε
τ

∝

Is it the energy relaxation rate 
that determines the applicability 
of the Fermi liquid approach

Q:

( )
( )

2 / 2 2
e-e

1
, d d

nh T
T D

ε ω

ωτ ε ω
−

−

−
∝ ∑

B.A., A.Aronov & D.E. Khmelnitskii (1983):

?
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Divergence of is not a catastrophe:
1/τe-e has no physical meaning

E.g., for energy relaxation of hot 
electrons processes with small 
energy transfer ω are irrelevant.

Phase relaxation: in a time t after 
a collision δϕ ≈ (2π ω t) / h ⇒
processes with energy transfer ω
smaller than 1/τϕ are irrelevant. 

T>0 -a problem: 1/τe-e diverges

( )
h

g Lε ε

ε
τ

∝

( )
( )

2 / 2 2
e-e

1
, d d

nh T
T D

ε ω

ωτ ε ω
−

−

−
∝ ∑

B.A., A.Aronov & D.E. Khmelnitskii (1983):

?h

ϕτ
∝

1. Suppose that originally a system(an electron) was in a pure
quantum state. It means that it could be described by a wave 
function with a given phase.

2. External perturbations can transfer the system to a different 
quantum state. Such a transition is characterized by its 
amplitude, which has a modulus and a phase.

3. The phase of the amplitude can be measured by comparing it 
with the phase of another amplitude of the same transition.
Example: interferometer

What  is  Dephasing?What  is  Dephasing?

beam splitter

mirror
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4. Usually we can not control all of the perturbations. As a 
result, even for fixed initial and final states, the phase of the 
transition amplitude has a random component.

5. We call this contribution to the phase, δϕ, random if it 
changes from measurement to measurement in an 
uncontrollable way.

6. It usually also depends on the duration of the experiment, t:
δϕ = δϕ(t)

7. When the time t is large enough, δϕ exceeds 2π , and 
interference gets averaged out.

8. Definitions:
( ) 2ϕδϕ τ π≈

τϕ phase coherence time; 1/τϕ dephasing rate

Why  is  Dephasing rate important?Why  is  Dephasing rate important?
Imagine that we need to measure the energy of a quantum system, which 
interacts with an environment and can exchange energy with it.
Let the typical energy transferred between our system an the environment 
in time t be δε(t). The total uncertainty of an ideal measurement is

( ) ( )
t

tt h
+≈Δ δεε

environment quantum 
uncertainty

( )
∞⎯⎯→⎯

∞⎯⎯ →⎯

→

∞→

0

;

t

t

t

t
h
δε There should be an optimal measurement 

time t=t* , which minimizes Δε(t) :
Δε(t*)= Δεmin

}
( ) ( )

min

*
* * 1

*
t

t t
t

ϕ

ϕ

τ
δε δϕ

ε τ
≈

≈ ⇒ ≈ ⇒
Δ ≈

h

h !!
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( ) ( )
min

*
* * 1

*
t

t t
t

ϕ

ϕ

τ
δε δφ

ε τ
≈

≈ ⇒ ≈ ⇒
Δ ≈

h

h

Why  is  Dephasing rate important?Why  is  Dephasing rate important?

It is dephasing rate 
that determines the 

accuracy at which the 
energy of the quantum 
state can be measured 

in principle.

Divergence of is not a 
catastrophe: 1/τe-e has no 
physical meaning

E.g., for energy relaxation 
of hot electrons processes 
with small energy transfer
ω are irrelevant.

Phase relaxation: in a time t
after a collision
δϕ ≈ (2π ω t) / h ⇒
processes with energy
transfer ω smaller than
1/τϕ are irrelevant.

T>0 -a problem: 1/τe-e diverges

( )
h

g Lε ε

ε
τ

∝

( )
( )

2 / 2 2
e-e

1
, d d

nh T
T D

ε ω

ωτ ε ω
−

−

−
∝ ∑

B.A., A.Aronov & D.E. Khmelnitskii (1983):

( )
( )

2 / 2 2

1
, d d

h

nh T
T D

ϕ

ε ω

ω τϕτ ε ω
−

−
>

−
∝ ∑

!
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e-e interaction – Electric noise 
Fluctuation- dissipation theorem:

( ) ( )k
T

k
kk

Tk
EE

k
rrr

,2
coth

, 2, ωσ
ω

ωσ
ω

αβ

βα

αβ
ω

βα ∝⎟
⎠
⎞

⎜
⎝
⎛=

Electric noise - randomly time and space -
dependent electric field                                 . 
Correlation function of this field is completely 
determined by the conductivity             :

( ) ( ), ,E r t E kα α ω⇔
rr

( )ωσ ,k
r

Noise intensity increases with the 
temperature, T, and with resistance g

( )LRe
hLg 2)( ≡ - Thouless conductance – def.

- resistance of the sample with( )LR length (1d)
area (2d) L

L Dϕ ϕτ≡ - dephasing 
length D - diffusion constant of 

the electrons

( ) ( )k
T

k
kk

Tk
EE

k
rrr

,2
coth

, 2, ωσ
ω

ωσ
ω

αβ

βα

αβ
ω

βα ∝⎟
⎠
⎞

⎜
⎝
⎛=

{ }

( )
1 T

g Lϕ ϕτ
∝



30

( )
1 T

g Lϕ ϕτ
∝

( ) 2−∝ dLLg
where is the number of dimensions: 
d=1 for wires; d=2 for films, …

Lϕ ϕτ∝

( )1 4 dL Tϕ
− −∝

( )
1

2 4
2 3

2
1

d T d
T

T dϕτ
−

− −
−

=
∝ ∝

=

This is an equation!

2. In a multichannel wire ,provided that is smaller 
than the localization length, and Fermi liquid approach is justified

( ) 1g Lϕ > Lϕ

1. In a purely1d chain, ,and, therefore, Fermi liquid theory is 
never valid.

1≤g

Fermi liquid is valid (one 
particle excitations are well 
defined), provided that

( )T Tϕτ > h

( )
1 T L D

g L ϕ ϕ
ϕ ϕ

τ
τ

∝ ≡
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How to detect phase coherence 
measure the dephasing/decoherence rate ?

Quantum phenomena in electronic systems:

• Weak localization yes

• Mesoscopic fluctuations yes

• Persistent current no

•

•

J

Φ

Persistent current at zero temperature is a 
property of the ground state!

Φ∂
∂

∝
EJ

E is the ground state energy

Interaction between electrons can change both 
E and  J, but this does not mean that there is 
dephasing of the ground state wave function.

Measurements of the persistent current as well as of 
other thermodynamic properties do not allow to extract 
the dephasing rate. Only transport measurements



32

OO

Φ

Magnetoresistance

No magnetic field 

   ϕ1 = ϕ2

With magnetic field H
     ϕ1− ϕ2= 2∗2π Φ/Φ0

Φ = HS - Φ0 = hc/e -magnetic flux 
through the loop

flux 
quantum

-0 .0 4 -0 .0 2 0 .0 0 0 .0 2 0 .0 4

 

 

3 .1  K

1 .1 7  K

2 1 0  m K

4 5  m K

1 0 -3

ΔR
/R

B  (T )

<Lφ=(Dτφ)1/2

Weak Localization, Magnetoresistance in Metallic Wires
I

V

B
L ~ 0.25 mm

φφ τDL =

2

2 2
1 1

3 H

R h AR
R e L L Lϕ

⎛ ⎞Δ
= − + ⎜ ⎟

⎝ ⎠

1d case; strong spin-orbital coupling

H
hL

eH
=

A – area of 
the wire 
cross-section 
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?Can we always reliably extract the inelastic 
dephasing rate from the experiment

Weak
localization:

NO - everything that violates T-invariance
will destroy the constructive interference

Mesoscopic
fluctuations:

YES - Even strong magnetic 
field will not eliminate these 
fluctuations. It will only reduce 
their amplitude by factor 2.

EXAMPLE: random quenched magnetic field

But
Slow diffusion of the impurities will 
look as dephasing in mesoscopic 
fluctuations measurements

A

B

T-invariance is clearly violated, 
therefore  we have dephasing

Magnetic Impurities
- before - after

Mesoscopic fluctuations
Magnetic impurities cause dephasing only through 
effective interaction between the electrons.

T→ 0 Either Kondo scattering or quenching 
due to the  RKKY exchange.

In both cases no “elastic dephasing”
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  hω

  hω
• other electrons
• phonons
• magnons
• two level systems
•
•

Inelastic dephasing rate 1/τϕ can be separated at least 
in principle

THE EXPERIMENTAL CONTROVERSY

Mohanty, Jariwala and Webb, PRL 78, 3366 (1997)

T-2/3

T-3

Saturation of τϕ:
Artifact of measurement ?
Real effect in samples ?
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The particle and 
the oscillator 
can exchange 
energy

ZeroZero--point Oscillationspoint Oscillations

n=2

n=1

n=0

e
Collision between the quantum particle and a harmonic oscillator

ε - energy counted 
from the Fermi level ( )2

1+= nEn ωh ( )2
1+= nEn ωh

ω>T

0; >> nωε

1.1.

Inelastic 
scattering dephasing

The particle and 
the oscillator 
can exchange 
energy

ZeroZero--point Oscillationspoint Oscillations

n=2

n=1

n=0

e
Collision between the quantum particle and a harmonic oscillator

ε - energy counted 
from the Fermi level ( )2

1+= nEn ωh ( )2
1+= nEn ωh

ω>T

0; >> nωε

1.1. ω<<T

0; =<< nωε

2.2. No energy 
exchange 
between the 
oscillator and 
the particle

Inelastic 
scattering dephasing Pure elastic 

scattering
No 

dephasing
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ZeroZero--point Oscillationspoint Oscillations

e

Collision between the quantum particle and a harmonic oscillator

ε - energy counted 
from the Fermi level ( )2

1+= nEn ωh ( )2
1+= nEn ωh

ω<<T

0; =<< nωε

No energy 
exchange 
between the 
oscillator and 
the particle

Pure elastic 
scattering

No 
dephasing

ωh2
1 Zero-point 

oscillations

Saturation 
is not due 
to magnetic 
impurities

Saturation is 
not due to 
overheating
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0.1 1

0.01

0.1

1

10
 Ag 6N   
 Au 6N   

 Ag 5N
 Cu 6N
 Au 4N

 

 
τ φ (

ns
)

T (K)

τφ(T) in Au wires

• Ag 6N, Au 6N
→ agreement with AAK theory

• Ag 5N, Cu 6N
→ saturation of τφ(T)

• Au 4N
→ contains ~ 30 ppm of Fe

0.1 1

0.01

0.1

1

10
 Ag 6N   
 Au 6N   

 Ag 5N
 Cu 6N
 Au 4N

 

 

τ φ (
ns

)

T (K)

τφ(T) in Ag, Au & Cu wires

Saturation is sample dependent

Low T behavior vs. Purity:

T-2/3

x

Magnetic 
impurities

xN = 99.9…9 % source material purity

??
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Magnetic Impurities: the Kondo Effect

e

e

J .Sσ
ur ur

Spin-flip scattering

increased resistivity
reduction of τφ

Collective effect:
Formation of a 

singlet spin state

T

R

KT

Log(T)−β

sfγ

T

spin-flip

(total scattering rate)

phononsKondo

J1/ν
FKB eETk −≈

Au with and without Fe
impurities

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 exp.
 α/T1/2 - β Ln(T)
 α/T1/2

α=1.65 10-4 K-1/2

β=1.23 10-3

 
T (K)

Au2

 

 

δR
/R

 (0 / 00
)

 exp.
 α/T1/2

α=2.7 10-4 K-1/2

AuMSU

 

 

T (K)

Kondo effect: R(T) = A - B log(T)
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0.1 1

0.1

1

10

TK

6N silver:
5N silver:

e--e- & e--ph

 

 

τ φ (n
s)

T (K)

 
 bare
 0.3 ppm Mn implanted
 1 ppm Mn implanted

Dephasing and temperature dependence of the resistivity.

1 ppm of Mn is 
invisible in R(T)

1 2 3 4

0.2

0.4

0.6

0.8

1.0

1.2

 

 

δR
/R

 (‰
)

T-1/2 (K-1/2)

 Ag with 1 ppm Mn at B=30mT
 Fit: 2.4E-4T-1/2

TKondo

Can magnetic impurities cause an apparent 
saturation of τφ ?

YES!    
But only if T ≈ TKondo

0.1 1

1

10 Ag (6N)

Ag (5N) bare

1.0ppm Mn

0.3ppm Mn

e-e & e-ph scattering

spin-flip
scattering

TKondo

τ φ (
ns

)

T (K)

τφ(TK) =
h νF

4 nimp

0.6 ns
cimp (ppm)≈

Spin-flip rate peaks at TK:

Is it a proof of the magnetic impurities 
domination in the decoherence ? Not yet
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3 .1  K

1 .1 7  K

2 1 0  m K

4 5  m K

1 0 -3

ΔR
/R

B  (T )

UU

VS V

U

R

U

U=0

U=0.2mV

I

V

B
L ~ 0.25 mm

Phase 
relaxation 

rate
Deconvolution > 

Energy relaxation

Energy relaxation?

B=0 only
Can be done
at nonzero B 
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)
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E (meV)

f(E
)
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-0.2 0.0 0.2

0.8

0.9

 

V (mV)
U = 0.1 mV
B = 0.3 T
B = 2.1 T

R
td

I/d
V

R
td

I/d
V

Very weak
interaction

bare

implanted

Energy relaxation at weak and strong B
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ε

ε1

ε−ω

ε1+ω

Two electrons can exchange energy in spite of the fact that the 
states of the impurity are degenerate and it can not be excited

One electron can not change energy after scattering by a system of 
two degenerated states.

Second 
order in 
electron –
impurity 
exchange
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Controlled experiment II: energy exchange

Ag 
(99.9999%)

0.7 ppm Mn2+

implantation

Comparative
experiments

bare

implanted

Effect of 1 ppm Mn on interactions ?

Left as is

25 nm

106 Ag1Mn

Concentration of Mn impurities

Energy relaxation

Dephasing time
τφ

?Neutralization current
+

Monte Carlo simulations

Implanted wire
cim

“Bare” wire
cb

( )0.7 0.1
bc

ppm
+

±
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Hugues
POTHIER

Norman 
BIRGE
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R
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V

Energy relaxation at weak B

U = 0.1 mV
B = 0.3 T

weak interaction

strong interaction

bare

implanted

R
td

I/d
V

U

( )
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/d
V

 

 

 

 

 

( )

-0.5 0.0 0.5

0.9
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R
td
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H

τε
−1 First order

Second order

εμ ≈Hg

Well 
pronounced 

if
T>>TK
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Concentration of Mn impurities

Energy relaxation

Dephasing time
τφ

?Neutralization current
+

Monte Carlo simulations

Implanted wire
cim

“Bare” wire
cb

( )0.7 0.1
bc

ppm
+

±

( )0.95 0.1 ppm±

( )0.9 0.3 ppm±

( )0.1 0.01 ppm±

1 Dephasing and energy relaxation give very 
close concentration of the magnetic impurities

2 Energy relaxation is suppressed by the 
magnetic field as was predicted

Mn impurities dominate both energy and phase 
relaxation in this temperature interval. No room for 
mysteries like zero-point dephasing.

Both energy and phase relaxation times should increase 
dramatically when temperature is reduces further –
Kondo effect 
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Both energy and phase relaxation times 
should increase dramatically when 
temperature is reduces further – Kondo effect

0.1 1

0.01

0.1

1

10
 Ag 6N   
 Au 6N   

 Ag 5N
 Cu 6N
 Au 4N

 

 

τ φ (
ns

)

T (K)

Fe
TK=0.8K
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