Theory of Mesescopic Systems

Boris Altshuler
Princeton University,
Columbia University &
NEC Laboratories America

CUIO

CONFERENCE UNIVERSITAIRE
DE SUISSE OCCIDENTALE

Lecture 3 15 June 2006

Previous

Lecture




Quantum particle in Quantum particle in
random quenched a chaotic billiard
potential
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Localized states Extended states
Insulator Metal
Poisson spectral Wigner-Dyson ¢
statistics spectral statistics

. Does Anderson localization provide r)
= ageneric scenario for the Wigner- =
Dyson to Poisson crossover

Consider an integrable system. Each state is
characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum
numbers. The whole set of the states forms a lattice in
this space.

A perturbation that violates the integrability provides
matrix elements of the hopping between different sites
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson
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D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain
H = tZ(CiTO'Ci-Fl,O' + C::O—I,O'Ci,a)—i_ U Z ni,ani,—a +V Z ni,O'ni+1,o"
i,o
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~ Onsite n. neighbors
extended interaction interaction
V =0 Hubbard nonintegrable
model
1 T
12 sites =s U=4 V=4
3 particles o
Zero total spin ;
Total momentum 7/6 \
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Wigner-Dyson random matrix statistics
follows from the delocalization.

Why the random matrix
theory (RMT) works so well ’7
" for nuclear spectra 0

Spectra of Many-Body excitations !

Does it make sense to speak about the Fermi —
liquid state in the presence of a quenched disorder

1. Momentum is not a good quantum number - the 4 n(f))
momentum uncertainty is inverse proportional to the
elastic mean free path, |. The step in the momentum ~ 2
distribution function is broadened by this uncertainty D

Pr

2. Neither resistivity nor its temperature dependence is determined by the umklapp
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a

function of the energy, & The residue , Z, makes no sense

Nevertheless even in the presence of the disorder

|. Excitations are similar to the excitations in a disordered Fermi-gas.
[l. Small decay rate

[ll. Substantial renormalizations
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Zero Dimensional Eermil Liguid
Finite Thouless
—> ET

System energy

e<< E; ndé> OD‘

At the same time, we want the typical energies, &, to
exceed the mean level spacing, ¢, :

0, << & <<E;

g55>>1
1

Thouless Conductance and

One-particle Quantum Mechanics

0 1 9
[ ] [ ] >
Localized states Extended states
Insulator Metal
Poisson spectral Wigner-Dyson
statistics spectral statistics
N xN Quantum Dots with

Random Matrices

dimensionless
conductance J

The same statistics of the random
spectra and one-particle wave
functions (eigenvectors)




TWO-BOdy Set of one particle states. ¢

Interactions |{[£%e2e ggﬁngrjgbgr'bcigrr%pondmgly

a1 + 1 + At
H 0 Zgaaa,aaa,a H int Z M aﬁyé‘aa,aaﬁ,a’ay,aaé',a’
(04 a,ﬂ,y,é‘

o,0'

&, -one-particle orbital energies Maﬂy§ -interaction matrix elements

a + At
Hu= D My.,85,8, .8,
a,B.y 0

o0

Matrix Elements

Diagonal - @,3,7,6 are equal pairwise
M a=y and =6 or @=6 and B=y or a=f and y=5

afyo

Offdiagonal - otherwise

+ Diagonal matrix elements are much bigger
|t turns than the offdiagonal ones

out that M giagonat >> M otrsiagonal

: - + Diagonal matrix elements in a particular
in the limit sample do not fluctuate - selfaveraging




B Short range €-€ N Ay
Joy moger: interactio%s u(r)==5(r)

A ﬁ N (Y (e r
M= fare, (O, O te) V),
eigenfunctions

electron
wavelength v (F) is a random function
1 a that rapidly oscillates
Ve —
. (7) 20
/ \ — as Iong as
: > () [-invariance
j Ve ( ) is preserved

S + Diagonal matrix elements are much bigger than
In the limit the offdiagonal ones

M diagonal >> M offdiagonal

* Diagonal matrix elements in a particular sample
do not fluctuate - selfaveraging

M s = jdr\yx () ‘1//,3
N => (Mg = 45|

‘Wa(r)‘ - Volume

More general: finite range interaction potential U(F)

‘ apap = .”l//a(r]h//ﬂ(rju(r 1 h

The same
conclusion




Random E, - spectrum
Matrices: w,, (i) - i-th component of e-th eigenvector

vt ()=taa| [v.ow =274

in the limt N—->©

Components of the different eigenvectors
as well as different components of the
same eigenvector are not correlated

Ber Exact wavefunctions at energy =& &¢ in
ry chaotic systems behave as sums of plane

COI'I]ECtUI'e waves with |k| ~ k_and random coefficients:

o, (27—t

(v @, )= 2o 2

(r v, 6) - )% o 25

_ E 1-d/2 d is # of dimensions,
(%)= F( 2 ) X () Jﬂ(X) is Bessel function

Important:

when X increases f (X)decays

quickly enough for the integral
® jf(x)(d‘ldx to converge

°Only local correlations




AFRICA BILLIARD - a conformal image of a unit circle

Z + bz +ce'’z’?

V1+2b%+30

o(z)=R

> 0

b=c=0.2;
o=15R=1

Distribution of the
matrix elements Im, . = [ oy, (O, v Fv,()

6 Open boxes -
. levels from 20 to 30
% 4 3 ' Closed circuits —
f levels from 30 to 40
2 L ]
4 L] .c .t L] ." L]
0 speite Coligens so0e e 5 & ae

0 1
M[ 1/Area]




M, ;5 = i [dF v, Ew OO E)| (Voo <] % AN Z (3NN
Distribution = short range
function of &

diagonal ;

an —_—

Offdlagonal T: . Coulomb
matrix "

elements : L

Universal (Random Matrix) limit - Random
Matrix symmetry of the correlation functions:

All _correlation functions are invagriant under
arbitrary orthogonal transformation:

v, (7 jdrO (F,7 . (7)

Jar0: (r.£)0 (5. 7) 3,50 )
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There are only three operators, which are quadratic in
. + . .

the fermion operators @ , & , and invariant under RM

transformations:

n= Zc’:l;gc':lo,,cr total number of particles

- L .
S= 2.8,00008a| total spin

a,01,0,

T =38, 727

Charge conservation a -+ aEagn
(gauge invariance) moTor T only TT

N

N
Invariance under -no S only 82
rotations in spin space

Therefore, in a very general case

N

H. =eVi+EA”+JS% + A, T'T.

Only three coupling constants describe all of
the effects of e-e interactions

12



In a very general case coupling constants

describe effects of electron-electron interactions:

H = Zgana +H.
o

H.  =eVA+ENA*+JS% + 1. T'T.

I.L. Kurland, I.L.Aleiner & B.A., 2000

See also

P.W.Brouwer, Y.Oreg & B.l.Halperin, 1999
H.Baranger & L.1.Glazman, 1999

H-Y Kee, I.L.Aleiner & B.A., 1998

In a very general case coupling constants

describe  effects of electron-electron interactions:

H = Zgana + Hint
a

L =eVA+EN’ +JS% + A, TT.

I

For a short range interaction with a coupling constant ﬁ,

= /1_51 J=-219 Apcs = /151(2 _IB)“

E

C

where 51 is the one-particle mean level spacing
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A= H, + H,

I;\IO = Zgana
a

H. =eVA+EA% +JS” + A, T T.

E determines the charging energy
C (Coulomb blockade)
J describes the spin exchange interaction
ﬂ/ determines effect of superconducting-like
BCS  pairing
|:| = HA0 + I:Iint HO - Zgana

N

H. =eVA+EA% + S + A, T T.

l. similar Fermi-gas.

Isn’t it a Fermi liquid ?

Fermi liquid behavior follows from the fact that

different wave functions are almost uncorrelated

14



Example 1. Coulomb Blockade
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Coulomb Blockade N == A+ transition

valley peak
)."& A=l .l"u" A+l .\";2 ,.\":1 .;h" .'!.’*II N2
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Coulomb Blockade Peak Spacing
Patel, et al. PRL 80 4522 (1998)
(Marcus Lab)




Example 2: Spontaneous Magnetization

1. Disorder
(ximpurities)  chaotic
one-particle
2. Complex motion
geometry

3. -8 interactions

* What is the spin of the Quantum‘?
e Dot in the ground state .

How to measure the Magnetization — of the Coulomb

blockade peaks in the magnetic field

peak position [mV] peak spacing [mV]
174 7.2
-23.5 — 0 et L A bt M Sy e e A B
+ -
g2 e
R e 7.0
ot
240
% 6.8 s i
: = A
-24.5 — = o
g oa 3 EF
o H .
15 | 3 m"*«D—E - . A _'_ﬁ-*' *(-: AR
aH x SR it LC-D
0 J‘iﬁﬁ.g}sr&“-‘ﬂ*fwﬂF B gl N
et F-G gk
2 l& w»«ﬂ’m 6.2 h Hﬂt*ﬁ
-25.5 | m i 2 28
Ry e
P
g T-vm%_ﬁ@ oo oy
-26.0—
e
#9 s HT
" " gt 5.8
T
.5 — H, o
26.5 [" LN ) et |
i et 1 0 200 400 600 800
I T 1 1 1 T 1 T 1 1
0 200 400 600 800 0 200 400 600 800 BII('T'T)
By, [mT] B [mT]
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In the presence of magnetic field

H. =Z<‘»‘a”a+~]§2 +BeS

- the probability to find a ground state at a given
Scali (R[ON magnetic field, B, with a given spin, S, depends on
the combination rather than on B and J separately

B
X=J+ —
gﬂBZS

Probability to observe a triplet
state as a function of the
parameter X

@ - results of the calculation
based on the universal
Hamiltonian with the RM one-
particle states

The rest — exact diagonalization
for Hubbard clusters with
disorder. No adjustable
parameters




|:|=HA0-I-|:|irlt ‘ HO:Zgana \

IH,, = VA + EA” + 35 + 2o T'T|

similar Fermi-gas.

Inelastic processes

Decoherence

18



Small decay rate

*Why is it small
What is it equal to

What is the connection
B petween the decay rate B
of the quasiparticles
and the dephasing rate

Quasiparticle decay rate at ina Fermi Liquid.

d=3

E—W» '€’+0)[ h ( . )2 82
vvvvvvvvvvvvvvvv o coupling

constant

Vs Te.l®) &

Reasons:

+ At small & the energy transfer, @, is small and the integration
over &”and @ gives the factor 6‘2

*The momentum transfer, (J , is large and thus the scattering
probability at given &’ and @ does not depend on g @ore

19



Quasiparticle decay rate at ina Fermi Liquid.

[l. Low dimensions P

/ \
Small momenta transfer, q , become important at I ©\VF 1
low dimensions because the scattering probability is  \
proportional to the squared time of the interaction

> /
(@Ve)? Yy T
&l d=3

Toel€) . (gz/gF)log(gF/g) d=2

£ d=1

Quasiparticle decay rate at ina Fermi Liquid.

III. Applicability i d=3

h : .
Te_e(E) oC (5 /8,: )log(gF /5) d=2

= d=1
Conclusions:

1. For d=3,2 from E<X<E - it follows that £7, . << h, i.e., that

the qusiparticles are well determined and the Eé?mi-liquid
approach is applicable.

2. Ford=1 &7, is of the order of N, i.e., that the Fermi-liquid

approach is not valid for 1d systems of interacting fermions.
Luttinger liquids

20



Quasiparticle decay rate at ina Fermi Liquid.

I Electronic spectrum is discrete
&

Need offdiagonal matrix elements

b b

Quasiparticle decay is beyond Quasiparticle decay
the “universal Hamiltonian” rate is small as g

BEL___conciusions

One-particle chaos + moderate interaction of the electrons >
to a rather simple Hamiltonian of the system, which can be
called Zero-dimensional Fermi liquid.

The main parameter that justifies this description is the
Thouless conductance, which is supposed to be large

Excitations are characterized by their one-particle energy,
charge and spin, but not by their momentum.

These excitations have the lifetime, which is proportional to
the Thouless conductance, i.e., is long.

This approach allows to describe Coulomb blockade
(renormalization of the compressibility), as well as the
substantial renormalization of the magnetic susceptibility and
effects of superconducting pairing

21



Quasiparticle relaxation rate in 0D case T=0

Offdiagonal S

matrix M (a), g,g') oL <<

element g
Quasiparticle relaxation rate in 0D case T=0

Fermi h

Golden <y

Rule z-e -¢ (‘9 O<w<e -w<e'<0

‘M o 5(L)/g

-L<Lg,i_e_,g<ET
_ oD

o *Each Z gives &~ —
o
2

) (i (U.Sivan, Y.Imry & A.Aronov,1994 )
E
T

h oC
z,.(¢)

22



Quasiparticle relaxation rate in disordered conductors T=0

Fermi Z
Golden oc
RUIe Tee( ) O<w<e -w<eg'<0
OD case: L<L,,ie., £<E; h e 2
hD oy | =
Ls =a Te'e (8) ET
&

d>0case: L>L_, je., e >E; — < (L)

T, (6‘)

At L=~ L, the rate is of the order of the mean
level spacing ¢,. This relation should not
change, when we keep increasing the system
size, i.e. decreasing the Thouless energy E.

Quasiparticle relaxation rate in disordered conductors T=0

Fermi s 3 M@eac)

Golden |——««

RUIe Tee( ) O<w<e -w<eg'<0

2
ODcase: L<L,_,ie., e <E; L= hD h s, &
& re_e(g) E;
h o, (L

d>0case: L>L_, je., e >E; Te_e(g)oc (L)

A. Schmid 1973

T (8) * g (Lg) <<€ B.A. & A.Aronov 1979




Matrix elements at Iarge, & >>E+  energies

h &
oC <L¢

" 2 5 .(e) “a(L)

5 (L) 5 (L ) C()_2+d/2

Dd/2
Quasiparticle relaxation rate in disordered conductors T>0
T=0
z-e:-e( ) O<w<e -w<e'<0
h 2(1 )Z (i )‘M (a),g,gr)z .
oc -n n, -n, J—
Te_e (8,T) B &~ > &'+ &'+ 51
s T' Fermi oA
n, = [exp—— 1} distribution C—
T function D¢




Quasiparticle relaxation rate in disordered conductors T>0

— )

Te_e( ) O<w<e -w<e'<0

-1 Fermi
n, = [epr_l} distribution ‘M (a),g,g’)
function

a) T=0 -no problems: Z o< @ and Z converges

b) T>0 -a problem: Z o« T ang Z diverges !

Abrahams, Anderson Lee & Ramakrlshnan 1981

a B - h 1- ns—w
T>0 -a problem. ]/Te_e diverges r(eT) OCTZQ: (f)z—d/de/)z

B.A., A.Aronov & D.E. Khmelnitskii (1983):
O Divergence of is not a catastrophe:
1/z, has no physical meaning

Q E.g., for energy relaxation of hot h g
electrons processes with small ; —oC
energy transfer @ are irrelevant. Te g(l—g)

o Is it the energy relaxation rate
. that determines the applicability

of the Fermi liquid approach

25



. _ - h l_ns—m
T>0 -a problem: 1/%, , diverges - (&T)ocTZw:a()z_d/de/)z

B.A., A.Aronov & D.E. Khmelnitskii (1983):
O Divergence of is not a catastrophe:
1/z, has no physical meaning

Q E.g., for energy relaxation of hot h g
electrons processes with small ; —oC

energy transfer @@ are irrelevant. P g( g)

O Phase relaxation: in a time t after h
a collision dp~ Cr wt) [ h = — oc?
processes with energy transfer @ T
smaller than ]/2'(p are irrelevant.

What Is Dephasing?
. Suppose that originally a system(an electron) was in a pure

quantum state. It means that it could be described by a wave
function with a given phase.

2. External perturbations can transfer the system to a different
quantum state. Such a transition is characterized by its
amplitude, which has a modulus and a phase.

3. The phase of the amplitude can be measured by comparing it
with the phase of another amplitude of the same transition.

Example: interferometer
/ beam splitter

\ mirror

26



4. Usually we can not control all of the perturbations. As a
result, even for fixed initial and final states, the phase of the
transition amplitude has a random component.

5. We call this contribution to the phase, @, random if it

changes from measurement to measurement in an
uncontrollable way.

6. It usually also depends on the duration of the experiment, t:

op = op(t)
7. When the time t is large enough, 5(0 exceeds 27, and
interference gets averaged out.

8. Definitions:

op(t,) ~2rx

T¢ phase coherence time; ]/T¢, dephasing rate

Why' is Dephasing rate important?

Imagine that we need to measure the energy of a quantum system, which
interacts with an environment and can exchange energy with it.

Let the typical energy transferred between our system an the environment
in time T be dg(t). The total uncertainty of an ideal measurement is

h
Ae(t) = de(t)+— .
environment t quantum
uncertainty

é‘g(t)v)oo; There should be an optimal measurement
h time t=t* , which minimizes Ag(t) :
o wnch s Ae()
t et*)=A4¢,;,

' 5 t*~ 1 '

oe(t*)~r— = dp(t*)=1 = v
o +(t") i ?(t) Ae,. =N/t,

27



Why' is Dephasing rate important?

§g(t*)zt£*:>§¢(t*)z1:>

It is dephasing rate
that determines the

accuracy at which the

energy of the quantum

state can be measured
in principle.

* ~
t RT,

Ag,, =Tz,

T>0 -a problem: ]/Te-e diverges

B.A., A.Aronov & D.E. Khmelnitskii (1983):
O Divergence of is not a

catastrophe: ]/Te-e has no

physical meaning

d E.g., for energy relaxation
of hot electrons processes
with small energy transfer

@) are irrelevant.

O Phase relaxation: in a time t

h Ty (1-n._,)

T, (8’-'-) ~ PRI

after a collision

5¢z (27:a)t)/h:> I 2

h T Y (1-n,_,)

processes with energy 7, (E,T)

2-d/2~d/2
o>h/z, D

transfer @ smaller than
]/2'¢, are irrelevant.

o
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e-e Interaction — Electric noise

Fluctuation- dissipation theorem:

Electric noise - randomly time and space ;_
dependent electric field E“(F,t) < E“(k a))
Correlation function of this field is completely
determined by the conductivity o k w;n

Y K K T
(E Eﬂ>wﬁ=aa;_ﬁ)coth(;’r) P

~ .
Kk O'a,,(a), k)

Noise intensity increases with the

temperature, T, and with resistance

- T KK,
R N RAlE e o

g(L) = ZL - Thouless conductance — def.
e’R(L)
- . length (1d)
- t f th le with
R(L) - resistance of the sample wi { area (20)
1 il
oC
7, o(L,)
| = Dz' dephasmg D - diffusion constant of
ength the electrons

29



This is an equation!

d-2
g(L)ee L L, =7,
where is the number of dimensions:
d:]. for wires; d:2 for films, ...

T d=2
~2/(4—d
L OC-I-—I/(4—d) T¢0CT /( )OCT_2/3 .

4

I _
(L) =0

Fermi liguid is valid (one
particle excitations are well Tt (T) > h
defined), provided that ?

1. inapurelyld chain, 0 < 1 and, therefore, Fermi liquid theory is
never valid.

2. 1n a multichannel wire (J L(p) > 1 ,provided that L(pis smaller
than the localization length, and Fermi liquid approach is justified

30



detect phase coherence ?

How to

measure the dephasing/decoherence rate «

Quantum phenomena in electronic systems:

* Weak localization yes
» Mesoscopic fluctuations yes
* Persistent current no

Persistent current at zero temperature IS a

ground state!

E
I % %
DI
E is the ground state energy

Interaction between electrons can change both

E and J but this does not mean that there is
dephasing of the ground state wave function.

Measurements of the persistent current as well as of
other thermodynamic properties do not allow to extract
the dephasing rate. Only transport measurements

31



No magnetic field

b =

Mag netoresistance

oL o

L =

magnetic flux
HS - " through the loop

With magnetic field H
@~ @;=2%2n O/,

® = hcle - flux

0

quantum

Weak Localization, Magnetoresistance in Metallic Wires

3.1K

—

117K ]
\fvzm mK

I AYAISmK ]
[j107? ]

-0.04 -0.02 0.00 0.02 0.04

B (T)

1d case; strong spin-orbital coupling

AR_

R

1{ A
+

L, =.—
" \eH
A - area of

the wire
cross-section
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Can we always reliably extract the inelastic
dephasing rate from the experiment 0,

NO - everything that violates T-invariance

W_eak_ will destroy the constructive interference
localization: EXAMPLE: random quenched magnetic field
B
: YES - Even strong magnetic
\UIERTeIS{ele] o] [l ficld will not eliminate these
el fluctuations. It will only reduce
fluctuations: their amplitude by factor 2.
Slow diffusion of the impurities will
But look as dephasing in mesoscopic
fluctuations measurements
Magnetic Impurities il
I - before ﬂ - after -/'ﬂ l

T-invariance is clearly violated, \
therefore we have dephasing

Mesoscopic fluctuations

Magnetic impurities cause dephasing only through
effective interaction between the electrons.

Either Kondo scattering or quenchin
=0 due to the RKKY exchgngeg :

In both cases no “elastic dephasing”

33



Inelastic dephasing rate ]/2'¢ can be separated at least
in principle

ha
\\ « other electrons
ha
* phonons
— * magnons
\ * two level systems

THE EXPERIMENTAL CONTROVERSY

Mohanty, Jariwala and Webb, PRL 78, 3366 (1997)

/T-2/3

Saturation of T,

Artifact of measurement ?
Real effect in samples ?

34



Zero-point Oscillations

©®

& - energy counted
from the Fermi level

1. T>w The particle and
the oscillator
; can exchange
e>w,n>0 energy

Inelastic i
scattering dephasing

Collision between the quantum particle and a harmonic oscillator

L 1 n=
n=
n=

ool

E,=ho(n+1)

Zero-point Oscillations

©

& - energy counted
from the Fermi level

1. T>w The particle and
the oscillator
; can exchange
E>mw, N> 0 energy

Inelastic i
scattering dephasing

Collision between the quantum particle and a harmonic oscillator

-\ ]

L 1 n=
n=
n

Ol

E,=ho(n+1)

No ener
2.T<kw exchanggey
between the

- ~ — () oscillator and
e<<aw;n=0 the particle

Pure elastic No
scattering dephasing
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Zero-point Oscillations
Collision between the quantum particle and a harmonic oscillator

® Ol

& - energy counted — 1
from the Fermi level En - hw(n + 2)

| 1 No energy

T <<®  exchange
L[ betv_\ﬁaetn theOI
- n — () oscillator an
£<<aw;n=0 the particle
""" 1he = Zero-point
ENFENEEEEE NoO oscillations
scattering dephasing
VOLUME 78, NUMBER 17 PHYSICAL REVIEW LETTERS 28 ApriL 1997

Intrinsic Decoherence in Mesoscopic Systems

P. Mohanty, E. M. Q. Jariwala, and R. A. Webh

Center for Superconductivity Research, Department of Physics, University of Marvlaad, College Park, Maryland 20742
(Received 17 December 1996)

Saturation
is not due
to magnetic ]

impurities

o
m]
Saturation is Lo H = 0.04T]
not due to — :%% ] P
1 0.0t " r
overheating 0 T 1o 1o
1074 LT (K)

107¢ 107! 10* 1ot
T(K)

FIG. 3. Temperature dependence of 74 before (diamonds) and
after (boxes) Fe implantation.  The solid line 15 a fit to Eq. (1)
with phonons.  The inset shows the loglT) dependence of Ap
due to magnetic impurities with a theoretical fit.
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2'¢(T) In wires

|

PHYSICAL REVIEW B 68, 083413 (2003)

Dephasing of electrons in mesoscopic metal wires

F. Pierre,">** A. B. Gougam."" A. Anthore? H. Pothier? D. Esteve. and Norman O. Birge!
'Depariment of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-2320, USA
2Service de Phvsique de 'Etat Condense, Divection dex Sciences de la Matiére, CEA-Saclay, 91191 Gif-sur-Yvette, France
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Magnetic Impurities: the Kondo Effect
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Dephasing and temperature dependence of the resistivity.
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Can magnetic impurities cause an apparent
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s it a proof of the magnetic impurities
domination in the decoherence ? Not yet
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Energy relaxation?
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One electron can not change energy after scattering by a system of
two degenerated states.

Two electrons can exchange energy in spite of the fact that the
states of the impurity are degenerate and it can not be excited
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Controlled experiment Il: energy exchange
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] 01 T(K) 1 FIG. 1: (Color online) Symbols: measured phase coherence
TK time in the two wires. Solid lines: best fits with Eq. (1),

obtained with ¢, = 0.10 & 0.01 ppm (bare wire) and ¢; =
0.95 £ 0.1 ppm (implanted wire). The upper line is the pre-
diction without spin-flip scattering (¢ = 0). Inset: layout of
the circuit. The switch is open for magnetoresistance mea-
surements, closed for energy exchange measurements.
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FIG. 2: (Color online) Differential conductance df /dV (V') of

the tunnel junction (see inset of Fig. 1) for the bare (left)

v ' and implanted (right) wires, for I = 0.1 mV, 0.2 mV and
\:/’ 0.9 0.3 mV (top to bottom panels), and for B = 0.3 to 21 T

by steps of 0.3 T (bottom to top in each panel). The curves

4

0 U=03 mv o8 were shifted vertically for clarity. Symbals: experiment. Sclid
L1k B 1 Y T lines: caleulations using e = 0.1 ppm, c; = 0.95 ppm and
vy T vmy) Koo = 0.05 ns~'meV /2,
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Energy relaxation at weak B
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1 Dephasing and energy relaxation give very
close concentration of the magnetic impurities

2 Energy relaxation is suppressed by the
magnetic field as was predicted

Mn impurities dominate both energy and phase
relaxation in this temperature interval. No room for
mysteries like zero-point dephasing.

Both energy and phase relaxation times should increase

dramatically when temperature is reduces further —

Kondo effect
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Both energy and phase relaxation times
should increase dramatically when

temperature is reduces further — Kondo effect
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