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Quasiparticle decay rate at T = 0 in a cleanclean Fermi Liquid. 
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Conclusions:Conclusions:
1. For d=3,2 from ε<< ε F it follows that ετe-e >> h, i.e., 

that the qusiparticles are well determined and the Fermi-liquid 
approach is applicable.

2. For d=1 ετe-e is of the order of h, i.e., that the Fermi-liquid 
approach is not valid for 1d systems of interacting fermions. 

Luttinger liquids
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Applicability of the FL approach is Applicability of the FL approach is 
determined by the phase relaxation timedetermined by the phase relaxation time

It is dephasing rate 
that determines the 

accuracy at which the 
energy of the quantum 
state can be measured 

in principle.
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Energy relaxation rate 1/τε

Analogy:Analogy: NMR relaxation rates T1 and T2

relaxation of Sz - T1 relaxation of Sz - T1
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Problem: quasielastic scattering
Given the energy transfer in each scattering act ω and the inelastic rate
1/τin determine the rates 1/τϕ and 1/τε. Consider both cases ωτin<<1
and ωτin>>1.
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For electron-electron interaction in the presence of disorder
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For electron-electron interaction in the presence of disorder
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Phase 
relaxation 

rate
Deconvolution [ 

Energy relaxation

Energy relaxation?

B=0 only
Can be done
at nonzero B 



Temperature dependence of τφ
(from magnetoresistance)

Echternach, Gershenson, Bozler, Bogdanov & Nilsson,
PRL 48, 11516 (1993)



Saturation 
is not due 
to magnetic 
impurities

Saturation is 
not due to 
overheating



Saturation 
is not due 
to magnetic 
impurities

Saturation is 
not due to 
overheating

It could be magnetic impurities with low Kondo temperature (Mn)

It could also be external radiation !
Dephasing without heating



Effect of microwave Effect of microwave 
radiation on weak radiation on weak 

localizationlocalization

DephasingDephasing without without 

heatingheating



e-e interaction – Electric noise
Fluctuation- dissipation theorem:
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Electric noise - randomly time and space - dependent 
electric field . Correlation function of 
this field is completely determined by the conductivity         
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Noise intensity increases with the 
temperature, T, and with resistance
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What is the effect of 
microwave radiation ?

External noise ?





DephasingDephasing without HeatingHeating in 1D
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the shorter the wire, the larger resistance R, the bigger the range of 
powers with “Dephasing – without – overheating”

power that gets out of the sample due 
to diffusion of “hot” electrons to “cold”
leads, given the overheating ∆T

power at which dephasing effect of the 
radiation compares with the effect of 
the thermal noise
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No “Dephasing – without – overheating” as long as R >> Rq = h/e2



DephasingDephasing without HeatingHeating in 1D

MW 
dephasing-

without-
overheating

Onset of 
significant 

overheating 
in the sample
(L=30µm)

Power at 
which the 
radiation 

dominates 
the 

dephasing
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Interaction Corrections as a Built-in Thermometer

In a strong magnetic field
(LH<<Lϕ), R(T) is determined 
by the interaction corrections
∆σEEI(Te).

The measurements of R in 
strong B provide both the 
direct measurement of Te and 
calibration of the MW power 
dissipated in the sample, PMW.

Overheating that corresponds 
to PMW =+10 dB at f = 1 GHz



Effect of Microwave Radiation on the WL MR

MW-induced dephasing 
without overheating

MW-induced dephasing
+ overheating

!
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∫

σ1 - conductivity per unit length

Ω - microwave frequency

D – diffusion constant of electrons

W – width of the wire

I0(z) – Bessel function of a complex argument

Effect of the radiation at zero magnetic field
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E – amplitude of the el. field in the microwave
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σ1 - conductivity per unit length

Ω - microwave frequency

D – diffusion constant of electrons

W – width of the wire

I0(z) – Bessel function of a complex argument

Radiation effect on magnetoresistance

E – amplitude of the el. field in the microwave
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Low-T saturation of τϕ

the upper bound on 
the external noise 
power ~ 3·10-14 W

Conclusion: at least in this 
experiment, the reason for 
τϕ(T) saturation may be the 

external electromagnetic 
noise

PMW = 3·10-14 W 
leads to τMW ~  

τϕ(50 mK)=3.7 ns

( ) ( ) ( ) 11
0

1 ns3.3 −−− += TT ϕϕ ττ



Saturation of the dephasing rate

Birge, Pothier et al  – Magnetic impurities 

Gershenson et al  - External noise

Mohanty & Webb - ????

No reason to expect zero-temperature 
dephasing by zero-point oscillations



OneOne--particle excitations particle excitations 
in finite closed systemsin finite closed systems

Can one localize a Can one localize a 
quasiparticlequasiparticle



Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Spectra of Many-Body excitations !

Wigner-Dyson random matrix statistics
follows from the delocalization.
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Offdiagonal
matrix 
element

Quasiparticle relaxation rate in 0D case T=0
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Problem: in a discrete random spectrum it is impossible to 
satisfy the conservation law exactly ! Probability that

equals to zero
δγβα εεεε +=+



one-particle spectrum is discrete

equation ε1+ε2 = ε’1 + ε’2
can not be satisfied exactly

Fermi Sea

Decay of a quasiparticle with an energy ε in 
Landau Fermi liquid

ε

ε−ω

ε1+ω

ε1
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ε
γ ε δFermi Golden rule:

Mean level 
spacing

Thouless
energy

zero-dimensional case



Chaos in Nuclei – Delocalization?

Fermi Sea

generations
1 2 3 4 5 6

. . . .

Delocalization 
in Fock spaceε

ε1

Can be mapped (approximately) 
to the problem of localization 
on Cayley tree

ε’

ε1’

Anderson model



Fermi Sea

generations
1 2 3 4 5 6

. . . .

ε

ε−ω

ε1+ω

ε1

1 2 3 4 5

Delocalization 
in Fock space

Can be mapped (approximately) 
to the problem of localization 
on Cayley tree

Chaos in Nuclei – Delocalization?



source drain

gate

QDQD

VSD

No e-e interactions –
resonance tunneling

Mean level 
spacing δ1

S

D

VSD

current I
SDdVdI



source drain

gate

QDQD

VSD

No e-e interactions –
resonance tunneling

e-e interaction leads to 
additional peaks –
many body excitations

S

D

VSD

current I
SDdVdI



VSD

No e-e interactions –
resonance tunneling

e-e interaction leads to 
additional peaks –
many body excitations

S

D

VSD
source drain

gate

QDQD

current I
SDdVdI



S

D

VSD
source drain

gate

QDQD

VSDloc
Ergodic - WDNE

Landau 
quasiparticle with 

the width γSIA

current I
SDdVdI



Many Body Many Body 
LocalizationLocalization



Can hopping conductivity Can hopping conductivity 
exist exist without phononswithout phonons



can e-e interaction alone
sustain hopping conduction
in a localized system?

1. All one-electron states are localized

2. Electrons interact with each other

3. The system is closed (no phonons)

4. Temperature is low but finite

Problem:

Given:

Find: DC conductivity σ(T,ω=0)
(zero or finite?)



“All states are localized “

means

Probability to find an extended state:

System size



1. Localization of single-electron wave-functions:

extended

localized

d=1; All states are localized

d=2; All states are localized

d>2; Anderson transition



DoS DoS

all states are
localized

I < IcI > Ic

Anderson model; Anderson model; AndersonAnderson TransitionTransition

- mobility edges (one particle)

Coexistence of the 
localized and extended 
states is not possible!!!

extended



Temperature dependence of the conductivity Temperature dependence of the conductivity 
of of noninteractingnoninteracting electronselectrons

DoS DoSDoS



Temperature dependence of the conductivity Temperature dependence of the conductivity 
of of noninteractingnoninteracting electronselectrons

DoS DoSDoS

Assume that all the states 
are localized



Inelastic processes )
transitions between localized states

(inelastic lifetime)–1

α

β energy
mismatch

(any mechanism)(any mechanism)



Phonon-induced hopping

α

β

Variable Range Hopping
Sir N.F. Mott (1968)

energy difference 
can be matched 

by a phonon

Mechanism-dependent
prefactor

Without Coulomb gap
A.L.Efros, B.I.Shklovskii (1975)



Phonon-induced hopping

α

β

Variable Range Hopping
Sir N.F. Mott (1968)

Mechanism-dependent
prefactor Optimized

phase volume

Any bath with a continuous spectrum of delocalized 
excitations down to ω = 0  will give the same exponential



Q: Can we replace phonons with 
e-h pairs and obtain phonon-less VRH?

A#1:   Sure

3) Use the electric noise instead of phonons.

1) Recall phonon-less AC conductivity:
Sir N.F. Mott (1970)

2) Calculate the Nyquist noise.

4) Do self-consistency (whatever it means).

Easy steps:Easy steps:



Q: Can we replace phonons with 
e-h pairs and obtain phonon-less VRH?

A#1:  Sure

A#2: No way
(for Coulomb interaction in 3D – may be)

[L. Fleishman. P.W. Anderson (1980)]

is contributed by rare 
resonances 

δ
α

βγ

R



Q: Can we replace phonons with 
e-h pairs and obtain phonon-less VRH?

A#1:  Sure

A#2: No way
(for Coulomb interaction in 3D – may be)

[L. Fleishman. P.W. Anderson (1980)]

is contributed by rare 
resonances 

δ
α

βγ

R

Thus, the matrix element vanishes !!!

0 *



Q: Can we replace phonons with 
e-h pairs and obtain phonon-less VRH?
A#1:  Sure [a person from the street (2005)]: 
A#2: No way [L. Fleishman. P.W. Anderson (1980)]

A#3:  Finite T MetalMetal--Insulator TransitionInsulator Transition

insulator

Drude

metal

[Basko, Aleiner, BA (2005)]

Interaction strength



We have to take into account that
1. A one-electron wave function decays 

exponentially as a function of the distance 
from its center.

2. Matrix elements of the interaction decay 
(probably as a power law) when differences 
between the energies of involved 
quasiparticles is increased. 

3. These matrix elements have random sign.
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ξ
j1

j2

l1

l2

Interaction only within the same cell;  
no diagonal matrix elements
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Technique

Self-
Consistent

Born
Approximation

Boltzmann
Equation





Idea of the calculation:

- insulator
- metal

( ) ( )ΓΓ
Ωη 0;0

lim PP ≡
∞→→

1. Start with some infinitesimal width η (Im part of 
the self-energy due to a bath) of each one-electron 
eigenstate

2. Consider Im part of the self-energy Γ in the 
presence of tunneling and e-e interaction. 

3. Calculate the probability distribution function P(Γ)

4. Consider the limit:
Ω is the 
volume of 
the system

( ) ( )
000 ≠≠

=
Γ
Γδ

Γ
for

P



Probability Distribution

metal

insulator

Note:

Look for:



• is always a solution
• – linear stability analysis:

• after      iterations of SCBA equations:

Stability of the insulating phase:
NO spontaneous generation of broadening

first
then (…) < 1 – insulator is stable !



•

(levels well resolved)•

• quantum kinetic equation for transitions between
localized states

(model-dependent)

as long as

Stability of the metallic phase:
Finite broadening is self-consistent
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Tc :
Recall ergodic and 
nonergodic regions 
in 0d problem
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Large Ek ) high T: extended states

Fermi Golden Rule 
hopping (bad metal)

transition !
mobility 
edge

interaction ! dephasing ! cutoff of WL 
(good metal)

Many-body mobility edge

Why no activation?



Many-body mobility edge

Large Ek ) high T: extended states
interaction ! dephasing ! cutoff of WL 
(good metal)
Fermi Golden Rule 
hopping (bad metal)

No activation:
2

2

c
c d

d

TE

T
m

E
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δ ζ
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∝
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, c vE eE olum∝
( )

exp 0volume
cE T E
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transition !
mobility 
edge



Conclusions & Some speculations
Conductivity exactly vanishes at finite 
temperature. Finite temperature phase transition 
without any apparent symmetry change!
Is it an ordinary thermodynamic phase transition 
or low temperature phase is a glass?

We considered weak interaction. 
What about strong electron-electron interactions?
Melting of a pined Wigner crystal?

What if we now turn on phonons? 
Cascades.
Is conventional hopping conductivity picture ever 
correct?



OrthogonalityOrthogonality
catastrophecatastrophe



Electron-electron interaction effects       
other than inelastic collisions

ØAnomalies in the tunneling density of states

ØTemperature dependence of the conductivity

-0.2 0.0 0.2

0.8

0.9

 

V (mV)



strength 
of the 
interaction

strength 
of the 
disorder

srWigner crystalFermi liquid

Disorder + interactionsDisorder + interactions

Translation invariance 
is violated by disorder



0volume →∆∞→

E

ε
OneOne--particle particle DDensity ensity oof f SStatestates
0) Free fermions

. . .

. . 

( )EΝ
( ) ( ) ( )

volume2
EEE

∗∆
∆−Ν−∆+Ν

≡ν

Observables are determined by DoS at the chemical 
potential, µ :

Compressibility dn/dµ = ν(µ)

Specific heat c/T= ν(µ)
Magnetic succeptibility χ/(gµΒ)= ν(µ)
Conductivity σ= e2ν(µ) D

ν(µ)= const > 0



“Carbon Nanoelectronics” 
talk at ITP UCSB, Aug. 2001



I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

AND

These always are infrared singularities



Tunneling Tunneling DDensity ensity oof f SStatestates



Tunneling Tunneling DDensity ensity oof f SStatestates

µ
M1 M2

V

1µ

2µ

M1 M2 eV21 =− µµ

bias



Tunneling Tunneling DDensity ensity oof f SStatestates

V

1µ

2µ

M1 M2 eV21 =− µµ

bias

( ) ( ) ( ) ( ) const
dV

VIdVG 21 ≈∝≡ µνµν

tunneling
probability

Depends on the bias 
only on the scale of 
the Fermi energy



Tunneling Tunneling DDensity ensity oof f SStatestates

V

1µ

2µ

M1 M2 eV21 =− µµ

bias



Tunneling Tunneling DDensity ensity oof f SStatestates

V

1µ

2µ

M1 M2 eV21 =− µµ

bias

A charge is created at t=0



First observation of the Zero Bias Anomaly



Zero Bias Anomaly (ZBA)Zero Bias Anomaly (ZBA)
Tunneling conductanceTunneling conductance, Gt , 
is determined by the product of the tunneling probability, W , 
and the densities of states in the electrodes, νt (ε = eV) .

OriginallyOriginally ZBA was attributed to W :
• Paramagnetic impurities inside the barrier (Appelbaum-

Andersdon theory) for the maximum of Gt . 
• Phonon assisted tunneling for the minimum.

Now it is accepted Now it is accepted that in most of cases
ZBA is a hallmark of the interactions between the electrons.ZBA is a hallmark of the interactions between the electrons.

In other words, it is better to speak in terms of anomalies in the tunneling DoS.



Minimum in the 
conductance at zero 
bias

Minimum in the 
density of states at 
the Fermi level

Tunneling is 
suppressed at 
small energies

First observation of the Zero Bias Anomaly
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Orthogonality catastropheOrthogonality catastrophe

E∆

Tunneling probability is more 
or less independent on ∆E



Orthogonality catastropheOrthogonality catastrophe

E∆

Tunneling probability is more 
or less independent on ∆E

Tunneling in the presence of the 
Fermi sea: the fact that the 
heavy particle found itself in the 
ground state does not mean that 
the Fermi sea also remains in its

ground state – the 
Fermi sea also has to 
tunnel

Soft pairs are created





Minimum in the 
conductance at zero 
bias

Minimum in the 
density of states at 
the Fermi level

Tunneling is 
suppressed at 
small energies

First observation of the Zero Bias Anomaly





Minimum in the 
resistance at zero bias

Maximum in the 
density of states at 
the Fermi level

Tunneling is 
enhanced at 
small energies



Again:
Maximum in the 
density of states 
at the Fermi level



Effect appears already in the first Effect appears already in the first 
order in the perturbation theory  order in the perturbation theory  

its sign is not determined its sign is not determined 

CorrectionCorrection to the DoS in the disordered case:to the DoS in the disordered case:
BA & A.G. Aronov, Solid St. Comm. 30, 115 (1980).
BA, A.G. Aronov, & P.A. Lee, PRL, 44, 1288 (1980).



rr

δν ε( ) =
λd

ε hD ε( )d 2 ∝
− ε d = 3
log ε d = 2
1
ε

d = 1

ε electron energy 
counted from the Fermi 
level

D diffusion constant of 
the electrons

d  # of the dimensions

λ effective coupling 
constant;
λ>0 -repulsion

CorrectionCorrection to the DoS in the disordered case:to the DoS in the disordered case:
BA & A.G. Aronov, Solid St. Comm. 30, 115 (1980).
BA, A.G. Aronov, & P.A. Lee, PRL, 44, 1288 (1980).

ε

ν



rr

δν ε( ) =
λd

ε hD ε( )d 2 ∝
− ε d = 3
log ε d = 2
1
ε

d = 1

Effect appears already in the first Effect appears already in the first 
order in the perturbation theory  order in the perturbation theory  

its sign is not determined its sign is not determined 

ε electron energy 
counted from the Fermi 
level

D diffusion constant of 
the electrons

d  # of the dimensions

λ effective coupling 
constant;
λ>0 -repulsion

CorrectionCorrection to the DoS in the disordered case:to the DoS in the disordered case:
BA & A.G. Aronov, Solid St. Comm. 30, 115 (1980).
BA, A.G. Aronov, & P.A. Lee, PRL, 44, 1288 (1980).

ε

ν
••Repulsion Repulsion -- minimumminimum in the DoS;in the DoS;
••DoS DoS divergesdiverges at low dimensions at low dimensions 



Zero Bias Tunneling Anomaly

Gershenson et al, Sov. Phys. JETP 63, 1287 (1986)

The conductivity of the tunnel junctions Al-I-Al (T=0.4K, B=3.5T) 
for 2D films with different Ro: 1 – 40 Ω, 2 – 100 Ω, 3 - 300 Ω.  
Right panel: comparison with the theoretical prediction for the 
interaction-induced ZBA.



Tunneling Density of States (DoS)Tunneling Density of States (DoS) ν ε( )

K.A. Matveev, D.Yue, and L.I. Glazman Phys. Rev. Lett., v.71, p.3351 (1993)
A.M. Rudin, I.L. Aleiner, and L.I. Glazman; Phys. Rev. v.B71, #15 (1997)

Role of the Friedel OscillationsRole of the Friedel Oscillations
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Tunneling Density of States (DoS)Tunneling Density of States (DoS) ν ε( )

K.A. Matveev, D.Yue, and L.I. Glazman Phys. Rev. Lett., v.71, p.3351 (1993)
A.M. Rudin, I.L. Aleiner, and L.I. Glazman; Phys. Rev. v.B71, #15 (1997)

Role of the Friedel OscillationsRole of the Friedel Oscillations

DoS at a given point          in space is determined by the 
quantum mechanical amplitude to come back to this point

rr
rr
R 



Tunneling Density of States (DoS)Tunneling Density of States (DoS)
DoS at a given point          in space is determined by the 
quantum mechanical amplitude to come back to this point

rr
rr
R 

ν ε( )

0) No disorder
No interactions 
between the 
electrons

Non of the 
classical 
trajectories 
returns to the 
original point

DoS is a 
smooth 
function of the 
energy

ν ε( ) ∝ ε + εF( )−1+d 2

≈ const(Energy       is counted from the Fermi level)ε

1) Such classical trajectories appear as soon as 
translation invariance is violated (e.g., by disorder):

e
e rr

rr
R rr

rr
R 



Tunneling Density of States (DoS)Tunneling Density of States (DoS)
DoS at a given point          in space is determined by the 
quantum mechanical amplitude to come back to this point

rr
rr
R 

ν ε( )

1) Such classical trajectories appear as soon as 
translation invariance is violated (e.g., by disorder):

e

e

The return amplitude contains the phase 
factor. The phase ϕ = 2kFR is large (if the 
distance between the original point and the 
impurity exceeds the Fermi wavelength). 
The correction to the DoS vanishes when 
averaged over the sample volume

Different trajectories 
are characterized by 
different  phase 
factors

e iϕ
disorder

= 0

Only mesoscopic fluctuations 

rr
rr
R 

rr
rr
R 



e

Different trajectories have 
different  phase factors

e iϕ
disorder

= 0

Without electron-electron interactions 
(averaged) DoS is not effected by the 
disorder.

Only mesoscopic fluctuations

e

rr
rr
R 



Friedel Oscillations
rr
δρ

rr
r ( )∝

sin 2kFr( )
r d

Electron density 
oscillates as a 
function of the 
distance from an 
impurity. 

The period of these 
oscillations is 
determined by the 
Fermi wave length. 

The amplitude of the 
oscillations decays 
only algebraically. 

These oscillations are 
not screened



An electron right after the tunneling 
finds itself at a point R. It moves, then

(i) gets scattered  off an impurity at a 
point O,    

(ii) gets scattered off the Friedel 
oscillation created by the same 
impurity (interaction !!!) , and

(iii) returns to the point R .

No oscillations 
in the limit

Phase factor at Phase factor at 
small angle small angle θ ::

Single impurity (ballistic) case
Compensation of Phases

rr
rr
R 

O

rr
rr
r 

i

ii

iii

∞→→ εε r;0

θ

rr

sin 2kFr( )e ik
rr
R −

rr
r e ikre ikR ≈

e2i k − k F( )r = exp 2iεr vF

 
 

 
 

ZBA !



No oscillations in the 
limit
Phase fluctuates 
only when           , 
where

ZBA !

An electron right after the tunneling 
finds itself at a point R. It moves, then
(i) gets scattered  off an impurity at a 

point O,    
(ii) gets scattered off the Friedel 

oscillation created by the same 
impurity, and

(iii) returns to the point R .

ε → 0

r > rε

rε ≈ vF
ε → ∞

Important:Important: this effect exists already in the first order
of the perturbation theory in the interaction between 
the electrons (between the probe electron and the 
Friedel oscillation), i.e., in the Hartree-Fock
approximation. As a result the DoS correction as well as
ZBA can have arbitrary sign.



O1

O3

O4

O2

Multiple impurity scattering - diffusive case.
Compensation of Phases

“Messy” Friedel oscillations -
combination of the Friedel 
oscillations from different scatterers

rr
δρ

rrr ( )∝ Aα sin kFLα( )
paths α
∑

Lα total length of this path

α = O1,O2,O3, ...,On ,{ } a path

rr
rr
R 

5O



O1

4O

5O

O2

Multiple impurity scattering - diffusive case.
Compensation of Phases

“Messy” Friedel oscillations -
combination of the Friedel 
oscillations from different scatterers

rr
δρ

rrr ( )∝ Aα sin kFLα( )
paths α
∑

Lα total length of this path

α = O1,O2,O3, ...,On ,{ } a path

rr
rr
R 

O3

FO



Multiple impurity scattering - diffusive case Compensation of 
Phases

rr
rr
R 

O1

O3

5O

O2

θ

O4FO
“Messy” Friedel oscillations -
combination of the Friedel 
oscillations from different scatterers

rr
δρ

rrr ( )∝ Aα sin kFLα( )
paths α
∑

Lα total length of this path

α = O1,O2,O3, ...,On ,{ } a path

phase factor at small angle phase factor at small angle θ :: sin kF Lα( )eikLα ≈ exp iεLα
vF

 
 

 
 

Lα < rε ≈ vF
ε → ∞

Again, oscillations are 
not important as long as



rr
rr
R 

O1

O3

5O

O2

θ

O4FO phase factor at small angle phase factor at small angle θ ::

sin kF Lα( )eikLα ≈ exp iεLα
vF

 
 

 
 

Lα < rε ≈ vF
ε → ∞

Oscillations are 
not important as 
long as

Magnitude of the 
correction to the DoS 
is determined by the 
return probability

If the interaction is not weak, 
the relative corrections to the 
DoS are the same as the 
weak localization corrections 
to the conductivity

Multiple impurity scattering - diffusive case Compensation of 
Phases



Tunneling Density of States Tunneling Density of States Two singular contributionsTwo singular contributions

Anderson Anderson 
Orthogonality Orthogonality 
Catastrophe:Catastrophe:

This effect exists in disordered systems as well !This effect exists in disordered systems as well !

Creation of  virtual soft electron-hole pairs
Second order in the e-e interaction

Analogy withAnalogy with thethe XX--ray ray 
edge singularityedge singularity problem:problem:

εF

rrhω h

e

Two distinct singular terms in the ionization probability:
1. Mahan term - interaction between the “new born” electron and 

the localized hole
2. Anderson term - interaction between the hole and the rest of 

the Fermi sea

((no translation invariance))



Tunneling Density of StatesTunneling Density of States Role of the translation invarianceRole of the translation invariance

In the presence of the disorderIn the presence of the disorder the anomaly is due to the simultaneous
scattering of the electrons off the disorder and off the Friedel oscillations.

Role of the disorder:Role of the disorder:
1. It preforms Friedel oscillations
2. It increases the return probability

2.2. DoS singularity gets stronger due to the DoS singularity gets stronger due to the 
disorder  disorder  (e.g,(e.g, ε−1/2 instead ofinstead of log ε in 1D)in 1D)

1.1. It is only due to the disorder the nontrivial It is only due to the disorder the nontrivial 
correction to correction to the density of states appears the density of states appears 
already in the already in the first order in the interaction first order in the interaction 
constantconstant



Tunneling Density of States.Tunneling Density of States. Leading correctionLeading correction

Clean

Ballistic

Diffusive
d=1, N channelsd=2d=3

h<<ετ ( )
ετ

τ
λ

2
FE

( ) νεδν










FF EE
ε

τ
λε log

2










FF EE
εελ log2
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








FF EE
ε

τ
λ log

F FE E
λ ε

τ

FE
ε

λ2

ετ
λ

N










FEN
ελ log










FEN
ελ log

2

τ- mean free time
ν- density of states
EF- Fermi energy

( ) ( )[ ]νλ FpVV 220 −∝

- Fourier transform of the short 
range interaction potential( )qV

Fock Hartree

;
1

τ
λ

→ ∞
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;0λ
ετ

→
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Luttinger Liquid 1DLuttinger Liquid 1D

Tunneling to the bulk -
translation invariance is 
preserved. Effect starts 
from the second order of  
the perturbation theory.

xα = exp α ln x( ) =1 +α ln x + α ln x( )2 +. ..

Gt eV,T( )∝ max eV ,T{ }( )α

( ) ( ) K
K
KK

K
K

endbulk −∝
−

=−∝
−

= 1
4

11
8

1 2
2

αα

Tunneling to the end -
translation invariance is 
violated. Effect exists 
already in  the first order of 
the perturbation theory.

Experiment:Experiment:
MARC BOCKRATH, 
DAVID H. COBDEN, JIA LU, 
ANDREW G. RINZLER, 
RICHARD E. SMALLEY, 
LEON BALENTS & PAUL L. MCEUEN
Nature 397, 598 - 601 (1999)

TheoryTheory
C.L.KANE & M.P.A.FISHER,
PRL, 68, 1220 (1992).

K.A.MATVEEV & L.I.GLAZMAN, 
PRL, 70, 990-993 (1993).

1-K is the 
perturbative
coupling const.



Yu. V. Nazarov, Zh. Eksp. Teor. Fiz. 95, 975 (1989)[Sov. 
Phys. JETP 68, 561 (1990)].

L.S.Levitov & A.V.Shytov, JETP Lett. 66, 215 (1997)

A.Kamenev & A.Andreev, Phys. Rev. B60, 2218 (1999)

Beyond the first correction

d > 1

d = 1 Luttinger Liquid
E.Mishchenko, A.Andreev, & L.Glazman, PRL, 87, #24 (2001)

ν ε,T( )
ν0

=T cosh ε
2T

cosεt dt
coshπTt−∞

∞

∫ ∗

exp dω V ω( )cosh ω 2T( )− cosωt
sinh ω 2T( )o

∞

∫
 
 
 

 
 
 

( )







=










 +
ℜ−=

R
L

v
eK

i
N

KV

F
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4

2
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π

ω
τω

π
ω

Gives bothGives both Clean(Clean(Luttinger Liquid) and disordered limits

+Disorder+Disorder
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c0
++++= λ

d=1,2,3 Interaction channels: spin singlet; 
spin triplet & 
Cooper

What about zero dimensions, i.e., quantum dots ?

Zero Bias
Anomaly

Coulomb
Blockade

Universal HamiltonianUniversal Hamiltonian

+
↓

+
↑

+ ∑= ,,
ˆ

ˆ

ˆ

α
α

α aaT

S

n total number of electrons

total spin of the electrons



Environment Theory
Yu. V. Nazarov, Zh. Eksp. Teor. Fiz. 95, 975 (1989)[Sov. Phys. JETP 68, 
561 (1990)].

M. H. Devoret, D.Esteve, H. Grabert, G.-L. Ingold, H. Pothier 
& C. Urbina, PRL, 64, 1824 (1990)

S.M. Girvin, L.I. Glazman, M. Jonson, D.R. Penn & M.D. 
Stiles, PRL, 64, 3183 (1990)

.

..
F.Pierre, H.Pothier, P.Joyez, Norman O.Birge, D.Esteve, & 
M. H. Devoret, PRL, 86, #8, 1590 (2001)





Environment Theory
Yu. V. Nazarov, Zh. Eksp. Teor. Fiz. 95, 975 (1989)[Sov. Phys. JETP 68, 561 (1990)].

M. H. Devoret, D.Esteve, H. Grabert, G.-L. Ingold, H. Pothier & C. Urbina, PRL, 
64, 1824 (1990)

S.M. Girvin, L.I. Glazman, M. Jonson, D.R. Penn & M.D. Stiles, PRL, 64, 3183 (1990)

.

..
F.Pierre, H.Pothier, P.Joyez, Norman O.Birge, D.Esteve, & M. H. Devoret, PRL, 
86, #8, 1590 (2001)

Environment theory is a bit incomplete
Most important point: it takes into account only 
electromagnetic fluctuations of the environment and 
neglects its spin fluctuations.

As a result – only minimum in the tunneling DoS (!)



Is it a Luttinger liquid
or maybe it is environment
or it is electron-electron 
interaction

All the above is also 
electron-electron interaction 
in a form of generalized 
orthogonality catastrophe



Coulomb Blockade

2D “Metal –
Insulator 

Transition”

Zero 
Bias 

Anomalies

Luttinger liquid behavior 

Generalized 
Orthogonality 
Catastrophe

have nothing to do with any dephasing! !



The End


