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1 Introduction

1.1 Falling out of equilibrium

In standard condensed matter or statistical physics focus is set on equilibrium
systems. Microcanonical, canonical or grand canonical ensembles are used depending
on the conditions one is interested in. The relaxation of a tiny perturbation away from
equilibrium is also sometimes described in textbooks and undergraduate courses.

More recently, attention has turned to the study of the evolution of similar macro-
scopic systems in far from equilibrium conditions. These can be achieved by
changing the properties of the environment (e.g. the temperature) in a canonical set-
ting or by changing a parameter in the system’s Hamiltonian in a microcanonical one.
The procedure of rapidly (ideally instantaneously) changing a parameter is called a
quench. Right after both types of quenches the initial configuration is not one of
equilibrium at the new conditions and the systems subsequently evolve in an out of
equilibrium fashion. The relaxation towards the new equilibrium (if possible) could
be fast (and not interesting for our purposes) or it could be very slow (and thus the
object of our study). There are plenty of examples of the latter. Dissipative ones
include systems quenched through a phase transition and later undergoing domain
growth, and problems with competing interactions that behave as glasses. Energy
conserving ones are of great interest at present due to the rapid growth of activity in
cold-atom systems.

Out of equilibrium situations can also be established by driving a system, that
otherwise would reach equilibrium in observable time-scales, with an external pertur-
bation. In the context of macroscopic systems an interesting example is the one of
sheared complex liquids. Yet another interesting case is the one of powders that stay
in static metastable states unless externally perturbed by tapping, vibration or shear
that drives them out of equilibrium and makes them slowly evolve towards more com-
pact configurations. Such situations are usually called non-equilibrium steady states
(NESS). Small systems can also be driven out of equilibrium with external perturba-
tions. Transport in nano-structures is the quantum (small) counterpart phenomenon
of these cases, also of special interest at present.

Our interest is, therefore, in macroscopic complex1 systems:
• With out of equilibrium initial condition. These include

– open dissipative systems;
– closed systems with energy conserving dynamics.

• with external driving forces.

1Complex simply means here ‘not easy to understand’.
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A number of questions one would like to give an answer to naturally arise. Among
these are:

• Is the (instantaneous) structure out of equilibrium similar to the one in equi-
librium (at some temperature, pressure, etc.)?

• What microscopic/mesoscopic relaxation mechanism takes place after
the quench?

• Does the system quickly settle into a stationary state? In more technical terms,
is there a finite relaxation time to reach a steady state and which are the
properties of the system on which it depends?

• What is the microscopic/mesoscopic dynamics in non-equilibrium steady
states when these are reached?

• Can one describe the states of the system sometime after the quench with some
kind of effective equilibrium-like measure?

• Are there thermodynamic concepts, such as temperature, entropy, free-
energy, playing a rôle in the non-equilibrium relaxation? Under which con-
ditions?

One notices that some of these questions apply to the free as well as to the driven
dynamics.

In the last 20 years or so a rather complete theory of the dynamics of classical
macroscopic systems evolving slowly in a small entropy production limit
(asymptotic regime after a quench, small drives), that encompasses the situations
described above has been developed [1, 2]. This is a mean-field theory type in
the sense that it applies strictly to models with long-range interactions or in the
infinite dimensional limit. It is, however, expected that many aspects of it also apply
to systems with short-range interactions although with some caveats. A number of
finite dimensional problems have been solved demonstrating this fact.

In several cases of practical interest, quantum effects play an important rôle. For
instance, glassy phases at very low temperatures have been identified in a large variety
of materials (spin-glass like systems, interacting electrons with disorder, materials
undergoing super-conductor transitions, metallic glasses, etc.). Clearly, the driven
case is also very important in systems with quantum fluctuations. Take for instance
a molecule or an interacting electronic system driven by an external current applied
via the coupling to leads at different chemical potential. It is then necessary to settle
whether the approach developed and the results obtained for the classical dynamics
in a limit of small entropy production carry through when quantum fluctuations are
included.

In these notes we start by exposing some examples of the phenomenology of
out of equilibrium dynamics we are interested in. We focus on classical problems and
their precise setting. We introduce nucleation [3], phase ordering kinetics [4], critical
dynamics [5] structural glasses [6] and disordered systems [7, 8]. We also discuss
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some interdisciplinary problems that have many points in common with glassy physics
including optimization problems [9], neural networks [10] and active matter [11].

Next we go into the formalism used to deal with these problems. The basic
techniques used to study classical glassy models with or without disorder are relatively
well documented in the literature (the replica trick, scaling arguments and droplet
theories, the dynamic functional method used to derive macroscopic equations from
the microscopic Langevin dynamics, functional renormalization, Monte Carlo and
molecular dynamic numerical methods). On the contrary, the techniques needed
to deal with the statics and dynamics of quantum macroscopic systems are much
less known in general. I shall briefly discuss the role played by the environment in a
quantum system and introduce and compare the equilibrium and dynamic approaches.

Concretely, we recall some features of the Langevin formalism and its generating
function. We dwell initially with some emblematic aspects of classical macroscopic
systems slowly evolving out of equilibrium. Concerning models, we focus on two, that
are intimately related: the O(N) model in the large N limit that is used to describe
coarsening phenomena, and the random manifold, that finds applications to
many physical problems like charge density waves, high-Tc superconductors, etc. Both
problems are of field-theoretical type and can be treated both classically and
quantum mechanically. These two models are ideal for the purpose of introducing
and discussing formalism and some basic ideas we would wish to convey in these
lectures. Before entering the technical part we explain the two-fold meaning of the
word disorder by introducing the glass problem and some of the numerous questions
it raises.

1.2 Nucleation

When a system with a first order phase transition is taken to a region in the
phase diagram in which it is still locally stable but metastable with respect to the
new absolute minimum of the free-energy, its evolution towards the new equilibrium
state occurs by nucleation of the stable phase. The theory of simple nucleation [3] is
well established and the time needed for one bubble of the stable state to conquer the
sample grows as an exponential of the free-energy difference between the metastable
and the stable states over the thermal energy available, kBT . Once the bubble has
reached a critical size that also depends on this free-energy difference it very rapidly
conquers the full sample and the system reaches the stable state. The textbook
example is the one of a magnetic system, e.g. an Ising model, in equilibrium under a
magnetic field that is suddenly reversed. The sample has to reverse its magnetization
but this involves a nucleation process of the kind just explained. Simple nucleation
is therefore not very interesting to us but one should notice that as soon as multiple
nucleation and competition between different states intervenes the problem becomes
rapidly hard to describe quantitatively and it becomes very relevant to the mean-field
theory of fragile structural glasses that we shall discuss.
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1.3 Phase ordering kinetics

Figure 1: Four images after a quench of a two species mixture (of glasses!) that tends
to demix under the new working conditions. Images courtesy of E. Gouillart (St.
Gobain), D. Bouttes and D. Vandembroucq (ESPCI).

Choose a system with a well-understood equilibrium phase transition and take
it across the critical point (second order phase transition) very quickly by tuning a
control parameter. If the system is taken from its disordered (mixed) phase to its
ordered (demixed) phase the sample will tend to phase separate in the course of time
to approach the ideal equilibrium configuration under the new conditions. Such an
example of phase ordering kinetics [4], i.e. phase separation, is shown in Fig. 1.
None of the two species disappears, they just separate. This is such a slow process
that the time needed to fully separate the mixture diverges with the size of the sample,
as we shall see later on.

Another example of phase ordering kinetics is given by the crystal grain growth
sketched in the left-most panel in Fig. 2. Grains are formed by pieces of the lattice
with the same orientation. Boundaries between these grains are drawn with lines in
the figure. The other panels show snapshots of a 2d isotropic ferromagnetic Potts
model

HJ [{si}] = −J
∑

〈ij〉

δsisj (1.1)

with si = 1, . . . , q = 8 quenched below its first order phase transition at the initial
time t = 0 from a configuration in equilibrium at infinite temperature. The quench is
done well below the region of metastability and the dynamics are the ones of domain
growth. Indeed, domains of neighboring spin ordered in the same direction grow in
the course of time. This is clear from the subsequent snapshots taken at t = 128
MCs and t = 1024 MCs. This model has been used to mimic this kind of physical
process when the number of spin components becomes very large, q ! 1. Note that
the number of spins of each kind is not conserved along the system’s evolution.

These problems are simple in that the systems try to order in configurations that
are easy to visualize and to characterize. It is also quite clear from the figures that two
kinds of processes coexist: what happens within the domains, far from the interfaces,
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Figure 2: Grain boudaries in crystal growth. Three snapshots of the 2d ferromagnetic
Potts model with q = 8 quenched below its (first order) phase transition to T = Tc/2.
The times at which the images were taken are t = 0, 128, 1024 MCs. Data from M.
P. Loureiro, J. J. Arenzon, and LFC

and what the interfaces do. We shall come back to this very important issue. To
conclude phase ordering kinetics are rather well understood qualitatively although a
full quantitative description is hard to develop as the problem is set into the form of
a non-linear field theory with no small parameter.

1.4 Critical dynamics

In critical quenches [5], patches with equilibrium critical fluctuations grow in
time but their linear extent never reaches the equilibrium correlation length that
diverges. Clusters of neighboring spins pointing in the same direction of many sizes
are visible in the figures and the structure is quite intricate with clusters within
clusters and so on and so forth. The interfaces look pretty rough too. A comparison
between critical and sub-critical coarsening are shown in Figs. 23 and 24.

Critical slowing down implies that the relaxation time diverges close to the
phase transition as a power law of the distance to criticality

τ ∼ (T − Tc)
−νz (1.2)

with ν the exponent that controls the divergence of the correlation length and z the
dynamic critical exponent.

1.5 Structural disorder: glassy physics

While the understanding of equilibrium phases, the existence of phase transitions
as well as the characterization of critical phenomena are well understood in clean
systems, as soon as competing interactions or geometric frustration are in-
cluded one faces the possibility of destroying this simple picture by giving way to
novel phenomena like glassy behavior [6].

11
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Figure 3: Monte Carlo simulations of a 2d Ising model. Three snapshots at t =
1, 3× 105, 3× 106 MCs after a quench to Tc. Data from T. Blanchard, LFC and M.
Picco.
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Figure 4: Monte Carlo simulations of a 2d Ising model. Three snapshots at t =
1, 3 × 105, 3 × 106 MCs after a quench to 0.5 Tc. Thermal fluctuations within the
domains are visible. Data from T. Blanchard, LFC and M. Picco.

Glassy systems are usually dissipative, that is to say in contact with a much
larger environment, that has a well defined temperature and with which the systems
in question can exchange heat. We deal with open dissipative systems here.

Competing interactions in physical systems can be dynamic, also called annealed,
or quenched. A simple example illustrates the former: the Lennard-Jones potential,

V (r) = V0 [(r0/r)
a − (r0/r)

b] (1.3)

with usually, a = 12 and b = 6 2 (see Fig. 7-left) that gives an effective interaction
between soft3 particles in a liquid has a repulsive and an attractive part, depending

2The first term is chosen to take care of a quantum effect due to Pauli repulsion in a phenomeno-
logical way, the asymptotically leading attractive term is the van der Waals contribution when b = 6.

3Soft means that the particles can overlap at the price of an energy cost. In the case this is
forbidden one works with hard particles.
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Figure 5: A crystal in a 2d colloidal suspension of hard spheres

Figure 6: A liquid or a glass in a 2d colloidal suspension of hard spheres.

on the distance between the particles, a set of dynamic variables. In this example,
the interactions depend on the positions of the particles and evolve with them.

When competing interactions are present the low-temperature configurations may
look disordered but still have macroscopic properties of a kind of crystalline state.
Again, cooling down a liquid to obtain a glass is helpful to exemplify what we mean
here: the liquid cannot support stress and flows while the glass has solid-like properties
as crystals, it can support stress and does not easily flow in reasonable time-scales (this
is why glasses can be made of glass!) However, when looked at a microscopic scale,
one does not identify any important structural difference between the liquid and the
glass: no simple long-range structural order has been identified for glasses. Moreover,
there is no clear evidence for a phase transition between the liquid and the glass. At
present one can only talk about a dynamic crossover. The glassy regime is however
usually called a glassy phase and it is sometimes said to be a disordered phase
due to the lack of a clear structural order – this does not mean that there is no order
whatsoever (see Fig. 6 for an example of a system with a liquid, a crystal and glassy
phase). Lennard-Jones binary mixtures are prototypical examples of systems that
undergo a glass transition (or crossover) when cooled across the glass temperature Tg

13
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Figure 7: Left: The Lennard-Jones potential. Right: the Edwards-Anderson 3d spin-
glass.

or when compressed across a density ng [6].
There are many types of glasses and they occur over an astounding range of scales

from macroscopic to microscopic. See Fig. 8 for some images. Macroscopic examples
include granular media like sand and powders. Unless fluidized by shaking or dur-
ing flow these quickly settle into jammed, amorphous configurations. Jamming can
also be caused by applying stress, in response to which the material may effectively
convert from a fluid to a solid, refusing further flow. Temperature (and of course
quantum fluctuations as well) is totally irrelevant for these systems since the grains
are typically big, say, of 1mm radius. Colloidal suspensions contain smaller (typ-
ically micrometre-sized) particles suspended in a liquid and form the basis of many
paints and coatings. Again, at high density such materials tend to become glassy
unless crystallization is specifically encouraged (and can even form arrested gels at
low densities if attractive forces are also present). On smaller scales still, there are
atomic and molecular glasses: window glass is formed by quick cooling of a silica
melt, and of obvious everyday importance. The plastics in drink bottles and the like
are also glasses produced by cooling, the constituent particles being long polymer
molecules. Critical temperatures are of the order of 80C for, say, PVC and these
systems are glassy at room temperature. Finally, on the nanoscale, glasses are also
formed by vortex lines in type-II superconductors. Atomic glasses with very low
critical temperature, of the order of 10 mK, have also been studied in great detail.

A set of experiments explore the macroscopic macroscopic properties of glass
formers. In a series of usual measurements one estimates de entropy of the sample by
using calorimetric measurements and the thermodynamic relation

S(T2)− S(T1) =

∫ T2

T1

dT
Cp(T )

T
. (1.4)

In some cases the specific volume of the sample is shown as function of temperature.
In numerical simulations the potential energy density can be equally used. Figure 9
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Figure 8: Several kinds of glasses. A colloidal suspension observed with confocal
microscopy. A polymer melt configuration obtained with molecular dynamics. A
simulation box of a Lennard-Jones mixture. A series of photograph of granular matter.

shows the entropy of the equilibrium liquid, S(T ) & cT and the jump to the entropy of
the equilibrium crystal at the melting temperature Tm, a first order phase transition.
The figure also shows that when the cooling rate is sufficiently fast, and how fast is
fast depends on the sample, the entropy follows the curve of the liquid below Tm,
entering a metastable phase that is called a super-cooled liquid. The curves obtained
with different cooling rates are reproducible in this range of temperatures. However,
below a characteristic temperature Tg the curves start to deviate from the liquid-like
behavior, they become flatter and, moreover, they depend on the cooling rate (red,
orange and yellow curves in the figure). The slower the cooling rate the lower the
entropy and the closer it comes to the one of the crystal. Typical cooling rates used
in the laboratory are 0.1− 100 K/min. Within these experiments Tg is defined as the
temperature at which the shoulder appears.

The extrapolation of the entropy of the liquid below Tg crosses the entropy of the
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Figure 9: The typical plot showing the four ‘phases’ observed in a cooling experiment:
liquid, supercooled liquid, glass and crystal. The characteristic temperatures Tm (a
first order phase transition), Tg and the Kauzmann temperature TK are shown as well
as the typical relaxation times in the liquid and super-cooled liquid phases.

crystal at a value of the temperature that was conjectured by Kauzmann to correspond
to an actual phase transition. Indeed at TK the entropy of the ‘glass’ is no longer
larger than the one of the crystal and the system undergoes an entropy crisis. Of
course experiments cannot be performed in equilibrium below Tg and, in principle,
the extrapolation is just a theoretical construction. Having said this, the mean-field
models we shall discuss later on realize this feature explicitly and put this hypothesis
on a firmer analytic ground. If TK represents a thermodynamic transition it should
be reachable in the limit of infinitely slow cooling rate.

Rheological measurements show that the viscosity of a super-cooled liquid, or the
resistance of the fluid to being deformed by either shear or tensile stress, also increases
by many orders of magnitude when approaching the glass ‘transition’. One finds – or
alternatively defines – Tg as the temperature at which the viscosity reaches η = 102

Pa s [Pascal s = k m/s2 s/m2 = kg/(m s)]. At this temperature a peak in the specific
heat at constant pressure is also observed, but no divergence is measured.

Bulk relaxation times are also given in the figure in units of seconds. In the super-
cooled liquid phase the relaxation time varies by 10 orders of magnitude, from τα &
10−13 at the melting point to τα & 103 at the glassy arrest. The interval of variation
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of the temperature is much narrower; it depends on the sample at hand but one say
that it is of the order of 50 K. We note that the relaxation times remain finite all
along the super-cooled liquid phase and do not show an explicit divergence within the
temperature range in which equilibrium can be ensured. We discuss below how these
relaxation times are estimated and the two classes, i.e. temperature dependences,
that are found.

The values of Tg depend on the sample. In polymer glasses one finds a variation
from, say, −70 C in rubber to 145 C in polycarbonate passing by 80 C in the ubiquitous
PVC.

There are many different routes to the glassy state. In the examples above we
described cooling experiments but one can also use crunches in which the system is
set under increasing pressure or other.

The structure and dynamics of liquids and glasses can be studied by investi-
gating the two-time dependent density-density correlation:

g(r; t, tw) ≡ 〈 δρ(&x, t)δρ(&y, tw) 〉 with r = |&x− &y|

= N−2
N
∑

i=1

N
∑

j=1

〈δ(&x− &ri(t))δ(&y − &rj(tw))〉

δρ is the density variation with respect to the mean N/V . The average over different
dynamical histories (simulation/experiment) 〈. . .〉 implies isotropy (all directions are
equivalent) and invariance under translations of the reference point &y. Its Fourier
transform is

F (q; t, tw) = N−1
N
∑

i,j=1

〈 ei#q(#ri(t)−#rj(tw)) 〉 (1.5)

The incoherent intermediate or self correlation:

Fs(q; t, tw) = N−1
N
∑

i=1

〈 ei#q(#ri(t)−#ri(tw)) 〉 (1.6)

can be accessed with (neutron or other) diffraction experiments.
In the main panel of Fig. 10-left the equal-time two-point correlation function of

a Lennard-Jones mixture at different times after an infinite rapid quench below the
glassy crossover temperature Tg is shown. The data vary very little although a wide
range of time-scales is explored. In the inset a zoom over the first peak taken at the
same time for different final temperatures, three of them below Tg the reference one
at the numerically determined Tg. Again, there is little variation in these curves. One
concludes that the structure of the sample in all these cases is roughly the same.

The change is much more pronounced when one studies the dynamics of the sam-
ple, that is to say, when one compares the configuration of the system at different
times. The curves on the right panel display the relaxation of the correlation function
at different temperatures, all above Tg. The relaxation is stationary in all cases, i.e.
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Figure 10: Structure and dynamics of a binary Lennard-Jones mixture. Left: the
two-point correlation function of the A atoms at different times (main panel) and
at different temperatures (inset). Right: the decay of the Fourier transform of the
correlation function at the wave-vector associated to the first peak in gAA(r). Data
from Kob & J-L Barrat.

a function of t− tw only, but it becomes much slower when the working temperature
approaches Tg.

In a family if glass formers called fragile, in double logarithmic scale used in the
plot, a clear plateau develops for decreasing T and may seem to diverge in the T → Tg

limit. In another family of glass formers called strong no plateau is seen.
From the analysis of the temperature dependence of the relaxation time, say the

time needed for the correlation to decay to half its value at zero time delay4 one finds
two kinds of fitting laws:

τα =

{

τ0 eA/(T−T0) Vogel-Fulcher-Tamann
τ0 eA/T Arrhenius

(1.7)

In fits T0 is usually very close to TK . The former class of systems are the fragile
ones while the latter are the strong ones. Note that the first form yields a divergence
at a finite TK while the second one yields a divergence at T = 0. Silica belongs to
the second class while most polymer glasses belong to the first one. This relaxation
time is usually called the alpha or structural relaxation time. Recall that in a
usual second order phase transition (as realized in an Ising model, for instance) the
divergence of the relaxation time close to the critical point is of power law type.

A real space analysis of the motion of the particles in atomic, molecules in
molecualr, or strings in polymeric glasses (and granular matter as well) demonstrates
that the elements move, over short time scales, in cages formed by their neighbors.
During this short time span the correlation function decays to the plateau and the
mean-square displacement reaches a plateau (in a double logarithmic scale). Note,
however, that the particle’s displacement is much smaller than the particle radius
meaning that the displacement is indeed tiny during this time regime. the second

4This is a very naive definition of τα, others much more precise are used in the literature.
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structural relaxation is the one that take the correlation (displacement) below (above)
the plateau.

500 nm

Figure 11: Colloidal suspension (data from E. Weeks group) and granular matter
(data from O. Pouliquen’s group).

Very recently stress has been put on the analysis of the motion of the elements
over longer time-scales. Dynamic heterogeneities [12] were thus uncovered. Dynamic
regions with high mobility immersed in larger regions with little mobility were iden-
tified. Sometimes stringly motion of particles following each in a periodic path were
also observed in confocal microscopy measurements or in molecular dynamics simu-
lations. The length of these strings seem to increase when approaching the crossover
temperature Tg. Moreover, dynamic heterogeneities, and a growing length associated
to it, were quantified from the analysis of a four-pint correlation function. This func-
tion takes different forms depending on the problem at hand but basically searches for
spatial correlations in the displacement of particles between different time intervals.
Calling δρ(&r, t) = ρ(&r, t)− ρ0 with ρ0 = N/V ,

C4(r; t, tw) = 〈δρ(&x, tw)δρ(&x, t)δρ(&y, tw)δρ(&y, t)〉
−〈δρ(&x, tw)δρ(&x, t)〉〈δρ(&y, tw)δρ(&y, t)〉 . (1.8)

Terms involving one position only can be extracted from the average since they do not
contain information about the spatial correlation. The idea is, roughly, to consider
that δρ(&x, t)δρ(&x, tw) is the order parameter. The double spatial integral of this
quantity defines a generalized susceptibility χ4(t, tw) that has been study in many
numerical and laboratory experiments. It shows a peak at the time-delay t− tw that
coincides with the relaxation time τα. Assuming a usual kind of scaling with a typical
growing length for the four point correlation the characteristic of the appearance of
the peak should yield the length of these dynamic heterogeneities. The data can be
interpreted as leading to a divergence of the growing length at some temperature but
the actual values found are very small, of the order of a few inter-particle distances
in the sample.

The defining feature of glasses, i.e., the characterization of their out of equilib-
rium relaxation and aging phenomena [13], will be discussed below.

A summary of the liquid-super-cooled liquid-glass behavior is given in the table
below.
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Crytallization at Tm is avoided by cooling fast enough.
Liquid Supercooled liquid Glass

︸ ︷︷ ︸

Exponential relax Non-exponential relax
Equilibrium Metastable equilibrium Non-equilibrium

︸ ︷︷ ︸

Separation of time-scales &
An exponential number

︸ ︷︷ ︸
of metastable states!

Stationary Aging

Aging means that correlations and reponses depend on t and tw
ac susceptibilities depend on ω and tw

There might be an equilibrium transition to an ideal glass at Ts.

1.6 Quenched disorder: still glassiness

In the paragraphs above we characterized the low temperature regime of certain
particle models and claimed that their structure is disordered (at least at first sight).
Another sense in which the word disorder is used is to characterize the interac-
tions. Quenched interactions are due to a very sharp separation of time-scales. The
traditional example is the one of spin-glasses in which the characteristic time for
diffusion of magnetic impurities in an inert host is much longer than the characteristic
time for magnetic moment change:

τd ! τexp ! τ0 . (1.9)

The position of the magnetic moments are decided at the preparation of the sample.
These position are then random and they do not change during experimental times.
The interactions between pairs of spins depend on the distance between the magnetic
moments via the RKKY formula

VRKKY(rij) = −J
cos(2kF rij)

r3ij
sisj . (1.10)

Therefore quenched competing interactions are fixed in the observational time-scale
and they transmit ‘contradictory’ messages. Typical examples are systems with ferro-
magnetic and/or antiferromagnetic exchanges that are not organized in a simple way
with respect to the geometry and connectivity of the lattice such as spin-glasses [7]
(see Fig. 7-right).

Theoretically, this is modeled by random interactions drawn from a probability
distribution. For simplicity the spins (magentic moments) are placed on the ver-
tices of a finite dimensional lattice, typically a cubic one. The Edwards-Anderson
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Figure 12: Spin-glasses: Susceptibility data (Mydosh). Aging phenomena (Hérisson
and Ocio).

Hamiltonian then reads

HJ [{si}] =
∑

〈ij〉

Jijsisj with Jij taken from P (Jij) (1.11)

Annealed interactions may have a slow time-dependence. Both lead to dis-
order. These can be realized by coupling strengths as in the magnetic example in
Fig. 7, but also by magnetic fields, pinning centers, potential energies, etc. Disor-
dered interactions usually lead to low-temperature behavior that is similar to the one
observed in systems with dynamic competing interactions.

Data showing the cusp in the susceptibility of a spin-glass sample are shown in
Fig. 12.

1.7 Static questions

In these lectures we shall only deal with a canonical setting, the microcanonical
one being more relevant to quantum systems. Disordered systems (in both senses)
are usually in contact with external reservoirs at fixed temperature; their description
is done in the canonical (or grand-canonical in particle systems with the possibility
of particle exchange with the environment) ensemble.

Many questions arise for the static properties of systems with competing inter-
actions. Some of them, that we shall discuss in the rest of the course are:

• Are there equilibrium phase transitions between low-temperature and high tem-
perature phases?

• Is there any kind of order at low temperatures?
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• At the phase transition, if there is one, does all the machinery developed for
clean systems (scaling, RG) apply?

• Are these phases, and critical phenomena or dynamic crossovers, the same or
very different when disorder is quenched or annealed?

• What is the mechanism leading to glassiness?

1.8 Random manifolds

A problem that finds applications in many areas of physics is the dynamics of elas-
tic manifolds under the effect (or not) of quenched random potentials, with (Kardar-
Parisi-Zhang) or without (Edwards-Wilkinson, Mullins-Herring) non-linear interac-
tions, with short-range or long-range elastic terms [8, 14].

Under certain circumstances the interfaces roughen, that is to say, their asymp-
totic averaged width depends on their linear size. Take for instance, the local height
h(&r, t) of a d dimensional surface (with no overhangs). Its time-dependent width is
defined as

WL(t) = L−d

∫

ddr [h(&r, t)− 〈h(&r, t)〉]2 (1.12)

where 〈. . .〉 = L−d
∫

ddr . . .. This quantity verifies the so-called Family-Vicsek scal-
ing. In its simplest form, in which all dependences are power laws, it first increases
as a function of time, WL(t) ∼ t2α and independently of L. At a crossover time
tx ∼ Lz it crosses over to saturation at a level that grows as L2ζ . α is the growth
exponent, z is the dynamic exponent and ζ is the roughness exponent. Consistency
implies that they are related by zα = ζ. The values of the exponents are known in
a number of cases. For the Edwards-Wilkinson surface one has α = (2− d)/4, z = 2
and ζ = (2 − d)/2 for d ≤ 2. For the non-linear KPZ line α = 1/3, z = 3/2 and
ζ = 1/2.

In the presence of quenched disorder the dependence of the asymptotic roughness
with the length of the line undergoes a crossover. For lines that are shorter than a
temperature and disorder strength dependent value LT the behavior is controlled by
thermal fluctuations and relation as the one above holds with ζ = ζT , the thermal
roughness exponent. This exponent is the one corresponding to the EW equation.
In this thermally dominated scale, the dynamics is expected to be normal in the
sense that lengths and times should be thus related by power laws of types with the
exponents discussed above. For surfaces such that L > LT one finds that the same
kind of scaling holds but with a roughness exponent that takes a different value. The
time dependence and cross-over time are expected, though, not to be power laws and
we shall discuss them later.

The relaxation dynamics of such elastic manifolds in the very large limit presents
many other interesting phenomena that resemble features observed in more complex
glassy systems. Moreover, such elastic surfaces appear in the nucleation and growth
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kinetics problems discussed above as the interfaces between equilibrium (sometimes
metastable) states.

1.9 Aging

In practice a further complication appears [13]. Usually, disordered phases are
prepared with a relatively rapid quench from the high temperature phase. When
approaching a characteristic temperature the systems cannot follow the pace of evo-
lution dictated by the environment and fall out of equilibrium [2]. Indeed, their key
feature is that below some characteristic temperature Tg, or above a critical density
ρg, the relaxation time goes beyond the experimentally accessible time-scales and the
system is next bound to evolve out of equilibrium. Although the mechanism leading
to such a slow relaxation is unknown – and might be different in different cases – the
out of equilibrium relaxation presents very similar properties. The left panel in Fig. 13
shows one aspect of glassy dynamics, aging, as shown by the two-time relaxation of
the self-correlation of a colloidal suspension, that is remarkably similar to the decay
of the magnetic correlation in the Ising model shown in the right panel and in Fig. 30.
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Figure 13: Left: two-time evolution of the self-correlation in a colloidal suspension
initialized by applying a shearing rate (data from Viasnoff and Lequeux) The longer
the waiting time the slower the decay. Right: two-time evolution in the bi-dimensional
Ising model quenched below its phase transition at Tc. A two-scale relaxation with
a clear plateau at a special value of the correlation is seen in the double logarithmic
scale. Data from Sicilia et al. We shall discuss this feature at length in the lectures.

A purely static description, based on the use of the canonical (or grand-canonical)
partition function is then not sufficient. One is forced to include the time evolution
of the individual agents (spins, particles, molecules) and from it derive the macro-
scopic time-dependent properties of the full system. The microscopic time-evolution is
given by a stochastic process. The macroscopic evolution is usually very slow and, in
probability terms, it is not a small perturbation around the Gibbs-Boltzmann distri-
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bution function but rather something quite different. This gives rise to new interesting
phenomena.

The questions that arise in the non-equilibrium context are

• How to characterize the non-equilibrium dynamics of glassy systems phenomeno-
logically.

• Which are the minimal models that reproduce the phenomenology.
• Which is the relation between the behavior of these and other non-equilibrium
systems, in particular, those kept away from equilibrium by external forces,
currents, etc.

• Which features are generic to all systems with slow dynamics.
• Whether one could extend the equilibrium statistical mechanics ideas; e.g. can
one use temperature, entropy and other thermodynamic concepts out of equi-
librium?

• Related to the previous item, whether one can construct a non-equilibrium
measure that would substitute the Gibbs-Boltzmann one in certain cases.

1.10 Driven systems

An out of equilibrium situation can be externally maintained by applying forces
and thus injecting energy into the system and driving it. There are several ways to
do this and we explain below two quite typical ones that serve also as theoretical
traditional examples.

Rheological measurements are common in soft condensed matter; they consist
in driving the systems out of equilibrium by applying an external force that does not
derive from a potential (e.g. shear, shaking, etc.). The dynamics of the system under
the effect of such a strong perturbation is then monitored.

The effect of shear on domain growth is one of great technological and theoret-
ical importance. The growth of domains is anisotropic and there might be differ-
ent growing lengths in different directions. Moreover, it is not clear whether shear
might interrupt growth altogether giving rise to a non-equilibrium stationary state or
whether coarsening might continue for ever. Shear is also commonly used to study
the mechanical properties of diverse glasses.

Another setting is to couple the system to different external reservoirs all in
equilibrium but at different temperature or chemical potential thus inducing a heat or
a particle current through the system. This set-up is relevant to quantum situations
in which one can couple a system to, say, a number of leads at different chemical
potential. The heat transport problem in classical physics also belongs to this class.

A pinned interface at zero temperature can be depinned by pulling it with an
external force. The depinning problem that is to say the analysis of the dynamics
close to the critical force needed to depin the manifold, and the creep dynamics at
non-vanishing temperature have also been the subject of much analysis.
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1.11 Interdisciplinary aspects

The theory of disordered systems has become quite interdisciplinary in the sense
that problems in computer science, biology or even sociology and finance have disorder
aspects and can be mimicked with similar models and solved with similar methods to
the ones we shall discuss here.

1.11.1 Optimization problems

The most convenient area of application is, most probably, the one of combina-
torial optimization in computer science [9]. These problems can usually be stated
in a form that corresponds to minimizing a cost (energy) function over a large set of
variables. Typically these cost functions have a very large number of local minima –
an exponential function of the number of variables – separated by barriers that scale
with N and finding the truly absolute minimum is hardly non-trivial. Many inter-
esting optimization problems have the great advantage of being defined on random
graphs and are then mean-field in nature. The mean-field machinery that we shall
discuss at length is then applicable to these problems with minor (or not so minor)
modifications due to the finite connectivity of the networks.

Let us illustrate this kind of problems with two examples. The graph parti-
tioning problem consists in, given a graph G(N,E) with N vertices and E edges, to
partition it into smaller components with given properties. In its simplest realization
the uniform graph partitioning problem is how to partition, in the optimal way, a
graph with N vertices and E links between them in two (or k) groups of equal size
N/2 (or N/k) and the minimal the number of edges between them. Many other vari-
ations are possible. This problem is encountered, for example, in computer design
where one wishes to partition the circuits of a computer between two chips. More
recent applications include the identification of clustering and detection of cliques in
social, pathological and biological networks.

Another example is k satisfiability (k-SAT). This is the computer science prob-
lem of determining whether the variables of a given Boolean formula can be assigned
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Figure 15: Graph partitioning.

in such a way as to make the formula evaluate to ‘true’. Equally important is to
determine whether no such assignments exist, which would imply that the function
expressed by the formula is identically ‘false’ for all possible variable assignments.
In this latter case, we would say that the function is unsatisfiable; otherwise it is
satisfiable. For example, the formula C1 : x1 OR x2 made by a single clause C1 is
satisfiable because one can find the values x1 = true (and x2 free) or x2 = true (and
x1 free), which make C1 : x1 OR x2 true. This example belongs to the k = 2 class
of satisfiability problems since the clause is made by two literals (involving different
variables) only. Harder to decide formulæ are made of M clauses involving k literals
required to take the true value (x) or the false value (x) each, these taken from a pool
of N variables. An example in 3-SAT is

F =











C1 : x1 OR x2 OR x3

C2 : x5 OR x7 OR x9

C3 : x1 OR x4 OR x7

C4 : x2 OR x5 OR x8

(1.13)

All clauses have to be satisfied simultaneously so the formula has to be read F : C1

AND C2 AND C3 AND C4. It is not hard to believe that when α ≡ M/N > αc the
problems typically become unsolvable while one or more solutions exist on the other
side of the phase transition. In random k-SAT an instance of the problem, i.e. a
formula, is chosen at random with the following procedure: first one takes k variables
out of the N available ones. Seconf one decides to require xi or xi for each of them
with probability one half. Third one creates a clause taking the OR of these k literals.
Forth one returns the variables to the pool and the outlined three steps are repeated
M times. The M resulting clauses form the final formula.

The Boolean character of the variables in the k-SAT problem suggests to transform
them into Ising spins, i.e. xi evaluated to true (false) will correspond to si = 1 (−1)
. The requirement that a formula be evaluated true by an assignment of variables
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(i.e. a configuration of spins) will correspond to the ground state of an adequately
chosen energy function. In the simplest setting, each clause will contribute zero
(when satisfied) or one (when unsatisfied) to this cost function. There are several
equivalent ways to reach this goal. For instance C1 above can be represented by a
term (1−s1)(1+s2)(1−s3)/8. The fact that the variables are linked together through
the clauses suggests to define k-uplet interactions between them. We then choose the
interaction matrix to be

Jai =







0 if neither xi nor xi ∈ Ca

1 if xi ∈ Ca

−1 if xi ∈ Ca

(1.14)

and the energy function as

HJ [{si}] =
M
∑

a=1

δ(
N
∑

i=1

Jajsi,−k) (1.15)

where δ(x, y) is a Kronecker-delta. This cost function is easy to understand. The
Kronecker delta contributes one to the sum only if all terms in the sum

∑N
i=1 Jaisi

are equal −1. This can happen when Jai = 1 and si = −1 or when Jai = −1 and
si = 1. In both cases the condition on the variable xi is not satisfied. Since this is
required from all the variables in the clause, the clause itself and hence the formula
are not satisfied.

These problems are ‘solved’ numerically, with algorithms that do not necessarily
respect physical rules. Thus, one can use non-local moves in which several variables
are updated at once – as in cluster algorithms of the Swendsen-Wang type used to beat
critical slowing down close to phase transitions or one can introduce a temperature to
go beyond cost-function barriers and use dynamic local moves that do not, however,
satisfy a detail balance. The problem is that with hard instances of the optimization
problem none of these strategies is successful. Indeed, one can expect that glassy
aspects, as the proliferation of metastable states separated by barriers that grow very
fast with the number of variables, can hinder the resolutions of these problems in
polynomial time for any algorithm.

Complexity theory in computer science, and the classification of optimization
problems in classes of complexity – P for problems solved with algorithms that use a
number of operations that grows as a polynomial of the number of variables, e.g. as
N2 or even N100, NP for problems for which no polynomial algorithm is known and
one needs a number of operations that grow exponentially with N , etc. – applies to
the worst instance of a problem. Worst instance, in the graph-partitioning example,
means the worst possible realization of the connections between the nodes. Knowing
which one this is is already a very hard problem!

But one can try to study optimization problems on average, meaning that the
question is to characterize the typical – and not the worst – realization of a problem.
The use of techniques developed in the field of disordered physical systems, notably
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spin-glasses, have proven extremely useful to tackle typical single randomly generated
instances of hard optimization problems.

Note that in statistical mechanics information about averaged macroscopic quan-
tities is most often sufficiently satisfactory to consider a problem solved. In the opti-
mization context one seeks for exact microscopic configurations that correspond to the
exact ground state and averaged information is not enough. Nevertheless, knowledge
about the averaged behavior can give us qualitative information about the problem
that might be helpful to design powerful algorithms to attack single instances.

1.11.2 Biological applications

In the biological context disordered models have been used to describe neural
networks, i.e. an ensemble of many neurons (typically N ∼ 109 in the human brain)
with a very elevated connectivity. Indeed, each neuron is connected to ∼ 104 other
neurons and receiving and sending messages via their axons. Moreover, there is no
clear-cut notion of distance in the sense that axons can be very long and connections
between neurons that are far away have been detected. Hebb proposed that the
memory lies in the connections and the peculiarity of neural networks is that the
connectivity must then change in time to incorporate the process of learning.

The simplest neural network models [10] represent neurons with Boolean variables
or spins, that either fire or are quiescent. The interactions link pairs of neurons and
they are assumed to be symmetric (which is definitely not true). The state of a neuron
is decided by an activity function f ,

φi = f(
∑

j( $=i)

Jijφj) , (1.16)

that in its simplest form is just a theta-function leading to simply two-valued neurons.
Memory of an object, action, etc. is associated to a certain pattern of neuronal

activity. It is then represented by an N -component vector in which each component
corresponds to the activity of each neuron. Finally, sums over products of these
patterns constitute the interactions. As in optimization problems, one can study the
particular case associated to a number of chosen specific patterns to be stored and
later recalled by the network, or one can try to answer questions on average, as how
many typical patterns can a network of N neurons store. The models then become
fully-connected or dilute models of spins with quenched disorder. The microscopic
dynamics cannot be chosen at will in this problem and, in general, will not be as
simple as the single spin flip ones used in more conventional physical problems. Still,
if the disordered modeling is correct, glassy aspects can render recall very slow due
to the presence of metastable states for certain values of the parameters.

Another field of application of disordered system techniques is the description
of hetero-polymers and, most importantly, protein folding. The question is how
to describe the folding of a linear primary structure (just the sequence of different
amino-acids along the main backbone chain) into an (almost) unique compact native
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Figure 16: Active matter.

structure whose shape is intimately related to the biological function of the protein.
In modeling these very complex systems one proposes that the non-random, selected
through evolution, macromolecules may be mimicked by random polymers. This
assumption is based on the fact that amino-acids along the chain are indeed very
different. One then uses monomer-monomer and/or monomer-solvent interactions
that are drawn from some probability distribution and are fixed in time (quenched
disorder). Still, a long bridge between the theoretical physicists’ and the biologists’
approaches remain to be crossed. Some of the important missing links are: proteins
are mesoscopic objects with of the order of 100 monomers thus far from the thermo-
dynamic limit; interest is in the particular, and not averaged, case in biology, in other
words, one would really like to know what is the secondary structure of a particular
primary sequence; etc. In the protein folding problem it is clear that the time needed
to reach the secondary structure from an initially stretched configuration depends
strongly on the existence of metastable states that could trap the (hetero) polymer.
Glassy aspects have been conjectured to appear in this context too.

The constituents of active matter, be them particles, lines or other, absorb
energy from their environment or internal fuel tanks and use it to carry out motion. In
this new type of soft condensed matter energy is partially transformed into mechanical
work and partially dissipated in the form of heat [11]. The units interact directly or
through disturbances propagated in the medium. In systems of biological interest,
conservative forces (and thermal fluctuations) are complemented by non-conservative
forces. Realizations of active matter in biology are thus manifold and exist at different
scales. Some of them are: bacterial suspensions, the cytoskeleton in living cells, or
even swarms of different animals. Clearly enough, active matter is far from equilibrium
and typically kept in a non-equilibrium steady state. The difference between active
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Figure 17: Left: random graph with finite connectivity

matter and other driven systems, such as sheared fluids, vibrated granular matter
and driven vortex lattices is that the energy input is located on internal units (e.g.
motors) and therefore homogeneously distributed in the sample. In the other driven
systems mentioned above, the energy input occurs on the boundaries of the sample.
Moreover, the effect of the motors can be dictated by the state of the particle and/or
its immediate neighborhood and it is not necessarily fixed by an external field.

The dynamics of active matter presents a number of interesting features that
are worth mentioning here. Active matter displays out of equilibrium phase transi-
tions that may be absent in their passive counterparts. The dynamic states display
large scale spatio-temporal dynamical patterns and depend upon the energy flux and
the interactions between their constituents. Active matter often exhibits unusual
mechanical properties, very large responses to small perturbations, and very large
fluctuations – not consistent with the central limit theorem. Much theoretical effort
has been recently devoted to the description of different aspects of these systems,
such as self-organization of living microorganisms, the identification and analysis of
states with spatial structure, such as bundles, vortices and asters, the study of the
rheological properties of active particle suspensions with the aim of grasping which
are the mechanical consequences of biological activity. A rather surprisingly result
was obtained with a variational solution to the many-body master equation of the
motorized version of the standard hard sphere fluid often used to model colloids:
instead of stirring and thus destabilize ordered structures, the motors do, in some
circumstances enlarge the range of stability of crystalline and amorphous structures
relative to the ones with purely thermal motion.

1.12 Summary

The main steps in the development and application of Statistical Mechanics ideas
to macroscopic cooperative systems have been

• The development of the basic ideas (Boltzmann-Gibbs).
• The recognition of collective phenomena and the identification and mean-field
description of phase transitions (Curie-Weiss).

• The correct description of critical phenomena with scaling theories and the
renormalization group (Kadanoff, Widom, M. Fisher, Wilson) and more recently
the development of conformal field theories for two-dimensional systems.
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• The study of stochastic processes and time-dependent properties (Langevin,
Fokker-Planck, Glauber, etc.).

To describe the problems introduced above the same route has been followed.
There is no doubt that Equilibrium Statistical Mechanics yields the static properties
of these systems. In the case of coarsening problems one understands very well the
static phases and phase transitions. In the case of glassy systems this is not so clear.
In the case of active matter or other driven systems there are equilibrium phases in the
vanishing drive limit only but one can also study the dynamic phase transitions
with a critical phenomena perspective.

Although the study of equilibrium phases might be a little irrelevant from the
practical point of view since, most glassy systems are out of equilibrium in labora-
tory time-scales, it is certainly a necessary step on which one can try to build a truly
dynamic theory. The mean-field study – the second step in the list above – of the equi-
librium properties of disordered systems, in particular those with quenched disorder,
has revealed an incredibly rich theoretical structure. We still do not know whether it
carries through to finite dimensional cases. Even though, it is definitely interesting
per se and it finds a very promising field of application in combinatorial optimization
problems that are defined on random networks, see Fig. 17, with mean-field character.
Scaling arguments have been applied to describe finite dimensional disordered systems
but they remain – as their parent ones for clean systems – quite phenomenological
and difficult to put to sufficiently restrictive numerical or experimental test. The ex-
tension of renormalisation group methods to systems with quenched disorder is also
under development and still needs quite a lot of work – the third step. As for the out
of equilibrium dynamics of these systems, again, it has been solved at the mean-field
level but little is known in finite dimensions – apart from numerical simulations or
the solution to toy models. As in its static counterpart, the results from the study of
dynamic mean-field models have been very rich and they have suggested a number of
new phenomena later searched for in numerical simulations and experiments of finite
dimensional systems. In this sense, these solutions have been a very important source
of inspiration.
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2 Modeling

In this section I will revisit certain aspects of statistical physics that are not
commonly discussed and that become important for our purposes.

2.1 Fluctuations

There are several possible sources of fluctuations:
• Classical thermal: the system is coupled to an environment that ensures fluc-
tuations (noise) and dissipation (the fact that the total energy is not conserved).
E.g. coarsening, classical glasses, spin-glasses.

• Quantum: the system is coupled to a quantum environment that ensures fluc-
tuations (noise) and dissipation. The temperature of the bath can be zero or
not. E.g. quantum coarsening and glasses, quantum spin-glasses.

• Stochastic motors: forces that act on the system’s particles stochastically.
They energy injected in the sample is partially dissipated to the bath and par-
tially used as work. As the system is also coupled to a bath there are also
thermal fluctuations in it. E.g. active matter.

Classical and quantum environments are usually modeled as large ensembles of
non-interacting variables (oscillators [16], spins [17], fermions) with chosen distribu-
tions of coupling constants and energies.

2.2 The classical reduced partition function

We analyze the statistical static properties of a classical canonical system in
equilibrium at inverse temperature β and itself formed by two sub-parts, one that
will be treated as an environment (not necessarily of infinite size) and another one
that will be the (sub-)system of interest. We study the partition function or Gibbs
functional, Ztot:

Ztot[η] =
∑

conf env

conf syst

exp(−βHtot − βηx) (2.1)

where the sum represents an integration over the phase space of the full system, i.e.
the system’s and the environmental ones. η is a source. We take

Htot = Hsyst +Henv +Hint +Hcounter = Hsyst + H̃env . (2.2)

For simplicity we use a single particle moving in d = 1: Hsyst is the Hamiltonian of
the isolated particle,

Hsyst =
p2

2M
+ V (x) , (2.3)
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with p and x its momentum and position. Henv is the Hamiltonian of a ‘thermal
bath’ that, for simplicity, we take to be an ensemble of N independent harmonic
oscillators [15, 16] with masses ma and frequencies ωa, a = 1, . . . , N

Henv =
N
∑

a=1

π2a
2ma

+
maω2

a

2
q2a (2.4)

with πa and qa their momenta and positions. This is indeed a very usual choice
since it may represent phonons. Hint is the coupling between system and environ-
ment. We shall restrict the following discussion to a linear interaction in the oscillator
coordinates, qa, and in the particle coordinate,

Hint = x
N
∑

a=1

caqa , (2.5)

with ca the coupling constants. The counter-term Hcounter is added to avoid the
generation of a negative harmonic potential on the particle due to the coupling to the
oscillators (that may render the dynamics unstable). We choose it to be

Hcounter =
1

2

N
∑

a=1

c2a
maω2

a
x2 . (2.6)

The generalization to more complex systems and/or to more complicated baths
and higher dimensions is straightforward. The calculations can also be easily general-
ized to an interaction of the oscillator coordinate with a more complicated dependence
on the system’s coordinate, V(x), that may be dictated by the symmetries of the sys-
tem. Non-linear functions of the oscillator coordinates cannot be used since they
render the problem unsolvable analytically.

Having chosen a quadratic bath and a linear coupling, the integration over the os-
cillators’ coordinates and momenta can be easily performed. This yields the reduced
Gibbs functional

Zred[η] ∝
∑

conf syst

exp

[

−β
(

Hsyst +Hcounter + ηx−
1

2

N
∑

a=1

c2a
maω2

a
x2

)]

. (2.7)

The ‘counter-term’ Hcounter is chosen to cancel the last term in the exponential and
it avoids the renormalization of the particle’s mass (the coefficient of the quadratic
term in the potential) due to the coupling to the environment that could have even
destabilized the potential by taking negative values. An alternative way of curing
this problem would be to take a vanishingly small coupling to the bath in such a way
that the last term must vanish by itself (say, all ca → 0). However, this might be
problematic when dealing with the stochastic dynamics since a very weak coupling
to the bath implies also a very slow relaxation. It is then conventional to include the
counter-term to cancel the mass renormalization. One then finds

Zred[η] ∝
∑

conf syst exp [−β (Hsyst + ηx)] = Zsyst[η] . (2.8)
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For a non-linear coupling Hint =
∑N

a=1 caqaV(x) the counter-term is Hcounter =
1
2

∑N
a=1

c2a
maω2

a
[V(x)]2.

The interaction with the reservoir does not modify the statistical properties of the
particle since Zred ∝ Zsyst, independently of the choices of ca, ma, ωa and N .

If one is interested in the dynamics of a coupled problem, the characteristics
of the sub-system that will be considered to be the bath have an influence on the
reduced dynamic equations found for the system, that are of generic Langevin kind,
as explained in Sect. 2.3.

Quantum mechanically the reduced partition function depends explicitly on the
properties of the bath. The interaction with quantum harmonic oscillators introduces
non-local interactions (along the Matsubara time direction) and there is no physical
way to introduce a counter-term to correct for this feature.

The dynamics of quantum systems has all these diffilculties.

2.3 The Langevin equation

Examples of experimental and theoretical interest in condensed matter and bio-
physics in which quantum fluctuation can be totally neglected are manifold. In this
context one usually concentrates on systems in contact with an environment: one se-
lects some relevant degrees of freedom and treats the rest as a bath. It is a canonical
view. Among these instances are colloidal suspensions which are particles suspended
in a liquid, typically salted water, a ‘soft condensed matter’ example; spins in ferro-
magnets coupled to lattice phonons, a ‘hard condensed matter’ case; and proteins in
the cell a ‘biophysics’ instance. These problems are modeled as stochastic processes
with Langevin equations, the Kramers-Fokker-Planck formalism or master equations
depending on the continuous or discrete character of the relevant variables and ana-
lytic convenience.

The Langevin equation is a stochastic differential equation that describes phe-
nomenologically a large variety of problems. It models the time evolution of a set of
slow variables coupled to a much larger set of fast variables that are usually (but not
necessarily) assumed to be in thermal equilibrium at a given temperature. We first
introduce it in the context of Brownian motion and we derive it in more generality in
Sect. 2.3.2.

2.3.1 Langevin’s Langevin equation

The Langevin equation5 for a particle moving in one dimension in contact with a
white-noise bath reads

mv̇ + γ0v = F + ξ , v = ẋ , (2.9)

with x and v the particle’s position and velocity. ξ is a Gaussian white noise with
zero mean and correlation 〈ξ(t)ξ(t′)〉 = 2γ0kBT δ(t−t′) that mimics thermal agitation.

5P. Langevin, Sur la théorie du mouvement brownien, Comptes-Rendus de l’Académie des Sci-
ences 146, 530-532 (1908).
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γ0v is a friction force that opposes the motion of the particle. The force F designates
all external deterministic forces and depends, in the most common cases, on the
position of the particle x only. In cases in which the force derives from a potential,
F = −dV/dx. The generalization to higher dimensions is straightforward. Note that
γ0 is the parameter that controls the strength of the coupling to the bath (it appears
in the friction term as well as in the noise term). In the case γ0 = 0 one recovers
Newton equation of motion. The relation between the friction term and thermal
correlation is non-trivial. Langevin fixed it by requiring 〈v2(t)〉 → 〈v2〉eq . We shall
give a different argument for it in the next section.

2.3.2 Derivation of the Langevin equation

Let us take a system in contact with an environment. The interacting sys-
tem+environment ensemble is ‘closed’ while the system is ‘open’. The nature of
the environment, e.g. whether it can be modeled by a classical or a quantum formal-
ism, depends on the problem under study. We focus here on the classical problem.
A derivation of a generalized Langevin equation with memory is very simple starting
from Newton dynamics of the full system [15, 18].

We shall then study the coupled system introduced in Sect. .
The generalization to more complex systems and/or to more complicated baths

and higher dimensions is straightforward. The calculations can also be easily general-
ized to an interaction of the oscillator coordinate with a more complicated dependence
on the system’s coordinate, V(x), that may be dictated by the symmetries of the sys-
tem, see Ex. 1.

Hamilton’s equations for the particle are

ẋ(t) =
p(t)

m
, ṗ(t) = −V ′[x(t)] −

N
∑

a=1

caqa(t)−
N
∑

a=1

c2a
maω2

a
x(t) (2.10)

(the counter-term yields the last term) while the dynamic equations for each member
of the environment read

q̇a(t) =
πa(t)

ma
, π̇a(t) = −maω

2
aqa(t)− cax(t) , (2.11)

showing that they are all massive harmonic oscillators forced by the chosen par-
ticle. These equations are readily solved by

qa(t) = qa(0) cos(ωat) +
πa(0)

maωa
sin(ωat)−

ca
maωa

∫ t

0
dt′ sin[ωa(t− t′)]x(t′) (2.12)

with qa(0) and πa(0) the initial coordinate and position at time t = 0 when the
particle is set in contact with the bath. It is convenient to integrate by parts the
last term. The replacement of the resulting expression in the last term in the rhs of
eq. (2.10) yields

ṗ(t) = −V ′[x(t)] + ξ(t) −
∫ t
0 dt

′ Γ(t− t′)ẋ(t′) , (2.13)
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with the symmetric and stationary kernel Γ given by

Γ(t− t′) =
∑N

a=1
c2a

maω2
a
cos[ωa(t− t′)] , (2.14)

Γ(t− t′) = Γ(t′ − t), and the time-dependent force ξ given by

ξ(t) = −
∑N

a=1 ca
[
πa(0)
maωa

sin(ωat) +
(

qa(0) +
cax(0)
maω2

a

)

cos(ωat)
]

. (2.15)

This is the equation of motion of the reduced system. It is still deterministic.
The third term on the rhs of eq. (2.13) represents a rather complicated friction

force. Its value at time t depends explicitly on the history of the particle at times
0 ≤ t′ ≤ t and makes the equation non-Markovian. One can rewrite it as an integral
running up to a total time T > max(t, t′) introducing the retarded friction:

γ(t− t′) = Γ(t− t′)θ(t − t′) . (2.16)

Until this point the dynamics of the system remain deterministic and are com-
pletely determined by its initial conditions as well as those of the reservoir variables.
The statistical element comes into play when one realizes that it is impossible
to know the initial configuration of the large number of oscillators with great pre-
cision and one proposes that the initial coordinates and momenta of the oscillators
have a canonical distribution at an inverse temperature β. Then, one chooses
{πa(0), qa(0)} to be initially distributed according to a canonical phase space distri-
bution:

P ({πa(0), qa(0)}, x(0)) = 1/Z̃env[x(0)] e−βH̃env[{πa(0),qa(0)},x(0)] (2.17)

with H̃env = Henv +Hint +Hcounter, that can be rewritten as

H̃env =
N
∑

a=1

[

maω2
a

2

(

qa(0) +
ca

maω2
a

x(0)

)2

+
π2a(0)

2ma

]

. (2.18)

The randomness in the initial conditions gives rise to a random force acting on the
reduced system. Indeed, ξ is now a Gaussian random variable, that is to say a
noise, with

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = kBT Γ(t− t′) . (2.19)

One can easily check that higher-order correlations vanish for an odd number of ξ
factors and factorize as products of two time correlations for an even number of ξ
factors. In consequence ξ has Gaussian statistics. Defining the inverse of Γ over the
interval [0, t],

∫ t
0 dt

′′ Γ(t− t′′)Γ−1(t′′ − t′) = δ(t− t′), one has the Gaussian pdf:

P [ξ] = Z−1e−
1

2kBT

∫ t

0
dt
∫ t

0
dt′ ξ(t)Γ−1(t−t′)ξ(t′) . (2.20)
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Z is the normalization. A random force with non-vanishing correlations on a fi-
nite support is usually called a coloured noise. Equation (2.13) is now a genuine
Langevin equation. A multiplicative retarded noise arises from a model in which one
couples the coordinates of the oscillators to a generic function of the coordinates of
the system, see Ex. 1 and eq. (2.27).

The use of an equilibrium measure for the oscillators implies the relation be-
tween the friction kernel and the noise-noise correlation, which are proportional,
with a constant of proportionality of value kBT . This is a generalized form of the
fluctuation-dissipation relation, and it applies to the environment.

Different choices of the environment are possible by selecting different ensembles
of harmonic oscillators. The simplest one, that leads to an approximate Markovian
equation, is to consider that the oscillators are coupled to the particle via coupling
constants ca = c̃a/

√
N with c̃a of order one. One defines

S(ω) ≡ 1
N

∑N
a=1

c̃2a
maωa

δ(ω − ωa) (2.21)

a function of ω, of order one with respect to N , and rewrites the kernel Γ as

Γ(t− t′) =
∫∞
0 dω S(ω)

ω cos[ω(t− t′)] . (2.22)

A common choice is

S(ω)
ω = 2γ0

(
|ω|
ω̃

)α−1
fc
(

|ω|
Λ

)

. (2.23)

The function fc(x) is a high-frequency cut-off of typical width Λ and is usually chosen
to be an exponential. The frequency ω̃ . Λ is a reference frequency that allows one
to have a coupling strength γ0 with the dimensions of viscosity. If α = 1, the friction
is said to be Ohmic, S(ω)/ω is constant when |ω| . Λ as for a white noise. This
name is motivated by the electric circuit analog exposed by the end of this Section.
When α > 1 (α < 1) the bath is superOhmic (subOhmic). The exponent α is
taken to be > 0 to avoid divergencies at low frequency. For the exponential cut-off
the integral over ω yields

Γ(t) = 2γ0ω̃
−α+1 cos[α arctan(Λt)]

[1 + (Λt)2]α/2
Γa(α) Λα (2.24)

with Γa(x) the Gamma-function, that in the Ohmic case α = 1 reads

Γ(t) = 2γ0
Λ

[1 + (Λt)2]
, (2.25)

and in the Λ →∞ limit becomes a delta-function, Γ(t)→ 2γ0δ(t). At long times, for
any α > 0 and different from 1, one has

lim
Λt→∞

Γ(t) = 2γ0ω̃
−α+1 cos(απ/2)Γa(α) Λ−1 t−α−1 , (2.26)
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a power law decay.
Time-dependent, f(t), and constant non-potential forces, fnp, as the ones applied

to granular matter and in rheological measurements, respectively, are simply included
in the right-hand-side (rhs) as part of the deterministic force. When the force derives
from a potential, F (x, t) = −dV/dx.

In so far we have discussed systems with position and momentum degrees of free-
dom. Other variables might be of interest to describe the dynamics of different kind
of systems. In particular, a continuous Langevin equation for classical spins can also
be used if one replaces the hard Ising constraint, si = ±1, by a soft one implemented
with a potential term of the form V (si) = u(s2i − 1)2 with u a coupling strength
(that one eventually takes to infinity to recover a hard constraint). The soft spins
are continuous unbounded variables, si ∈ (−∞,∞), but the potential energy favors
the configurations with si close to ±1. Even simpler models are constructed with
spherical spins, that are also continuous unbounded variables globally constrained to
satisfy

∑N
i=1 s

2
i = N . The extension to fields is straightforward and we shall discuss

one when dealing with the O(N) model.

Exercise 1. Prove that for a non-linear coupling Hint = V [x]
∑N

a=1 caqa there is a
choice of counter-term for which the Langevin equation reads

ṗ(t) = −V ′[x(t)] + ξ(t)V ′[x(t)] − V ′[x(t)]

∫ t

0
dt′ Γ(t− t′)V ′[x(t′)]ẋ(t′) (2.27)

with the same Γ as in eq. (2.14) and ξ(t) given by eq. (2.15) with x(0) → V [x(0)].
The noise appears now multiplying a function of the particles’ coordinate.

Another derivation of the Langevin equation uses collision theory and admits a
generalization to relativistic cases [19].

The electric analog: take an LRC circuit. The resistance is of the usual Ohmic
type, that is to say, the potential drop, VR, across it is given by VR = IR with I the
current and R the resistance. The potential drop, vL, across the inductor L is given
by VL = LdI/dt. Finally, the potential drop across the capacitor is VC = −C−1

∫

Idt.
The balance between these potentials implies a Langevin type equation for the current
circulating across the circuit:

L
d2I

dt2
+R

dI

dt
+ C−1I = 0 . (2.28)

This analogy justifies the Ohmic name given to a dissipative term proportional to the
velocity in the general presentation.

2.3.3 Irreversibility and dissipation.

The friction force−γ0v in eq. (2.9) – or its retarded extension in the non-Markovian
case – explicitly breaks time-reversal (t → −t) invariance, a property that has to be
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respected by any set of microscopic dynamic equations. Newton equations describing
the whole system, the particle and all the molecules of the fluid, are time reversal
invariant. However, time-reversal can be broken in the reduced equation in which
the fluid is treated in an effective statistical form and the fact that it is in equilibrium
is assumed from the start.

Even in the case in which all forces derive from a potential, F = −dV/dx, the
energy of the particle, mv2/2 + V , is not conserved and, in general, flows to the
bath leading to dissipation. At very long times, however, the particle may reach a
stationary regime in which the particle gives and receives energy from the bath at
equal rate, on average.

Exercise 2. Prove the time-irreversibility of the Langevin equation and the fact that
the symmetry is restored if γ0 = 0. Show that d〈Hsyst〉/dt 0= 0 when γ0 0= 0.

2.3.4 Discretization of stochastic differential equations

The way in which a stochastic differential equation with white noise is to be
discretized is a subtle matter that we shall not discuss in these lectures, unless where
it will be absolutely necessary. There are basically two schemes, called the Itô and
Stratonovich calculus, that are well documented in the literature.

In short, we shall use a prescription in which the pair velocity-position of the
particle at time t+ δ, with δ an infinitesimal time-step, depends on the pair velocity-
position at time t and the value of the noise at time t.

2.3.5 Markov character

In the case of a white noise (delta correlated) the full set of equations defines
a Markov process, that is a stochastic process that depends on its history only
through its very last step.

2.3.6 Generation of memory

The Langevin equation (2.9) is actually a set of two first order differential equa-
tions. Notice, however, that the pair of first-order differential equations could also be
described by a single second-order differential equation:

mẍ+ γ0ẋ = F + ξ . (2.29)

Having replaced the velocity by its definition in terms of the position x(t) depends
now on x(t−δ) and x(t−2δ). This is a very general feature: by integrating away some
degrees of freedom (the velocity in this case) one generates memory in the evolution.
Generalizations of the Langevin equation, such as the one that we have just presented
with colored noise, and the ones that will be generated to describe the slow evolution
of super-cooled liquids and glasses in terms of correlations and linear responses, do
have memory.
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2.3.7 Smoluchowski (overdamped) limit

In many situations in which friction is very large, the characteristic time for the
relaxation of the velocity degrees of freedom to their Maxwellian distribution, tvr , is
very short (see the examples in Sect. 2.3). In consequence, observation times are
very soon longer than this time-scale, the inertia term mv̇ can be dropped, and the
Langevin equation becomes

γ0ẋ = F + ξ (2.30)

(for simplicity we wrote the white-noise case). Indeed, this overdamped limit is
acceptable whenever the observation times are much longer than the characteristic
time for the velocity relaxation. Inversely, the cases in which the friction coefficient
γ0 is small are called underdamped.

In the overdamped limit with white-noise the friction coefficient γ0 can be absorbed
in a rescaling of time. One defines the new time τ

t = γ0τ (2.31)

the new position, x̃(τ) = x(γ0τ), and the new noise η(τ) = ξ(γ0τ). In the new
variables the Langevin equation reads ˙̃x(τ) = F (x̃, τ) + η(τ) with 〈η(τ)η(τ ′)〉 =
2kBT δ(τ − τ ′).

2.4 The basic processes

We shall discuss the motion of the particle in some 1d representative potentials:
under a constant force, in a harmonic potential, in the flat limit of these two (Fig. 18)
and the escape from a metastable state and the motion in a double well potential
(Fig. 21).

x

V

x

V

x

V

Figure 18: Three representative one-dimensional potentials.

2.4.1 A constant force
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Let us first consider the case of a constant force, F . The first thing to notice is
that the Maxwell-Boltzmann measure

Pgb(v, x) ∝ e−β
(

v2

2m+V (x)
)

(2.32)

is not normalizable if the size of the line is infinite, due to the exp[−βV (x)] =
exp(βFx) term. Let us then study the evolution of the particle’s velocity and position
to show how these variables behave and the fact that they do very differently.

The problem to solve is a set of two coupled stochastic first order differential
equations on {v(t), x(t)}, one needs two initial conditions v0 and x0.

The velocity

The time-dependent velocity follows from the integration of eq. (2.9) over time

v(t) = v0 e−
γ0
m t +

1

m

∫ t

0
dt′ e−

γ0
m (t−t′) [F + ξ(t′) ] , v0 ≡ v(t = 0) .

The velocity is a Gaussian variable that inherits its average and correlations from
the ones of ξ. Using the fact that the noise has zero average

〈v(t)〉 = v0 e−
γ0
m t +

F

γ0

(

1− e−
γ0
m t
)

.

In the short time limit, t . tvr = m/γ0, this expression approaches the Newtonian
result (γ0 = 0) in which the velocity grows linearly in time v(t) = v0 + F/m t. In
the opposite long time limit, t! tvr = m/γ0, for all initial conditions v0 the averaged
velocity decays exponentially to the constant value F/γ0. The saturation when the
bath is active (γ0 0= 0) is due to the friction term. The relaxation time separating
the two regimes is

tvr = m
γ0

. (2.33)

The velocity mean-square displacement is

σ2v(t) ≡ 〈(v(t) − 〈v(t)〉)2〉 = kBT

m

(

1− e−2
γ0
m t
)

(2.34)

independently of F . This is an example of the regression theorem according to
which the fluctuations decay in time following the same law as the average value. The
short and long time limits yield

σ2v(t) ≡ 〈(v(t) − 〈v(t)〉)2〉 & kBT

m

{
2γ0

m t t. tvr
1 t! tvr

(2.35)

and the two expressions match at t & tvr/2. The asymptotic limit is the result expected
from equipartition of the velocity mean-square displacement, 〈(v(t) − 〈v(t)〉)2〉 →
〈(v(t)−〈v〉stat)2〉stat that implies for the kinetic energy 〈K〉stat = kBT/2 (only if the
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velocity is measured with respect to its average). In the heuristic derivation of the
Langevin equation for F = 0 the amplitude of the noise-noise correlation, say A, is not
fixed. The simplest way to determine this parameter is to require that equipartition
for the kinetic energy holds A/(γ0m) = T/m and hence A = γ0T . This relation is
known under the name of fluctuation–dissipation theorem (fdt) of the second
kind in Kubo’s nomenclature. It is important to note that this fdt characterizes the
surrounding fluid and not the particle, since it relates the noise-noise correlation to
the friction coefficient. In the case of the Brownian particle this relation ensures that
after a transient of the order of tvr , the bath maintains the fluctuations of the velocity,
σ2v , constant and equal to its equilibrium value.

F/γ0

v0 (a)

t

〈v
〉

tvr
0

kBT/m

(b)

t

σ
2 v

tvr

Figure 19: Results for the constant force problem. (a) Mean velocity as a function of
time. (b) Velocity mean-square displacement as a function of time. In both cases the
linear behavior at short times, t. tvr and the saturation values are shown.

The velocity two-time connected correlation reads

〈[v(t) − 〈v(t)〉][v(t′)− 〈v(t′)〉]〉 = kBT

m

[

e−
γ0
m |t−t′| − e−

γ0
m (t+t′)

]

.

This is sometimes called the Dirichlet correlator. This and all other higher-order
velocity correlation functions approach a stationary limit when the shortest time
involved is longer than tvr . At t = t′ on recovers the mean-square displacement
computed in eq. (2.34). When both times are short compared to tvr the two-time
correlator behaves as ∼ 2kBTγ0/m2 max(t, t′). When at least one of the two times
is much longer than tvr the second term vanishes and one is left with an exponential
decay as a function of time delay:

Cc
vv(t, t

′) ≡ 〈[v(t) − 〈v(t)〉][v(t′)− 〈v(t′)〉〉 → kBT

m
e−
γ0
m |t−t′| t, t′ ! tvr . (2.36)

The two-time connected correlation falls off to, say, 1/e in a decay time tvd = m/γ0.
In this simple case tvr = tvd but this does not happen in more complex cases.
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More generally one can show that for times t1 ≥ t2 ≥ . . . ≥ tn ≥ tvr :

〈v(t1 +∆) . . . v(tn +∆)〉 = 〈v(t1) . . . v(tn)〉 (TTI) (2.37)

for all delays ∆. Time-translation invariance (TTI) or stationarity is one
generic property of equilibrium dynamics. Another way of stating (2.37) is

〈v(t1) . . . v(tn)〉 = f(t1 − t2, . . . , tn−1 − tn) . (2.38)

Another interesting object is the linear response of the averaged velocity to a small
perturbation applied to the system in the form of V → V − fx, i.e. a change in the
slope of the potential in this particular case. One finds

Rvx(t, t
′) ≡ δ〈v(t)〉f

δf(t′)

∣
∣
∣
∣
f=0

=
1

m
e−
γ0
m (t−t′) θ(t− t′) (2.39)

& 1

kBT
〈[v(t) − 〈v(t)〉][v(t′)− 〈v(t′)〉]〉 θ(t− t′) (2.40)

the last identity being valid in the limit t or t′ ! tvr . This is an fdt relation between
a linear response, Rvx(t, t′), and a connected correlation, Cc

vv(t, t
′), that holds for one

of the particle variables, its velocity, when this one reaches the stationary state.

kBT Rvx(t, t′) = Cc
vv(t, t

′) θ(t− t′) (FDT) . (2.41)

In conclusion, the velocity is a Gaussian variable that after a characteristic time
tvr verifies ‘equilibrium’-like properties: its average converges to a constant (deter-
mined by F ), its multi-time correlation functions become stationary and a fluctuation-
dissipation theorem links its linear response to the connected correlation at two times.
More general FDT’s are discussed in the exercise proposed below.

The position

The particle’s position, x(t) = x0 +
∫ t
0 dt′v(t′) is still a Gaussian random variable:

x(t) = x0 + v0 tvr +
F

γ0
(t− tvr) + tvr

(
F

γ0
− v0

)

e−
γ0
m t

+
1

m

∫ t

0
dt′
∫ t′

0
dt′′ e−

γ0
m (t′−t′′) ξ(t′′) . (2.42)

Its noise-average behaves as the Newtonian result, ballistic motion, 〈x(t)〉 = x0 +
v0t+ F/(2m) t2 at short times t. tvr and it crossover to

〈x(t)〉 → x0 + v0 tvr +
F
γ0
(t− tvr) (2.43)

for t ! tvr . Note the reduction with respect to ballistic motion (x ∝ Ft2) due to
the friction drag and the fact that this one-time observable does not saturate to a
constant.
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The position mean-square displacement approaches

σ2x(t) ≡ 〈(x(t) − 〈x(t)〉)2〉 → 2Dxt with Dx ≡ kBT
γ0

(Diffusion) (2.44)

in the usual t ! tvr limit, that is to say normal diffusion with the diffusion con-
stant Dx. This expression can be computed using x(t) − 〈x(t)〉 as obtained from
the v(t) − 〈v(t)〉 above (and it is quite a messy calculation) or one can simply go
to the Smoluchowski limit, taking advantage of the knowledge of what we have just
discussed on the behavior of velocities, and obtain diffusion in two lines. In contrast
to the velocity mean-square displacement this quantity does not saturate at any finite
value. Similarly, the particle displacement between two different times t and t′ is

∆xx(t, t
′) ≡ 〈[x(t) − x(t′)]2〉 → 2Dx|t− t′| . (2.45)

It is interesting to note that the force dictates the mean position but it does not
modify the fluctuations about it (similarly to what it did to the velocity). ∆xx is
stationary for time lags longer than tvr .

The two-time position-position connected correlation reads

Cc
xx(t, t

′) = 〈(x(t) − 〈x(t)〉)(x(t′)− 〈x(t′)〉)〉 = . . . (2.46)

Exercise 3: compute it.

0

2Tγ−1
0

(a)

t′

C
x
v

tvr
0

γ−1
0

(b)

t− t′

R
x
x

tvr

Figure 20: Results for the constant force problem. (a) The correlation between the
position and the velocity of the particle measured at different times. (b) The linear
response of the position to a kick applied linearly to itself at a previous time. In both
cases the linear behavior at short times, t. tvr and the saturation values are shown.

Another way to measure the diffusion coefficient directly from the velocity that is
commonly used in the literature is

Dx = limτ→∞ limt′→∞
∫ τ
0 dt′〈v(τ + t′)v(t′)〉 . (2.47)
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One can check that it gives the same result.
The linear response of the particle’s position to a kick linearly applied to itself at

a previous time, in the form V → V − fx at t′ < t, is

Rxx(t, t
′) ≡ δ〈x(t)〉f

δf(t′)

∣
∣
∣
∣
f=0

=
1

γ0
[1− e−

γ0
m (t−t′)] θ(t− t′) , (2.48)

with the limits

Rxx(t, t
′)→

{

m−1 (t− t′) θ(t− t′) t− t′ . tvr ,
γ−1
0 θ(t− t′) t− t′ ! tvr .

(2.49)

A simple calculation proves that in the short time-differences limit this is the results
for Newton dynamics (Exercise 4: show it.)

The correlation between the position and the velocity reads

〈(x(t) − 〈x(t)〉)(v(t′)− 〈v(t′)〉)〉 = 2kBT

m

[
m

γ0
−
(

1 +
m

γ0

)

e−
γ0
m t′
]

→ 2kBT

γ0
(2.50)

and it is only a function of t′. One notices that in the asymptotic limit in which both
sides of the equation saturate

2kBT Rxx(t, t′) = Cc
xv(t, t

′) for t− t′ ! tvr and t′ ! tvr , (2.51)

with a factor of 2 different from the relation in eq. (2.41).
In conclusion, the position is also a Gaussian variable but it is explicitly out of

equilibrium. Its average and variance grow linearly in time, the latter as in normal
diffusion, and the fluctuation-dissipation relation has an additional factor of 1/2 (or
2, depending on on which side of the equality one writes it) with respect to the form
expected in equilibrium.

The energy

The averaged potential energy diverges in the long-time limit since the potential
is unbounded in the x →∞ limit: 〈V (t)〉 = −F 〈x(t)〉 & −F 2/γ0t for t! tvr .

Two kinds of variables

This example shows that even in this very simple problem the velocity and position
variables have distinct behavior: the former is in a sense trivial, after the transient tvr
and for longer times, all one-time functions of v−F/γ0 saturate to their equilibrium-
like and the correlations are stationary. Instead, the latter remains non-trivial and
evolving out of equilibrium. One can loosely ascribe the different behavior to the
fact that the velocity feels a confining potential K = mv2/2 while the position feels
an unbounded potential V = −Fx in the case in which a force is applied, or a flat
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potential V = 0 if F is switched off. In none of these cases the potential is able to
take the particle to equilibrium with the bath. The particle slides on the slope and
its excursions forward and backward from the mean get larger and larger as time
increases.

Quite generally, the classical problems we are interested in are such that the
friction coefficient γ0 is large and the inertia term can be neglected, in other words,
all times are much longer than the characteristic time tvr . We shall do it in the rest
of the lectures.

Ergodicity

The ergodic hypothesis states that, in equilibrium, one can exchange ensemble
averages by time averages and obtain the same results. Out of equilibrium this hy-
pothesis is not expected to hold and one can already see how dangerous it is to take
time-averages in these cases by focusing on the simple velocity variable. Ensemble
and time averages coincide if the time-averaging is done over a time-window that lies
after tvr but it does not if the integration time-interval goes below tvr .

Tests of equilibration have to be done very carefully in experiments and simu-
lations. One can be simply mislead by, for instance, looking just at the velocities
statistics.

A measure for the time dependent fluctuating position and velocity can be written
down, taking advantage of the fact that both variables are Gaussian:

P (v, x) ∝ exp

[

−1

2

∫

dt

∫

dt′ δyt(t)A(t, t′)δy(t′)

]

(2.52)

with the 2× 2 matrix A being the inverse of the matrix of correlations, A−1
ij(t, t′) =

〈δyi(t)δyj(t′)〉 with i, j = 1, 2, δyt(t) = (δv(t) δx(t)) and δv(t) = v(t)−〈v(t)〉 (similarly
for x). The correlations are given above so the dynamic pdf can be easily constructed.
There will be elements in the matrix that remain time-dependent for all times.
Exercise 5. Confront

〈vm(t)xn(t)xk(t′)〉 and 〈vm(t)xn(t)kxk−1(t′)v(t′)〉 ; (2.53)

conclude.

Effect of a colored bath: anomalous diffusion

The anomalous diffusion of a particle governed by the generalized Langevin
equation, eq. (2.13), with colored noise characterized by power-law correlations, eq. (2.14),
a problem also known as fractional Brownian motion, was studied in detail by N. Pot-
tier [20]. The particle’s velocity equilibrates with the environment although it does
at a much slower rate than in the Ohmic case: its average and mean-square displace-
ment decay as a power law - instead of exponentially - to their asymptotic values (still
satisfying the regression theorem). The particle’s mean square displacement is deter-
mined by the exponent of the noise-noise correlation, 〈x2(t)〉 & tα, i.e. the dynamics is
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subdiffusive for α < 1, diffusive for α = 1 and superdiffusive for α > 1. A time-
dependent diffusion coefficient verifies Dx(t) ≡ 1/2 d〈x2(t)〉/dt ∝ tα−1: it is finite and
given by eq. (2.45) for normal diffusion, it diverges for superdiffusion and it vanishes
for subdiffusion. The ratio between the linear response and the time-derivative of
the correlation ratio reads TRxx(t, t′)/∂t′Cxx(t, t′) = Dx(t− t′)/[Dx(t− t′) +Dx(t′)].
It approaches 1/2 for normal diffusion and the two-time dependent function 1/[1 +
(t′/(t− t′))α−1] in other cases.

2.4.2 Relaxation in a quadratic potential

Another relevant example is the relaxation of a particle in a harmonic potential,
with its minimum at x∗ 0= 0:

V (x) =
k

2
(x− x∗)2 , (2.54)

in contact with a white noise. The potential confines the particle and one can then
expect the coordinate to reach an equilibrium distribution.

This problem can be solved exactly keeping inertia for all values of γ0 but the
calculation is slightly tedious. The behavior of the particle velocity has already been
clarified in the constant force case. We now focus on the overdamped limit,

γ0ẋ = −k(x− x∗) + ξ , (2.55)

with k the spring constant of the harmonic well, that can be readily solved,

x(t) = x0 e−
k
γ0

t + γ−1
0

∫ t

0
dt′ e−

k
γ0

(t−t′) [ξ(t′) + kx∗] , x0 = x(0) . (2.56)

This problem become formally identical to the velocity dependence in the previous
example.

Convergence of one-time quantities

The averaged position is

〈x(t) − x∗〉 = (x0 − x∗)e−
k
γ0

t → 0 txr ! γ0/k (Convergence) (2.57)

Of course, one-time quantities should approach a constant asymptotically if the system
equilibrates with its environment.

Two-time quantities

The two-time connected correlation (where one extracts, basically, the asymptotic
position x∗) reads

〈δx(t)δx(t′)〉 = kBT k−1 e−
k
γ0

(t+t′)
[

e2
k
γ0

min(t,t′) − 1
]

. (2.58)
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Again, the Dirichlet correlator (δx(t) = x(t)− 〈x(t)〉). For at least one of the two
times going well beyond the position relaxation time txr = γ0/k the memory of the
initial condition is lost and the connected correlation becomes stationary:

Cc(t, t
′) = 〈δx(t)δx(t′)〉 → kBT k−1 e−

k
γ0

|t−t′| min(t, t′) ! txr . (2.59)

For time-differences that are longer than txd = γ0/k the correlation decays to 1/e and
one finds txd = txr . Interestingly enough, the relaxation and decay times diverge when
k → 0 and the potential becomes flat.

Note that when the time-difference t − t′ diverges the average of the product
factorizes, in particular, for the correlation one gets

〈x(t)x(t′)〉 → 〈x(t)〉〈x(t′)〉 → x∗〈x(t′)〉 (2.60)

for any t′, even finite. We shall see this factorization property at work later in more
complicated cases.

Fluctuation-dissipation theorem (FDT)

One can also compute the linear response to an infinitesimal perturbation that
couples linearly to the position changing the energy of the system as H → H − fx at
a given time t′:

R(t, t′) =
δ〈x(t)〉f
δf(t′)

∣
∣
∣
∣
f=0

. (2.61)

The explicit calculation yields

R(t, t′) = γ−1
0 e−kγ−1

0 (t−t′) θ(t− t′)

R(t, t′) = 1
kBT

∂Cc(t,t
′)

∂t′ θ(t− t′) (FDT) (2.62)

The last equality holds for times that are longer than txr . It expresses the fluctuation-
dissipation theorem (fdt), a model-independent relation between the two-time
linear response and correlation function. Similar - though more complicated - rela-
tions for higher-order responses and correlations also exist in equilibrium. There are
many ways to prove the fdt for stochastic processes. We shall discuss one of them
in Sect. 2.3.2 that is especially interesting since it applies easily to problems with
correlated noise.

It is instructive to examine the relation between the linear response and the cor-
relation function in the limit of a flat potential (k → 0). The linear response is just
γ−1
0 θ(t− t′). The Dirichlet correlator approaches the diffusive limit:

〈δx(t)δx(t′)〉 = 2γ−1
0 kBT min(t, t′) for k → 0 (2.63)

and its derivative reads ∂t′〈δx(t)δx(t′)〉 = 2γ−1
0 kBT θ(t− t′). Thus,

R(t, t′) =
1

2kBT
∂t′〈δx(t)δx(t′)〉 θ(t− t′)

R(t, t′) = 1
2kBT ∂t′Cc(t, t′) θ(t− t′) (FDR for diffusion) (2.64)
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A factor 1/2 is now present in the relation between R and Cc. It is another signature
of the fact that the coordinate is not in equilibrium with the environment in the
absence of a confining potential.

Exercise 6. Evaluate the two members of the FDT, eq. (2.62), in the case of the
tilted potential V (x) = −Fx.

Reciprocity or Onsager relations

Let us compare the two correlations 〈x3(t)x(t′)〉 and 〈x3(t′)x(t)〉 within the har-
monic example. One finds 〈x3(t)x(t′)〉 =
3〈x2(t)〉〈x(t)x(t′)〉 and 〈x3(t′)x(t)〉 = 3〈x2(t′)〉〈x(t′)x(t)〉. Given that 〈x2(t)〉 = 〈x2(t′)〉 →
〈x2〉eq and the fact that the two-time self-correlation is symmetric,

〈x3(t)x(t′)〉 = 〈x3(t′)x(t)〉 . (2.65)

With a similar argument one shows that for any functions A and B of x:

〈A(t)B(t′)〉 = 〈A(t′)B(t)〉

CAB(t, t′) = CAB(t′, t) (Reciprocity) (2.66)

This equation is known as Onsager relation and applies to A and B that are even
under time-reversal (e.g. they depend on the coordinates but not on the velocities or
they have an even number of verlocities).

All these results remain unaltered if one adds a linear potential −Fx and works
with connected correlation functions.

2.4.3 Thermally activated processes

The phenomenological Arrhenius law6 yields the typical time needed to escape
from a potential well as an exponential of the ratio between the height of the barrier
and the thermal energy scale kBT , (with prefactors that can be calculated explicitly,
see below). This exponential is of crucial importance for understanding slow (glassy)
phenomena, since a mere barrier of 30kBT is enough to transform a microscopic time
of 10−12s into a macroscopic time scale. See Fig. 21-right for a numerical study of
the Coulomb glass that demonstrates the existence of an Arrhenius time-scale in this
problem. In the glassy literature such systems are called strong glass formers as
opposed to weak ones in which the characteristic time-scale depends on temperature
in a different way.

In 1940 Kramers estimated the escape rate from a potential well as the one
shown in Fig. 21-center due to thermal fluctuations that give sufficient energy to the
particle to allow it to surpass the barrier7. After this seminal paper this problem has

6S. A. Arrhenius, On the reaction velocity of the inversion of cane sugar by acids, Zeitschrift für
Physikalische Chemie 4, 226 (1889).

7H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions,
Physica 7, 284 (1940).
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Figure 21: Left: sketch of a double-well potential. Center: sketch of a potential with
a local minimum. Right: correlation function decay in a classical model of the 3d
Coulomb glass at nine temperatures ranging from T = 0.1 to T = 0.05 in steps of
0.05 and all above Tg. In the inset the scaling plot C(t) ∼ f(t/tA) with a characteristic
time-scale, tA, that follows the Arrhenius activated law, tA & 0.45/T . Figure due to
Kolton, Domı́nguez and Grempel [21].

been studied in great detail [19] given that it is of paramount importance in many
areas of physics and chemistry. An example is the problem of the dissociation of a
molecule where x represents an effective one-dimensional reaction coordinate and
the potential energy barrier is, actually, a free-energy barrier.

Kramers assumed that the reaction coordinate is coupled to an equilibrated en-
vironment with no memory and used the probability formalism in which the particle
motion is described in terms of the time-dependent probability density P (x, v, t) (that
for such a stochastic process follows the Kramers partial differential equation).

If the thermal energy is at least of the order of the barrier height, kBT ∼ ∆V ,
the reaction coordinate, x, moves freely from the vicinity of one well to the vicinity
of the other.

The treatment we discuss applies to the opposite weak noise limit in which the
thermal energy is much smaller than the barrier height, kBT . ∆V , the random
force acts as a small perturbation, and the particle current over the top of the barrier
is very small. Most of the time x relaxes towards the minimum of the potential well
where it is located. Eventually, the random force drives it over the barrier and it
escapes to infinity if the potential has the form in Fig. 21-center, or it remains in the
neighbourhood of the second well, see Fig. 21-left.

The treatment is simplified if a constant current can be imposed by injecting
particles within the metastable well and removing them somewhere to the right of it.
In these conditions Kramers proposed a very crude approximation whereby P takes
the stationary canonical form

Pst(x, v) = N e−β v2

2 −βV (x) . (2.67)
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If there is a sink to the right of the maximum, the normalization constant N is fixed
by further assuming that Pst(x, v) ∼ 0 for x ≥ x̃ > xmax. The resulting integral over
the coordinate can be computed with a saddle-point approximation justified in the
large β limit. After expanding the potential about the minimum and keeping the
quadratic fluctuations one finds

N−1 =
2π

β
√

V ′′(xmin)
e−βV (xmin) .

The escape rate, r, over the top of the barrier can now be readily computed by
calculating the outward flow across the top of the barrier:

r ≡ 1

tA
≡
∫ ∞

0
dv vP (xmax, v) =

√

V ′′(xmin)

2π
e−β(V (xmax)−V (xmin)) . (2.68)

Note that we here assumed that no particle comes back from the right of the barrier.
This assumption is justified if the potential quickly decreases on the right side of the
barrier.

The crudeness of the approximation (2.67) can be grasped by noting that the
equilibrium form is justified only near the bottom of the well. Kramers estimated an
improved Pst(x, v) that leads to

r =

(
γ2

4 + V ′′(xmax)
)1/2

− γ
2

√

V ′′(xmax)

√

V ′′(xmin)

2π
e−β(V (xmax)−V (xmin)) . (2.69)

This expression approaches (2.68) when γ . V ′′(xmax), i.e. close to the underdamped
limit, and

r =

√

V ′′(xmax)V ′′(xmin)

2πγ
e−β(V (xmax)−V (xmin)) (2.70)

when γ ! V ′′(xmax), i.e. in the overdamped limit (see Sect. 2.3.7 for the definition
of these limits).

The inverse of (2.69), tA, is called the Arrhenius time needed for thermal
activation over a barrier ∆V ≡ V (xmax)−V (xmin). The prefactor that characterises
the well and barrier in the harmonic approximation is the attempt frequency with
which the particles tend to jump over the barrier. In short,

tA & τ eβ|∆V | (Arrhenius time) (2.71)

The one-dimensional reaction coordinate can be more or less easily identified in
problems such as the dissociation of a molecule. In contrast, such a single variable
is much harder to visualize in an interacting problem with many degrees of freedom.
The Kramers problem in higher dimensions is highly non-trivial and, in the infinite-
dimensional phase-space, is completely out of reach.

The Arrhenius time can be derived within the path-integral formalism that we
will discuss later [23, 22].
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Figure 22: Left: second-order phase transition. Right: first order phase transition.

3 Dynamics at or through a phase transition

Take a piece of material in contact with an external reservoir. The material will be
characterized by certain observables, energy density, magnetization density, etc. The
external environment will be characterized by some parameters, like the temperature,
magnetic field, pressure, etc. In principle, one is able to tune the latter and study
the variation of the former. Note that we are using a canonical setting in the sense
that the system under study is not isolated but open.

Sharp changes in the behavior of macroscopic systems at critical points (or lines)
in parameter space have been observed experimentally. These correspond to equi-
librium phase transitions, a non-trivial collective phenomenon appearing in the
thermodynamic limit. We shall assume that the main features of, and analytic ap-
proaches used to study, phase transitions are known.

Imagine now that one changes an external parameter instantaneously or with a
finite rate going from one phase to another in the (equilibrium) phase diagram. The
kind of internal system interactions are not changed. In the statistical physics lan-
guage the first kind of procedure is called a quench and the second one an annealing
and these terms belong to the metalurgy terminology. We shall investigate how the
system evolves by trying to accomodate to the new conditions and equilibrate with
its environment. We shall first focus on the dynamics at the critical point or going
through phase transitions between well-known phases (in the sense that one knows
the order parameter, the structure, and all thermodynamic properties on both sides
of the transition). Later we shall comment on cases in which one does not know all
characteristics of one of the phases and sometimes one does not even know whether
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there is a phase transition.
The evolution of the free-energy landscape (as a function of an order parameter)

with the control parameter driving a phase transition is a guideline to grasp the
dynamics following a quench or annealing from, typically, a disordered phase to the
phase transition or into the ordered phase. See Fig. 22 for a sketch. We shall discuss
quenches to the phase transition and below it. In the former case, the system can
get to a critical point (Fig. 22-left) in which the free-energy is metastable in the
sense that its second derivative vanishes (second order phase transition cases) or to
a first-order phase transition (Fig. 22-right) in which various minima are degenerate.
In the latter case the initial state becomes unstable, that is to say a maximum,
and the phase transition is of second-order (see Fig. 22-left) or metastable, that
is to say a local minimum, and the phase transition is of first order (see Fig. 22-
right) in the final externally imposed conditions.8 In the former case the ordering
process occurs throughout the material, and not just at nucleation sites. Two
typical examples are spinodal decomposition, i.e. the method whereby a mixture
of two or more materials can separate into distinct regions with different material
concentrations, or magnetic domain growth in ferromagnetic materials. Instead, in
the latter case, the stable phase conquers the system through the nucleation of a
critical localized bubble via thermal activation and its further growth.

Having described the dependence of the free-energy landscape on the external
parameters we now need to choose the microscopic dynamics of the order parameter.
Typically, one distinguishes two classes: one in which the order parameter is locally
conserved and another one in which it is not. Conserved order parameter dynamics
are found for example in phase separation in magnetic alloys or inmiscible liquids.
Ferromagnetic domain growth is an exemple of the non-conserved case.

3.1 Time-dependent Ginzburg-Landau description

The kinetics of systems undergoing critical dynamics or an ordering process is
an important problem for material science but also for our generic understanding of
pattern formation in non-equilibrium systems. The late stage dynamics is believed
to be governed by a few properties of the systems whereas material details should
be irrelevant. Among these relevant properties one may expect to find the number
of degenerate ground states, the nature of the conservation laws and the hardness or
softness of the domain walls that is intimately related to the dimension of the order
parameter. Thus, classes akin to the universality ones of critical phenomena have
been identified. These systems constitute a first example of a problem with slow
dynamics. Whether all systems with slow dynamics, in particular structural and
spin glasses, undergo some kind of simple though slow domain growth is an open
question.

Take a magnetic system, such as the ubiquitous Ising model with ferromagnetic
uniform interactions, and quench it to its Curie point or into the low temperature

8Strictly speaking metastable states with infinite life-time exist only in the mean-field limit.
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Figure 23: Monte Carlo simulations of a 2d Ising model. Three snapshots at t =
1, 3× 105, 3× 106 MCs after a quench to Tc.
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Figure 24: Monte Carlo simulations of a 2d Ising model. Three snapshots at t =
1, 3 × 105, 3 × 106 MCs after a quench to 0.5 Tc. Thermal fluctuations within the
domains are visible.

phase starting from a random initial condition. Classically, the spins do not have
an intrinsic dynamics; it is defined via a stochastic rule of Glauber, Metropolis or
similar type with or without locally conserved magnetization. For the purpose of
the following discussion it is sufficient to focus on non-conserved local microscopic
dynamics. Three snapshots taken after times 1, 3× 105 and 3× 106 MCs in a critical
and two sub-critical quenches are shown in Figs. 23, 24, and 25.

Time-dependent macroscopic observables are then expressed in terms of the values
of the spins at each time-step. For instance, the magnetization density and its two-
time self correlation function are defined as

m(t) ≡ N−1
N
∑

i=1

〈 si(t) 〉 , C(t, t′) ≡ N−1
N
∑

i=1

〈 si(t)si(t′) 〉 , (3.1)

where the angular brackets indicate an average over many independent runs (i.e. ran-
dom numbers) starting from identical initial conditions and/or averages over different
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Figure 25: Monte Carlo simulations. Three snapshots at t = 1, 3× 105, 3× 106 MCs
after a quench to 0.01 Tc. There is almost perfect order within the domains (meq & 1).

initial configurations.
In critical quenches, patches with equilibrium critical fluctuations grow in time

but their linear extent never reaches the equilibrium correlation length that diverges.
Clusters of neighbouring spins pointing the same direction of many sizes are visible
in the figures and the structure is quite intricate with clusters within clusters and so
on and so forth. The interfaces look pretty rough too.

In quenches into the ordered phase through a second order phase tran-
sition the ferromagnetic interactions tend to align the neighbouring spins in parallel
direction and in the course of time domains of the two ordered phases form and grow,
see Fig. 26. At any finite time the configuration is such that both types of domains
exist. If one examines the configurations in more detail one reckons that there are
some spins reversed within the domains. These ‘errors’ are due to thermal fluctua-
tions and are responsible of the fact that the magnetization of a given configuration
within the domains is smaller than one and close to the equilibrium value at the work-
ing temperature (apart from fluctuations due to the finite size of the domains). The
total magnetization, computed over the full system, is zero (up to fluctuating time-
dependent corrections that scale with the square root of the inverse system size). The
thermal averaged spin, 〈si(t)〉 vanishes for all i and all finite t, see below for a more
detailed discussion of the time-dependence. As time passes the typical size of the
domains increases and the interfaces get flatter in a way that we shall also discuss
below.

Quenches across first order phase transitions will be discussed separately
below.

In order to treat phase-transitions and the coarsening process analytically it is
preferable to introduce a coarse-grained description in terms of a continuous coarse-
grained field,

φ(&x, t) ≡ 1

V

∑

i∈V"x

si(t) , (3.2)
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Figure 26: Snapshot of the 2d Ising model at a number of Monte Carlo steps after
a quench from infinite to a subcritical temperature. Left: the up and down spins on
the square lattice are represented with black and white sites. Right: the domain walls
are shown in black.

the fluctuating magnetization density. In a first approximation a Landau-Ginzburg
free-energy functional is introduced

F [φ] =

∫

ddx
{ c

2
[∇φ(&x, t)]2 + V [φ(&x, t)]

}

. (3.3)

With the choice of the potential one distinguishes between a second order and a
first order phase transition. In the former case, the typical form is the φ4 form:

V (φ) = aφ4 + b(g)φ2 . (3.4)

The first term in eq. (3.3) represents the energy cost to create a domain wall or the
elasticity of an interface. The second term depends on a parameter, g, and changes
sign from positive at g > gc to negative at g < gc. Above the critical point determined
by b(gc) = 0 it has a single minimum at φ = 0, at gc it is flat at φ = 0 and below
gc it has a double well structure with two minima, φ = ±[−b(g)/(2a)]1/2 = 〈φ〉eq(g),
that correspond to the equilibrium states in the ordered phase. Equation (3.3) is
exact for a fully connected Ising model where V (φ) arises from the multiplicity of
spin configurations that contribute to the same φ(&x) = m. The order-parameter
dependent free-energy density reads f(m) = −Jm2 − hm + kBT {(1 + m)/2 ln[(1 +
m)/2]+ (1−m)/2 ln[(1−m)/2] that close to the critical point where m & 0 becomes
f(m) & (kBT − 2J)/2 m2 − hm + kBT/12 m4 demonstrating the passage from a
harmonic form at kBT > kBTc = 2J , to a quartic well at T = Tc, and finally to a
double-well structure at T < Tc.
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Exercise. Prove the above.

With a six-order potential one can mimic the situation in the right panel of Fig. 22.
When discussing dynamics one should write down the stochastic evolution of the

individual spins and compute time-dependent averaged quantities as the ones in (3.1).
This is the procedure used in numerical simulations. Analytically it is more convenient
to work with a field-theory and an evolution equation of Langevin-type. This is
the motivation for the introduction of continuous field equations that regulate the
time-evolution of the coarse-grained order parameter. Ideally these equations should
be derived from the spin stochastic dynamics but in practice they are introduced
phenomenologically. In the magnetic case as well as in many cases of interest, the
domain wall and interface dynamics can be argued to be overdamped (i.e. t! tφ̇r ).

Two very similar approaches are used. Assuming T is only relevant to determine
the equilibrium coarse-grained field one uses the phenomenological zero-temperature
time-dependent Ginzburg-Landau equation or model A in the classification of
Hohenberg-Halperin deterministic equation

∂φ(&x, t)

∂t
= − δF [φ]

δφ(&x, t)
(3.5)

(the friction coefficient has been absorbed in a redefinition of time). Initial conditions
are usually chosen to be random with short-range correlations

[φ(&x, 0)φ(&x′, 0) ]ic = ∆δ(&x − &x′) (3.6)

thus mimicking the high-temperature configuration ([. . .]ic represent the average over
its probability distribution). The numeric solution to this equation with the quartic
potential and b < 0 shows that such a random initial condition evolves into a field
configuration with patches of ordered region in which the field takes one of the two
values [−b/(2a)]1/2 separated by sharp walls. It ignores temperature fluctuations
within the domains meaning that the field is fully saturated within the domains
and, consequently, one has access to the aging part of the correlations only, see e.g.
eq. (3.23). The phase transition is controlled by the parameter b in the potential.

Another, similar approach, is to add a thermal noise to the former

∂φ(&x, t)

∂t
= − δF [φ]

δφ(&x, t)
+ ξ(&x, t) . (3.7)

This is the field-theoretical extension of the Langevin equation in which the potential
is replaced by the order-parameter-dependent funcitonal free-energy in eq. (3.3) with
a potential form with fixed parameters (independent of T ). ξ is a noise taken to be
Gaussian distributed with zero mean and correlations

〈ξ(&x, t)ξ(&x′, t′)〉 = 2kBT δ
d(&x− &x′)δ(t− t′) . (3.8)

The friction coefficient has been absorbed in a redefinition of time. For a quartic
potential a dynamic phase transition arises at a critical Tc; above Tc the system freely
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moves above the two minima and basically ignores the double well structure while
below Tc this is important. Within the growing domains the field φ fluctuates about
its mean also given by [−b/(2a)]1/2 and the fluctuations are determined by T . One
can describe the rapid relaxation at ties such that the domain walls do not move
with this approach. This formulation is better suited to treat critical and sub-critical
dynamics in the same field-theoretical framework.

These equations do not conserve the order parameter neither locally nor globally.
Extensions for cases in which it is conserved exist (model B). Cases with vectorial or
even tensorial order parameters can be treated similarly and are also of experimental
relevance, notably for vectorial magnets or liquid crystals.

3.2 Relaxation and equilibration time

We wish to distinguish the relaxation time, tr, defined as the time needed for a
given initial condition to reach equilibrium in one of the (possibly many equivalent)
phases, from the decorrelation time, td, defined as the time needed for a given
configuration to decorrelate from itself. To lighten the notation we do not signal out
the variable that we use to study these typical times (as we did with the velocity and
position in the examples of Sect. 2.4). We further define the reversal time, tR, as
the time needed to go from one to another of the equivalent equilibrium phases. We
focus on second-order phase transitions here.

3.2.1 Quench from T ! Tc to T > Tc

If one quenches the system to T > Tc the relaxation time, tr, needed to reach
configurations sampled by the Boltzmann measure depends on the system’s param-
eters but not on its size. Hence it is finite even for an infinite-size system. Once a
short transient overcome, the average of a local spin approaches the limit given by the
Boltzmann measure, 〈si(t)〉 → 〈si〉eq = m = 0, for all i and all other more complex
observables satisfy equilibrium laws. The relaxation time is estimated to behave as
|T −Tc|−νzeq close to Tc, with ν the critical exponent characterizing the divergence of
the equilibrium correlation length, ξ ∼ (T − Tc)−ν , and zeq the equilibrium exponent
that links times and lengths, ξ ∼ t1/zeq .

The relaxation of the two-time self-correlation at T > Tc, when the time t′ is
chosen to be longer than tr, decays exponentially

lim
t′*tr

〈si(t)si(t′)〉 & e−(t−t′)/td (3.9)

with a decorrelation time that increases with decreasing temperature and close to
(but still above) Tc diverges as the power law, td ∼ (T − Tc)−νzeq . The divergence of
td is the manifestation of critical slowing down. The asympotic value verifies

lim
t−t′*t′*tr

〈si(t)si(t′)〉 = lim
t*tr

〈si(t)〉 lim
t′*tr

〈si(t′)〉 = 〈si〉eq〈si〉eq = m2 = 0 , (3.10)

cfr. eq. (2.60).
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3.2.2 Quench from T ! Tc to T ≤ Tc

At or below Tc, coarsening from an initial condition that is not correlated with
the equilibrium state and with no bias field does not take the system to equilibrium
in finite times with respect to a function of the system’s linear size, L. More explicitly,
if the growth law is a power law [see eq. (3.31)] one needs times of the order of Lzeq

(critical) or Lzd (subcrititcal) to grow a domain of the size of the system. This gives
a rough idea of the time needed to take the system to one of the two equilibrium
states. For any shorter time, domains of the two types exist and the system is out
of equilibrium.

The self-correlation of such an initial state evolving at T ≤ Tc involves power laws
or logarithms and although one cannot associate to it a decay time as one does to an
exponential, one can still define a characteristic time that, quite generally, turns out
to be related to the age of the system, td & tw [see eq. (3.29)].

In contrast, the relaxation time of an equilibrium magnetized configuration at
temperature T vanishes since the system is already equilibrated while the decorrela-
tion time td is a finite function of T .

The relaxation of the two-time self-correlation at T < Tc, when the time t′ is
chosen to be longer than tr, that is to say, once the system has thermalized in one of
the two equilibrium states, decays exponentially

〈si(t)si(t′)〉 & e−(t−t′)/td (3.11)

with a decorrelation time that decreases with decreasing temperature and close to Tc

(but below it) also diverges as a power law, td ∼ (T −Tc)−νzeq . The asympotic value
verifies

lim
t−t′*t′*tr

〈si(t)si(t′)〉 = lim
t*tr

〈si(t)〉 lim
t′*tr

〈si(t′)〉 = 〈si〉eq〈si〉eq = m2 ≥ 0 , (3.12)

cfr. eqs. (2.60) and (3.10), depending on T = Tc or T > Tc.

3.2.3 Summary

The lesson to learn from this comparison is that the relaxation time and the
decorrelation time not only depend upon the working temperature but they also
depend upon the initial condition. Moreover, in all critical or low-temperature cases
we shall study the relaxation time depends on (L, T ) – and diverges in the infinite
size limit – while the decorrelation time depends on (T, tw). For a random initial
condition and an infinite system one has

tφr &







finite T > Tc ,

|T − Tc|−νzeq T
>∼ Tc ,

∞ T ≤ Tc
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while for a finite system

tφr &
{

Lzeq T = Tc ,
Lzd T < Tc .

Still another time scale is given by the time needed to reverse an equilibrium
configuration in the low-T phase. This one is expected to be given by an Arrhenius
law, with the height of the barrier being determined by the extensive free-energy
barrier between the two minima, i.e. ∆F & Ldf , therefore,

tφR & eβL
df Reversal time-scale . (3.13)

The Ginzburg-Landau description allows for a pictorial interpretation of these re-
sults. The dynamics of the full system is visualized as the motion of its representative
point in the Ginzburg-Landau potential. At high T the potential is harmonic in the
deterministic Allen-Cahn equation, or the double-well structure in the time-dependent
stochastic Ginzburg-Landau equation is completely ignored. The relaxation is similar
to the one of a particle in a harmonic potential studied in Sect. 2.4.2. At low T , the
initial position in the double-well potential depends on the type of initial condition
φ(&x, 0) = 0 or φ(&x, 0) 0= 0. In the first case, the point sits on top of the central barrier
and it does not detach from it in finite times with respect to a function of L. In the
second case, the point starts from within one well and it simply rolls to the bottom
of the well. This relaxation is similar to the one in the harmonic case. To reverse the
configuration from, say, positive to negative magnetization the point needs to jump
over the barrier in the double well potential and it does via thermal activation ruled
by the Arrhenius law.

Note however that the phase-space of the system is actually N -dimensional while
the description that is given here is projected onto one single coordinate, the one of
the order-parameter. This reduction might lead to some misunderstandings and one
should be very careful with it.

3.3 Short-time dynamics

Take an initial configuration φ(&x, 0) = 0 on average with small fluctuations, as in
equilibrium at very high temperature, and quench the system. At very short time one
can expand the non-linear potential and the Ginzburg-Landau equation (3.5), for the

Fourier components, φ(&k, t) = L−d/2
∫

ddx φ(&x, t)e−i#k#x with &k = 2π/L (n1, . . . , nd)
and nk integer, reads

∂φ(&k, t)

∂t
= [−k2 − V ′′(0)]φ(&k, t) + ξ(&k, t) . (3.14)

If V ′′(0) > 0 all modes decay exponentially and no order develops. If V ′′(0) < 0
instead modes with −k2−V ′′(0) > 0 are unstable and grow exponentially until a time
t∗ & −1/V ′′(0) when the small φ expansion ceases to be justified. The instability of

60



the small wave-vector modes indicates that the system tends to order. To go beyond
this analysis one needs to consider the full non-linear equation.

3.4 Growing length and dynamic scaling

In usual coarsening systems the averaged space-time correlation function

NC(r, t) =
∑

ij/|#ri−#rj |=r〈si(t)sj(t)〉

allows for the identification of a growing length from, for example,

Ra(T, t) ≡
∫

ddr ra+1C(r, t)/

∫

ddr raC(r, t) (3.15)

(a is a parameter chosen to weight preferentially short or long distances; the time-
dependence of Ra(t) should not depend on a.) Here and in the following 〈. . .〉
stands for an average over different realizations of thermal histories at heat-bath
temperature T and/or initial conditions. In presence of quenched disorder one adds
an average over it and denotes it [. . .]. The stochastic time-dependent function
N−1

∑

ij/|#ri−#rj|=r si(t)sj(t) after a quench from a random initial condition does not
fluctuate in the thermodynamic limit. Therefore, the averages are not really neces-
sary but they are usually written down. In spin-glasses and glasses this observable
does not yield information on the existence of any growing length as we shall discuss
below.

The spherically averaged structure factor S(k, t) – the Fourier transform of C(r, t)
– can be measured experimentally with small-angle scattering of neutrons, x-rays or
light and from it Ra(T, t) can be extracted.

The ordering process is characterized by the growth of a typical length, R(T, t).
The growth regimes are summarized in the following equation and in Fig. 27:







Rc(t)→ ξ(T ) < +∞ T > Tc saturation,
Rc(t)→ ξ(T )→∞ T = Tc critical coarsening,
Rc(t)→ ξ(T ) < R(T, t)→ L T < Tc sub-critical coarsening.

(3.16)

After a quench to the high temperature phase T > Tc the system first grows equilib-
rium regions until reaching the correlation length ξ and next relaxes in equilibrium as
explained in the previous section. The correlation length could be very short and the
transient non-equilibrium regime be quite irrelevant (T ! Tc). In the critical region,
instead, the correlation length grows and it becomes important. In a critical quench
the system never orders sufficiently and R(Tc, t) < ξ for all finite times. Finally, a
quench into the subcritical region is characterized by two growth regimes: a first one
in which the critical point dominates and the growth is as in a critical quench; a
second one in which the proper sub-critical ordering is at work. The time-dependence
of the growth law is different in these two regimes as we shall see below. (Note that

61



R(T, t)

Tc

ξ

Figure 27: Sketch of the growth process in a second-order phase transition. The
thick line is the equilibrium correlation length ξ & |T − Tc|−ν . The thin solid (red)
arrows indicate the growing length Rc in the critical coarsening regime and the dashed
(black) arrow the sub-critical growing length R in the coarsening regime.

below Tc ξ does not measure the size of ordered regions but the typical distance until
which a fluctuation has an effect.)

In the asymptotic time domain, when R(T, t) has grown much larger than any
microscopic length in the system, a dynamic scaling symmetry sets in, similarly
to the usual scaling symmetry observed in equilibrium critical phenomena. According
to this hypothesis, the growth of R(T, t) is the only relevant process and the whole
time-dependence enters only through R(T, t).

3.5 Critical coarsening

The scaling behavior of binary systems quenched to the critical point is quite well
understood. It can be addressed with scaling arguments and renormalization group
approaches [5] which give explicit expressions for many of the quantities of interest
up to two loops order. Numerical simulations confirm the analytic results and probe
exponents and scaling functions beyond the available perturbative orders. In this case
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the system builds correlated critical Fortuin-Kasteleyn clusters with fractal dimension
DFK = (d+2− η)/2, where η is the usual static critical exponent, in regions growing
algebraically as Rc(Tc, t) ≡ Rc(t) ∼ t1/zeq ; henceforth we simplify the notation and
avoid writing Tc within R. [As an example, for the bidimensional critical Ising class
η = 1/4 and DFK = (2 + 2− 1/4)/2 = 15/8.]

In the asymptotic time regime the space-time correlation function has the scaling
form

C(r, t) = Cst(r) f

(
r

Rc(t)

)

= r−2(d−DFK) f

(
r

Rc(t)

)

(3.17)

C(r, t) = r2−d−η f

(
r

Rc(t)

)

Multiplicative separation.

The pre-factor r2(d−DFK) takes into account that the growing domains have a frac-
tal nature (hence their density decreases as their size grows) and the dependence
on r/Rc(t) in f(x) expresses the similarity of configurations at different times once
lengths are measured in units of Rc(t). At distances and times such that r/Rc(t). 1
the equilibrium power-law decay, Ceq(r) & r2−d−η, should be recovered, thus f(x) &
ct at x → 0. f(x) falls off rapidly for x ! 1 to ensure that spins are uncorrelated
at distances larger than Rc(t). [More precisely, correlated as in the initial condition
that, in the case of a quench from infinite temperature, means indeed uncorrelated.]

For two-time quantities, when t′ is sufficiently large one has

C(t, t′) = Cst(t− t′) fc

(
Rc(t)

Rc(t′)

)

(3.18)

C(t, t′) = Rc(t− t′)2−d−η fc

(
Rc(t)

Rc(t′)

)

Multiplicative separation.

Here Cst(t− t′) & Rc(t− t′)−2(d−DFK) = Rc(t− t′)2−d−η. The scaling function fc(x)
describes the non-equilibrium behavior. It satisfies fc(1) = 1 and fc(x →∞) = 0, see
the sketch in Fig. 28 (a). In the scaling forms the equilibrium and non-equilibrium
contributions enter in a multiplicative structure. Non-equilibrium effects are taken
into account by taking ratios between the sizes of the correlated domains at the
observation times t′ and t in the scaling functions. Note that the reason why the
equilibrium results are recovered for t & t′ is that for very similar times one does not
let the system realize that it is out of equilibrium.

In the case of non-conserved scalar order-parameter dynamics the growing length
behaves as

Rc(t) ∼ t1/zeq (3.19)

with zeq the equilibrium dynamics exponent (note that zeq is different from zd). We
shall not discuss critical dynamics in detail; this problem is treated analytically with
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Figure 28: Sketch of the decay of the two-time correlation at Tc (a) and T < Tc (b)
for different values of the waiting-time, increasing from left to right.

dynamic renormalization group techniques and it is very well discussed in the litera-
ture [5]. In short, the exponent zeq is given by [24]

zeq = 2 +
N + 2

(N + 8)2

[

3 ln
4

3
− 1

2

]

ε2 +O(ε3) (3.20)

where N is the dimension of the possibly vector field, N = 1 for a scalar one, and
ε = 4 − d with d the dimension of space. Note that zeq is larger than 2 for all finite
N and it approaches 2 in the large N limit (at least up to this order in perturbation
theory). In particular, one finds

zeq &







2.0538 d = 2
2.0134 d = 3
2 d = 4

(3.21)

for N = 1. Numerical simulations indicate zeq & 2.13 in d = 2. These results are
valid for white noise dynamics. The effect of colored noise is to change the value of
the exponent zeq when it is sufficiently long-range correlated (sub-Ohmic noise with a
power-law decay with an exponent smaller than a critical value that depends on the
dimension of space).

3.6 Sub-critical coarsening

3.6.1 Dynamic scaling hypothesis

The dynamic scaling hypothesis states that at late times and in the scaling
limit

r ! ξ(g) , R(g, t)! ξ(g) , r/R(g, t) arbitrary , (3.22)
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Figure 29: The equal-time correlation as a function of distance in the 2dIM quenched
below Tc. Raw (left) and scaled (right) data. These numerical simulations were
performed by A. Sicilia.

where r is the distance between two points in the sample, r ≡ |&x − &x′|, and ξ(g) is
the equilibrium correlation length that depends on all parameters (T and possibly
others) collected in g, there exists a single characteristic length, R(g, t), such
that the domain structure is, in statistical sense, independent of time when lengths
are scaled by R(g, t). Time, denoted by t, is typically measured from the instant
when the critical point is crossed. In the following we ease the notation and write
only the time-dependence in R. This hypothesis has been proved analytically in very
simple models only, such as the one dimensional Ising chain with Glauber dynamics
or the Langevin dynamics of the d-dimensional O(N) model in the large N limit (see
Sect. 3.8).

The late stage of phase-ordering in binary systems is characterized by a patchwork
of large domains the interior of which is basically thermalized in one of the two
equilibrium phases while their boundaries are slowly moving. This picture suggests the
splitting of the degrees of freedom (spins) into two categories, providing statistically
independent contributions to observables such as correlation or response functions.
More precisely, a quasi-equilibrium stationary contribution arises as due to bulk spins,
while boundaries account for the non-equilibrium part. Then asymptotically one has

C(r, t) & Cst(r) + Cag(r, t) Additive separation. (3.23)

The first term describes the equilibrium fluctuations in the low temperature broken
symmetry pure states

Cst(r) = (1− 〈si〉2eq) g
(
r

ξ

)

, (3.24)

where 〈si〉eq is the equilibrium expectation value of the local spin in one of the two
symmetry breaking states, 〈si〉eq = m, and g(x) is a function with the limiting values
g(0) = 1, limx→∞ g(x) = 0. The second term takes into account the motion of the
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domain walls through

Cag(r, t) = 〈si〉2eq f

(
r

R(t)

)

, (3.25)

with f(1) = 1 and limx→∞ f(x) = 0. Both Cst and Cag obey (separately) scaling
forms with respect to the equilibrium and the non-equilibrium lengths ξ, R(t). In
particular, eq. (3.25) expresses the fact that system configurations at different times
are statistically similar provided that lengths are measured in units of R(t), namely
the very essence of dynamical scaling.

Monte Carlo simulations of the Ising model and other systems quenched below
criticality and undergoing domain growth demonstrate that in the long waiting-time
limit t′ ! t0, the spin self-correlation 〈si(t)si(t′)〉 separates into two additive terms

C(t, t′) ∼ Cst(t− t′) + Cag(t, t′) Additive separation (3.26)

see Fig. 30, with the first one describing equilibrium thermal fluctuations within the
domains,

Cst(t− t′) =

{

1− 〈si〉2eq = 1−m2 , t− t′ = 0 ,
0 , t− t′ →∞ ,

(3.27)

and the second one describing the motion of the domain walls

Cag(t, t
′) = 〈si〉2eq fc

(
R(t)

R(t′)

)

=

{

〈si〉2eq , t′ → t− ,
0 , t− t′ →∞ .

(3.28)

To ease the notation we have not written the explicit T -dependence in R that, as we
shall see below, is less relevant than t. Note that by adding the two contributions
one recovers C(t, t) = 1 as expected and C(t, t′) → 0 when t ! t′. The first term
is identical to the one of a system in equilibrium in one of the two ordered states,
see eq. (3.12) for its asymptotic t − t′ ! t′ limit; the second one is inherent to the
out of equilibrium situation and existence and motion of domain walls. They vary in
completely different two-time scales. The first one changes when the second one is
fixed to 〈si〉2eq , at times such that R(t)/R(t′) & 1. The second one varies when the
first one decayed to zero. The mere existence of the second term is the essence of
the aging phenomenon with older systems (longer t′) having a slower relaxation than
younger ones (shorter t′). The scaling of the second term as the ratio between ‘two
lengths’ is a first manifestation of dynamic scaling.

A decorrelation time can also be defined in this case by expandind the argu-
ment of the scaling function around t′ & t. Indeed, calling ∆t ≡ t − t′ one has
R(t)/R(t′) & R(t′ +∆t)/R(t′) & [R(t′) + R′(t′)∆t]/R(t′) & 1 +∆t/[d lnR(t′)/dt′]−1

and one identifies a t′-dependent decorrelation time

td & [d lnR(t′)/dt′]−1 decorrelation time (3.29)
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Figure 30: The two-time self-correlation in the 2dIM with non-conserved order pa-
rameter dynamics at several waiting-times given in the key at temperature T = 0.5
(left) and T = 2 (right). Data obtained with Monte Carlo simulations. Note that the
plateau is located at a lower level in the figure on the right consistently with the fact
that 〈φ〉eq decreases with increasing temperature. Data from A. Sicilia et al.

which is, in general, a growing function of t′.
In order to fully characterise the correlation functions one then has to determine

the typical growing length, R, and the scaling functions, g, f , fc, etc. It turns out that
the former can be determined with semi-analytic arguments and the predictions are
well verified numerically – at least for clean system. The latter, instead, are harder
to obtain. We shall give a very brief state of the art report in Sect. 3.6.9. For a much
more detailed discussion of these methods see the review articles in [4].

The time-dependent typical domain length, R(t), is determined numerically by
using several indirect criteria or analytically within certain approximations. The
most common ways of measuring R are with numerical simulations of lattice models
or the numerical integration of the continuous partial differential equation for the
evolution of the order parameter. In both cases one

– Computes the ‘inverse perimeter density’ R(t) = −〈H〉eq/[〈H(t)〉 − 〈H〉eq] with
〈H(t)〉 the time-dependent averaged energy and 〈H〉eq the equilibrium energy both
measured at the working temperature T .

– Puts the dynamic scaling hypothesis to the test and extracts R from the analysis.

3.6.2 R(t) in clean one dimensional cases with non-conserved order pa-
rameter

In one dimension, a space-time graph allows one to view coarsening as the diffu-
sion and annhilitation upon collision of point-like particles that represent the domain
walls. In the Glauber Ising chain with non-conserved dynamics one finds that the
typical domain length grows as t1/2 while in the continuous case the growth is only
logarithmic, ln t.
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Figure 31: Left: domain wall profile. Right: view from the top. (g is n.)

3.6.3 R(t) in non-conserved order parameter curvature driven dynamics
(d > 2)

The time-dependent Ginzburg-Landau model allows us to gain some insight on the
mechanism driving the domain growth and the direct computation of the averaged
domain length. In clean systems temperature does not play a very important role in
the domain-growth process, it just adds some thermal fluctuations within the domains,
as long as it is smaller than Tc. In dirty cases instead temperature triggers thermal
activation.

We focus first on the clean cases at T = 0 and only later we discuss thermal effects.
Equation (3.5) for T = 0 is just a gradient descent in the energy landscape F . Two
terms contribute to F : the bulk-energy term that is minimized by φ = ±φ0 and the
elastic energy (∇φ)2 which is minimized by flat walls if present. As a consequence
the minimization process implies that regions of constant field, φ(&x, t) = ±φ0, grow
and they separated by flatter and flatter walls.

Take a flat domain wall separating regions where the configuration is the one
of the two equilibrium states, φ(&x, t) = ±φ0 + δφ(&x, t). Linearizing eq. (3.5) around
±φ0 and looking for static configurations, i.e. δφ(&x, t) = δφ(&x) = δφ(n) where n
is the distance from the wall along the normal direction one finds d2δφ(n)/dn2 =

−V ′′(φ0)δφ(n). This equation has the solution δφ(n) ∼ e−
√

V ′′(φ0)n where n is the
perpendicular distance to the wall. The order parameter approaches ±φ0 on both
sides of the wall very rapidly. This means that the free-energy of a configuration with
an interface (sum of the elastic and potential terms) is concentrated in a very narrow
region close to it. In consequence, the domain-wall curvature is the driving force for
domain growth.

Allen and Cahn showed that the local wall velocity is proportional to the local
curvature working with the Ginzburg-Landau equation at T = 0. The proof goes as
follows. Take the Ginzburg-Landau equation and trasform the derivatives to apply in
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the direction normal to the wall:

∂φ(&x, t)

∂t
= − ∂φ(&x, t)

∂n

∣
∣
∣
∣
t

∂n

∂t

∣
∣
∣
∣
φ

, &∇φ(&x, t) = ∂φ(&x, t)

∂n

∣
∣
∣
∣
t

n̂ ,

∇2φ(&x, t) =
∂2φ(&x, t)

∂n2

∣
∣
∣
∣
t

+
∂φ(&x, t)

∂n

∣
∣
∣
∣
t

&∇ · n̂

where the subscripts mean that the derivatives are taken at t or φ fixed. Using now
∂2φ(#x,t)

∂n2 |t = V ′(φ) (note that the derivative is taken at fixed t) in the GL equation
one finds the Allen-Cahn result

v ≡ ∂tn|φ = −&∇ · n̂ ≡ −κ (3.30)

valid in all d with κ the geodesic curvature.
Equation (3.30) allows one to get an intuition about the typical growth law in such

processes. Take a spherical wall in any dimension. The local curvature is constant
and κ = (d−1)/R where R is the radius of the sphere within the hull. Equation (3.30)
is recast as dR/dt = −(d− 1)/R that implies R2(t) = R2(0)− 2(d− 1)t.

A closer look at the 2d equation allows one to go beyond and prove, in this case,
that all areas enclosed by domain walls irrespective of their being other structures
within (the so-called hull-enclosed areas) tend to diminish at constant rate dA/dt =
−λ. This, of course, does not mean that all domains reduce their area since a domain
can gain area from the disappearance of an internal domain of the opposite sign,
for instance. The proof is simple and just uses the Gauss-Bonnet theorem: dA

dt =
∮

&v ∧ d&6 =
∮

vd6. The local wall-velocity, &v, is proportional to the local geodesic
curvature, κ, and the Gauss-Bonnet theorem implies

∮

κd6 = 2π for a planar 2d
manifold with no holes. Therefore, the hull-enclosed area decreases with constant
velocity for any geometry.

Therefore the local velocity points in the direction of the local centre of curvature.
The effect is to reduce the wall roughness by rendering them smoother.

There are a number of ways to find the growth law

R(t) = λ t1/zd (3.31)

with zd the dynamic exponent, in pure and isotropic systems (see [4]). The
effects of temperature enter only in the parameter λ and, for clean systems, growth is
slowed down by an increasing temperature since thermal fluctuation tend to roughen
the interfaces thus opposing the curvature driven mechanism. We estimate the T
dependence of λ in Sect. 3.6.5.

In curvature driven Ising or Potts cases with non-conserved order parameter the
domains are sharp and zd = 2 with λ a weakly T -dependent coefficient. For systems
with continuous variables such as rotors or XY models and the same type of dynamics,
a number of computer simulations have shown that domain walls are thicker and
zd = 4.
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3.6.4 R(t) in conserved order parameter dynamics and the role of bulk
diffusion

A different type of dynamics occurs in the case of phase separation (the water
and oil mixture ignoring hydrodynamic interactions or a binary allow). In this case,
the material is locally conserved, i.e. water does not transform into oil but they just
separate. The main mechanism for the evolution is diffusion of material through the
bulk of the opposite phase. After some discussion, it was established, as late as in
the early 90s, that for scalar systems with conserved order parameter zd = 3.

3.6.5 Crossover between critical and sub-critical coarsening

Matching critical coarsening with sub-critical one allows one to find the T -dependent
prefactor λ [28]. The argument goes as follows. The out of equilibrium growth at
criticality and in the ordered phase are given by

R(t) ∼
{

t1/zeq at T = Tc ,
(λ(T )t)1/zd at T < Tc .

(3.32)

zeq is the equilibrium dynamic critical exponent and zd the out of equilibrium growth
exponent. Close but below criticality one should have an interpolating expression of
the kind

R(t) ∼ ξ−a t1/zd f

(
t

ξzeq

)

at T = Tc − ε (3.33)

with ξ the T -dependent equilibrium correlation length, ξ(T ) ∼ (Tc − T )−ν . The
last factor tends to one, f(x → ∞) → 1, when R(t) ! ξ, that is to say when
the argument diverges and the system enters the sub-critical coarsening regime. It is
however non-trivial when R(t) ∼ ξ, the argument is finite and critical coarsening must
be described. In particular, we determine its behavior for x = O(1) by requiring that
eq. (3.33) matches the subcritical growing length which is achieved by (i) recovering
the correct t dependence, (ii) cancelling the ξ factor. (i) implies

f(x) ∼ x−1/zd+1/zeq for x = O(1) . (3.34)

Then eq. (3.33) becomes
R(t) ∼ ξ−a+zeq/zd−1 t1/zeq (3.35)

and to eliminate ξ we need
a = zeq/zd − 1 . (3.36)

Comparing now the subcritical growing length and (3.33) in the very long times limit
such that R(t)! ξ and f(x→∞) → 1:

[λ(T )]1/zd ∼ ξ−a ∼ (Tc − T )ν(zeq−zd)/zd . (3.37)

Note that quite generally one finds zeq > zd and λ(T ) vanishes at Tc.
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3.6.6 The 2d xy model

The xy model in d = 2 is quite special since it is critical at all temperatures below
Tkt. It is then worth analyzing this special case in detail. Moreover, it has topological
defects and the rate of approach to the equilibrium state is affected by them.

The model is fully solvable in the spin-wave approximation in which the field is
supposed to vary smoothly in space and, hence, vortices are neglected. The functional
Langevin equation acting on the angle between the local spins and a chosen axis is
linear in Fourier space and it can be readily solved. The angle correlation functions
in equilibrium are

〈(θ(r) − θ(0))2〉 = kBT

πJ
ln r/a (3.38)

leading to

C(r) = 〈s(r)s(0)〉 =
(a

r

)kBT/πJ
=
(a

r

)η(T )
(3.39)

The equilibrium correlation length is ξ(T ) = a/ ln(kBT/πJ) that tends to zero only
at T →∞ and diverges at T → 0.

Spin-waves are non-local and extensive while vortices are local and intensive. The
latter cannot be eliminated by simple perturbations but they annihilate.

The global correlation and linear response, C(t, t′) = V −1
∫

d2x 〈 s(&x, t) · s(&x, t′) 〉
and R(t, t′) = V −1

∫

d2x δ〈 s(#x,t) 〉
δh(#x,t′)

∣
∣
∣
h=0

take the following scaling forms in the limit

t− t′ ! Λ−2:

C(t, t′) ∼ 1

(t− t′)η(T )/2
Φ

(
Rc(t)

Rc(t′)

)

(3.40)

R(t, t′) ∼ 1

4πρ(T )(t− t′)1+η(T )/2
Φ

(
Rc(t)

Rc(t′)

)

(3.41)

with Φ a scaling function and Rc(t) the growing correlation length (that should not be
confused with the linear response). The first remarkable property of these functions is
that they are both decomposed in the product of a function of the time-difference t−t′

and a function of the ratio λ ≡ Rc(t′)/Rc(t), like in the general critical coarsening
case. When t− t′ . Rc(t′) and λ ∼ 1, the decay is stationary

C(t, t′) ∼ (t− t′)−η(T )/2 , R(t, t′) ∼ (t− t′)−1−η(T )/2

and the fdr equals one. This limit defines a quasi-equilibrium regime. When the time
difference increases and λ becomes smaller than one the relaxation enters an aging
regime in which the decay of the correlation and response depends on the waiting-time
t′. The behavior in the aging regime depends on the initial conditions as discussed
below.

Uniform initial conditions.
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The uniform initial condition contains no free vortices and none are generated by
thermal fluctuations at any T < Tkt. The evolution is well captured by the simple
spin-wave approximation and after a simple calculation one finds

Φ

(
ξ(t)

ξ(t′)

)

=

[
(1 + λ)

4λ

]η(T )/4

, Rc(t) = t1/2 . (3.42)

Beyond the crossover time t−t′ ∼ t′, when C(2t′, t′) ∼ t′−η(T )/2 and λ becomes smaller
than one, the correlation and response decay to zero as power laws of the waiting-
time t′. There is no clear-cut separation of time-scales characterised by the correlation
reaching a constant value independently of the waiting-times but only a t′ dependent
pseudo-plateau where the behavior of the two-time correlation changes. This is to
be confronted to the behavior of ferromagnetic coarsening systems quenched to the
low-temperature phase for which the crossover occurs at C(2t′, t′) = m2

eq. Above
this plateau, the relaxation corresponds to the equilibrium fluctuations of short wave-
length while below the plateau the decorrelation is due to the domain-wall motion
that manifests into a scaling in terms of λ = t′/t only. In the 2d xy case the order
parameter vanishes and there is no plateau at any finite value of C.

In the aging regime the fluctuation – dissipation ratio is larger than one. This a
priori surprising result can be understood when interpreted in terms of the effective
– temperature. The completely order configuration is the equilibrium state at zero
temperature. The evolution of this initial state at finite temperature can be thought
of as representing a sudden inverse quench of the system from T = 0 to T > 0. If the
fdr is related to a remembrance of the temperature of the initial condition, in this
case this is lower than the working temperature T and thus, the effective temperature
also turns out to be lower than T .

Random initial conditions.

When random initial conditions with only short-ranged spatial correlations are
considered, free vortices and antivortices are present initially. The relaxation occurs
vis the annihilation of vortex-antivortex pairs and this coarsening process is much
slower than the relaxation of spin-waves. The simple Gaussian theory is no more
suited to describe this dynamics and a full analytic treatment is too hard to imple-
ment. With scaling and numeric analysis the dynamic correlation length has been
estimated to be [4]

Rc(t) ∼ (t/ ln t)1/2 .

The numerical simulations of Berthier, Holdsworth and Sellitto have proven that the
two-time correlation and response are correctly described by the scaling form (3.40)
and (3.41) with this length scale and the full decay looks like the one shown in the
sketch above. The fdr is rather different from the one following the evolution of
a uniform initial condition. The non-equilibrium susceptibility is now smaller than
the equilibrium value, and in terms of the effective temperature this means that the
fluctuations of the wave-lengths longer than Rc(t) occur at a Teff > T and hence keep
a memory of the initial temperature T =∞.
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3.6.7 Role of weak disorder: thermal activation

The situation becomes much less clear when there is weak quenched disorder in the
form of non-magnetic impurities in a magnetic sample, lattice dislocations, residual
stress, etc. These are assumed not to modify the nature of the equilibrium states with
respect to the ones of the clean system. Qualitatively, the dynamics are expected to be
slower than in the pure cases since disorder pins the interfaces. In general, based on an
argument due to Larkin (and in different form to Imry-Ma) one expects that in d < 4
the late epochs and large scale evolution is no longer curvature driven but controlled
by disorder. Indeed, within a phase space view disorder generates metastable states
that trap the system and thus slow down the relaxation.

A hand-waving argument to estimate the growth law in dirty systems is the fol-
lowing. Take a system in one equilibrium state with a domain of linear size R of the
opposite equilibrium state within it. This configuration could be the one of an ex-
cited state with respect to the fully ordered one with absolute minimum free-energy.
Call ∆F (R) the free-energy barrier between the excited and equilibrium states. The
thermal activation argument (see Sect. 2.3) yields the activation time scale for the
decay of the excited state (i.e. erasing the domain wall)

tA ∼ τ e∆F (R)/(kBT ) . (3.43)

For a barrier growing as a power of R, ∆F (R) ∼ Υ(T, J)Rψ (where J represents the
disorder) one inverts (3.43) to find the linear size of the domains still existing at time
t, that is to say, the growth law

R(t) ∼
(

kBT
Υ(T ) ln t

τ

)1/ψ
. (3.44)

All smaller fluctuation would have disappeared at t while typically one would find
objects of this size. The exponent ψ is expected to depend on the dimensionality of
space but not on temperature. In ‘normal’ systems it is expected to be just d − 1 –
the surface of the domain – but in spin-glass problems, it might be smaller than d− 1
due to the presumed fractal nature of the walls. The prefactor Υ is expected to be
weakly temperature dependent.

One assumes that the same argument applies out of equilibrium to the recon-
formations of a portion of any domain wall or interface where R is the observation
scale.

However, already for the (relatively easy) random ferromagnet there is no con-
sensus about the actual growth law. In these problems there is a competition be-
tween the ‘pure’ part of the Hamiltonian, that tries to minimize the total (d − 1)
dimensional area of the domain wall, and the ‘impurity’ part that makes the wall
deviate from flatness and pass through the locations of lowest local energy (think of
Jij = J + δJij with J and δJij contributing to the pure and impurity parts of the
Hamiltonian, respectively). The activation argument in eq. (3.43) together with the
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power-law growth of barriers in ∆F (R) ∼ Υ(T, J)Rψ imply a logarithmic growth
of R(t). Simulations, instead, suggest a power law with a temperature dependent
exponent. Whether the latter is a pre-asymptotic result and the trully asymptotic
one is hidden by the premature pinning of domain walls or it is a genuine behavior
invalidating ∆F (R) ∼ Υ(T, J)Rψ or even eq. (3.43) is still an open problem. See
the discussion below for a plausible explanation of the numerical data that does not
invalidate the theoretical expectations.

In the 3d RFIM the curvature-driven growth mechanism that leads to (3.31) is
impeded by the random field roughening of the domain walls. The dependence on the
parameters T and h has been estimated. In the early stages of growth, one expects the
zero-field result to hold with a reduction in the amplitude R(t) ∼ (A−Bh2) t1/2. The
time-window over which this law is observed numerically decreases with increasing
field strength. In the late time regime, where pinning is effective Villain deduced a
logarithmic growth R(t) ∼ (T/h2) ln t/t0 by estimating the maximum barrier height
encountered by the domain wall and using the Arrhenius law to derive the associated
time-scale.

In the case of spin-glasses, if the mean-field picture with a large number of equi-
librium states is realized in finite dimensional models, the dynamics would be one in
which all these states grow in competition. If, instead, the phenomenological droplet
model applies, there would be two types of domains growing and R(t) ∼ (ln t)1/ψ

with the exponent ψ satisfying 0 ≤ ψ ≤ d− 1. Some refined arguments that we shall
not discuss here indicate that the dimension of the bulk of these domains should be
compact but their surface should be rough with fractal dimension Ds > d− 1.

3.6.8 Temperature-dependent effective exponents

The fact that numerical simulations of dirty systems tend to indicate that the
growing length is a power law with a T -dependent exponent can be explained as due
to the effect of a T -dependent cross-over length LT . Indeed, if below LT ∼ T φ the
growth process is as in the clean limit while above LT quenched disorder is felt and
the dynamics is thermally activated:

R(t) ∼
{

t1/zd for R(t) . LT ,
(ln t)1/ψ for R(t)! LT .

(3.45)

These growth-laws can be first inverted to get the time needed to grow a given length
and then combined into a single expression that interpolates between the two regimes:

t(R) ∼ e(R/LT )ψRzd (3.46)

where the relevant T -dependent length-scale LT has been introduced.

Now, by simply setting t(R) ∼ Rz(T ) one finds z(T ) ∼ zd +
1

lnR(t)

(

Rψ(t)

LψT

)

that

replacing R ∼ t1/z(T ) becomes z(T ) ∼ zd +
z(T )
ln t

(

tψ/z(T )

LψT

)

. Using now z(T ) & zd in
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the correction term and focusing on times such that tψ/zd/ ln t is almost constant and

equal to c one finds z(T )−zd & c zd/L
ψ
T . Similarly, by equating t(R) ∼ exp(Rψ(T )/T )

one finds that ψ(T ) is a decreasing function of T approaching ψ at high T .

3.6.9 Scaling functions for subcritical coarsening

Even though the qualitative behavior of the solution to eq. (3.5) is easy to grasp, it
is still too difficult to solve analytically and not much is known exactly on the scaling
functions. A number of approximations have been developed but none of them is fully
satisfactorily (see [4] for a critical review of this problem).

The super-universality hypothesis states that in cases in which temperature
and quenched disorder are ‘irrelevant’ in the sense that they do not modify the nature
of the low-temperature phase (i.e. it remains ferromagnetic in the case of ferromag-
netic Ising models) the scaling functions are not modified. Only the growing length
changes from the, say, curvature driven t1/2 law to a logarithmic one. This hypothe-
sis has been verified in a number of two and three dimensional models including the
RBIM and the RFIM.

3.6.10 Breakdown of dynamic scaling

Some special cases in which dynamic scaling does not apply have also been ex-
hibited. Their common feature is the existence of two (or more) growing lengths
associated to different ordering mechanisms. An example is given by the Heisenberg
model at T → 0 in which the two mechanisms are related to the vectorial ordering
within domains separated by couples of parallel spins that annhilate in a way that is
similar to domain-wall annihilation in the Ising chain.

3.7 Annealing: crossover from critical to subcritical coarsen-
ing

There has been recent interest in understanding how a finite rate cooling affects
the defect density found right after the quench. A scaling form involving equilibrium
critical exponents was proposed by Zurek following work by Kibble. The interest is
triggered by the similarity with the problem of quantum quenches in atomic gases, for
instance. An interplay between critical coarsening (the dynamics that occurs close in
the critical region) that is usually ignored (!) and sub-critical coarsening (once the
critical region is left) is the mechanism determining the density of defects right after
the end of the cooling procedure.

The growing length satisfies a scaling law

R(t, ε(t)) ∼ ε−ν(t) f [tεzeqν(t)] ε(t) = |T (t)− Tc|

f(x) →
{

ct x. −1 Equilibrium at high T√
x x! 1 Coarsening at low T
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with t measured from the instant when the critical point is crossed and x ∈ (−1, 1)
is the critical region. A careful analysis of this problem can be found in Biroli, LFC,
Sicilia (2010).

3.8 An instructive case: the large N approximation

A very useful approximation is to upgrade the scalar field to a vectorial one with
N components

φ(&x, t) → &φ(&x, t) = (φ1(&x, t), . . . ,φN (&x, t)) , (3.47)

and modify the free-energy

F =

∫

ddx

[
1

2
(∇&φ)2 + N

4
(φ20 −N−1φ2)2

]

, (3.48)

with φ2 =
∑N

α=1 φ
2
α and φ0 finite. The T = 0 dynamic equation then becomes

∂tφα(&x, t) = ∇2φα(&x, t)− 4φα(&x, t) [φ
2
0 −N−1φ2(&x, t)] (3.49)

and it is clearly isotropic in the N dimensional space implying

Cαβ(&x, t; &x
′, t′) = δαβC(&x, t; &x′, t′) (3.50)

In the limit N →∞ while keeping the dimension of real space fixed to d, the cubic
term in the right-hand-side can be replaced by

−φα(&x, t)N−1φ2(&x, t) → −φα(&x, t)N−1[φ2(&x, t) ]ic ≡ −φα(&x, t) a(t) (3.51)

since N−1φ2(&x, t) does not fluctuate, it is equal to its average over the initial condi-
tions and it is therefore not expected to depend on the spatial position if the initial
conditions are chosen from a distribution that is statistically translational invariant.
For the scalar field theory the replacement (3.51) is just the Hartree approxima-
tion. The dynamic equation is now linear in the field φα(&x, t) that we rename φ(&x, t)
(and it is now order 1):

∂tφ(&x, t) = [∇2 + a(t)]φ(&x, t) , (3.52)

where the time-dependent harmonic constant a(t) = φ20− [φ2(&x, t)]ic = φ20− [φ2(&0, t)]ic
has to be determined self-consistently. Equation (3.52) can be Fourier transformed

∂tφ(&k, t) = [−k2 + a(t)]φ(&k, t) , (3.53)

and it takes now the form of almost independent oscillators under different time-
dependent harmonic potentials coupled only through the self-consistent condition on
a(t). The stability properties of the oscillators depend on the sign of the prefactor in
the rhs. The solution is

φ(&k, t) = φ(&k, 0) e−k2t+
∫ t

0
dt′ a(t′) (3.54)
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and the equation on a(t) reads:

a(t) = φ20 −∆ e
2
∫ t

0
dt′a(t′)

(
2π

4t

)d/2

, (3.55)

where one used [φ2(&x, t)]ic = [φ2(&0, t)]ic and a delta-correlated Gaussian distribution
of initial conditions with strength ∆. The self-consistency equation is not singular
at t = 0 since there is an underlying cut-off in the integration over k corresponding
to the inverse of the lattice spacing, this implies that times should be translated as
t→ t+ 1/Λ2 with Λ = 1/a the lattice spacing.

Without giving all the details of the calculation, eq. (3.55), generalized to the
finite T case, can be solved at all temperatures [33]. One finds that there exists a
finite Tc(d) and

Upper-critical quench

a(t)→ −ξ−2 (3.56)

with ξ the equilibrium correlation length, and the ‘mass’ (in field theoretical terms)
or the harmonic constant saturates to a finite value: −k2 + a(t) → −k2 − ξ−2.

Critical quench

a(t)→ −w/(2t) with w = 0 for d > 4 and w = (d− 4)/2 for d < 4 . (3.57)

The dynamics is trivial for d > 4 but there is critical coarsening in d < 4. zeq equals
2 in agreement with the result from the ε expansion once evaluated at N →∞.

Sub-critical coarsening

In the long times limit in which the system tends to decrease its elastic and
potential energies [φ2(&x, t) ]ic must converge to φ20 0= 0 below criticality and this

imposes 2
∫ t
0 dt

′ a(t′) & d
2 ln(t/t0) with t0 = π/2 (∆/φ20)

2/d at large times, i.e.

a(t) & d

4t
for t! t0 (3.58)

and the time-dependent contribution to the spring constant vanishes asymptotically.
Knowing the long-time behavior of a(t) implies that each mode [φ(&k, t)]ic with &k 0= 0
vanishes asymptotically but the &k = 0 mode grows as td/4. The growth of the &k = 0
reflects the domain growth process whereby all modulations tend to disappear and
the configuration gets more and more uniform as time passes.

We focus now on two interesting cases: quenches to Tc and T < Tc. The asymp-
totic behavior of the space-time correlation function in the aging regime is

[φ(&x, t)φ(&x′, t′) ]ic = φ
2
0

[
4tt′

(t+ t′)2

]d/4

exp

[

− (&x− &x′)2

4(t+ t′)

]

, (3.59)
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for t ≥ t′ for a quench to T < Tc and

[φ(&x, t)φ(&x′, t′) ]ic = φ
2
0 t

′1−d/2f(t/t′) exp

[

− (&x− &x′)2

4(t+ t′)

]

, (3.60)

for a quench to Tc. We focus on d < 4. These expressions capture the main features
of the domain growth process:

• In Fourier space all k 0= 0 modes have an exponential decay while the k = 0 one
is fully massless asympotically and diffuses.

• In sub-critical quenches, for any finite and fixed (&x−&x′), in the long times limit
the exponential factor approaches one and one obtaines a function of t′/t only.

• In critical quenches the two-time dependent prefactor is of the form expected
from dynamic scaling.

• Due to the exponential factor, for fixed but very large time t and t′ the correla-
tion falls off to zero over a distance |&x− &x′| ∝

√
t+ t′. This means that, at time

t, the typical size of the regions in the states ±φ0 is R(t) ∝ t1/2. This holds
for critical and sub-critical quenches as well and it is a peculiar property of the
large N O(N) model that has zeq = zd.

• For fixed |&x − &x′|, the correlation always falls to zero over a time separation
t− t′ which is larger than t′. This means that the time it takes to the system to
decorrelate from its configuration at time t′ is of the order of t′ itself, td & t′. The
age of the system is the characteristic time-scale for the dynamical evolution:
the older is the system, the slower is its dynamics. After a time of the order of
the age of the system any point &x will be swept by different domain walls and
the correlation will be lost.

• In a critical quench the correlation always decays to zero due to the prefactor
that goes as t(2−d)/2 and vanishes in all d > 2. The aging curves have an
envelope that approaches zero as a power law.

• In a sub-critical quench, for any finite and fixed (&x − &x′), in the long t′ and t
limit such that t′/t → 1 the time dependence disappears and the correlation
between two points converges to φ20. This means that, typically, if one looks at
a finite spatial region on a finite time-scale this region will be in one of the two
states ±φ0, i.e. within a domain.

Note that we have obtained the field and then computed correlations from the
time-dependent configuration. We have not needed to compute the linear response.
We shall see later that in other more complex glassy systems one cannot follow this
simple route and one needs to know how the linear response behave. We refer to the
reviews in [41] for detailed accounts on the behavior of the linear response in critical
dynamics.

3.9 Nucleation and growth
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In a first-order phase transition the equilibrium state of the system changes
abruptly. Right at the transition the free-energies of the two states involved are
identical and the transition is driven by lowering the free-energy as the new phase
forms, see Fig. 22. The original phase remains meta-stable close to the transition. The
nucleation of a sufficiently large bubble of the trully stable phase into the metastable
one needs to be thermally activated to trigger the growth process [3]. The rate of
the process can be very low or very fast depending on the height of the free-energy
barrier between the two states and the ambient temperature.

Two types of nucleation are usually distinguished: homogeneous (occurying at
the bulk of the meta-stable phase) and heterogeneous (driven by impurities or at the
surface). The more intuitive examples of the former, on which we focus here, are the
condensation of liquid droplets from vapour and the crystallization of a solid from the
melt.

The classical theory of nucleation applies to cases in which the identification
of the nucleous is easy. It is based on a number of assumptions that we now list. First,
one associates a number of particles to the nucleous (although in some interesting cases
this is not possible and a different approach is needed). Second, one assumes that there
is no memory for the evolution of the number densities of clusters of a given size in
time (concretely, a Markov master equation is used). Third, one assumes that clusters
grow or shrink by attachment or loss of a single particle, that is to say, coallescence
and fission of clusters are neglected. Thus, the length-scale over which the slow part
of the dynamics takes place is the one of the critical droplet size, the first one to
nucleate. Fourth, the transition rates satisfy detail balance and are independent of
the droplet form. They just depend on the free-energy of the droplet with two terms: a
contribution proportional to the droplet volume and the chemical potential difference
between the stable and the metastable states, ∆f , and a contribution proportional
to the bubble surface that is equal to the surface area times the surface tension, σ,
that is assumed to be the one of coexisting states in equilibrium - that is to say the
energy of a flat domain wall induced by twisted boundary conditions. Fift, the bubble
is taken to be spherical and thus dependent of a single parameter, the radius. Thus

∆F [R] = σ Ωd−1 Rd−1 − |∆f | Ωd Rd (3.61)

for d > 1. Ωd is the volume of the unit sphere in d dimensions. For small radii
the surface term dominates and it is preferable to make the droplet disappear. In
contrast, for large radii the bulk term dominates and the growth of the bubble is
favoured by a decreasing free-energy. Thus the free-energy difference has a maximum
at

R∗ =
(d− 1) Ωd−1 σ

d Ωd |∆f | ∝ σ|∆f |−1 (3.62)

and the system has to thermally surmount the barrier ∆F ∗ ≡ ∆F [R∗]. The Kramers
escape theory, see Sect. 2.3, implies that the nucleation rate or the average number
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of nucleations per unit of volume and time is suppressed by the Arrhenius factor

rA = t−1
A ∼ e−β∆F∗

with ∆F ∗ =
(d− 1)d−1

dd
Ωd

d−1

Ωd−1
d

σd

|∆f |d−1
(3.63)

As expected, ∆F ∗ increases with increasing σ and/or |∆f |−1 and r−1 vanishes for
T → 0 when thermal agitation is switched off. The implicit assumption is that the
time to create randomly the critical droplet is much longer than the time involved in
the subsequent growth. The relaxation of the entire system is thus expected to be
given by the inverse probability of escape from the metastable well. The determination
of the prefactor [that is ignored in eq. (3.63)] is a hard task.

3.10 Summary

In the table below we summarize the results describe above.
In short, critical and sub-critical coarsening occurs in models with conventional

second order phase transitions (or for systems with first order phase transitions when
one quenches well below the region of metastability). Close to the critical point
the dynamics is characterized by critical slowing down with the relaxation time
diverging as a power law of the distance to criticality. Growth of order is characterized
by a growing length that depends on time as a power law at criticality and with
a different power below the transition (in the absence of disorder). The dynamic
mechanisms are well understood but quantitative results are hard to obtain since the
equation to solve are highly non-linear and there is no small parameter to expand
around.

In structural glasses the slowing down is not of power law type so such a simple
coarsening description seems to be excluded for these systems.

For spin-glasses this modeling has been pushed by Bray, Moore, Fisher and Huse.
It is not clear whether it is correct as no clearcut experimental evidence for the
coarsening type of scaling has been presented yet.
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gc g < gc

Order param. 0 0= 0

Growing length Rc(t) &

t1/zeq clean
t
1
2

ln
1
2 t

t0

2d xy

? disordered

R(t) &
t1/2 sc. NCOP
t1/3 sc. COP
(

ln t
t0

) 1
ψ

dis.

V & RDV
F (t) DV

F < D DV
F = D

S & RDS
F (t) DS

F < D − 1 DS
F = D − 1

C(r, t) r2−d−η f

(
r

Rc(t)

)

Cst(r) + Cag

(
r

Rc(t)

)

C(t, t′) R2−d−η
c (t− t′) g

(
Rc(t′)

Rc(t)

)

Cst(t− t′) + Cag

(
Rc(t′)

Rc(t)

)

Table 1: This table summarizes the behavior of growing structures and correlation
functions in critical and sub-critical quenches. Interesting information is also con-
tained in the behavior of the linear response function but we shall discuss it later.
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4 Disordered systems: statics

No material is perfectly homogeneous: impurities of different kinds are distributed
randomly throughout the samples.

A natural effect of disorder should be to lower the critical temperature. Much
attention has been payed to the effect of weak disorder on phase transitions, that
is to say, situations in which the nature of the ordered and disordered phases is not
modified by the impurities but the critical phenomenon is. On the one hand, the
critical exponents of second order phase transitions might be modified by disorder,
on the other hand, disorder may smooth out the discontinuities of first order phase
transitions rendering them of second order. Strong disorder instead changes the
nature of the low-temperature phase and before discussing the critical phenomenon
one needs to understand how to characterize the new ordered ‘glassy’ phase.

In this Section we shall discuss several types of quenched disorder and models
that account for it. We shall also overview some of the theoretical methods used
to deal with the static properties of models with quenched disorder, namely, scaling
arguments and the droplet theory, mean-field equations, and the replica method.

4.1 Quenched and annealed disorder

First, one has to distinguish between quenched and annealed disorder. Imagine
that one mixes some random impurities in a melt and then very slowly cools it down
in such a way that the impurities and the host remain in thermal equilibrium. If
one wants to study the statistical properties of the full system one has to compute
the full partition function, summing over all configurations of original components
and impurities. This is called annealed disorder. In the opposite case in which upon
cooling the host and impurities do not equilibrate but the impurities remain blocked in
random fixed positions, one talks about quenched disorder. Basically, the relaxation
time associated with the diffusion of the impurities in the sample is so long that these
remain trapped:

τo ∼ 10−12 − 10−15sec . tobs ∼ 104sec . tdiff , (4.1)

where τo is the microscopic time associated to the typical scale needed to reverse a
spin.

The former case is easier to treat analytically but is less physically relevant. The
latter is the one that leads to new phenomena and ideas that we shall discuss next.

4.2 Bond disorder: the case of spin-glasses

Spin-glasses are alloys in which magnetic impurities substitute the original atoms
in positions randomly selected during the chemical preparation of the sample. The
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interactions between the impurities are of RKKY type:

Vrkky = −J
cos(2kF rij)

r3ij
sisj (4.2)

with rij = |&ri − &rj | the distance between them and si a spin variable that represents
their magnetic moment. Clearly, the location of the impurities varies from sample to
sample. The time-scale for diffusion of the magnetic impurities is much longer than
the time-scale for spin flips. Thus, for all practical purposes the positions &ri can be
associated to quenched random variables distributed according to a uniform probabil-
ity distribution that in turn implies a probability distribution of the exchanges. This
is quenched disorder.

4.2.1 Lack of homogeneity

It is clear that the presence of quench disorder, in the form of random interac-
tions, fields, dilution, etc. breaks spatial homogeneity and renders single samples
heterogenous. Homogeneity is recovered though, if one performs an average over
all possible realizations of disorder, each weighted with its own probability.

4.2.2 Frustration

Depending on the value of the distance rij the numerator in eq. (4.2) can be posi-
tive or negative implying that both ferromagnetic and antiferromagnetic interactions
exist. This leads to frustration, which means that some two-body interactions can-
not be satisfied by any spin configuration. An example with four sites and four links
is shown in Fig. 32-left, where we took three positive exchanges and one negative one
all, for simplicity, with the same absolute value, J . Four configurations minimize the
energy, Ef = −2J , but none of them satisfies the lower link. One can easily check
that any closed loop such that the product of the interactions takes a negative sign
is frustrated. Frustration naturally leads to a higher energy and a larger degen-
eracy of the number of ground states. This is again easy to grasp by comparing the
number of ground states of the frustrated plaquette in Fig. 32-left to its unfrustrated
counterpart shown on the central panel. Indeed, the energy and degeneracy of the
ground state of the unfrustrated plaquette are Eu = −4J and nu = 2, respectively.

Frustration may also be due to pure geometrical constraints. The canonical exam-
ple is an anti-ferromagnet on a triangular lattice in which each plaquette is frustrated,
see Fig. 32-right. This is generically called geometric frustration.

In short, frustration arises when the geometry of the lattice and/or the nature of
the interactions make impossible to simultaneously minimize the energy of all pair
couplings between the spins. Any loop of connected spins is said to be frustrated
if the product of the signs of connecting bonds is negative. In general, energy and
entropy of the ground states increase due to frustration.
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Figure 32: A frustrated (left) and an unfrustrated (center) square plaquette. A
frustrated triangular plaquette (right).

4.2.3 Gauge invariance

The gauge transformation

s′i = τisi , J ′
ij = τiJijτj , with τi = ±1 (4.3)

leaves the energy and the partition function of an Ising spin model with two-body
interactions invariant:

EJ [{s}] = EJ′ [{s′}] ZJ = ZJ′ . (4.4)

This invariance means that all thermodynamic quantities are independent of the par-
ticular choice of the quenched disordered interactions.

Whenever it exists a set of τis such that frustration can be eliminated from all
loops in the model, the effects of disorder are less strong than in trully frustrated
cases, see the example of the Mattis model in Sect. .

4.2.4 Self-averageness

If each sample is characterized by its own realization of the exchanges, should one
expect a totally different behavior from sample to sample? Fortunately, many generic
static and dynamic properties of spin-glasses (and other systems with quenched dis-
order) do not depend on the specific realization of the random couplings and are
self-averaging. This means that the typical value is equal to the average over the
disorder:

Atyp
J = [AJ ] (4.5)

in the thermodynamic limit. More precisely, in self-averaging quantities sample-to-
sample fluctuations with respect to the mean value are expected to be O(N−a) with
a > 0. Roughly, observables that involve summing over the entire volume of the
system are expected to be self-averaging. In particular, the free-energy density of
models with short-ranged interactions is expected to be self-averaging in this limit.

An example: the disordered Ising chain

The meaning of this property can be grasped from the solution of the random
bond Ising chain defined by the energy function E = −

∑

i Jisisi+1 with spin variables
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si = ±, for i = 1, . . . , N and random bonds Ji independently taken from a probability
distribution P (Ji). For simplicity, we consider periodic boundary conditions. The
disorder-dependent partition function reads

ZJ =
∑

{si=±1}

eβ
∑

i
Jisisi+1 (4.6)

and this can be readily computed introducing the change of variables σi ≡ sisi+1.
One finds.

ZJ =
∏

i

2 cosh(βJi) ⇒ −βFJ =
∑

i

ln cosh(βJi) +N ln 2 . (4.7)

The partition function is a product of i.i.d. random variables and it is itself a random
variable with a log-normal distribution. The free-energy density instead is a sum of
i.i.d. random variables and, using the central limit theorem, in the large N limit
becomes a Gaussian random variable narrowly peaked at its maximum. The typical
value, given by the maximum of the Gaussian distribution, coincides with the average,
limN→∞ f typ

J − [ fJ ] = 0.

General argument

A simple argument justifies the self-averageness of the free-energy density in
generic finite dimensional systems with short-range interactions. Let us divide a,
say, cubic system of volume V = Ld in n subsystems, say also cubes, of volume
v = 6d with V = nv. If the interactions are short-ranged, the total free-energy is the
sum of two terms, a contribution from the bulk of the subsystems and a contribution
from the interfaces between the subsystems: −βFJ = lnZJ = ln

∑

conf e
−βEJ(conf) =

ln
∑

conf e
−βEJ(bulk)−βEJ (surf) ≈ ln

∑

bulk e
−βEJ(bulk)+ln

∑

surf e
−βEJ(surf) = −βF bulk

J −
βF surf

J (we neglected the contributions from the interaction between surface and
bulk). If the interaction extends over a short distance σ and the linear size of the boxes
is 6 ! σ, the surface energy is negligible with respect to the bulk one and −βFJ ≈
ln
∑

bulk e
−βEJ(bulk). In the thermodynamic limit, the disorder dependent free-energy

is then a sum of n = (L/6)d random numbers, each one being the disorder dependent
free-energy of the bulk of each subsystem: −βFJ ≈

∑n
k=1 ln

∑

bulkk
e−βEJ(bulkk). In

the limit of a very large number of subsystems (L ! 6 or n ! 1) the central limit
theorem implies that the total free-energy is Gaussian distributed with the maxi-
mum reached at a value F typ

J that coincides with the average over all realizations of
the randomness [FJ ]. Morever, the dispersion about the typical value vanishes in
the large n limit, σFJ /[FJ ] ∝

√
n/n = n−1/2 → 0 in the large n limit. Similarly,

σfJ /[fJ ] ∼ O(n−1/2) where fJ = FJ/N is the intensive free-energy. In a sufficiently
large system the typical FJ is then very close to the averaged [FJ ] and one can
compute the latter to understand the static properties of typical systems.

Lack of self-averageness in the correlation functions
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Once one has [FJ ], one derives all disordered average thermal averages by taking
derivatives of the disordered averaged free-energy with respect to sources introduced
in the partition function. For example,

[ 〈 si 〉 ] = − ∂[FJ ]

∂hi

∣
∣
∣
∣
hi=0

, (4.8)

[ 〈 sisj 〉 − 〈 si 〉〈 sj 〉 ] = T
∂[FJ ]

∂hihj

∣
∣
∣
∣
hi=0

, (4.9)

with E → E−
∑

i hisi. Connected correlation functions, though, are not self-averaging
quantities. This can be seen, again, studying the random bond Ising chain:

〈 sisj 〉J − 〈 si 〉J 〈 sj 〉J = Z−1
J

∂

∂βJi
. . .

∂

∂βJj
ZJ = tanh(βJi) . . . tanh(βJj) , (4.10)

where we used 〈 si 〉 = 0 (valid for a distribution of random bonds with zero mean)
and the dots indicate all sites on the chain between the ending points i and j. The
last expression is a product of random variables and it is not equal to its average (4.9)
– not even in the large separation limit |&ri − &rj |→∞.

Quenched vs. annealed averages

Take a case in which the partition function equals

Z =

{

e−βN p = 1/N
e−2βN p = (1− 1/N)

(4.11)

The annealed free-energy density, fa is

fa = (−βN)−1 ln[ Z ] = (−βN)−1 ln
(

N−1e−βN + (1 −N−1)e−2βN
)

= lim
N*1

(−βN)−1 lnN−1e−βN = 1

The quenched free-energy density, fq, is

fq = (−βN)−1[ lnZ ] = (−βN)−1
(

N−1(−βN) + (1−N−1)(−2βN)
)

= lim
N*1

(−βN)−1(−2βN) = 2

As the logarithm is a concave function, [ lnZ ] < ln[ Z ] and then fa < fq.

4.3 Models with quenched disorder

4.3.1 Spin-glass models

In the early 70s Edwards and Anderson proposed a rather simple model that
should capture the main features of spin-glasses. The interactions (4.2) decay with a
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cubic power of the distance and hence they are relatively short-ranged. This suggests
to put the spins on a regular cubic lattice model and to trade the randomness in the
positions into random nearest neighbor exchanges taken from a Gaussian probability
distribution:

Eea = −
∑

〈ij〉

Jijsisj with P (Jij) = (2πσ2)−
1
2 e−

J2
ij

2σ2 . (4.12)

The precise form of the probability distribution of the exchanges is suppose not to
be important, though some authors claim that there might be non-universality with
respect to it.

A natural extension of the EA model in which all spins interact has been proposed
by Sherrington and Kirkpatrick

E = −
∑

i$=j

Jijsisj −
∑

i

hisi (4.13)

and it is called the SK model. The interaction strengths Jij are taken from a
Gaussian pdf and they scale with N in such a way that the thermodynamic is non-
trivial:

P (Jij) = (2πσ2N )−
1
2 e

−
J2
ij

2σ2
N σ2N = σ2N . (4.14)

The first two-moments of the exchange distribution are [Jij ] = 0 and [J2
ij ] = J2/(2N).

This is a case for which a mean-field theory is expected to be exact.
A further extension of the EA model is called the p spin model

E = −
∑

i1<...<ip

Ji1...ipsi1 . . . sip −
∑

i

hisi (4.15)

with p ≥ 3. The sum can also be written as
∑

i1<i2<...<ip
= 1/p!

∑

i1 $=i2 $=ip
. The

exchanges are now taken from a Gaussian probability distribution

P (Jij) = (2πσ2N )−
1
2 e

−
J2
ij

2σ2
N σ2N = J2p!/(2Np−1) . (4.16)

with [Ji1...ip ] = 0 and [J2
i1...ip ] =

J2p!
2Np−1 . Indeed, an extensive free-energy is achieved

by scaling Ji1...ip with N−(p−1)/2. This scaling can be justified as follows. The
local field hi = 1/(p− 1)!

∑

ii2 $=ip
Jii2...ipmi2 . . .mip should be of order one. At low

temperatures the mi’s take plus and minus signs. In particular, we estimate the order
of magnitude of this term by working at T = 0 and taking mi = ±1 with probability
1
2 . In order to keep the discussion simple, let us take p = 2. In this case, if the
strengths Jij , are of order one, hi is a sum of N i.i.d. random variables, with zero
mean and unit variance9, and hi has zero mean and variance equal to N . Therefore,

9The calculation goes as follow: 〈Fi 〉 =
∑

j
Jij〈mj 〉 = 0 and 〈F 2

i 〉 =
∑

jk
JijJik〈mjmk 〉 =

∑

j
J2
ij
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one can argue that hi is of order
√
N . To make it finite we then chose Jij to be of

order 1/
√
N or, in other words, we impose [ J2

ij ] = J2/(2N). The generalization to
p ≥ 2 is straightforward.

Cases that find an application in computer science are defined on random graphs
with fixed or fluctuating finite connectivity. In the latter case one places the spins on
the vertices of a graph with links between couples or groups of p spins chosen with a
probability c. These are called dilute spin-glasses.

Exercise 7. Study the statics of the fully connected p-spin ferromagnet in which all
coupling exchanges are equal to J . Distinguish the cases p = 2 from p > 2. What are
the order of the phase transitions?

4.3.2 Random ferromagnets

Let us now discuss some, a priori simpler cases. An example is the Mattis random
magnet in which the interaction strengths are given by

Ji1...ip = ξi1 . . . ξip with ξj = ± with p = 1/2 . (4.17)

In this case a simple gauge transformation, ηi ≡ ξisi, allows one to transform the
disordered model in a ferromagnet, showing that there was no true frustration in the
system.

Random bond ferromagnets (RBFMs) are systems in which the strengths of
the interactions are not all identical but their sign is always positive. One can imagine
such a exchange as the sum of two terms:

Jij = J + δJij , with δJij small and random . (4.18)

There is no frustration in these systems either.
Models with site or link dilution are also interesting:

Esite dil = −J
∑

〈ij〉 sisjεiεj , Elink dil = −J
∑

〈ij〉 sisjεij , . (4.19)

with P (εi = 0, 1) = p, 1− p in the first case and P (εij = 0, 1) = p, 1− p in the second.
Link randomness is not the only type of disorder encountered experimentally.

Random fields, that couple linearly to the magnetic moments, are also quite common;
the classical model is the ferromagnetic random field Ising model (RFIM):

Erfim = −J
∑

〈ij〉

sisj −
∑

i

sihi with P (hi) = (2πσ2)−
1
2 e−

h2
i

2σ2 . (4.20)

The dilute antiferromagnet in a uniform magnetic field is believed to behave sim-
ilarly to the ferromagnetic random field Ising model. Experimental realizations of
the former are common and measurements have been performed in samples like
Rb2Co0.7Mg0.3F4.
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Note that the up-down Ising symmetry is preserved in models in which the im-
purities (the Jij ’s) couple to the local energy (and there is no applied external field)
while it is not in models in which they couple to the local order parameter (as the
RFIM).

The random fields give rise to many metastable states that modify the equilibrium
and non-equilibrium behavior of the RFIM. In one dimension the RFIM does not
order at all, in d = 2 there is strong evidence that the model is disordered even
at zero temperature, in d = 3 it there is a finite temperature transition towards a
ferromagnetic state. Whether there is a glassy phase near zero temperture and close
to the critical point is still and open problem.

The RFIM at zero temperature has been proposed to yield a generic description of
material cracking through a series of avalaches. In this problem one cracking domain
triggers others, of which size, depends on the quenched disorder in the samples. In a
random magnetic system this phenomenon corresponds to the variation of the mag-
netization in discrete steps as the external field is adiabatically increased (the time
scale for an avalanche to take place is much shorter than the time-scale to modify the
field) and it is accessed using Barkhausen noise experiments. Disorder is responsible
for the jerky motion of the domain walls. The distribution of sizes and duration of
the avalanches is found to decay with a power law tail cut-off at a given size. The
value of the cut-off size depends on the strength of the random field and it moves to
infinity at the critical point.

4.3.3 Random manifolds

Once again, disorder is not only present in magnetic systems. An example that has
received much attention is the so-called random manifold. This is a d dimensional
directed elastic manifold moving in an embedding N + d dimensional space under
the effect of a quenched random potential. The simplest case with d = 0 corresponds
to a particle moving in an embedding space with N dimensions. If, for instance
N = 1, the particle moves on a line, if N = 2 it moves on a plane and so on and
so forth. If d = 1 one has a line that can represent a domain wall, a polymer, a
vortex line, etc. The fact that the line is directed means it has a preferred direction,
in particular, it does not have overhangs. If the line moves in a plane, the embedding
space has (N = 1) + (d = 1) dimensions. One usually describes the system with an
N -dimensional coordinate, &φ, that locates in the transverse space each point on the
manifold, represented by the internal d-dimensional coordinate &x,

The elastic energy is Eelas = γ
∫

ddx
√

1 + (∇φ(&x))2 with γ the deformation cost
of a unit surface. Assuming the deformaiton is small one can linearize this expression
and get, upto an additive constant, Eelas = γ

2

∫

ddx (∇φ(&x))2.
Disorder is introduced in the form of a random potential energy at each point

in the N + d dimensional space. The manifold feels, then a potential V (&φ(&x), &x)
characterized by its pdf. If the random potential is the result of a large number of
impurities, the central limit theorem implies that its probability density is Gaussian.
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Just by shifting the energy scale one can set its average to zero, [V ] = 0. As for its
correlations, one typically assumes, for simplicity, that they exist in the transverse
direction only:

[V (&φ(&x), &x)V (&φ′(&x′), &x′) ] = δd(&x − &x′)V(&φ, &φ′) . (4.21)

If one further assumes that there is a statistical isotropy and translational invariance
of the correlations, V(&φ, &φ′) = W/∆2 V(|&φ − &φ′|/∆) with ∆ a correlation length and
(W∆d−2)1/2 the strength of the disorder. The disorder can now be of two types:
short-ranged if V falls to zero at infinity sufficiently rapidly and long-range if it either
grows with distance or has a slow decay to zero. An example involving both cases is
given by the power law V(z) = (θ + z)−γ where θ is a short distance cut-off and γ
controls the range of the correlations with γ > 1 being short-ranged and γ < 1 being
long-ranged.

The random manifold model is then

H =

∫

ddx
[γ

2
(∇φ(&x))2 + V (&φ(&x), &x)

]

. (4.22)

This model also describes directed domain walls in random systems. One can
derive it in the long length-scales limit by taking the continuum limit of the pure Ising
part (that leads to the elastic term) and the random part (that leads to the second
disordered potential). In the pure Ising model the second term is a constant that
can be set to zero while the first one implies that the ground state is a perfectly flat
wall, as expected. In cases with quenched disorder, the long-ranged and short-ranged
random potentials mimic cases in which the interfaces are attracted by pinning centers
(‘random field’ type) or the phases are attracted by disorder (‘random bond’ type),
respectively. For instance, random bond disorder is typically described by a Gaussian
pdf with zero mean and delta-correlated [V (&φ(&x), &x), V (&φ′(&x′), &x′)] = W∆d−2 δd(&x −
&x′)δ(&φ− &φ′).

4.4 The spin-glass transition

Let us now discuss a problem in which disorder is so strong as to modify the nature
of the low temperature phase. If this is so, one needs to define a new order parameter,
capable of identifying order in this phase.

4.4.1 The simplest order parameter

The spin-glass equilibrium phase is one in which spins “freeze” in randomly-looking
configurations. In finite dimensions these configurations are spatially irregular. A
snapshot looks statistical identical to a high temperature paramagnetic configuration
in which spins point in both directions. However, while at high temperatures the spins
flip rapidly and another snapshot taken immediately after would look completely
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different from the previous one, at low temperatures two snapshots taken at close
times are highly correlated.

In a spin-glass state the local magnetization is expected to take a non-zero value,
mi = 〈 si 〉 0= 0, where the average is interpreted in the restricted sense introduced in
the discussion of ferromagnets, that we shall call here within a pure state (the notion
of a pure state will be made more precise below). Instead, the total magnetization

density, m = N−1
∑N

i=1 mi, vanishes since one expects to have as many averaged
local magnetization pointing up (mi > 0) as spins pointing down (mi < 0) with each
possible value of |mi|. Thus, the total magnetization, m, of a spin-glass vanishes at
all temperatures and it is not a good order parameter.

The spin-glass transition is characterized by a finite peak in the linear magnetic
susceptibility and a diverging non-linear magnetic susceptibility. Let us discuss the
former first and show how it yields evidence for the freezing of the local magnetic
moments. For a generic magnetic model such that the magnetic field couples lin-
early to the Ising spin, E → E −

∑

i hisi, the linear susceptibility is related, via
the static fluctuation-dissipation theorem to the correlations of the fluctuations of the
magnetization:

χij ≡
∂〈 si 〉h
∂hj

∣
∣
∣
∣
h=0

= β 〈 (si − 〈 si 〉)(sj − 〈 sj 〉) 〉 . (4.23)

The averages in the rhs are taken without perturbing field. This relation is proven
by using the definition of 〈 si 〉h and simply computing the derivative with respect to
hj . In particular,

χii = β 〈 (si − 〈 si 〉)2 〉 = β
(

1−m2
i

)

≥ 0 , (4.24)

withmi = 〈 si 〉. The total susceptibility measured experimentally is χ ≡ N−1
∑

ij χij .
On the experimental side we do not expect to see O(1) sample-to-sample fluctuations
in this global quantity. On the analytical side one can use a similar argument to
the one presented in Sect. to argue that χ should be self-averaging (it is a sum
over the entire volume of site-dependent terms). Thus, the experimentally observed
susceptibility of sufficiently large samples should be given by

χ = [χ ] = N−1
∑

ij

[χij ] ≈ N−1
∑

i

[χii ] = N−1
∑

i

β
(

1− [m2
i ]
)

, (4.25)

since we can expect that cross-terms will be subleading in the large N limit under the
disorder average (note that χij can take negative values). The fall of χ at low temper-
atures with respect to its value at Tc, i.e. the cusp observed experimentally, signals
the freezing of the local magnetizations, mi, in the non-zero values that are more
favourable thermodynamically. Note that this argument is based on the assumption
that the measurement is done in equilibrium.

Thus, the natural and simpler global order parameter that characterizes the
spin-glass transition is

q ≡ N−1
∑

i

[m2
i ] (4.26)
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as proposed in the seminal 1975 Edwards-Anderson paper. q vanishes in the high
temperature phase since all mi are zero but it does not in the low temperature phase
since the square power takes care of the different signs. Averaging over disorder
eliminates the site dependence. Thus, q is also given by

q = [m2
i ] . (4.27)

These definitions, natural as they seem at a first glance, hide a subtle distinction that
we discuss below.

4.4.2 Pure states and more subtle order parameters

Let us keep disorder fixed and imagine that there remain more than two pure or
equilibrium states in the selected sample. A factor of two takes into account the spin
reversal symmetry. Later we shall consider half the phase space, getting rid of this
‘trivial’ symmetry. Consider the disorder-dependent quantity

qJ = N−1
∑

i

m2
i (4.28)

where the mi depend upon the realization of the exchanges. Then, two possibilities
for the statistical average in mi = 〈si〉 have to be distinguished:

Restricted averages

If we interpret the statistical average in the same restricted sense as the one
discussed in the paramagnetic - ferromagnetic transition of the usual Ising model, i.e.
under a pinning field that selects one chosen pure state, in (4.28) we define a disorder
and pure state dependent Edwards-Anderson parameter,

qαJ ea = N−1
N
∑

i

(mα
i )

2 , (4.29)

where we label α the selected pure state. Although qαJ ea could depend on α it turns
out that in all known cases it does not and the α label is superfluos.

In addition, qαJ ea could fluctuate from sample to sample since the individual mi

do. It turns out that in the thermodynamic limit qJ ea does not fluctuate. With this
in mind we shall later use

qea = qαea = qJ
α
ea (4.30)

for the intra-state average. This is the interpretation of the order parameter pro-
posed by Edwards-Anderson who did not take into account the possibility that is
discussed next.

In the clean Ising model, had we taken into account all the phase space, α = 1, 2

and mα
i = 〈si〉α with m(1)

i = −m(2)
i = m > 0. If we kept only half phase space α = 1

and mi = m > 0, say. The dependence on J does not exist in this case from the
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very definition of the model. In the RBIM the J and i-dependences remain but there
are still only two states to be considered. In the Potts model with q equilibrium FM
states there are q possible values for α and consequently mα

i .

Full statistical averages

If, instead, the statistical average in mi runs over all possible equilibrium states
(and we imagine there are more than one even if we consider only half the phase
space, that is to say, if we eliminate spin-reversal) the quantity (4.28) has non-trivial
contributions from overlaps between different states.

Imagine each state has a probability weight wJ
α. Then

mi =
∑

α

wα
Jm

α
i (4.31)

and

qJ =
1

N

∑

i

m2
i =

1

N

N
∑

i=1

(

∑

α

wJ
αm

α
i

)2

=
∑

αβ

wJ
αw

J
β
1

N

N
∑

i=1

mα
i m

β
i . (4.32)

A number of examples will clarify what we mean here. In the ferromagnetic phase
of the clean or dirty Ising models one has only two pure states with w1 = w2 = 1/2
and the fully averaged mi is mi = 1/2 〈si〉1 + 1/2 〈si〉2 = 0. If one considers half the
phase space, where spin-reversal is not allowed, then w1 = 1, mi = 〈si〉 and one does
not see any difference between the intra-state and the fully averaged mi. As for the q

parameters, considering the full phase space q(1)ea = q(2)ea = m2, while q = 0. Instead,
taking into account half the phase space q = qea = m2, and qea and q are identical
order parameters in this case. In the Potts model with more than two equilibrium
states the intra-state and fully averaged local magnetizations are not identical.

In the ferromagnetic modes discussed in the previous paragraph the Edwards-
Anderson order parameter takes the same value in each equilibrium state. This is
also the case in spin-glass models, qJαea independently of there being only two (as in
the usual ferromagnetic phase) or more (as we shall see appearing in fully-connected
spin-glass models). Therefore it does not allow us to distinguish between the two-state
and the many-state scenarii. Instead, qJ does.

Having defined a disorder-dependent order parameter, qJ , and its disorder average,
q, that explains the decay of the susceptibility below Tc, we still have to study whether
this order parameter characterises the low temperature phase completely. It will turn
out that the knowledge of q is not enough, at least in fully-connected and dilute
spin-glass models. Indeed, one needs to consider the probability distribution of the
fluctuating qJ quantity, P (qJ). The more pertinent definition of an order parameter
as being given by such a probability distribution allows one to distinguish between
the simple, two-state, and the many-state scenarii.

In practice, a way to compute the probability distribution of the order pa-
rameter is by using an overlap – or correlation – between two spin configurations,
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say {si} and {σi}, defined as

qJsσ = N−1
∑

i

〈 siσi 〉 (4.33)

where 〈 . . . 〉 is an unrestricted thermal average. qJsσ takes values between −1 and 1.
It equals one if {si} and {σi} differ in a number of spins that is smaller than O(N),
it equals −1 when the two configurations are totally anticorrelated – with the same
proviso concerning a number of spins that is not O(N) – and it equals zero when {si}
and {σi} are completely uncorrelated. Note that the self-overlap of a configuration
with itself is identically one for Ising spins. Other values are also possible. A related
definition is the one of the Hamming distance:

dJsσ = N−1
N
∑

i=1

〈 (si − σi)2 〉 = 2(1− qJsσ) . (4.34)

The overlap can be computed by running a Monte Carlo simulation, equilibrating
a sample and recording many equilibrium configurations. With them one computes
the overlap and should find a histogram with two peaks at qea and −qea (the values
of the overlap when the two configurations fall in the same pure state or in the sign
reversed ones) and, in cases with many different pure states, other peaks at other
values of qJsσ. This is observed in the SK model. Note that qJsσ is related to the q
definition above.

sσ

f

sσ σs sσ

Figure 33: The overlap between two equilibrium configurations in a FM system.

4.4.3 Pinning fields

In the discussion of the ferromagnetic phase transition one establishes that one of
the two equilibrium states, related by spin reversal symmetry, is chosen by a small
pinning field that is taken to zero after the thermodynamic limit, limh→0 limN→∞.

In a problem with quenched disorder it is no longer feasible to choose and apply
a magnetic field that is correlated to the statistical averaged local magnetization in
a single pure state since this configuration is not known! Moreover, the remanent
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magnetic field that might be left in any experience will certainly not be correlated
with any special pure state of the system at hand.

Which is then the statistical average relevant to describe experiments? We shall
come back to this point below.

4.4.4 Divergent susceptibility

In a pure magnetic system with a second-order phase transition the susceptibility
of the order parameter to a field that couples linearly to it diverges when approaching
the transition from both sides. In a paramagnet, one induces a local magnetization
with a local field

mi = 〈 si 〉 =
N
∑

j=1

χijhj (4.35)

with χij the linear susceptibilities, the magnetic energy given by E = E0 −
∑

i sihi,
and the field set to zero at the end of the calculation. Using this expression, the order
parameter in the high temperature phase becomes

q = qea =
1

N

N
∑

i=1

[m2
i ] =

1

N

N
∑

i=1

N
∑

j=1

N
∑

k=1

[χijχikhjhk ] (4.36)

If the applied fields are random and taken from a probability distribution such that
hjhk = σ2δjk one can replace hjhk by σ2δjk and obtain

q =
1

N

N
∑

i=1

[m2
i ] =

1

N

N
∑

i=1

N
∑

j=1

[χ2ij ] σ
2 ≡ χSG σ

2 . (4.37)

σ2 acts as a field conjugated to the order parameter. (One can also argue that a
uniform field looks random to a spin-glass sample and therefore the same result holds.
It is more natural though to use a trully random field since a uniform one induces a
net magnetization in the sample.) The spin-glass susceptibility is then defined as

χSG ≡ 1

N

∑

ij

[χ2ij ] =
β2

N

∑

ij

[ (〈 sisj 〉 − 〈 si 〉〈 sj 〉)2 ] =
β2

N

∑

ij

[ 〈 sisj 〉2 ]

in the high T phase and one finds that it diverges as T → T+
c as expected in a second-

order phase transition. (Note that there is no cancelation of crossed terms because
of the square.) Indeed, the divergence of χSG is related to the divergence of the
non-linear magnetic susceptibility that is measurable experimentally and numerically.
An expansion of the total mangnetization in powers of a uniform field h acting as
E → E − h

∑

i si is

Mh = χh− χ
(3)

6
h3 + . . . , (4.38)
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and the first non-linear susceptibility is then given by

−χ(3) ≡ ∂3Mh

∂h3

∣
∣
∣
∣
h=0

= −β−1 ∂
4 lnZh

∂h4

∣
∣
∣
∣
h=0

= −β
3N

3

〈(

∑

i

si

)4〉

c

(4.39)

with the subindex c indicating that the quartic correlation function is connected.
Above Tc, mi = 0 at zero field,

χ(3) = β3
∑

ijkl

(〈 sisjsksl 〉 − 3〈 sisj 〉〈 sksl 〉) =
β3

N
3



4N − 6
∑

ij

〈 sisj 〉2


 ,

and one can identify χSG when i = k and j = l plus many other terms that we assume
are finite. Then,

χ(3) = β(χSG − 2

3
β2) . (4.40)

This quantity can be accessed experimentally. A careful experimental measurement
of χ(3), χ(5) and χ(7) done by L. Lévy demonstrated that all these susceptibilities
diverge at Tc.

4.4.5 Calorimetry

No cusp in the specific heat of spin-glasses is seen experimentally. Since one
expects a second order phase transition this means that the divergence of this quantity
must be very weak.

4.4.6 Critical scaling

Having identified an order parameter, the linear and the non-linear susceptibility
one can now check whether there is a static phase transition and, if it is of second
order, whether the usual scaling laws apply. Many experiments have been devoted to
this task. It is by now quite accepted that Ising spin-glasses in 3d have a conventional
second order phase transition. Still, the exponents are difficult to obtain and there is
no real consensus about their values. There are two main reasons for this: one is that
as Tc is approached the dynamics becomes so slow that equilibrium measurements
cannot really be done. Critical data are thus restricted to T > Tc. The other reason
is that the actual value of Tc is difficult to determine and the value used has an
important influence on the critical exponents. Possibly, the most used technique to
determine the exponents is via the scaling relation for the non-linear susceptibility:

χnl = tβf

(
h2

tγ+β

)

(4.41)
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d β γ δ α ν η
∞ 1 1 2 -1 1

2 0
3 0.5 4 9

Table 2: Critical exponents in the Ising spin-glass transitions.

with t = |T − Tc|/Tc and one finds, approximately, the values given in Table 2.

4.5 The TAP approach

Disordered models have quenched random interactions. Due to the fluctuating
values of the exchanges, one expects that the equilibrium configurations be such that
in each equilibrium state the spins freeze in different directions. The local averaged
magnetizations need not be identical, on the contrary one expects 〈 si 〉 = mi and, if
many states exist, each of them can be identified by the vector (m1, . . . ,mN ).

One may try to use the naive mean-field equations (5.2) to characterize the low
temperature properties of these models at fixed quenched disorder and determine
then the different (m1, . . . ,mN ) values. It has been shown by Thouless-Anderson-
Palmer (TAP) [?, ?] that these equations are not completely correct even in the
fully-connected disordered case: a term which is called the Onsager reaction term is
missing. This term represents the reaction of the spin i: the magnetization of the spin
i produces a field h′

j = Jjimi = Jijmi on spin j; this field induces a magnetization
mj = χjjh′

j = χjjJijmi on the spin j and this in turn produces a mean-field h′
i =

Jijmj = JijχjjJijmi = χjjJ2
ijmi on the site i. The equilibrium fluctuatio-dissipation

relation between susceptibilities and connected correlations implies χjj = β 〈 (sj −
〈 sj 〉)2 〉 = β(1 −m2

j) and one then has hi = β(1 −m2
j)J

2
ijmi. The idea of Onsager –

or cavity method – is that one has to study the ordering of the spin i in the absence of
its own effect on the rest of the system. Thus, the field h′

i has to be subtracted from
the mean-field created by the other spins in the sample, i.e. hcorr

i =
∑

j Jijmj + hi−
βmi

∑

j J
2
ij(1−m2

j) where hi is the external field.
The generalization of this argument to p spin interactions is not so straightforward.

The TAP equations for p-spin fully connected models read

mi = tanh



β





∑

i2 $=...$=ip

1

(p− 1)!
Jii2...ipmi2 . . .mip

+βmiJ
2
ii2...ip(1−m2

i2) . . . (1−m2
ip) + hi

)]

.

(4.42)

the first contribution to the internal field is proportional to Ji12...ip ∼ N−(p−1)/2
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and once the p − 1 sums performed it is of order one. The reaction term instead is
proportional to J2

ii2...ip and, again, a simple power counting shows that it is O(1).
Thus, In disordered systems the reaction term is of the same order of the usual mean-
field; a correct mean-field description has to include it. In the ferromagnetic case this
term can be neglected since it is subleading in N . Using the fact that there is a sum
over a very large number of elements, J2

i1...ip can be replaced by its site-independent

variance [J2
i1...ip ] = p!J2/(2Np−1) in the last term in (4.42). Introducing the Edwards-

Anderson parameter qea = N−1
∑

i=1 m
2
i (note that we study the system in one pure

state) the TAP equations follow:

mi = tanh




β

(p− 1)!

∑

i2 $=...$=ip

Jii2...ipmi2 . . .mip + βhi −
β2J2p

2
mi(1− qea)

p−1



 .

(4.43)
The argument leading to the Onsager reaction term can be generalized to include the
combined effect of the magnetization of spin i on a sequence of spins in the sample,
i.e. the effect on i on j and then on k that comes back to i. These higher order terms
are indeed negligible only if the series of all higher order effects does not diverge. The
ensuing condition is 1 > β2

(

1− 2qea +N−1
∑

im
4
i

)

.
The importance of the reaction term becomes clear from the analysis of the lin-

earized equations, expected to describe the second order critical behavior for the
SK model (p = 2) in the absence of an applied field. The TAP equations become
mi ∼ β(

∑

j Jijmj − βJ2mi + hi). A change of basis to the one in which the Jij
matrix is diagonal leads to mλ ∼ β(λ − βJ2)mλ + βhλ. The staggered susceptibility
then reads

χλ ≡
∂mλ

∂hλ

∣
∣
∣
∣
h=0

= β
(

1− 2βJλ + (βJ)2
)−1

. (4.44)

The staggered susceptibility for the largest eigenvalue of an interaction matrix in the
Gaussian ensemble, Jmax

λ = 2J , diverges at βcJ = 1. Note that without the reaction
term the divergence appears at the inexact value T ∗ = 2Tc (see Sect. for the replica
solution of the SK model).

The TAP equations are the extremization conditions on the TAP free-energy den-
sity:

f({mi}) = − 1

p!

∑

i1 $=...$=ip

Ji1...ipmi1 . . .mip

− β
4p

∑

i1 $=...$=ip

J2
i1...ip(1−m2

i1) . . . (1−m2
ip) (4.45)

−
∑

i

himi + T
N
∑

i=1

[
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

]

.

The free-energy density as a function of the local magnetizations mi defines what is
usually called the free-energy landscape. Note that this function depends on N ! 1
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variables,mi, and these are not necessarily identical in the disordered case in which the
interactions between different groups of spins are different. The stability properties
of each extreme {m∗

l } are given by the eigenvalues of the Hessian matrix

Hij ≡
∂f({mk})
∂mi∂mj

∣
∣
∣
∣
{m∗

l }

. (4.46)

The number of positive, negative and vanishing eigenvalues determine then the num-
ber of directions in which the extreme is a minimum, a maximum or marginal. The
sets {m∗

l } for which f({m∗
l }) is the absolute minima yield a first definition of equi-

librium or pure states.
The TAP equations apply to {mi} and not to the configurations {si}. The values

of the {mi} are determined as minima of the TAP free-energy density, f({mi}), and
they not need to be the same as those of the energy, H({si}), a confusion sometimes
encountered in the glassy literature. The coincidence of the two can only occur at
T → 0.

4.5.1 The complexity or configurational entropy

There are a number of interesting questions about the extreme of the TAP free-
energy landscape, or even its simpler version in which the Onsager term is neglected,
that help us understanding the static behavior of disordered systems:

• For a given temperature, T , how many solutions to the mean-field equations
exist? The number of solutions can be calculated using

NJ =
∏

i

∫ 1

−1
dmi δ(mi −m∗

i ) =
∏

i

∫ 1

−1
dmi δ(eqi)

∣
∣
∣
∣
det

∂eqi
∂mj

∣
∣
∣
∣
. (4.47)

{m∗
i } are the solutions to the TAP equations that we write as {eqi = 0}. The

last factor is the normalization of the delta function after the change of variables,
it ensures that we count one each time the integration variables touch a solution
to the TAP equations independently of its stability properties.
We define the complexity or the configurational entropy as the logarithm of the
number of solutions at temperature T divided by N :

ΣJ(T ) ≡ N−1 lnNJ (T ) . (4.48)

The normalization with N suggests that the number of solutions is actually an
exponential of N . We shall come back to this very important point below.

• Does NJ(T ) dependend on T and does it change abruptly at particular values
of T that may or may not coincide with static and dynamic phase transitions?

• One can define a free-energy level dependent complexity

ΣJ(f, T ) ≡ N−1 lnNJ (f, T ) (4.49)
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where NJ(f, T ) is the number solutions in the interval [f, f+df ] at temperature
T .

• From these solutions, one can identify the minima as well as all saddles of differ-
ent type, i.e. with different indeces K. These are different kinds to metastable
states. Geometry constrains the number of metastable states to satisfy Morse
theorem that states

∑N
l=1(−1)κl = 1, where κl is the number of negative eigen-

values of the Hessian evaluated at the solution l, for any continuous and well-
behaved function diverging at infinity in all directions.
One can then count the number of solutions to the TAP equations of each index,
NJ(K,T ), and define the corresponding complexity

ΣJ (K,T ) ≡ N−1 lnNJ (K,T ) , (4.50)

or even work at fixed free-energy density

ΣJ (K, f, T ) ≡ N−1 lnNJ (K, f, T ) . (4.51)

Even more interestingly, one can analyse how are the free-energy densities of
different saddles are organized. For instance, one can check whether all maxima
are much higher in free-energy density than minima, etc.

• What is the barrier, ∆f = f1 − f0, between ground states and first excited
states? How does this barrier scale with the actual free-energy difference, ∆f
between these states? The answer to this question is necessary to estimate
the nucleation radius for the reversal of a droplet under an applied field, for
instance.

The definitions of complexity given above are disorder-dependent. One might then
expect that the complexity will show sample-to-sample fluctuations and be charac-
terized by a probability distribution. The quenched complexity, Σquenched, is then
the most likely value of ΣJ , it is defined through maxP (ΣJ) = P (Σquenched). In
practice, this is very difficult to compute. Most analytic results concern the annealed
complexity

Σann ≡ N−1 ln [NJ ] = N−1 ln[ eNΣJ ] . (4.52)

One can show that the annealed complexity is smaller or equal than the quenched
one.

4.5.2 Weighted averages

Having identified many solutions to the TAP equations in the low-T phase one
needs to determine now how to compute statistical averages. A natural proposal is
to give a probability weight to each solution, wα, and to use it to average the value
the observable of interest:

〈O 〉 =
∑

α

wJ
α Oα (4.53)
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where α labels the TAP solutions, Oα = O({mα
i }) is the value that the observable

O takes in the TAP solution α, and wJ
α are their statistical weights, satisfying the

normalization condition
∑

α wJ
α = 1. Two examples can illustrate the meaning of this

average. In a spin-glass problem, if O = si, then Oα = mα
i . In an Ising model in its

ferromagnetic phase, if O = si, then Oα = mα
i = ±m and wα = 1/2. Within the

TAP approach one proposes

wJ
α =

e−βFJ
α

∑

γ e
−βFJ

γ
(4.54)

with F J
α the total free-energy of the α-solution to the TAP equations. The discrete

sum can be transformed into an integral over free-energy densities, introducing the
degeneracy of solutions quantified by the free-energy density dependent complexity:

〈O 〉 = 1

Z

∫

df e−NβfNJ (f, T )O(f) =
1

Z

∫

df e−N(βf−ΣJ(f,T )) O(f) . (4.55)

The normalization is the ‘partition function’

Z =

∫

dfe−NβfNJ (f, T ) =

∫

df e−N(βf−ΣJ (f,T )) . (4.56)

We assumed that the labelling by α can be traded by a labelling by f that implies
that at the same free-energy density level f the observable O takes the same value.
In the N → ∞ limit these integrals can be evaluated by saddle-point, provided the
parenthesis is positive. The disorder-dependent complexity is generally approximated
with the annealed value introduced in eq. (4.52).

Free−energy

Metastable states

Equilibrium

Finite barriers

Threshold level

Diverging barriers with N

N dim.( ) Order parameters

Figure 34: Sketch of the free-energy landscape in the p-spin model.

The equilibrium free-energy
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The total equilibrium free-energy density, using the saddle-point method to eval-
uate the partition function Z in eq. (4.56), reads

−βfeq = N−1 lnZ = min
f

[f − TΣJ(f, T )] ≡ min
f

ΦJ(f, T ) (4.57)

It is clear that ΦJ(f, T ) is the Landau free-energy density of the problem with f
playing the rôle of the energy and ΣJ of the entropy. If we use f = (E − TS)/N =
e− Ts with E the actual energy and S the microscopic entropy one has

ΦJ(f, T ) = e− T (s+ ΣJ(f, T )) . (4.58)

Thus, ΣJ is an extra contribution to the total entropy that is due to the exponen-
tially large number of metastable states. Note that we do not distninguish here their
stability.

Note that ΣJ is subtracted from the total free-energy. Thus, it is possible that in
some cases states with a higher free-energy density but very numerous have a lower
total free-energy density than lower lying states that are less numerous. Collectively,
higher states dominate the equilibrium measure in these cases.

The order parameter

The Edwards-Anderson parameter is understood as a property of a single state.
Within the TAP formalism on then has

qJ
α
ea = N−1

∑

i

(mα
i )

2 . (4.59)

An average over pure states yields
∑

α wJ
α(m

α
i )

2.
Instead, the statistical equilibriummagnetization, mi = 〈si〉 =

∑

α wJ
αm

α
i , squared

is

qJ ≡ 〈 si 〉2 = m2
i =

(

∑

α

wJ
αm

α
i

)2

=
∑

αβ

wJ
αw

J
β mα

i m
β
i . (4.60)

If there are multiple phases, the latter sum has crossed contributions from terms with
α 0= β. These sums, as in a usual paramagnetic-ferromagnetic transition have to
be taken over half space-space, otherwise global up-down reversal would imply the
cancellation of all cross-terms.

This discussion is totally equivalent to the one we developed when we introduced
qJ and qea.

4.6 Metastable states in two families of models

In this subsection we summarize the structure of metastable states found in two
families of models, the ones in the SK and the ones in the p-spin class.
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4.6.1 High temperatures

For all models, at high temperatures f(mi) is characterized by a single stable
absolute minimum in which all local magnetizations vanish, as expected; this is the
paramagnetic state.

In models of the p-spin class the mi = 0 for all i minimum continues to exist at all
temperatures. However, even if it is still a minimum of f the TAP free-energy density,
f({mi}),it becomes unstable thermodynamically at a given temperature, and it is
substituted as the equilibrium state, by other non-trivial configurations with mi 0= 0
that are the absolute minima of Φ. Note the difference with the ferromagnetic problem
for which the paramagnetic solution is no longer a minimum below Tc.

4.6.2 Low temperatures

At low temperature many equilibrium states appear (and not just two as in an
Ising ferromagnetic model) and they are not related by symmetry (as spin reversal
in the Ising ferromagnet or a rotational symmetry in the Heisenberg ferromagnet).
These are characterized by non-zero values of the local magnetizations mα

i that are
different in different states.

At low-temperatures both the naive mean-field equations and the TAP equations
have an exponential in N number of solutions and still an exponential in N num-
ber of them correspond to absolute minima of the mi-dependent free-energy density.
This means that ΣJ (T ) and even ΣJ(0, f0, T ) are quantities O(1). These minima can
be identified as different states that could be accessed by applying the corresponding
site-dependent pinning fields.

The derivation and understanding of the structure of the TAP free-energy land-
scape is quite subtle and goes beyond the scope of these Lectures. Still, we shall
briefly present their structure for the SK and p-spin models to give a flavor of their
complexity.

The SK model

The first calculation of the complexity in the SK model appeared in 1980. After
25 years of research the structure of the free-energy landscape in this system is still
a matter of discussion. At present, the picture that emerges is the following. The
temperature-dependent annealed complexity is a decreasing function of temperature
that vanishes only at Tc but takes a very small value already at ∼ 0.6Tc. Surprisingly
enough, at finite but large N the TAP solutions come in pairs of minima and saddles
of type one, that is to say, extrema with only one unstable direction. These states
are connected by a mode that is softer the larger the number of spins: they coalesce
and become marginally stable in the limit N →∞. Numerical simulations show that
starting from the saddle-point and following the ‘left’ direction along the soft mode one
falls into the minimum; instead, following the ‘right’ direction along the same mode
one falls into the paramagnetic solution. See Fig. 35 for a sketch of these results. The
free-energy difference between the minimum and saddle decreases for increasingN and
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Figure 35: Left: sketch of the temperature dependent complexity, Σ(T ), of the SK. It
actually vanishes only at Tc but it takes a very small value already at ∼ 0.6Tc. Right:
pairs of extrema in the SK model with N large and N →∞ limit.

one finds, numerically, an averaged∆f ∼ N−1.4. The extensive complexity of minima
and type-one saddles is identical in the large N limit, Σ(0, T ) = Σ(1, T ) + O(N−1)
[Aspelmeier, Bray, Moore (06)] in such a way that the Morse theorem is respected.
The free-energy dependent annealed complexity is a smooth function of f with support
on a finite interval [f0, f1] and maximum at fmax. The Bray and Moore annealed
calculation (with supersymmetry breaking) yields fmax = −0.654, Σmax = 0.052,
Σ′′(fmax) = 8.9. The probability of finding a solution with free-energy density f can
be expressed as

p(f, T ) =
N (f, T )

N (T )
=

eNΣ(f,T )

N (T )
∼
√

NΣ′′(fmax)

2π
e−

N
2 |Σ′′(fmax)|(f−fmax)

2

, (4.61)

where we evaluated the total number of solutions, N (T ) =
∫

dfeNΣ(f,T ), by steepest
descent The complexity vanishes linearly close to f0: Σ(f, T ) ∼ λ(f − f0) with λ < β.

Only the lowest lying TAP solutions contribute to the statistical weight. The
complexity does not contribute to Φ in the large N limit:

Φ = βf − Σann(f, T ) & βf − (f − f0)λ

∂Φ

∂f
& β − λ > 0 iff β > λ (4.62)

and Φmin & βfmin = βf0. See Fig. 36. The ‘total’ free-energy density in the expo-
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Figure 36: The complexity as a function of f for the SK model.

nential is just the free-energy density of each low-lying solution.

The (spherical) p-spin model

The number and structure of saddle-points is particularly interesting in the p ≥
3 cases and it is indeed the reason why these models, with a random first order
transition, have been proposed to mimic the structural glass arrest. The p ≥ 3 model
has been studied in great detail in the spherical case, that is to say, when spins are
not Ising variables but satisfy the global constraint,

∑N
i=1 s

2
i = N .

Although in general the minima of the mean-field free energy do not coincide with
the minima of the Hamiltonian, they do in the spherical p-spin model. Their positions
in the phase space does not depend on temperature, while their self-overlap does. At
T = 0 a state (stable or metastable) is just a minimum (absolute or local) of the
energy. For increasing T energy minima get dressed up by thermal fluctuations, and
become states. Thus, the states can be labeled by their zero-temperature energy E0.

The complexity is given by

Σ(E) =
1

2

[

− ln
pz2

2
+

p− 1

2
z2 − 2

p2z2
+

2− p

p

]

, (4.63)

where z is

z =

[

−E0 −
√

E02 − E2
c

]

/(p− 1) . (4.64)

The complexity vanishes at
E0 = Emin = f(p) , (4.65)
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Figure 37: The TAP free-energy as a function of T in the spherical p-spin model.
(1) : free energy of the paramagnetic solution for T > T ∗, Ftot for T < T ∗ ; (2) :
free energy of the lowest TAP states, with zero temperature energy Emin; (3) : free
energy of the highest TAP states, corresponding to Ec; (4) : an intermediate value of
E0 leads to an intermediate value of f at any temperature; (5) : feq(T ); the difference
between curves (5) and (1) gives the complexity TSc(feq(T ), T ).
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the ground state of the system, and it is real for zero-temperature energies E < Eth

with

Eth = −

√

2(p− 1)

p
. (4.66)

Emin is the zero-T energy one finds with the replica calculation using a 1-step RSB
Ansatz as we shall see below. The finite-T energy of a state α is

Eα = q
p
2
αE0

α −
1

2T

[

(p− 1)qpα − pqp−1
α + 1

]

. (4.67)

This means that:
• There can be only a finite number of states with E < E0.
• It can be shown that below Eth minima dominate on average.
• Above Eth one can show that there are states but these are unstable.

Each zero-temperature state is characterized by unit N -vector sαi and it gives rise
to a finite-T state characterized by mα

i =
√

q(E, T )sαi with q(E, T ) given by

qp−2(1− q)2 = T 2 (E +
√

E2 − E2
th)

2

(p− 1)2
. (4.68)

(q(E, T = 0) = 1 and at finite T the solution with q closest to 1 has to be chosen.)
The self-overlap at the threshold energy, E − Eth, is then

qp−2
th (1− qth)

2 = T 2 2

p(p− 1)
. (4.69)

Another way for the q equation to stop having solution, is by increasing the tem-
perature, T > Tmax(E0), at fixed bare energy E0. This means that, even though
minima of the energy do not depend on the temperature, states, i.e. minima of the
free energy do. When the temperature becomes too large, the paramagnetic states
becomes the only pure ergodic states, even though the energy landscape is broken up
in many basins of the energy minima. This is just one particularly evident demonstra-
tion of the fundamental different between pure states and energy minima. Tmax(E0)
is obtained as the limiting temperature for which eq. (4.68) admits a solution. It is
given by

Tmax(E
0) =

(
2

p

)



p− 1

−E0 −
√

E02 − E2
th





(
p− 2

p

) p−2
2

. (4.70)

Tmax is a decreasing function of E0. The last states to disappear then are the ones
with minimum energu Emin, ceasing to exist at TTAP ≡= Tmax(Emin).

Below a temperature Td, an exponential (in N) number of metastable states con-
tribute to the thermodynamics in such a non-trivial way that their combined contri-
bution to the observables makes them those of a paramagnet. Even if each of these
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states is non-trivial (the mi’s are different from zero) the statistical average over all
of them yields results that are identical to those of a paramagnet, that is to say, the
free-energy density is −1/(4T ) as in the mi = 0 paramagnetic solution. One finds

Td =

√

p(p− 2)p−2

2(p− 1)p−1
. (4.71)

At a lower temperature Ts (Ts < Td) there is an entropy crisis, less than an
exponential number of metastable states survive, and there is a static phase transition
to a glassy state.

In the p-spin models there is a range of temperatures in which high lying states
dominate this sum since they are sufficiently numerous so as to have a complexity that
renders the cimbined term βf −ΣJ(f, T ) smaller (in actual calculations the disorder
dependent complexity is approximated by its annealed value). In short:

• Above Td the (unique) paramagnetic solution dominates, q = 0 and Φ = f =
−1/(4T ).

• In the interval T ∈ [Ts, Td] an exponentially large number of states (with q 0= 0
given by the solution to pqp−2(1 − q) = 2T 2) dominate the partition sum.
Φ = −1/(4T ) appearing as the continuation of the paramagnetic solution.

• At T < Ts the lowest TAP states with E0 = Emin control the partition sum.
Their total free-energy Φ is different from −1/(4T ).

This picture is confirmed with other studies that include the use of pinning fields
adapted to the disordered situation, the effective portential for two coupled real repli-
cas, and the dynamic approach.

Low temperatures, entropy crisis

The interval of definition of Φ(E, T ) is the same as Σ(E), that is E ∈ [Emin : Eth].
Assuming that at a given temperature T the energy Eeq(T ) minimizing Φ lies in this
interval, what happens if we lower the temperature? Remember that the complexity
is an increasing function of E, as of course is f(E, T ). When T decreases we fa-
vor states with lower free energy and lower complexity, and therefore Eeq decreases.
As a result, it must exist a temperature Ts, such that, Eeq(Ts) = Emin and thus,
Σ(Eeq(T )) = Σ(Emin) = 0. Below Ts the bare energy Eeq cannot decrease any fur-
ther: there are no other states below the ground states Emin. Thus, Eeq(T ) = Emin

for each temperature T ≤ Ts. As a result, if we plot the complexity of equilibrium
states Σ(Eeq(T )) as a function of the temperature, we find a discontinuity of the
first derivative at Ts, where the complexity vanishes. A thermodynamic transition
takes place at Ts: below this temperature equilibrium is no longer dominated by
metastable states, but by the lowest lying states, which have zero complexity and
lowest free energy density.

We shall show that Ts is the transition temperature found with a replica calcu-
lation. The temperature where equilibrium is given for the first time by the lowest
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energy states, is equal to the static transition temperature. Above Ts the partition
function is dominated by an exponentially large number of states, each with high free
energy and thus low statistical weight, such that they are not captured by the overlap
distribution P (q). At Ts the number of these states becomes sub-exponential and
their weight nonzero, such that the P (q) develops a secondary peak at qs 0= 0.

The threshold

The stability analysis of the TAP solutions on the threshold level demonstrates
that these are only marginally stable, with a large number of flat directions.

Hierarchy of metastable states

The ordering of TAP solutions with different stability properties according to their
free-energy density has also been studied in great detail. The exact scaling with N
of the height of the barriers separating these solutions is harder to obtain. All these
are accepted to be exponential on the number of spins in the sample.



 



























Figure 38: Sketch for the Random first order transition (RFPT) scenario. Left: the
experimental observation. Right: its interpretation in terms of metastable states.

Finite dimensions

In finite-dimensional systems, only equilibrium states can break the ergodicity, i.e.
states with the lowest free energy density. In other words, the system cannot remain
trapped for an infinite time in a metastable state, because in finite dimension free
energy barriers surrounding metastable states are always finite.

The extra free energy of a droplet of size r of equilibrium phase in a background
metastable phase has a positive interface contribution which grows as rd−1, and a
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negative volume contribution which grows as rd,

∆f = σrd−1 − δf rd (4.72)

where here σ is the surface tension and δf is the bulk free energy difference between the
two phases. This function has always a maximum, whose finite height gives the free
energy barrier to nucleation of the equilibrium phase (note that at coexistence δf = 0
and the barrier is infinite). Therefore, if initially in a metastable states the system
will, sooner or later, collapse in the stable state with lower free energy density. For
this reason, in finite dimension we cannot decompose the Gibbs measure in metastable
components. When this is done, it is always understood that the decomposition is
only valid for finite times, i.e times much smaller than the time needed for the stable
equilibrium state to take over. On the other hand, in mean-field systems (infinite
dimension), barriers between metastable states may be infinite in the thermodynamic
limit, and it is therefore possible to call pure states also metastable states, and to
assign them a Gibbs weight wJ

α. We will analyze a mean-field spin-glass model, so that
we will be allowed to perform the decomposition above even for metastable states.

Comments

There is a close relationship between the topological properties of the model and
its dynamical behavior. In particular, the slowing down of the dynamics above but
close to Td is connected to the presence of saddles, whose instability decreases with
decreasing energy. In fact, we have seen that the threshold energy level Eth separat-
ing saddles from minima, can be associated to the temperature Tth = Td, marking
the passage from ergodicity to ergodicity breaking. In this context the dynamical
transition can be seen as a topological transition. The plateau of the dynamical cor-
relation function, which has an interpretation in terms of cage effect in liquids, may
be reinterpreted as a pseudo-thermalization inside a saddle with a very small number
of unstable modes.

4.7 The replica method

A picture that is consistent with the one arising from the naive mean-field approx-
imation but contradicts the initial assumption of the droplet model arises from the
exact solution of fully-connected spin-glass models. These results are obtained using
a method which is called the replica trick and that we shall briefly present below.

In Sect. we argued that the typical properties of a disordered system can be
computed from the disorder averaged free-energy

[FJ ] ≡
∫

dJP (J)FJ . (4.73)

One then needs to average the logarithm of the partition funtion. In the annealed
approximation one exchanges the ln with the average over disorder and, basically,
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considers the interactions equilibrated at the same temperature T as the spins:

[ lnZJ ] ∼ ln[ZJ ] . (4.74)

This approximation turns out to be correct at high temperatures but incorrect at low
ones.

The replica method allows one to compute [FJ ] for fully-connected models. It is
based on the smart use of the identity

lnZJ = lim
n→0

Zn
J − 1

n
. (4.75)

The idea is to compute the right-hand-side for finite and integer n = 1, 2, . . . and then
perform the analytic continuation to n → 0. Care should be taken in this step: for
some models the analytic continuation may be not unique. It turns out that this is
indeed the case for the emblematic Sherrington-Kirkpatrick model, as discussed by
Palmer and van Hemmen in 1979 though it has also been recently shown that the
free-energy f(T ) obtained by Parisi with the replica trick is exact!

The disorder averaged free-energy is given by

−β[FJ ] = −
∫

dJP (J) lnZJ = − lim
n→0

1

n

(∫

dJP (J)Zn
J − 1

)

, (4.76)

where we have exchanged the limit n → 0 with the integration over the exchanges.
For integer n the replicated partition function, Zn

J , reads

Zn
J =

∑

{sai }

e−β[EJ({s
1
i})+...+EJ ({s

n
i }] . (4.77)

Here
∑

{sai }
≡
∑

{s1i=±1} . . .
∑

{sni =±1}. Zn
J corresponds to n identical copies of the

original system, that is to say, all of them with the same realization of the disorder.
Each copy is characterized by an ensemble of N spins, {sai }. We label the copies with
a replica index a = 1, . . . , n. For p-spin disordered spin models Zn

J takes the form

Zn
J =

∑

{sai }

e
β
∑n

a=1

[
∑

i1 $=...$=ip
Ji1...ips

a
i1

...saip+
∑

i
his

a
i

]

. (4.78)

The average over disorder amounts to computing a Gaussian integral for each set of
spin indices i1, . . . ip. One finds

[Zn
J ] =

∑

{sai }

e
β2J2

2Np−1

∑

i1 $=...$=ip
(
∑

a
sai1 ...s

a
ip

)2+β
∑

a

∑

i
his

a
i ≡

∑

{sai }

e−βF ({sai }) . (4.79)

The function βF ({sai }) is not random. It depends on the spin variables only but it
includes terms that couple different replica indices:

βF ({sai }) ≈ −Nβ2J2

2




∑

a $=b

(

1

N

∑

i

sai s
b
i

)p

+ n



− β
∑

a

∑

i

his
a
i . (4.80)
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In writing the last expression we have dropped terms that are subleading in N (in
complete analogy with what we have done for the pure p spin ferromagnet). The
constant term −Nnβ2J2/2 originates in the terms with a = b, for which (sai )

2 = 1.
To summarize, we started with an interacting spin model. Next, we enlarged the

number of variables from N spins to N × n replicated spins by introducing n non-
interacting copies of the system. By integrating out the disorder we decoupled the
sites but we payed the price of coupling the replicas. Hitherto the replica indices
act as a formal tool introduced to compute the average over the bond distribution.
Nothing distinguishes one replica from another and, in consequence, the “free-energy”
F ({sai }) is invariant under permutations of the replica indices.

The next step to follow is to identify the order parameters and transform the free-
energy into an order-parameter dependent expression to be rendered extremal at their
equilibrium values. In a spin-glass problem we already know that the order parameter
is not the global magnetization as in a pure magnetic system but the parameter q – or
more generally the overlap between states. Within the replica calculation an overlap
between replicas

qab ≡ N−1
∑

i

sai s
b
i (4.81)

naturally appeared in eq. (4.80). The idea is to write the free-energy density as a
function of the order parameter qab and look for their extreme in complete analogy
with what has been done for the fully-connected ferromagnet. This is, of course, a
tricky business, since the order parameter is here a matrix with number of elements n
going to zero! A recipe for identifying the form of the order parameter (or the correct
saddle-point solution) has been proposed by G. Parisi in the late 70s and early 80s.
This solution has been recently proven to be exact for mean-field models by two
mathematical physics, F. Guerra and M. Talagrand. Whether the very rich physical
structure that derives from this rather formal solution survives in finite dimensional
systems remains a subject of debate.

Introducing the Gaussian integral
∫

dqab e
βJqab

∑

i
sai s

b
i−

N
2 q2ab = e

N
2 ( 1

N βJ
∑

i
sai s

b
i)

2

(4.82)

for each pair of replica indices a 0= b, one decouples the site indeces, i, and the
averaged replicated partition function can be rewritten as

[Zn
J ] =

∫
∏

a $=b

dqab e
−βF (qab) (4.83)

and

βF (qab) = −Nβ2J2

2



−
∑

a $=b

qpab + n



−N ln ζ(qab) , (4.84)

ζ(qab) =
∑

sa

e−βH(qab,sa) , H(qab, sa) = −J
∑

ab

qabsasb − h
∑

a

sa(4.85)
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where for simplicity we set hi = h. The factor N in front of ln ζ comes from the
decoupling of the site indeces. Note that the transformation (4.82) serves to uncouple
the sites and to obtain then the very useful factor N in front of the exponential. The
partition function Z(qab) is the one of a fully-connected Ising model with interaction
matrix qab.

We next summarize the saddle-point method used to evaluate the partition sum
and free-energy and we enumerate and briefly discuss the Ansatze used to characterize
the Q matrix and the phases they represent.

4.8 Saddle-point evaluation

Having extracted a factor N in the exponential suggests to evaluate the integral
over qab with the saddle-point method. This, of course, involves the a priori dangerous
exchange of limits N →∞ and n → 0. The replica theory relies on this assumption.
One then writes

lim
N→∞

−[ fJ ]→ − lim
n→0

1

n
f(qspab) (4.86)

and searches for the solutions to the n(n− 1)/2 extremization equations

δf(qab)

δqcd

∣
∣
∣
∣
qspef

= 0 . (4.87)

In usual saddle-point evaluations the saddle-point one should use is (are) the one(s)
that correspond to absolute minima of the free-energy density. In the replica cal-
culation the number of variables is n(n − 1)/2 that becomes negative! when n < 1
and makes the saddle-point evaluation tricky. In order to avoid unphysical complex
results one needs to focus on the saddle-points with positive (or at least semi-positive)
definite Hessian

H ≡ ∂f(qab)

∂qcd∂qef

∣
∣
∣
∣
qspab

, (4.88)

and these sometimes corresponds to maxima (instead of minima) of the free-energy
density.

The saddle-point equations are also self-consistency equations

qspab = 〈sasb〉H(qab,{sa}) = [ 〈sasb〉 ] (4.89)

where the second member means that the average is performed with the single site
Hamiltonian H(qab, sa) and the third member is just one of the averages we would
like to compute.

The partition function in eq. (4.85) cannot be computed for generic qab since
there is no large n limit to exploit on the contrary, n → 0. Thus, one usually looks
for solutions to eqs. (4.87) within a certain family of matrices qab. We discuss below
the relevant parametrizations.
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4.8.1 Replica symmetry (RS)

In principle, nothing distinguishes one replica from another one. This is the reason
why Sherrington and Kirkpatrick looked for solutions that preserve replica symmetry:

qab = q , for all a 0= b . (4.90)

Inserting this Ansatz in (4.84) and (4.85) and taking n → 0 one finds

q =

∫ ∞

−∞

dz√
2π

e−z2/2 tanh2
(

β

√

pqp−1

2
z + βh

)

. (4.91)

This equation resembles strongly the one for the magnetization density of the p-spin
ferromagnet, eq. (5.7).

Let us first discuss the case p = 2, i.e. the SK model. In the absence of a magnetic
field, one finds a second order phase transition at Ts = J from a paramagnetic (q = 0)
to a spin-glass phase with q 0= 0. In the presence of a field there is no phase transition.
SK soon realized though that there is something wrong with this solution: the entropy
at zero temperature is negative, S(0) = −1/(2π), and this is impossible for a model
with discrete spins, for which S is strictly positive. de Almeida and Thouless later
showed that the reason for this failure is that the replica symmetric saddle-point is not
stable, since the Hessian (4.88) is not positive definite and has negative eigenvalues.
The eigenvalue responsible for the instability of the replica symmetric solution is
called the replicon.

Comparison with the TAP equations shows that the RS Ansatz corresponds to the
assumption that the local fields hi =

∑

ii1 ...iip
Ji1...ipmi1 . . .mip + h are independent

and have a Gaussian distribution with average h and variance σ2 = J2qp−1. Numerical
simulations clearly show that this assumption is invalid.

Interestingly enough, the numerical values for several physical quantities obtained
with the replica symmetric solution do not disagree much with numerical results. For
instance, the ground state zero-temperature energy density is E0 = −0.798 while with
numerical simulations one finds E0 ∼ −0.76.

For the p > 2 model one finds that the replica symmetric solution is stable at all
temperatures. However, the problem of the negative entropy remains and should be
solved by another solution. The transition must then have aspects of a first-order
one, with another solution appearing at low temperatures and becoming the most
convenient one at the transition.

4.8.2 One step replica symmetry breaking (1RSB)

The next challenge is to device a replica symmetry breaking Ansatz, in the form
of a matrix qab that is not invariant under permutations of rows or columns. There is
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Figure 39: Left: a one-step replica symmetry breaking (1RSB) Ansatz. Right: a two-
step replica symmetry breaking Ansatz. The elements on the main diagonal vanish
identically. In the 1RSB case the diagonal blocks have size m×m. In the 2RSB the
proceudre is repeated and one has blocks of size m1×m1 with smaller diagonal blocks
of size m2 ×m2.

no first principles way of doing this, instead, the structure of the Ansatz is the result
of trial and error. Indeed, a kind of minimal way to break the replica symmetry is to
propose a structure in blocks as the one shown in Fig. 39-left. The diagonal elements
are set to zero as in the RS case. Square blocks of linear size m close to the main
diagonal are filled with a paramater q1. The elements in the rest of the matrix take
a different value q0 and one takes 0 ≤ q0 ≤ q1. The matrix qab depends on three
parameters q0, q1, m and one has to find the values such that the free-energy density
is maximized! The conditions for a extreme are

∂f(q0, q1,m)

∂q0
=
∂f(q0, q1,m)

∂q1
=
∂f(q0, q1,m)

∂m
= 0 . (4.92)

In the SK model (p = 2) the 1RSB Ansatz yields a second order phase transition
(q0 = q1 = 0 and m = 1 at criticality) at a critical temperature Ts = J , that remains
unchanged with respect to the one predicted by the RS Ansatz. The 1RSB solution
is still unstable below Ts and in all the low temperature phase. One notices, however,
that the zero temperature entropy, even if still negative and incorrect, takes a value
that is closer to zero, S(T = 0) ≈ −0.01, the ground state energy is closer to the
value obtained numerically, and the replicon eigenvalue even if still negative has an
absolute value that is closer to zero. All this suggest that the 1RSB Ansatz is closer
to the exact solution.

Instead, in all cases with p ≥ 3 the 1RSB Ansatz is stable below the static critical
temperature Ts and all the way up to a new characteristic temperature 0 < Tf < Ts.
Moreover, one can prove that in this range of temperatures the model is solved exactly
by this Ansatz. The critical behavior is quite peculiar: while the order parameters q0
and q1 jump at the transition from a vanishing value in the paramagnetic phase to
a non-zero value right below Ts, all thermodynamic quantities are continuous since
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m = 1 at Ts and all q0 and q1 dependent terms appear multiplied by 1 −m. This
is a mixed type of transition that has been baptized random first-order. Note that
disorder weakens the critical behavior in the p ≥ 3-spin models. In the limit p → ∞
the solutions become m = T/Tc, q0 = 0 and q = 1.

4.8.3 k-step replica symmetry breaking (kRSB)

The natural way to generalize the 1RSB Ansatz is to propose a k-step one. In
each step the off-diagonal blocks are left unchanged while the diagonal ones of size
mk are broken as in the first step thus generating smaller square blocks of size mk+1,
close to the diagonal. At a generic k-step RSB scheme one has

0 ≤ q0 ≤ q1 ≤ . . . ≤ qk−1 ≤ qk ≤ 1 , (4.93)

n = m0 ≥ m1 ≥ . . . ≥ mk ≥ mk+1 , (4.94)

parameters. In the n → 0 limit the ordering of the parameters m is reversed

0 = m0 ≤ m1 ≤ . . . ≤ mk ≤ mk+1 . (4.95)

In the SK model one finds that any finite k-step RSB Ansatz remains unstable.
However, increasing the number of breaking levels the results continue to improve
with, in particular, the zero temperature entropy getting closer to zero. In the p ≥ 3
case instead one finds that the 2RSB Ansatz has, as unique solution to the saddle-
point equations, one that boils down to the 1RSB case. This suggests that the 1RSB
Ansatz is stable as can also be checked with the analysis of the Hessian eigenvalues:
the replicon is stricly positive for all p ≥ 3.

4.8.4 Full replica symmetry breaking

In order to construct the full RSB solution the breaking procedure is iterated an
infinite number of times. The full RSB Ansatz thus obtained generalizes the block
structure to an infinite sequence by introducing a function

q(x) = qi , mi+1 < x < mi (4.96)

with 0 ≤ x ≤ 1. Introducing q(x) sums over replicas are traded by integrals over x;
for instance

1

n

∑

a $=b

qlab =

∫ 1

0
dx ql(x) . (4.97)

The free-energy density becomes a functional of the function q(x). The extremization
condition is then a hard functional equation. A Landau expansion – expected to
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be valid close to the assumed second order phase transition – simplifies the task of
solving it. For the SK model one finds

q(x) =

{
x
2 , 0 ≤ x ≤ x1 = 2q(1) ,
qea ≡ qmax = q(1) , x1 = 2q(1) ≤ x ≤ 1 ,

(4.98)

at first order in |T − Tc|, with q(1) = |T − Tc|/Tc and x1 = 2q(1). The stability
analysis yields a vanishing replicon eigenvalue signalling that the full RSB solution is
marginally stable.

One can also recover the particular case of the 1RSB using a q(x) with two
plateaux, at q0 and q1 and the breaking point at x = m.

1

qea

0
10

q

x

RS 1

qea

0
1x10

q

x

1RSB 1

qea

0
1x10

q

x

Full RSB

Figure 40: The function q(x) for a replica symmetric (left), one step replica symmetry
breaking (center) and full replica symmetry breaking Ansätze.

Marginality condition

In the discussion above we chose the extreme that maximize the free-energy den-
sity since we were interested in studying equilibrium properties. We could, instead,
use a different prescription, though a priori not justified, and select other solutions.
For example, we can impose that the solution is marginally stable by requiring that
the replicon eigenvalue vanishes. In the p = 2 this leads to identical results to the
ones obtained with the usual prescription since the full-RSB Ansatz is in any case
marginally stable. In the p-spin models with p ≥ 3 instead it turns out that the
averaged properties obtained in this way correspond to the asymptotic values derived
with the stochastic dynamics starting from random initial conditions. This is quite a
remarkable result.

4.8.5 Interpretation of replica results

Let us now discuss the implications of the solution to fully-connected disordered
models obtained with the, for the moment, rather abstract replica formalism.

The interpretation uses heavily the identification of pure states. Their definition
is a tricky matter that we shall not discuss in detail here. We shall just assume it can
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be done and use the analogy with the ferromagnetic system – and its two pure states
– and the TAP results at fixed disorder. As we already know, which are the pure
states, its properties, number, etc. can depend on the quenched disorder realization
and fluctuate from sample to sample. We shall keep this in mind in the rest of our
discussion.

Let us then distinguish the averages computed within a pure state and over all
configuration space. In a ferromagnet with no applied magnetic field this is simple
to grasp: at high temperatures there is just one state, the paramagnet, while at low
temperatures there are two, the states with positive and negative magnetization. If
one computes the averaged magnetization restricted to the state of positive (negative)
magnetization one finds meq > 0 (meq < 0); instead, summing over all configurations
meq = 0 even at low temperatures. Now, if one considers systems with more than just
two pure states, and one labels them with Greeks indices, averages within such states
are denoted 〈O〉α while averages taken with the full Gibbs measure are expressed as

〈O 〉 =
∑

α

wJ
α 〈O 〉α . (4.99)

wJ
α is the probability of the α state given by

wJ
α =

e−βFJ
α

ZJ
, with ZJ =

∑

α

e−βFJ
α (4.100)

and thus satisfying the normalization condition
∑

α wJ
α = 1. F J

α can be interpreted as
the total free-energy of the state α. These probabilities, as well as the state dependent
averages, will show sample-to-sample fluctuations.

One can then define an overlap between states:

qJαβ ≡ N−1
∑

i

〈si〉α〈si〉β = N−1
∑

i

mα
i m

β
i (4.101)

and assume rename the self-overlap the ‘Edwards-Anderson parameter’

qJαα ≡ N−1
∑

i

〈si〉α〈si〉α ≡ qJ ea . (4.102)

The statistics of possible overlaps is then characterized by a probability function

PJ (q) ≡
∑

αβ

wJ
αw

J
β δ(q − qαβ) , (4.103)

where we included a subindex J to stress the fact that this is a strongly sample-
dependent quantity. Again, a ferromagnetic model serves to illustrate the meaning of
PJ (q). First, there is no disorder in this case so the J label is irrelevant. Second, the
high-T equilibrium phase is paramagnetic, with q = 0. P (q) is then a delta function
with weight 1 (see the left panel in Fig. 41). In the low-T phase there are only two
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pure states with identical statistical properties and qea = m2. Thus, P (q) is just the
sum of two delta functions with weight 1/2 (central panel in Fig. 41).

Next, one can consider averages over quenched disorder and study

[PJ(q) ] ≡
∫

dJ P (J)
∑

αβ

wJ
αw

J
β δ(q − qαβ) . (4.104)

How can one access PJ (q) or [PJ (q) ]? It is natural to reckon that

PJ (q) = Z−2
∑

σs

e−βEJ(σ)e−βEJ(s) δ

(

N−1
∑

i

σisi − q

)

(4.105)

that is to say, PJ (q) is the probability of finding an overlap q between two real replicas
of the system with identical disordered interactions in equilibrium at temperature T .
This identitiy gives a way to compute PJ(q) and its average in a numerical simu-
lation: one just has to simulate two independent systems with identical disorder in
equilibrium and calculate the overlap.

But there is also, as suggested by the notation, a way to relate the pure state
structure to the replica matrix qab. Let us consider the simple case

[mi ] =



Z−1
J

∑

{si}

si e
−βEJ({si})



 =




Zn−1
J

Zn
J

∑

{s1i}

s1i e−βEJ({s
1
i})





=




1

Zn
J

∑

{sai }

s1i e
−β
∑n

a=1
EJ({s

a
i })



 (4.106)

where we singled out the replica index of the spin to average. This relation is valid
for all n, in particular for n → 0. In this limit the denominator approaches one and
the average over disorder can be simply evaluated

[mi ] =
∑

{sai }

s1i e
−βEeff ({sai }) (4.107)

and introducing back the normalization factor Zn = 1 =
∑

{sai }
e−β

∑n

a=1
EJ ({s

a
i })

= [
∑

{sai }
e−β

∑n

a=1
EJ({s

a
i }) ] = e−βEeff ({sai }) we have

[mi ] = 〈 sai 〉Eeff (4.108)

with a any replica index. The average is taken over the Gibbs measure of a system with
effective Hamiltonian Eeff . In a replica symmetric problem in which all replicas are
identical this result should be independent of the label a. Instead, in a problem with
replica symmetry breaking the averages on the right-hand-side need not be identical
for all a. This could occur in a normal vectorial theory with dimension n in which
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not all components take the same expected value. It is reasonable to assume that the
full thermodynamic average is achieved by the sum over all these cases,

[mi ] = lim
n→0

1

n

n
∑

a=1

〈 sai 〉 . (4.109)

Let us now take a less trivial observable and study the spin-glass order parameter
q

q ≡ [ 〈 si 〉2 ] =



Z−1
J

∑

{si}

si e
−βEJ ({si}) Z−1

J

∑

{σi}

σi e
−βEJ({σi})





=




Zn−2

Zn

∑

{si},{σi}

siσi e
−βEJ ({si})−βEJ ({σi})





=




1

Zn
J

∑

{sai }

s1i s
2
i e−β

∑n

a=1
EJ ({s

a
i })



 (4.110)

In the n → 0 limit the denominator is equal to one and one can then perform the
average over disorder. Introducing back the normalization one then has

q = 〈 sai sbi 〉Eeff ({sai })
(4.111)

for any arbitrary pair of replicas a 0= b (since 〈 sai sai 〉 = 1 for Ising spins). The average
is done with an effective theory of n interacting replicas characterized by Eeff ({sai }).
Again, if there is replica symmetry breaking the actual thermal average is the sum
over all possible pairs of replicas:

q = lim
n→0

1

n(n− 1)

∑

a $=b

qab . (4.112)

A similar argument allows one to write

q(k) = [ 〈 si1 . . . sik 〉2 ] = lim
n→0

1

n(n− 1)

∑

a $=b

qkab . (4.113)

One can also generalize this argument to obtain

P (q) = [PJ (q) ] = lim
n→0

1

n(n− 1)

∑

a $=b

δ(q − qab) (4.114)

Thus, the replica matrix qab can be ascribed to the overlap between pure states.
Note that a small applied field, though uncorrelated with a particular pure state,

is necessary to have non-zero local magnetizations and then non-zero q values.
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Figure 41: [PJ (q) ] in a paramagnet (top left), in a ferromagnet or a replica symmetric
system (top right), in a model with a one step replica symmetry breaking solution
(bottom left) and for system with full RSB (bottom right).

The function P (q) then extends the concept of order parameter to a function. In
zero field the symmetry with respect to simultaneous reversal of all spins translates
into the fact that PJ (q) must be symmetric with respect to q = 0. [PJ(q) ] can
be used to distinguish between the droplet picture prediction for finite dimensional
spin-glasses – two pure states – that simply corresponds to

[PJ (q) ] =
1

2
δ(q − qea) +

1

2
δ(q + qea) (4.115)

(see the central panel in Fig. 41) and a more complicated situation in which [PJ(q) ]
has the two delta functions at ±qea plus non-zero values on a finite support (right
panel in Fig. 41) as found in mean-field spin-glass models.

The linear susceptibility

Taking into account the multiplicity of pure states, the magnetic susceptibility,
eq. (4.25), and using (4.99) becomes

Tχ = T [χJ ] = 1− 1

N

∑

i

[ 〈 si 〉2 ] = 1−
∑

αβ

[wJ
αw

J
β ] qαβ =

∫

dq (1−q)P (q) . (4.116)
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There are then several possible results for the susceptibiliy depending on the level of
replica symmetry breaking in the system:

• In a replica symmetric problem or, equivalently, in the droplet model,

χ = β(1− qea) . (4.117)

This is also the susceptibility within a pure state of a system with a higher level
of RSB.

• At the one step RSB level, this becomes

χ = β [1− (1−m)qea] . (4.118)

• For systems with full RSB one needs to know the complete P (q) to compute χ,
as in (4.116).

Note that in systems with RSB (one step or full) the susceptibility is larger than
β(1 − qea).

A system with qea = 1 in the full low-temperature phase (as the REM model
or p → ∞ limit of the p spin model, see below) has just one configuration in each
state. Systems with qea < 1 below Tc have states formed by a number of different
configurations that is exponentially large in N . (Note that qea < 1 means that the two
configurations differ in a number of spins that is proportional to N .) The logarithm
of this number is usually called the intra-state entropy.

Even if the number of pure states can be very large (exponential in N) only a
fraction of them can have a non-negligible weight. This is the case if one finds, for
example,

∑

α w2
α < +∞

Symmetry and ergodicity breaking

In all p ≥ 2 spin models there is a phase transition at a finite Ts at which the rather
abstract replica symmetry is broken. This symmetry breaking is accompanied by
ergodicity breaking as in the usual case. Many pure states appear at low temperatures,
each one has its reversed si → −si counterpart, but not all of them are related by
real-space symmetry properties.

The one-step RSB scenario

In this case the transition has first-order and second-order aspects. The order
parameters q0 and q1 jump at the critical point as in a first-order transition but the
thermodynamic quantities are continuous.

The full RSB scenario

Right below Tc an exponential in N number of equilibrium states appear. The
transition is continuous, the order parameter approaches zero right below Tc. Lower-
ing further the temperature each ergodic component breaks in many other ones. In
this sense, the full spin-glass phase, T < Tc, is ‘critical’ and not only the single point
Tc.
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Figure 42: A sketch of critical temperatures.

4.9 Finite dimensional systems

We start now the discussion on the statics of spin-glass models by describing briefly
scaling arguments and the droplet theory. Similar arguments can be used to study
other models with strong disorder, as a manifold in a random potential.

4.9.1 The Griffiths phase

The effects of quenched disorder show up already in the paramagnetic phase of
finite dimensional systems. Below the critical point of the pure case (no disorder)
finite regions of the system can order due to fluctuations in the couplings. Take the
case of random ferromagnetic interactions. Fluctuations in bonds can be such that in
a given region they take higher values than on average. In practice, at the working
temperature T that is higher than the transition temperature of the full system, T dis

c ,
a particular region can behave as if it had have an effective T loc

c that is actually higher
than Tc, see Fig. 42. Similarly, fluctuations can make a region more paramagnetic
than the average if the Jij ’s take smaller values [ Jij ]. (Note that Tc is typically
proportional to J , the strength of the ferromagnetic couplings. In the disordered case
we normalize the Jij ’s in such a way that [ Jij ] = Jpure. We can then compare the
disordered and the pure problems.)

These properties manifest in non-analyticities of the free-energy that appear in
a full interval of temperatures above (and below) the critical temperature of the
disordered model, as shown by Griffiths. For instance, deviations from Curie-Weiss
(χ = 1/T ) behavior appear below the Néel temperature of dilute antiferromagnets
in a uniform field. These are sometimes described with a Lorentzian distribution of
local temperatures with the corresponding Curie-Weiss law at each T . It is clear that
Griffiths effects will also affect the relaxation of disordered systems above freezing.
We shall not discuss these features in detail here.

4.9.2 Droplets and domain-wall stiffness

Let us now just discuss one simple argument that is at the basis of what is needed
to derive the results of the droplet theory without entering into the complications of
the calculations.

It is clear the structure of droplets, meaning patches in which the spins point in the
direction of the opposite state, plays an important role in the thermodynamic behavior
of systems undergoing a phase transition. At criticality one observes ordered domains
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of the two equilibrium states at all length scales – with fractal properties. Right above
Tc finite patches of the system are indeed ordered but these do not include a finite
fraction of the spins in the sample and the magnetization density vanishes. However,
these patches are enough to generate non-trivial thermodynamic properties very close
to Tc and the richness of critical phenomena. M. Fisher and others developed a droplet
phenomenological theory for critical phenomena in clean systems. Later D. S. Fisher
and D. Huse extended these arguments to describe the effects of quenched disorder
in spin-glasses and other random systems; this is the so-called droplet model.

Critical droplet in a ferromagnet

Let us study the stability properties of an equilibrium ferromagnetic phase under
an applied external field that tends to destabilize it. If we set T = 0 the free-energy is
just the energy. In the ferromagnetic case the free-energy cost of a spherical droplet
of radius R of the equilibrium phase parallel to the applied field embedded in the
dominant one (see Fig. 43-left) is

∆F (R) = −2ΩdR
dhmeq + Ωd−1R

d−1σ0 (4.119)

where σ0 is the interfacial free-energy density (the energy cost of the domain wall)
and Ωd is the volume of a d-dimensional unit sphere. We assume here that the droplet
has a regular surface and volume such that they are proportional to Rd−1 and Rd,
respectively. The excess free-energy reaches a maximum

∆Fc =
Ωd

d

Ωd
d−1

Ωd
d

(
d− 1

2dhmeq

)d−1

σd0 (4.120)

at the critical radius

Rc =
(d− 1)Ωd−1σ0
2dΩdhmeq

, (4.121)

see Fig. 43 (h > 0 and m > 0 here, the signs have already been taken into account).
The free-energy difference vanishes at

∆F (R0) = 0 ⇒ R0 =
Ωd−1σ0
2Ωdhmeq

. (4.122)

Several features are to be stressed:
• The barrier vanishes in d = 1; indeed, the free-energy is a linear function of R
in this case.

• Both Rc and R0 have the same dependence on hmeq: they monotonically
decrease with increasing hmeq vanishing for hmeq → ∞ and diverging for
hmeq → 0.

• In dynamic terms that we shall discuss later, the passage above the barrier is
done via thermal activation; as soon as the system has reached the height of
the barrier it rolls on the right side of ‘potential’ ∆F and the favorable phase
nucleates.
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Figure 43: Left: the droplet. Right: the free-energy density f(R) of a spherical
droplet with radius R.

• As long as the critical size Rc is not reached the droplet is not favorable and
the system remains positively magnetized.

In this example the field drives the system from one state to the other. In studies of
phase transitions at zero external field, temperature generates fluctuations of different
size and the question is whether these are favourable or not. The study of droplet
fluctuations is useful to establish whether an ordered phase can exist at low (but finite)
temperatures. One then studies the free-energy cost for creating large droplets with
thermal fluctuations that may destabilize the ordered phase, in the way we have done
with the simple Ising chain. Indeed, a fundamental difference between an ordered and
a disordered phase is their stiffness (or rigidity). In an ordered phase the free-energy
cost for changing one part of the system with respect to the other part far away is of
the order kBT and usually diverges as a power law of the system size. In a disordered
phase the information about the reversed part propagates only a finite distance (of
the order of the correlation length, see below) and the stiffness vanishes.

The calculation of the stiffness is usually done as follows. Antiparallel configura-
tions (or more generally the two ground states) are imposed at the opposite boundaries
of the sample. A domain wall is then generated somewhere in the bulk. Its free-energy
cost, i.e. the difference between the free-energies of the modified configuration and
the equilibrium one, is measured and one tests when creating a wall is favourable.

The Imry-Ma argument for the random field Ising model

Take a ferromagnetic Ising model in a random field, defined in eq. (4.20). In zero
applied field and low enough temperature, if d > 1 there is phase transition between a
paramagnetic and a ferromagnetic phase. Under the effect of a random field with very
strong typical strength, the spins align with the local external fields and the system
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is paramagnetic. It is, however, non-trivial to determine the effect of a relatively
weak random field on the ferromagnetic phase at sufficiently low temperature. The
long-range ferromagnetic order could be preserved or else the field could be enough
to break up the system into large but finite domains of the two ferromagnetic phases.

A qualitative argument to estimate whether the ferromagnetic phase survives or
not in presence of the external random field due to Imry and Ma. Let us fix T = 0
and switch on a random field. If a domain D of the opposite order (say down) is
created within the bulk of the ordered state (say up) the system pays an energy due
to the unsatisfied links lying on the boundary that is

∆Eborder ∼ 2JLd−1 (4.123)

where L is the linear length of the border and d− 1 is the dimension of the border of
a domain embedded in d a dimensional volume, assuming it is compact. By creating
a domain boundary the system can also gain a magnetic energy in the interior of the
domain due to the external field:

∆Erf ∼ −hLd/2 (4.124)

since there are N = Ld spins inside the domain of linear length L and, using the
central limit theorem, −h

∑

j∈D si ∼ −h
√
N = −hLd/2. The comparison between

these two energy scales yields

JLd−1
0 ∼ hLd/2

0

(
h

J

) 2
d−2

∼ L0 (4.125)

In the large L limit ∆E diverges to +∞ with increasing L in d > 2. The marginal
case d = 2 is more subtle and we do not discuss it in detail here. One can also search
for an extreme in ∆E(L) finding

Lc ∼
(
4J(d− 1)

hd

)2

. (4.126)

Several comments are in order:

• In d = 1 the energy difference is a monotonically decreasing function of L thus
suggesting that the creation of droplets is very favorable and there is no barrier
to cross to do it.

• In d > 2 the energy difference first decreases from ∆E(L = 0) = 0 to reach
a nagative minimum at Lc, and then increases back to pass through zero at
L0 and diverge at infinity. This indicates that the creation of domains at zero
temperature is not favorable in d > 2. Just domains of finite length, upto L0

can be created. Note that L0 increases with h/J in d > 2 and thus a higher
field tends to generate larger droplets and thus disorder the sample.
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With this argument one cannot show the existence of a phase transition at hc nor the
nature of it. The argument is such that it suggests that order can be supported by
the system at zero temperature and small fields.

An elastic line in a random potential

Let us take an interface model of the type defined in eq. (4.22) with N = 1.
If one assumes that the interfaces makes an excursion of longitudinal length L and
transverse length φ the leastic energy cost is

Eelast =
c

2

∫

ddx (∇φ(&x))2 ⇒ ∆Eelast ∼ cLd(L−1φ)2 = cLd−2φ2 (4.127)

If the excursion is sufficiently large, the interface meets φLd/∆d+1 impurities (that
is to say the volume of the displacement over the typical volume between impurities
given by the correlation length of disorder to the power given by the number of
dimensions). Each impurity applies a pinning force of the order of dV/dφ ∼

√

W/∆d

and then the energy gain due to the random potential is

∆Erandom ∼
√

W/∆d . (4.128)

The balance between the cost of elastic energy and the gain in random energy leads
to

φ ∼ ∆(L/ξ)(4−d)/3 (4.129)

where ξ = (c2∆4/W )1/(4−d) is the Larkin length and α = (4 − d)/3 is the Flory
exponent for the roughness of the surface. One then concludes that for d > 4 disorder
is irrelevant and the interface is flat (φ→ 0 when L→∞). Since the linearization of
the elastic energy [see the discussion leading to eq. (4.22)] holds only if φ/L . 1, the
result (4.129) may hold only for d > 1 where α < 1.

The 3d Edwards-Anderson model in a uniform magnetic field

A very similar reasoning is used to argue that there cannot be spin-glass order
in an Edwards-Anderson model in an external field. The only difference is that the
domain wall energy is here assumed to be proportional to Ly with an a priori unknown
d-dependent exponent y that is related to the geometry of the domains.
Comments

These arguments are easy to implement when one knows the equilibrium states.
They cannot be used in models in which the energy is not a slowly varying function
of the domain wall position.

4.9.3 The droplet theory

The droplet theory is a phenomenological model that assumes that the low tem-
perature phase of a spin-glass model has only two equilibrium states related by an
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overall spin flip. It is then rather similar to a ferromagnet, only that the nature of
the order in the two equilibrium states is not easy to see, it is not just most spins
pointing up or most spins pointing down with some thermal fluctuations within. At
a glance, one sees a disordered paramagnetic like configuration and a more elaborate
order parameter has to be measured to observe the order. The spin-glass phase is then
called a disguised ferromagnet and a usual spontaneous symmetry breaking (between
the two equilibrium states related spin reversal symmetry) leading to usual ergodicity
breaking is supposed to take place at Tc.

Once this assumption has been done, renormalization group arguments are used to
describe the scaling behavior of several thermodynamic quantities. The results found
are then quantitatively different from the ones for a ferromagnet but no novelties
appear.

5 Formalism: dynamic generating functional and
symmetries

In this Section we discuss some static and dynamic aspects of classical statistical
systems in the canonical ensemble. In this chapter we introduce the classical path
integral formalism. The symmetry arguments follow closely the discussion in [27].

5.1 Classical dynamics: generating functional

In Sect. 2.3 we showed a proof of the (generally non-Markov) Langevin equation
based on the integration over a large ensemble of harmonic oscillators that act as a
bath with which the system is set in contact.

Observables which are functions of the solution to the Langevin equation can also
be computed using a dynamic generating functional that reads [48]

Zd[η] ≡
∫

Dξ dP (t0) e
− 1

2kBT

∫ T

t0
dt′
∫ T

t0
dt′′ ξ(t′)Γ−1(t′−t′′)ξ(t′′)+

∫ T

t0
dt′ η(t′)xξ(t

′)

xξ(t) is the solution to the Langevin equation with initial condition x0 = x(t0), ẋ0 =
ẋ(t0) at the initial time t0. The factor dP (t0) is the measure of the initial condi-
tion, dP (t0) ≡ dx0dẋ0Pi[x0, ẋ0]. The Gaussian factor is proportional to P [ξ] the
functional probability measure of the noise. The measure is Dξ ≡

∏N
k=0 dξ(tk) with

k = 0, . . . ,N , tk = t0 + k(T t− t0)/N and N →∞ while (T − t0) remains finite. The

inverse kernel Γ−1 is defined within the interval [t0, T ]:
∫ T
t0

dt′′Γ(t− t′′)Γ−1(t′′− t′) =
δ(t− t′).

A very useful expression for Zd[η], usually called the Martin-Siggia-Rose gener-
ating functional (actually derived by Janssen [49]), is obtained by introducing the
identity

Eq[x(t)] ≡ mẍ(t) +

∫ T

t0

dt′ γ(t− t′)ẋ(t′) + V ′[x(t)] = ξ(t) (5.1)
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valid at each time t, with the delta function

1 =

∫

Dx δ [Eq[x(t)] − ξ(t)]
∣
∣
∣
∣
det
δEq[x(t)]

δx(t′)

∣
∣
∣
∣
, (5.2)

with Dx ≡
∏N

k=1 dx(tk). The factor |det . . . | is the determinant of the operator
δ(t − t′){m∂2t + V ′′[x(t)]} + γ(t − t′)∂t′ and ensures that the integral equals one.10

The delta function can be exponentiated with an auxiliary field ix̂ (using the Fourier

representation of the δ-function). Dix̂ =
∏N−1

k=1 dix̂(tk). The determinant can be
exponentiated with time-dependent anticommunting variables – opening the way to
the use of super-symmetry [39], a subject that we shall not touch in these notes.
However, since it does not yield a relevant contribution to the kind of dynamics we
are interested in, we forget it (one can show that the determinant is a constant for
Langevin processes with coloured noise and/or inertia and that the discretization of
an over-damped Langevin equation with white-noise can also be chosen to set it to
one – Itô convention, see App. 4.3). Zd reads

Zd[η, η̂] ≡
∫

DξDxDix̂ dP (t0)

×e
−
∫ T

t0
dt′ ix̂(t′)

[

mẍ(t′)+
∫ T

t0
dt′′ γ(t′−t′′)ẋ(t′′)+V ′[x(t′)]−ξ(t′)

]

×e
− 1

2kBT

∫ T

t0
dt′
∫ T

t0
dt′′ ξ(t′)Γ−1(t′−t′′)ξ(t′′)+

∫ T

t0
dt′ [η(t′)x(t′)+η̂(t′)ix̂(t′)]

where we have introduced a new source η̂(t), coupled to the auxiliary field ix̂(t). The
integration over the noise ξ(t) is Gaussian and it can be readily done; it yields

+
kBT

2

∫ T

t0

dt′
∫ T

t0

dt′′ ix̂(t′)Γ(t′ − t′′) ix̂(t′′) (5.3)

and, for a coloured bath, the environment generates a retarded interaction in the

effective action. In the usual white noise case, this term reduces to, kBTγ0
∫ T
t0

dt′ [ix̂(t′)]2,
a local expression. In the end, the generating function and resulting Martin-Siggia-
Rose-Jaenssen-deDominicis (MSRJD) action reads

Zd[η, η̂] ≡
∫

DxDix̂ dP (t0) e
S[x,ix̂,η,η̂]

S[x, ix̂, η, η̂] = −
∫

dt′ ix̂(t′)

{

mẍ(t′) +

∫

dt′′ γ(t′ − t′′)ẋ(t′′) + V ′[x(t′)]

}

+
kBT

2

∫

dt′
∫

dt′′ ix̂(t′)Γ(t′ − t′′)ix̂(t′′) + sources . (5.4)

10Its origin is in the change of variables. In the same way as in the one dimensional integral,∫

dx δ[g(x)] =
∫

dz 1/|g′[g−1(z)]| δ(z) = 1/|g′[g−1(0)]|, to get 1 as a result one includes the inverse

of the Jacobian within the integral:
∫

dx δ[g(x)] |g′(x)| = 1.
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All integrals runs over [t0, T ]. Causality in the integral over t′ is ensured by the fact
that γ is proportional to θ.

The MSRJD action has two kinds of contributions: the ones that depend on the
characteristics of the bath (through Γ) and the ones that do not. The latter also
exist in a functional representation of Newton dynamics and we call them Sdet (for
deterministic) while the former contain all information abour thermal fluctuations
and dissipation and we call it Sdiss (for dissipation):

S[x, ix̂, η, iη̂] = Sdiss[x, ix̂;Γ] + Sdet[x, ix̂, η, iη̂] . (5.5)

If the distribution of the initial condition were to be included in the action as an
additional term, lnPi[x0, ix̂0], 6t would be part of Sdet.

Interestingly enough, the dynamic generating functional at zero sources is
identical to one for any model:

Zd[η = 0, η̂ = 0] = 1 (5.6)

as can be concluded from its very first definition. In particular, it does not depend
on the coupling constants of the chosen model. This property will be utilized in
disordered systems to render the dynamic calculations relatively easier than the static
ones.

5.2 Generic correlation and response.

The mean value at time t of a generic observable A is

〈A(t)〉 =
∫

DxDix̂ dP (t0) A[x(t)] e
S[x,ix̂] , (5.7)

where S[x, ix̂] is ashort-hand notation for S[x, ix̂, η = 0, η̂ = 0]. The self-correlation
and linear response of x are given by

C(t, t′) = 〈x(t)x(t′)〉 = 1

Zd[η, η̂]

δ2Zd[η, η̂]

δη(t)δη(t′)

∣
∣
∣
∣
η=η̂=0

=
δ2Zd[η, η̂]

δη(t)δη(t′)

∣
∣
∣
∣
η=η̂=0

(5.8)

R(t, t′) =
δ〈x(t)〉
δh(t′)

∣
∣
∣
∣
h=0

= 〈x(t)δS[x, ix̂;h]
δh(t′)

〉|h=0 = 〈x(t)ix̂(t′)〉

=
1

Zd[η, η̂]

δ2Zd[η, η̂]

δη(t)δη̂(t′)

∣
∣
∣
∣
η=η̂=0

=
δ2Zd[η, η̂]

δη(t)δη̂(t′)

∣
∣
∣
∣
η=η̂=0

(5.9)

with h(t′) a small field applied at time t′ that modifies the potential energy according
to V → V − h(t′)x(t′). The ix̂ auxiliary function is sometimes called the response
field since it allows one to compute the linear response by taking its correlations with
x. Similarly, we define the two-time correlation between two generic observables A
and B,

CAB(t, t
′) ≡

∫

DxDix̂dP (t0)A[x(t)]B[x(t′)] eS[x,ix̂] = 〈A[x(t)]B[x(t′)]〉 (5.10)
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and the linear response of A at time t to an infinitesimal perturbation linearly applied
to B at time t′ < t,

RAB(t, t
′) ≡ δ〈A[x(t)]〉fB

δfB(t′)

∣
∣
∣
∣
fB=0

, (5.11)

with V (x) 6→ V (x) − fBB(x). The function B(x) depends only on x (or on an even
number of time derivatives, that is to say, it is even with respect to t → −t). By
plugging eq. (5.7) in this definition we get the classical Kubo formula for generic
observables:

RAB(t, t
′) = 〈A[x(t)] δS[x, ix̂; fB]

δfB(t′)
〉
∣
∣
∣
∣
fB=0

= 〈A[x(t)]ix̂(t′)B′[x(t′)]〉 (5.12)

with B′[x(t′)] = ∂xB[x(t′)]. This relation is also causal and hence proportional to
θ(t−t′); it is valid in and out of equilibrium. For B[x] = x it reduces to the correlation
between x and ix̂.

If the system has quenched random exchanges or any kind of disorder, one
may be interested in calculating the averaged correlations and responses over different
realizations of disorder. Surprisingly, this average is very easy to perform in a dynamic
calculation [50]. The normalization factors 1/Zd[η, η̂] in (5.8) and (5.9) have to be
evaluated at zero external sources in which they are trivially independent of the
random interactions. Hence, it is sufficient to average Zd[η, η̂] over disorder and
then take variations with respect to the sources to derive the thermal and disorder
averaged two-point functions. This property contrasts with an equilibrium calculation
where the expectation values are given by [〈A〉] = [1/Z

∑

conf A exp(−βH)], with [·]
denoting the disorder average. In this case, the partition function Z depends explicitly
on the random exchanges and one has to introduce replicas [40] to deal with the
normalization factor and do the averaging.

Having assumed the initial equilibration of the environment ensures that a normal
system will eventually equilibrate with it. The interaction with the bath allows the
system to dissipate its energy and to relax until thermalization is reached. However,
in some interesting cases, as the dyamics across phase transitions and glassy models,
the time needed to equilibrate is a fast growing function of N , the number of dy-
namic degrees of freedom. Thus, the evolution of the system in the thermodynamic
limit occurs out of equilibrium. In real systems, a similar situation occurs when the
equilibration time crosses over the observation time and falls out of the experimental
time-window.

A final interesting remark on the relevance of quenched disorder is the following.
When a system with quenched disorder evolves out of equilibrium at finite tempera-
ture, the correlation function and the response function do not depend on the real-
ization of disorder if the size of the system is large enough (the realization of disorder
has to be a typical one). These quantities are self-averaging. This statement is
easily checked in a simulation. When times get sufficiently long as to start seeing the
approach to equilibrium, dependencies on the realizations of disorder appear.
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5.2.1 The linear response as a variable-noise correlation

The correlation between coordinate and a generic colored noise can be obtained
from the variation with respect to λ(t, t′) of the generating functional once the source

∫

dt′′dt′′′ λ(t′′, t′′′)x(t′′)ξ(t′′′) (5.13)

has been added. Integrating over the noise and keeping only the linear terms in λ in
the effective action since all others will vanish when setting λ = 0

Linear terms =
kBT

2

∫

dt1dt2dt3dt4 [λ(t1, t2)x(t1)γ(t2, t3)ix̂(t4)δ(t4 − t3)

+ix̂(t1)δ(t1 − t2)γ(t2, t3)λ(t4, t3)x(t4)] . (5.14)

The variation with respect to λ(t, t′) yields (kBT )/2
∫

dt′′ [γ(t′, t′′) + γ(t′′, t′)]
〈x(t)ix̂(t′′)〉 = 〈x(t)ξ(t′)〉.

5.3 Time-reversal

Since it will be used in the rest of this chapter, we introduce the time-reversed
variable x̄ by x̄(t) ≡ x(−t) for all t. The time-reversed observable is defined as

Ar([x], t) ≡ A([x̄],−t). (5.15)

It has the effect of changing the sign of all odd time-derivatives in the expression of
local observables, e.g. if A[x(t)] = ∂tx(t) then Ar[x(t)] = −∂tx(−t). As an example
for non-local observables, the time-reversed Langevin equation reads

Eqr([x], t) = mẍ(t)− Fr([x], t) −
∫ T

−T
du γ(u− t)ẋ(u) . (5.16)

Notice the change of sign in front of the friction term that is no longer dissipative in
this new equation.

5.4 An equilibrium symmetry

If the initial time t0 is set to t0 = −T and the system is in equilibrium at this
instant, P−T is given by the Maxwell-Boltzmann measure. One can then check that
the zero-source action, S[x, ix̂], is fully invariant under the field transformation Tc
defined as

Tc ≡
{

xu 6→ x−u ,
ix̂u 6→ ix̂−u + βdux−u .

We introduced the notation xt = x(t) so as to make the notation more compact. Note
that dux−u = −d−ux−u. This transformation does not involve the kernel Γ and it in-
cludes a time-reversal. The invariance is achieved independently by the deterministic
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(Sdet) and dissipative (Sdiss) terms in the action. The former includes the contri-
bution from the initial condition, lnP−T . Moreover, the path-integral measure is
invariant since the Jacobian associated to this transformation is also block triangular
with ones on the diagonal. The proof goes as follows.

5.4.1 Invariance of the measure

The Jacobian Jc of the transformation Tc is the determinant of a triangular matrix:

Jc ≡ det
δ(x, x̂)

δ(Tcx, Tcx̂)
= det−1

uv

[
δx−u

δxv
0

δx̂−u

δxv

δx̂−u

δx̂v

]

=
(

det−1
uv [δu+v]

)2
= 1

and it is thus identical to one.

5.4.2 Invariance of the integration domain

Before and after the transformation, the functional integration on the field x is
performed for values of xt on the real axis. However, the new domain of integration
for the field x̂ is complex. For all times, x̂t is now integrated over the complex line
with a constant imaginary part −iβ∂txt. One can return to an integration over the
real axis by closing the contour at both infinities. Indeed the integrand, eS , goes
to zero sufficiently fast at xt → ±∞ for neglecting the vertical ends of the contour
thanks to the term β−1γ0(ix̂t)2 (in the white noise limit or the correspondong ones in
colored noise cases) in the action. Furthermore the new field is also integrated with
the boundary conditions x̂(−T ) = x̂(T ) = 0.

5.4.3 Invariance of the action functional

The deterministic contribution satisfies

Sdet[Tcx, Tcx̂] = lnPi(xT , ẋT )−
∫

u
[ix̂−u + β∂ux−u]

[

m∂2ux−u + V ′(x−u)
]

= lnPi(xT , ẋT )−
∫

u
ix̂u [mẍu + V ′(xu)] + β

∫

u
ẋu [mẍu + V ′(xu)]

= lnPi(xT , ẋT )−
∫

u
ix̂u [mẍu + V ′(xu)] + β

∫

u
∂u lnPi(xu, ẋu)

= Sdet[x, x̂] ,

where we used the initial equilibrium measure lnPi(x, ẋ) = −β
(
1
2mẋ2 + V (x)

)

− lnZ.
In the first line we just applied the transformation, in the second line we made the
substitution u 6→ −u, in the third line we wrote the last integrand as a total derivative
the integral of which cancels the first term and recreates the initial measure at −T .
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Secondly, we show that the dissipative contribution is also invariant under Tc. We
have

Sdiss[Tcx, Tcx̂] =

∫

u
[ix̂−u + β∂ux−u]

∫

v
β−1 γu−v ix̂−v

=

∫

u
[ix̂u − βẋu]

∫

v
γv−uβ

−1ix̂v

= Sdiss[x, x̂] .

In the first line we just applied the transformation, in the second line we made the
substitution u 6→ −u and v 6→ −v and in the last step we exchanged u and v.

5.4.4 Invariance of the Jacobian (Grassmann variables)

Finally we show that the Jacobian term in the action is invariant once it is ex-
pressed in terms of a Gaussian integral over conjugate Grassmann fields (c and c∗)
and provided that the transformation Tc is extended to act on these as follows11

Tc ≡
{

xu 6→ x−u , cu 6→ c∗−u ,
ix̂u 6→ ix̂−u + β∂ux−u , c∗u 6→ −c−u .

(5.17)

We start from

SJ [c, c∗, x] =

∫

u

∫

v
c∗u
[

m∂2uδu−v + ∂uγu−v

]

cv +

∫

u
c∗uV

′′(xu)cu (5.18)

and we have

SJ (Tcc, Tcc∗, Tcx)

= −
∫

u

∫

v
c−u

[

m∂2uδu−v + ∂uγu−v

]

c∗−v +

∫

u
c−u [−V ′′(x−u)] c

∗
−u

=

∫

u

∫

v
c∗v
[

m∂2uδv−u − ∂uγv−u

]

cu +

∫

u
c∗uV

′′(xu)cu

= SJ (c, c∗, x) .

In the first line we just applied the transformation, in the second line we exchanged
the anti-commuting Grassmann variables and made the substitutions u 6→ −u and
v 6→ −v, finally in the last step we used ∂vγv−u = −∂vγu−v and we exchanged u and
v. Finally the set of boundary conditions [ c(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T )] is left
invariant.

5.5 Consequences of the transformation

We now use the transformation Tc to derive a number of exact results.

11More generally, the transformation on c and c∗ is cu #→ α c∗
−u and c∗u #→ −α−1 c−u with α ∈ C∗.
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5.5.1 The fluctuation-dissipation theorem

This symmetry implies

〈xtix̂t′〉S[x,ix̂] = 〈TcxtTcix̂t′〉S[Tcx,Tcix̂]

= 〈x−tix̂−t′〉S[x,ix̂] + β〈x−tdt′x−t′〉S[x,ix̂] (5.19)

that, using time-translational invariance and τ ≡ t− t′, becomes

R(τ) −R(−τ) = −βdτC(−τ) = −βdτC(τ) . (5.20)

For generic observables one can similarly apply the Tc transformation to expres-
sion (5.12) of the linear response

RAB(τ) −RArBr (−τ) = −βdτCAB(−τ) = −βdτCAB(τ) . (5.21)

where we defined Ar and Br as

Ar([x], t) ≡ A([x̄],−t) . (5.22)

Take for instance a function A[x(t), t] =
∫

duf(x(u))δ(u− t) +
∫

duf(ẋ(u))δ(u− t) +
∫

duf(ẍ(u))δ(u − t) + . . . then Ar[x(t), t] = A[x(−t),−t] =
∫

duf(x(−u))δ(u + t) +
∫

duf(ẋ(−u))δ(u + t) +
∫

duf(ẍ(−u))δ(u+ t) + . . ..
Relations between higher order correlation functions evaluated at different times

t1, t2, . . . tn are easy to obtain within this formalism.

5.5.2 Fluctuation theorems

Let us assume that the system is initially prepared in thermal equilibrium with
respect to the potential V (x,λ−T )12. The expression for the deterministic part of the
MSRJD action functional is

Sdet[x, x̂;λ, f] = −βH([x−T ],λ−T )− lnZ(λ−T )

−
∫

u
ix̂u [mẍu + V ′(xu,λu)− fu[x]] ,

where H([xt],λt) ≡ 1
2mẋ2

t + V (xt,λt) and f is a non-conservative force applied on
the system. The external work done on the system along a given trajectory between

12This is in fact a restriction on the initial velocities, ẋ−T , that are to be taken from the Maxwell
distribution with temperature β−1, independently of the positions x−T . These latter can be chosen
from a generic distribution since the initial potential can be tailored at will through the λ dependence
of V .
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times −T and T is given by

W [x;λ, f] ≡
∫ uλT

uλT

dE =

∫ uλT

uλT

duV =

∫ uλT

uλT

∂uλu ∂λV +

∫

u
ẋu ∂xV

=

∫ uλT

uλT

∂
uλT
uλT

λu ∂λV (xu,λu) +

∫ uλT

uλT

ẋu fu[x] (5.23)

where we take into account the time variation of the parameter λ.

Fluctuation Theorem 1.

The transformation Tc does not leave Sdet invariant but yields

Sdet[x, x̂;λ, f]
Tc6−→ Sdet[x, x̂; λ̄, fr]− β∆F − βW [x; λ̄, fr] (5.24)

where Sdet[x, x̂; λ̄, fr] is the MSRJD action of the system that is prepared (in equi-
librium) and evolves under the time-reversed protocol (λ̄(u) ≡ λ(−u)) and external
forces (fr([x], u) ≡ f([x̄],−u)). ∆F is the change in free energy: β∆F = lnZ(λ(−T ))−
lnZ(λ(T )) between the initial and the final ‘virtual’ equilibrium states. W is defined
above. The dissipative part of the action, Sdiss does not involve λ and it is still invari-
ant under Tc. This means that, contrary to the external forces, the interaction with
the bath is not time-reversed: the friction is still dissipative after the transformation.
This immediately yields

〈A[x, x̂]〉Sc[x,x̂;λ,f] = e−β∆F〈A[Tcx, Tcx̂]e−βW [x;λ̄,fr]〉Sc[x,x̂;λ̄,fr] (5.25)

for any functional A of x and x̂. In particular for a local functional of the field,
A[x(t)], it leads to the Crooks relation

〈A[x(t)]〉Sc [x,x̂;λ,f] = e−β∆F〈Ar[x(−t)]e−βW [x;λ̄,fr]〉Sc[x,x̂;λ̄,fr] , (5.26)

or also

〈A[x(t)]B[x(t′)]〉Sc[x,x̂;λ,f]

= e−β∆F〈Ar[x(−t)]Br[x(−t′)]e−βW [x;λ̄,fr]〉Sc[x,x̂;λ̄,fr]. (5.27)

Setting A[x, x̂] = 1, we obtain the Jarzynski equality

1 = eβ∆F〈e−βW [x;λ,f]〉Sc[x,x̂;λ,f] . (5.28)

Setting A[x, x̂] = δ(W −W [x;λ, f]) we obtain the transient fluctuation theorem

P (W ) = Pr(−W ) eβ(W−∆F) , (5.29)

where P (W ) is the probability for the external work done between −T and T to be
W given the protocol λ(t) and the non-conservative force f([x], t). Pr(W ) is the same
probability, given the time-reversed protocol λ̄ and time-reversed force fr.
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Fluctuation Theorem 2.

The result we prove in the following lines is not restricted to Langevin processes
with an equilibrium dissipative bath. It applies to generic classical equations of
motion, with or without stochastic noise. In short, the proof consists in applying
time-reversal on the system and yields an equality between observables and their
time-reversed counterparts in a so-called backward (B) process in which the system
is prepared in equilibrium with respect to the final conditions of the forward process
and is evolved according to the time-reversed equations of motions and protocol. Let
us rewrite the action as

Sc[x, x̂,λ] = −βH(x−T , ẋ−T ,λ−T )−
∫

u
ix̂u Eq([xu],λu)

+
1

2

∫

u

∫

v
ix̂u β

−1Γuv ix̂v − lnZ(λ−T ) ,

and apply the following time-reversal of the fields

Ttr ≡
{

xu 6→ x−u ,
ix̂u 6→ ix̂−u .

(5.30)

This yields

Sc[x, x̂,λ] 6→ −βH([xT ], λ̄T )−
∫

u
ix̂uEqr([xu], λ̄u)

+
1

2

∫

u

∫

v
ix̂u β

−1Γuv ix̂v − lnZ(λ−T )

or, by introducing zeroes:

−βWr − βH([x−T ], λ̄−T )−
∫

u
ix̂uEqr([xu], λ̄u)

+
1

2

∫

u

∫

v
ix̂u β

−1Γuv ix̂v − β∆F − lnZ(λ̄−T ) , (5.31)

where ∆F ≡ F(λT )−F(λ−T ) is the free-energy difference between the two ‘virtual’
equilibrium states corresponding to λT and λ−T . Wr ≡ H([xT ], λ̄T )−H([x−T ], λ̄−T )
is the work applied on the system that evolves with the time-reversed equation of
motion Eqr and under the time-reversed protocol λ̄. In particular and contrary to
the previous paragraph, the friction is no longer dissipative after the transformation.
This defines the backward (B) process. Finally, for any observable A[x, x̂] we get the
relation

〈A[x, x̂]〉F = e−β∆F〈A[x̄, x̂]e−βWr〉B . (5.32)

In particular, for two-time correlations, it reads

〈A[x(t)]B[x(t′)]〉F = e−β∆F〈Ar[x(−t)]Br[x(−t′)]e−βWr〉B . (5.33)
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Setting A[x, x̂] = δ(W −W [x;λ, f ]) we obtain the transient fluctuation theorem

PF (W ) = PB(−W ) eβ(W−∆F) , (5.34)

where PF (W ) is the probability for the external work done between −T and T to be
W in the forward process. PB(W ) is the same probability in the backward process.

5.6 Equations on correlations and linear responses

Take any Langevin process in the MSRJD path-integral formalism. From the
following four identities

〈
δix̂(t)

δix̂(t′)

〉

=

〈
δx(t)

δx(t′)

〉

= δ(t− t′) ,

〈
δx(t)

δix̂(t′)

〉

=

〈
δix̂(t)

δx(t′)

〉

= 0 , (5.35)

where the angular brackets indicate an average with the MSRJD weight, after an
integration by parts, one derives four equations

〈

x(t)
δS

δx(t′)

〉

= −δ(t− t′) ,

〈

ix̂(t)
δS

δix̂(t′)

〉

= −δ(t− t′) , (5.36)

〈

x(t)
δS

δix̂(t′)

〉

= 0 ,

〈

ix̂(t)
δS

δx(t′)

〉

= 0 . (5.37)

The second and third one read
〈

ix̂(t)

{

mẍ(t′) +

∫

dt′′ γ(t′ − t′′) ẋ(t′′) + V ′[x(t′)]

}〉

+kBT

∫

dt′′ Γ(t′ − t′′) 〈ix̂(t)ix̂(t′′)〉 = δ(t− t′) ,
〈

x(t)

{

mẍ(t′) +

∫

dt′′ γ(t′ − t′′) ẋ(t′′) + V ′[x(t′)]

}〉

+kBT

∫

dt′′ Γ(t′ − t′′) 〈x(t)ix̂(t′′)〉 = 0 , (5.38)

while the other ones, once causality is used (basically 〈x(t′)ix̂(t)〉 = 0 for t > t′ and
〈ix̂(t)ix̂(t′)〉 = 0) do not yield further information. All terms are easily identified with
the four types of two-time correlations apart from the ones that involve the potential
and are not necessarily quadratic in the fields. The linear terms in two-time functions
can be put together after identifying the free-operator

G−1
0 (t′, t′′) = δ(t′ − t′′)m

d2

dt′′2
+ γ(t′ − t′′)

∂

∂t′′
(5.39)

The non-linear terms can be approximated in a number of ways: perturbation theory
in a small parameter, Gaussian approximation of the MSRJD action, self-consistent
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approximations, etc. The choice should be dictated by some knowledge on the sys-
tem’s behavior one wishes to reproduce. In short then

0 =

∫

dt′′G−1
0 (t′, t′′)C(t′′, t) + 〈x(t)V ′[x(t′)]〉+ kBT

∫

dt′′Γ(t′ − t′′)R(t, t′′) ,

δ(t− t′) =

∫

dt′′G−1
0 (t′, t′′)R(t′′, t) + 〈ix̂(t)V ′[x(t′)]〉 . (5.40)
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6 Dynamic equations

The generating functionals, with their effective actions, are the adequate starting
point to apply perturbation theory (when it is accepted), self-consistent approxima-
tions such as the mode-coupling approach, or even more sophisticated techniques as
the functional renormalization group. In this section we discuss a number of proper-
ties of the generating functional and the ensuing dynamic equations, that we derive
in a different ways.

6.1 Connection with the replica formalism

The effective action in a supersymmetric formulation of the generating function has
a kinetic minus a potential term V [Φ]. When applying the replica trick to compute the
free-energy a replicated effective potential V [φa] appears. A connection between the
two formalism, that is based on the similarity between the zero-dimensional replica
space and the susy one, has been exploited. Roughly speaking, many properties
of the replica overlap Qab ≡ N−1

∑N
i=1〈sai sbi〉 finds a counteraprt in the dynamic

susy correlator Q(a, b). For instance, a summation over a replica index,
∑n

a=1 when
n → 0, translates into an integration over the supercoordinate

∫

da. For the moment,
though, the connection is empirical and a formalization of the relation between the
two approaches would be welcome.

6.2 Average over disorder

In general one is interested in the evolution of a model in which the configuration
of disorder is typical. One could either attempt to solve the dynamics for one such
disorder realization or one can assume that the behavior of a typical system is de-
scribed by the averaged behavior over all systems, each weighted with its probability.
Since the former procedure is more difficult than the latter one usually studies the
dynamics averaged over disorder and computes:

[〈A(t)〉] =
∫

dJP (J)
∫

DφDiφ̂ A[φ, iφ̂] e−Seff[φ,iφ̂]

∫

dJP (J)
∫

Dφ
∫

Diφ̂ e−Seff[φ,iφ̂]
. (6.1)

J represents here the random exchanges. Similarly, one can perform an average over
a random potential.

One of the advantages of using a dynamic formalism is that when the initial
conditions are uncorrelated with disorder there is no need to use the replica trick to
average over disorder [50]. Indeed, the classical generating functional is constructed
from a path integral that is identical to 1 (and hence independent of disorder) in the
absence of sources. The same holds for the quantum Schwinger-Keldysh generating
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functional, Trρ̂red(0) = 1, since we have chosen a diagonal density matrix as the
initial condition for the system. Thus,

[〈A(t)〉] =
∫

dJP (J)

∫

DφDiφ̂ A[φ, iφ̂] e−Seff[φ,iφ̂] (6.2)

and these averages can be simply computed from [ZJ ].
If the initial condition is correlated with the random exchanges or the random

potential, the situation is different. One such example is the study of the equilibrium
dynamics of a disordered model, i.e. the study of the evolution of initial conditions
taken from Pgb. In this case, the use of replicas to average lnZ is unavoidable and
one is forced to treat replicated dynamic correlators. The initial density operator is
a Boltzmann factor that is represented with the Matsubara formalism while the real-
time dynamics is written with the Schwinger-Keldysh approach. Mixed correlators
and responses intervene in the dynamic equations.

6.3 The equations

We present three derivations of the dynamic equations for the macroscopic or-
der parameters that use the classical or quantum dynamic generating functionals as
starting points. Each method is better adapted for different kinds of models.

6.3.1 Supersymmetry and saddle-points

In the white noise limit Z can be written in a much more compact form if one intro-
duces the super-field formulation of stochastic processes. One first enlarges (space)-
time to include two Grassmann coordinates θ and θ, i.e. t → a = (t, θ, θ). The
dynamic variable x(t) and the auxiliary variable ix̂(t) together with the fermionic
ones ψ(t) and ψ(t), used to express the Jacobian, are encoded in a super-field,

Φ(a) = x(t) + θψ(t) + ψ(t)θ + ix̂(t)θθ . (6.3)

With these definitions,

Z[η] =

∫

dΦ exp

(
1

2

∫

da Φ(a)D(2)
a Φ(a)−

∫

da V [Φ(a)] +

∫

daΦ(a)η(a)

)

with a = (t, θ, θ), da = dtdθdθ, and the dynamic operator D(2)
a defined as

−D(2)
a = 2γkBT

∂2

∂θ∂θ
+ 2γθ

∂2

∂θ∂t
− γ ∂

∂t
−Mθ

∂3

∂∂θ∂t2
. (6.4)

If the model is spherically constrained, −D(2)
a → −D(2)

a − µ(a) with µ(a) a super
Lagrange multiplier introduced to enforce the constraint. The delta function δ(a−b) is
defined in Appendix 4.7 and it satisfies

∫

dbδ(a−b)f(b) = f(a). The super-symmetric
notation allows one to encode in the single super correlator Q(a, b) ≡ 〈Φ(a)Φ(b)〉 all
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correlators and responses. The generalization to a system with N degrees of freedom
is immediate.

Even though the use of the susy notation is not necessary to derive the dynamic
equations, it is very useful in several aspects. Firstly, it allows to establish contact
with the replicated version of the static partition function and the further study of
this quantity; secondly, it is very useful as a bookkeeping tool; thirdly, it allows us to
develop more sophisticated techniques amenable to derive the dynamic equations of
models without fully connected interactions.

Since for classical models the use of white noises is rather generally justified we
shall stick to this case. Moreover, we shall drop the inertial contribution to further
simplify the presentation. We analyze here models with N variables &φ = (φ1, . . . ,φN ).
In susy notation we then set the sources to zero and we add a Lagrange multiplier

−D(2)
a into −D(2)

a − µs(a) with µa a super-field to impose the spherical constraint
(µs(a) = µ(t) + fermionic + µ̂(t)θθ, µ̂(t) is a Lagrange multiplier that fixes the mea-
sure of integration and µ(t) enters the Langevin equation). Soft spins with their
corresponding potential energy can be studied in a similar way though their treat-
ment is slightly more complicated. The potential energy of a rather generic fully
connected disordered model can be expressed as a series expansion of the form

V [Φ] = g
∞
∑

r≥0

Fr

∑

i1<...<ir+1

Ji1...ir+1 Φi1 . . .Φir+1 , (6.5)

For each r the sum is taken over all possible groups of r+1 spins. The fully-connected
character of the model implies that there is no notion of distance or geometry. Ji1...ir+1

are random interactions taken from a Gaussian distribution with zero mean and vari-
ance [J2

i1...ir+1
] = (r + 1)!/(2N r). Thus (6.5) is a Gaussian random potential with

[V (&Φ(a))V (&Φ(b))] = Ng2
∞
∑

r≥0

F 2
r

(

&Φ(a) · &Φ(b)
N

)r+1

= N V•

(

&Φ(a) · &Φ(b)
N

)

. (6.6)

The scalar product in the second member is defined as &Φ(a) · &Φ(b) =
∑

i Φi(a)Φi(b).
The bullet means that the powers are taken locally in the super-coordinates a and b
and they do not involve an operational product. The term r = 0 corresponds to a
random field linearly coupled to the spin, the term r = 1 is quadratic in the fields
while for r ≥ 2 we obtain higher order interactions. If Fr = Fp 0= 0, p ≥ 2 and all
other Fr = 0 one recovers a spherical p spin model. If two parameters are non-zero
one obtains a model with two p spin terms. The model of a particle in an infinite
dimensional spherical random environment correlated also falls in this category if one
can expand the correlator in a power series.

The disordered averaged generating functional reads

[Z] =

∫

DΦ e
−
∫

da 1
2

∑

i
Φi(a) (−D(2)

a −µs(a)) Φi(a)+N
2

∫
dadb V•

(
"Φ(a)·"Φ(b)

N

)

. (6.7)
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Introducing the order parameter Q(a, b) = N−1
∑N

i=1 Φi(a)Φi(b) through

1 ∝
∫

DQDiQ̃ e
− 1

2

∫
da db

(
NiQ̃(a,b)Q(a,b)−iQ̃(a,b)

∑N

i=1
Φi(a)Φi(b)

)

(6.8)

yields

[Z] =

∫

DΦDQDiQ̃ exp

[

−1

2

∫

dadb
(

NiQ̃(a, b)Q(a, b)−NV•(Q(a, b))

−
N
∑

i=1

Φi(a) (−D(2)
a − µs(a)) δ(a− b)− iQ̃(a, b)) Φi(b)

)]

. (6.9)

(Again we omit irrelevant normalization constants.) Note that all terms in the ex-
ponent are order N if the integrals yield finite contributions. We call the models for
which this is true “mean-field” since the saddle-point evaluation of the integral when
N →∞ is exact without including fluctuations.

The saddle-point values for the Landau fields Q are simply related to correlations
of the original spins. Indeed, evaluating the generating function in Eq. (6.9) with a
saddle-point approximation

0 =
δS

δiQ̃(a, b)

∣
∣
∣
∣

Qsp

⇒ NQsp(a, b) =
N
∑

i=1

〈Φi(a)Φi(b)〉Z̃[Q] , (6.10)

where the average on the rhs is taken with the generating functional

Z̃[Q] ≡
∫

DΦDQ e
∫

dadb 1
2

[∑N

i=1
Φi(a)(−D(2)

a −µs(a))δ(a−b)Φi(b)+NV•(Q(a,b))
]

.

Opening up the susy notation Eq. (6.10) implies, as expected,

NCsp(t1, t2) =
N∑

i=1

〈qi(t1)qi(t2)〉Z̃[Q] , NQ̂sp(t1, t2) =
N∑

i=1

〈iq̂i(t1)iq̂i(t2)〉Z̃[Q] ,

NRsp(t1, t2) =
N
∑

i=1

〈qi(t1)iq̂i(t2)〉Z̃[Q] , NR†
sp(t1, t2) =

N
∑

i=1

〈iq̂i(t1)qi(t2)〉Z̃[Q] .

Going back to Eq. (6.9) we can now shift iQ̃, Q ≡ (−D(2)
a −µ(t)) δ(a−b)−iQ̃(a, b),

and integrate over Φi

[Z] =

∫

DQDQ e−
N
2

∫
dadb [Q(a,b)Q(a,b)+(−D(2)

a −µ(t))δ(a−b) Q(a,b)−V•(Q(a,b))]

×e−
N
2 TrLnQ .
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Using a saddle-point evaluation, we eliminate Q, and we obtain [Z] =
∫

DQ exp[−NSeff(Q)] with

2Seff(Q) =

∫

dadb
[

[−D(2)
a − µs(a)]δ(a− b)Q(a, b)− V•(Q(a, b))

]

−TrLnQ . (6.11)

The saddle-point equation over Q, δSeff/δQ = 0, yields the dynamic equation

(D(2)
a + µ(t))δ(a− b) +Q−1(a, b) + V•′(Q(a, b)) = 0 , (6.12)

that takes a more convenient form after multiplying operationally by Q:

(D(2)
a + µ(t))Q(a, b) + δ(a− b) +

∫

da′ Σ(a, a′)Q(a′, b) = 0 , (6.13)

with the self-energy defined as

Σ(a, b) ≡ V•′(Q(a, b)) = g2
∞
∑

r≥0

F 2
r (r + 1)Q(a, b)• r . (6.14)

We have recasted the saddle-point dynamic equation in the form of a Schwinger-Dyson
equation. The dynamic field is here a susy correlator that encodes the usual corre-
lation function, the advance and retarded linear responses and the fourth correlator
(that vanishes for causal problems):

G
−1
o (t)R(t, t′) = δ(t− t′) + 2γQ̂(t, t′) +

∫

dt′′ [Σ(t, t′′)R(t′′, t′)

+D(t, t′′)Q̂(t′′t, t′)] ,

G
−1
o (t)C(t, t′) = 2γkBTR(t′, t) +

∫

dt′′ Σ(t, t′′)C(t′′, t′)

+

∫

dt′′ +D(t, t′′)R(t′, t′′) ,

G
−1
o

†
(t)R†(t, t′) = δ(t− t′) +

∫ ∞

0
dt′′ Σ†(t′′, t)R(t′, t′′)

+

∫

dt′′ Σ̂(t, t′′)C(t′′, t′) + 2µ̂(t)C(t, t′) ,

G
−1
o

†
(t)Q̂(t, t′) =

∫

dt′′ Σ†(t, t′′)Q̂(t′′, t′) +

∫

dt′′ Σ̂(t, t′′)R(t′′, t′)

+2µ̂(t)R(t, t′) ,

with G
−1
o (t) ≡ M∂2t + γ∂t+µ(t), G

−1
o

†
(t) ≡ M∂2t − γ∂t+µ(t), Σ†(t, t′) = Σ(t′, t) and

Σ(t, t′′) = g2
∑

r≥0

F 2
r (r + 1)r Cr−1(t, t′′)R(t, t′′) (6.15)
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D(t, t′′) = g2
∑

r≥0

F 2
r (r + 1)Cr(t, t′′) (6.16)

Σ̂(t, t′′) = g2
∑

r≥0

F 2
r (r + 1)r Cr−1(t, t′′)Q̂(t, t′′) . (6.17)

We set to zero all fermionic correlators. We call the above integro-differential equa-
tions the Schwinger-Dyson equations for R, C R† and Q̂, respectively.

Causality can be used to simplify the four Schwinger-Dyson equations consider-
ably. For t′ > t one has R(t, t′) = 0 while for t > t′ one has R(t′, t) = 0. Rewriting the
equations for R and R† with these two choices of times one easily sees that Q̂(t, t′) = 0
for all t and t′ (note that Q̂ is symmetric in t and t′) and µ0(t) = 0 for all t. Thus,
the equation for Q̂ vanishes identically when causality holds. In the following we
search for causal solutions and we work with their simplified version. We loose in
this way the possibility of finding solutions that break causality which are related to
instantons. We shall come back to this point later. If we focus on the case t > t′ the
dynamic equations x(

G
−1
o (t)R(t, t′) =

∫ t

t′
dt′′ Σ(t, t′′)R(t′′, t′) , (6.18)

G
−1
o (t)C(t, t′) =

∫ t′

0
dt′′D(t, t′′)R(t′, t′′) +

∫ t

0
dt′′Σ(t, t′′)C(t′, t′′) . (6.19)

In their integrated form they read

R(t, t′) = Go(t, t
′) +

∫ t

t′
dt′′
∫ t′′

t′
dt′′′ Go(t, t

′′)Σ(t′′, t′′′)R(t′′′, t′) , (6.20)

C(t, t′) =

∫ t

0
dt′′
∫ t′

0
dt′′′R(t, t′′)D(t′′, t′′′)R(t′, t′′′) , (6.21)

with the propagator given by G−1
o (t, t′) ≡ δ(t− t′)G

−1
o (t).

The equation for µ(t) can be derived from the Schwinger-Dyson equation by im-
posing the spherical constraint through the evaluation at t = t′. Multiplying opera-
tionally by G−1

o one obtains

µ(t) =

∫ t

0
dt′′ [Σ(t, t′′)C(t, t′′) +D(t, t′′)R(t, t′′)]

+M

∫ t

0
dt′′
∫ t

0
dt′′′ (∂tR(t, t′′))D(t′′, t′′′) (∂tR(t, t′′′)) (6.22)

+ M2
[

∂tR(t, s)∂2stC(s, t)− ∂2stR(t, s)∂t′C(s, t′)
]∣
∣
s→0 t→t′

.

The last two terms are a consequence of having a kinetic term with second derivatives.
It can be easily identified with minus the second-derivative of the correlation at equal
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times by taking the limit t′ → t− in Eq. (6.19). Thus

µ(t) =

∫ t

0
dt′′ [Σ(t, t′′)C(t, t′′) +D(t, t′′)R(t, t′′)]−M

∂2

∂t2
C(t, t′)

∣
∣
∣
∣
t′→t−

. (6.23)

One way of deriving the equation for µ(t) for a Langevin process with white noise
and no inertia goes as follows. Considering t > t′ in the complete Schwinger-Dyson
equation for C and taking t′ → t−, and considering t < t′ in the same equation and
taking t′ → t+, one finds

lim
t′→t−

∂tC(t, t′) = lim
t′→t+

∂tC(t, t′)− 2kBT (6.24)

where we used R(t, t′ → t−) = 1/γ. The derivative of C has a cusp at t =
t′. The symmetry of the correlation function about t = t′ implies C(t′ + δ, t′) =
C(t′ − δ, t′) and an expansion up to first order in δ implies limt′→t− ∂tC(t, t′) =
− limt′→t+ ∂tC(t′, t). From Eq. (6.24) one has limt′→t− ∂tC(t, t′) = −kBT . Now,
one rewrites the complete equation for C exchanging t and t′ and adds this equa-
tion to the same equation in the limit t′ → t−: γ limt′→t− [∂tC(t, t′)+ ∂t′C(t, t′)] =
−2µ(t)+limt′→t− [rhs eq. for C+rhs eq for C(t′ ↔ t)]. From the discussion above the
lhs vanishes and the rhs implies

µ(t) = kBT +

∫ ∞

0
dt′′ [Σ(t, t′′)C(t, t′′) +D(t, t′′)R(t, t′′)] . (6.25)

For the spherical p spin model µ(t) is simply related to the energy density E(t).
Indeed, take the Langevin equation evaluated at time t, multiply it by si(t′), sum over
all sites, average over the noise and take the limit t′ → t. Repeat this procedure with
the Langevin equation evaluated at t′ and multiplying by si(t). Adding the resulting
equations and using N−1

∑N
i=1〈si(t)ξi(t′)〉 = 2γkBTR(t, t′) (see Appendix 5.2.1) we

have µ(t) = − limt′→t−

〈
∑

i
δHJ (#s(t))
δsi(t)

si(t′)
〉

+kBT that for the spherical p spin model

becomes

µ(t) = −pE(t) + kBT . (6.26)

Thanks to the mean-field character of the model the action is proportional to
N and the saddle-point evaluation is exact when N → ∞. For the fully connected
models considered in this Section the self-energy is given by a rather simple function of
the interactions. For finite dimensional problems none of these procedures are exact.
An effective action in terms of local order parameters Qi(a, b) can be written but the
evaluation of the generating functional by saddle-point has to include fluctuations.

6.3.2 Field equations
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Once we have written the dynamic action in terms of φi and iφ̂i the “field equa-
tions” follow from exact properties of the functional integration. Indeed,

0 =

∫

DφDiφ̂
δ

δiφ̂i(t)
e
−Seff[φi,iφ̂i]+

∫

C
dt′(ηi(t′)φi(t

′)+η̂i(t
′)iφ̂i(t

′))

=

∫

DφDiφ̂

[

−δSeff(φi, iφ̂i)

δiφ̂i(t)
+ η̂i(t)

]

e
−Seff(φi,iφ̂i)+

∫

C
dt′(ηi(t′)φi(t

′)+η̂i(t
′)iφ̂i(t

′)) .

The subindex C in the integrals stands for “time contour” and it can describe the
usual integration from the initial time to infinity for classical models or the close time
path for quantum ones. Taking now the variation with respect to the source iη̂j(t′)
and evaluating at η = iη̂ = 0 for all times and components we find

0 = δ(t− t′)δij −
〈

iφ̂j(t
′)
δSeff(φi, iφ̂i)

δiφ̂i(t)

〉

(6.27)

where the brackets denote an average with the measure weighted by the dynamic
action Seff. If, instead one takes the variation with respect to ηj(t′) and later evaluates
at η = iη̂ = 0 one obtains:

〈

iφ̂i(t)
δS

δφj(t′)

〉

= 0 . (6.28)

A way to derive dynamic equations for the two-point correlators amounts to use
Wick’s theorem and rewrite these averages as a sum over all possible factorizations in
products of two point-functions. This is of course exact if the action is quadratic but it
is only a Gaussian approximation for more general models. This kind of derivation has
been mainly used in the study of the dynamics of manifolds in random potentials [32].

6.3.3 The thermodynamic limit and time-scales

It is very important to stress that the dynamic equations derived with the saddle-
point approximation hold only when N → ∞ before any long-time limit is taken.
They describe the dynamics in finite time-scales with respect to N and they cannot
capture the crossover from the non-equilibrium relaxation to the equilibrium dynamics
reached in time scales that diverge with N [remember that teq(N)].

Old attempts to study the dynamics of disordered glassy systems assumed that
these same equations hold for the equilibrium dynamics when N is finite and time-
scales diverge with N [?]. This assumption is wrong as shown by several inconsis-
tencies found in the solution at low temperatures: (i) the asymptotic values of one
time-quantities do not necessarily coincide with the values calculated with the equi-
librium distribution. (ii) the solution exhibited violates the fluctuation - dissipation
theorem. These two results are not compatible with equilibrium.

In order to study the equilibrium dynamics of these models one should (i) start
from random initial conditions but reach times that grow with N or (ii) impose
equilibrium initial conditions. The second route has been implemented – though

147



without solving the full dynamic problem – by Houghton, Jain and Young. They
showed that in this case one is forced to introduce the replica trick to average over
disorder.

The dynamic equations here derived are correct when N →∞ at the outset. Since
times are always finite with respect to N , when teq(N) diverges with N the dynamics
is not forced to reach equilibrium and there is no contradiction if the solution violates
the equilibrium theorems.

6.3.4 Single spin equation

In the limit N → ∞ one can also write the full action Seff in terms of a single
variable. This is at the expense of modifying the thermal kernel and the interaction
term in a self-consistent way, through the introduction of terms arising from the non-
linear interactions (the vertex and self-energy, respectively). For a classical model
with white external noise the single variable equation reads

M φ̈i(t) + γ φ̇i(t) + µ(t)φi(t) =

∫ t

0
dt′′ Σ(t, t′′) φi(t

′′) + ρi(t) + ξi(t) . (6.29)

Its generalisation is straightforward. There are two noise sources in this equation:
ξi(t) is the original white noise while ρi(t) is an effective (Gaussian) noise with zero
mean and correlations self-consistently given by 〈ρi(t)ρj(t′)〉 = δijD(t, t′). The vertex
D(t, t′) plays the rôle of the colored noise correlation in a usual Langevin equation.
The self-energy Σ(t, t′) appears here in the place of an ‘integrated friction’. A so-
lution of the problem can be attempted numerically using this equation and the
self-consistent definitions of Σ and D.

This procedure is not particular useful for the analysis of “polynomial” models
since the transformation into a Q dependent effective action can be done exactly. It
does however become useful for dealing with models whose single-spin effective action
has higher order interaction terms. An example is the quantum sk model.

Interestingly enough a rather flat harmonic oscillator coupled to a bath made of a
white and a coloured part at different temperatures acquires two time-scales controlled
by the two temperatures involved. We see that a similar structure might appear for
the glassy system if the self-energy and vertex self-consistently arrange to act on each
degree of freedom as the friction and noise-noise correlator of a complex bath. We
shall see that this is indeed what happens to mean-field models.

6.3.5 Diagrammatic techniques

In this Section we first describe the perturbative solution to the Langevin process
and how it is used to construct series expansions for the correlations and responses.
Self-consistent approximations, such as themode coupling or the self-consistent screen-
ing, correspond to a selection of a subset of diagrams from the full series. The con-
nection with disordered models is demonstrated. An extension to quantum problems
is possible using the generating functional formalism.
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Let us focus on a single scalar degree of freedom, q, with potential energy

V (x) =
µ(t)

2
x2 +

g

3!
x3 , (6.30)

and dynamics given by the Langevin in the white noise limit. We take the initial
condition x(t = 0) = 0. µ(t) is a time-dependent function that we fix at the end of
the derivation by requiring C(t, t) = 1. In vector models it is the Lagrange multi-
plier that self-consistently imposes a spherical constraint. Note that this potential is
not bounded from below. Setting Go(t, t′) = [µ(t) + γ∂t + M∂t2 ]

−1, a perturbative
expansion for x(t) in powers of the noise is easily written as

x(t) = (Go ⊗ ξ)(t) −
g

2
(Go ⊗ [Go ⊗ ξ •Go ⊗ ξ]) (t) + ... (6.31)

where ⊗ means a time convolution, (Go ⊗ f)(t) =
∫ t
0 dt

′Go(t, t′)f(t′), and • is a
simple product at equal times. This notation is equivalent to the one used in the
susy formalism, see Appendix 4.7. Causality implies Go(t, t′) ∝ θ(t − t′). If inertia

can be neglected Go(t, t′) = exp
(

−
∫ t
t′ dτ µ(τ)

)

θ(t− t′). If one keeps the second-time

derivative Go(t, t′) takes a more complicated form. Equation (6.31) can be graphically
represented as in Fig. 44. Crosses indicate noise and oriented lines indicate the bare
propagatorGo. Each vertex carries a factor g/2. Note that the unknown q is evaluated
at time t while the noises are evaluated at all previous times.

!!
""

##
""

x +

x

x

x

x

x
+ ...+

Figure 44: Terms O(g0), O(g1) and O(g2) in the perturbative solution to the Langevin
equation.

The expansion for q leads to two expansions for the correlation and response. In
simple words, the former corresponds to sandwiching, i.e. averaging over the noise,
the usual product of two series as the one in Fig. 44 evaluated at different times t
and t′. Due to the average over the Gaussian noise noise factors have to be taken by
pairs. Let us illustrate this with a few examples.

The first term in the expansion is the result of averaging two O(g0) terms (first
term in Fig. 44):

Co(t, t
′) = 〈(Go ⊗ ξ)(t) • (Go ⊗ ξ)(t′)〉 = 2γkBT

∫ t′

0
dt′′ Go(t, t

′′)Go(t
′, t′′) ,

t ≥ t′. We depict this term and its contributions to more complicated diagrams with
a single crossed line, see the first graph in Fig. 45. The term O(g), as well as all
terms which are odd powers of g, vanishes. There are two contributions to the term
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O(g2). One is the result of multiplying a term O(g2) with a term O(g0) and it is a
tadpole, see the second graph in Fig. 45; we assume this term and all its corrections
are included in the contributions from the time-dependent mass and we henceforth
ignore them. The other comes from multiplying two O(g) terms, see the third graph
in Fig. 45.

Higher order terms are of two types: they either dress the propagators or they
dress the vertices, see the last two diagrams in Fig. 45. These two terms are order
O(g4). The first one follows from averaging two O(g2) contributions while the second
one is the result of averaging an O(g3) and an O(g) term. The full series yields the
exact perturbative expansion for C.
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Figure 45: From left to right: O(g0), two O(g2) and two O(g4) terms in the series
for C. The next to last diagram dresses the propagator and the last term dresses the
vertex. The former is kept in the mca while the latter is neglected.

The series expansion for the response follows from the relation (??) in the white
noise limit. In graphical terms we obtain it by multiplying the series in Eq (6.31) and
Fig. 44 evaluated at time t by a noise evaluated at time t′ and taking the average.

6.4 The mode coupling approximation (mca)

The diagrammatic expansions for C and R can be represented analytically by
introducing the kernels Σ(t, t′) and D(t, t′) through the Schwinger-Dyson equations
(6.20) and (6.21) in their integral form. Each of them is a compact notation for a
series of diagrams. These equations are exact perturbatively. However, for a generic
model one cannot compute the kernels Σ and D exactly.

The mode coupling approach amounts to approximating the kernels Σ(t, t′) and
D(t, t′) in the following way. One takes their values at O(g2) and substitutes in them
the bare propagator Go and the bare correlation C0 by their dressed values, i.e. by
R and C themselves. For the model defined in Eq. (6.30) this yields

Σ(t, t′) = g2 C(t, t′)R(t, t′) , (6.32)

D(t, t′) = 2γkBT δ(t− t′) +
g2

2
C2(t, t′) . (6.33)

This approximation neglects “vertex renormalization” in the sense that all diagrams
correcting the values of the lines are taken into account while all diagrams correcting
the vertices are neglected. For instance, one keeps the fourth diagram in Fig. 45 that
represents a line correction, while leaving aside the fifth diagram drawn in the same
figure that represents a vertex correction.
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The same procedure can be implemented using the susy representation of the
dynamics. Each line represents the superfield and the super-correlator follows from
the sandwich of two series for the super-field evaluated at different super-coordinates
a and b.

The Schwinger-Dyson equations can be recast, after multiplying by G−1
o , into the

form (6.18) and (6.19) for a random potential (6.5) with only one term r = p = 3.
Applying the mca to the trivial (and ill-defined) model (6.30) we derived the dynamic
equations for the p = 3 spin spherical model! On the one hand, this result is worrying
since it shows that the mca can be rather uncontrolled and it can generate glassy
behavior by itself. On the other hand, since the same equations hold in the mca of a
model of interacting particles with realistic interactions, this calculation allows one to
understand why the dynamic equations of the mct for super-cooled liquids coincide
with the ones of disordered spin models above Td. In the next Subsection we show
how the diagrams neglected in the mca vanish in a disordered model with a large
number of components.

6.5 mca and disordered models

The first to notice that the mca for a “quadratic” dynamic equation corresponds
to the exact dynamic equation of a disordered problem with a large number of com-
ponents was Kraichnan in the context of the Navier-Stokes equation. More recently,
Franz and Hertz showed that the “schematic mct equations of the Fp group” for
super-cooled liquids are identical to those arising from a spin model with pseudo-
random interactions between groups of three spins. (The schematic mct focus on a
chosen wavevector.)

Indeed, for the example chosen in this Section, one easily demonstrates that the
diagrams retained by the mca are precisely those which survive if one modifies the
initial model (6.30) and considers instead the following disordered problem [?]. First,
let us upgrade q to a vector with N components or “colors” φi, where i = 1, 2, ..., N .
Second, let us modify the potential energy (6.30) into

V (&φ) = g
∑

i<j<k

Jijk φiφjφk (6.34)

with couplings Jijk that are independent quenched Gaussian random variables of zero
mean and variance [J2

ijk]J = 1/Np−1 = 1/N2. (p is the number of spins in each term
in V .) In the large N limit, the noise and disorder averaged correlation and response
of this modified model obey Eqs. (6.18) and (6.19) with Σ and D given by Eqs. (6.32)
and (6.33), respectively. The fact that these equations are recovered can be seen
either directly on the perturbation theory, or using the functional methods given in
Section . Since we want to stress that the diagrams neglected in the mca vanish
exactly for this model we use here the first approach.

The bare propagator is diagonal in the color indices, Goij = Goδij . The vertex
is now proportional to the random exchanges Jijk. The perturbative solution to the
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Langevin equation reads

φi(t) = (Go ⊗ ξi)(t) − Jijk Go ⊗ (Go ⊗ ξj •Go ⊗ ξk) (t) + . . . . (6.35)

One is interested in computing the self-correlation averaged over the noise and dis-
order, N−1

∑N
i=1[〈φi(t)φi(t′)]. The latter average eliminates all terms with an odd

number of couplings. Similarly, since Jijk 0= 0 only if all indices i, j, k are different,
tadpole contributions as the one in the second graph in Fig. 45 vanish (the noise-noise
correlation enforces that two indices in the random exchange must coincide). Finally,
one can check that due to the scaling with N of the variance of the disordered inter-
actions, vertex corrections as the one in the last graph in Fig. 45 are sub-leading and
vanish when N →∞. Instead, all line corrections remain finite in the thermodynamic
limit. We can check this statement in the two examples shown in Fig. 45 extended to
include color indices. The vertex correction has four random exchanges that due to
the averaging over the noise are forced to match as, e.g. JijkJjlmJmniJkln leaving 6
free-indices. Averaging over disorder one identifies the indices of two pairs of J ′s, e.g.
i = l and k = m, this yields a factor (1/N2)2 and, at most, it leaves 4 color indices
over which we have to sum from 1 to N (i, j, k, n). We have then an overall factor
1/N4 × N4 = 1 and this term vanishes when one normalises the correlation by N .
Instead, in the line correction, after averaging over the noise, we are left with 6 free
indices, e.g. JikjJklmJlmnJinj , the average over the noise only imposes k = n in its
most convenient contribution, and the overall factor is 1/N4 × N5 = N . This term
contributes to the normalisaed global correlation.

Interestingly enough, the equivalence between the mca and a disordered system
extends to an arbitrary non-linear coupling F (q). Expanding F in a power series
F (q) =

∑∞
r=2

Fr
r! q

r the mca leads to

Σ(t, t′) = g2
∞
∑

r=2

F 2
r

(r − 1)!
Cr−1(t, t′) R(t, t′) , (6.36)

D(t, t′) = 2γkBT δ(t− t′) + g2
∞
∑

r=2

F 2
r

r!
Cr(t, t′) . (6.37)

[Note that for r odd, there appears an additional “tadpole” contribution in Eq. (6.36),
which we have assumed again that it has been re-absorbed into the mass term µ(t).]
The dynamic equations can also be obtained as the exact solution of the Langevin
dynamics of N continuous spins φi interacting through the potential

VJ [&φ] = g
∞
∑

r≥2

Fr

∑

i1<...<ir+1

Ji1...ir+1 φi1 . . .φir+1 (6.38)

where Jα1,..αr+1 are quenched independent Gaussian variables with zero mean and
[(Jα1,..αr+1)

2] ∝ N−r. Therefore the mc equations for a single dynamic variable in
contact with a heat reservoir and under an arbitrary nonlinear potential F (q) describe
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exactly a fully-connected spin-glass problem with arbitrary multi-spin interactions or
a particle evolving in an N dimensional space in a quenched random potential V [&φ]
with a Gaussian distribution with zero mean and variance (6.6) [?, 32]. Let us note
that in order to be well defined, the model given by V must be supplemented by a
constraint preventing the field φi from exploding in an unstable direction set by the
coupling tensor Ji1...ir+1 . This problem is cured by imposing the spherical constraint
∑N

i=1 φ
2
i (t) = NC(t, t) ≡ N .

The extension of the mapping to a space dependent φ(&x, t) (or to a multicomponent
field) is straightforward. Several interesting physical examples involve an equation of
the type:

∂φ̂(&k, t)

∂t
= −(νk2 + µ)φ̂(&k, t)−

∞
∑

r=2

∑

#k1,..#kr

Fr

r!
Lr(&k|&k1, .....&kr)φ̂(&k1, t)....φ̂(&kr, t)

+ξ(&k, t)

where φ̂(&k, t) is the Fourier transform of φ(&x, t), and ξ(&k, t) a Gaussian noise such that
〈ξ(&k, t)ξ(&k′, t′)〉 = 2γkBT δ(&k + &k′)δ(t − t′). The Kardar-Parisi-Zhang (kpz) equation
corresponds to r = 2, L2(&k|&k1,&k2) = [&k1 ·&k2] δ(&k1 + &k2 + &k), while domain coarsening
in the φ4 theory corresponds to r = 3, L3(&k|&k1,&k2,&k3) = δ(&k1 + &k2 + &k3 + &k), with a
negative µ [?]. The Navier-Stokes equation is similar to the kpz case with, however,
an extra tensorial structure due to the vector character of the velocity field. The
correlation and response functions now become &k dependent, δd(&k + &k′)C(&k, t, t′) =

〈φ̃(&k, t)φ̃(&k′, t′)〉 and δd(&k + &k′)R(&k, t, t′) = 〈∂φ̃(&k, t)/∂ξ(&k′, t′)〉. The generalized mc

equations then read (assuming that the structure factors are invariant under the

permutation of &k1, ...,&kr):

Σ(&k, t, t′) = g2
∞
∑

r=2

F 2
r

(r − 1)!

∑

#k1,..#kr

Lr(&k|&k1, .....&kr)Lr(&kr |&k1, .....&k)

C(&k1, t, t
′)...C(&kr−1, t, t

′)R(&kr , t, t
′) (6.39)

D(&k, t, t′) = 2γkBT δ(t− t′) + g2
∞
∑

r=2

F 2
r

r!

∑

#k1,..#kr

(

Lr(&k|&k1, .....&kr)
)2

C(&k1, t, t
′)...C(&kr , t, t

′) (6.40)

where Σ(&k, t, t′) and D(&k, t, t′) are defined in analogy with Eqs. (6.36) and (6.37).

6.6 mca for super-cooled liquids and glasses

In the last 20 years the mca has been much used in the study of super-cooled
liquids. Starting from the realistic interactions between the constituents of a liquid,
Götze et al used the mca together with an assumption of equilibrium to derive a dy-
namic equation for the density-density correlator. This analysis lead to the schematic

153



mode coupling theory (mct) [?] of super-cooled liquids and generalizations (with no
reference to wave-vector dependence) and to more sophisticated versions that include
a dependence on space. The difference between these models lies on the form of the
kernels Σ and D. Kirkpatrick, Thirumalai and Wolynes realized in the late 80s that
the schematic mode coupling equation [?] is identical to the dynamic equation for the
spin-spin correlator in the disordered Potts or p spin model, building a bridge between
the study of structural and spin glasses. Why these models and not sk? This will
become clear when we present their dynamic and static behavior.

In this Section we explained why the dynamic equation of a disordered model and
the one stemming from a mca of a model with more realistic interactions cöıncide:
the terms neglected in the latter vanish exactly in the former. The example studied
here serves also to signal the danger in using a mca. One could conclude that a trivial
model has a highly non-trivial dynamics, this being generated by the approximation
itself.

In the derivation of the dynamic equations presented in this Section no assumption
of equilibrium was used. Therefore, these equations hold also in the low temperature
phase where equilibrium is lost. It is then natural to propose that the dynamics of the
p spin spherical model below Td schematically describes the dynamics of glasses just as
its dynamics above Td yields the schematic mct of super-cooled liquids. To go beyond
the schematic theory while still keeping a single mode description one simply has to
consider p1 + p2 spherical disordered models. Moreover, the dynamics of a manifold
in a random potential is described by dynamic equations with a &k dependence that
goes beyond the single mode mct.
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7 Glassy dynamics: Generic results

Before presenting the explicit solution to the mean-field models we state some
generic features of the low-T dynamics that we believe hold in general.

Figure 46: Left: Sketch of the decay of the stationary correlations in the high T phase
close to Td, T1 > T2 > . . .. Right: Sketch of the decay of the aging correlations in the
low T phase, at fixed T < Td, t′1 < t′2 < . . .

7.1 The weak-ergodicity breaking scenario

Figure 46-right shows a sketch of the decay of the correlation as obtained from the
numerical solution to the dynamic equations for the mean-field models (see Section ).
It develops a separation of time scales in the long t′ limit. It first approaches a
plateau at qea in a stationary manner and it then decays below this value with an
explicit waiting-time dependent form. For each waiting-time there is a sufficiently
long t such that the correlation decays to zero. These properties are included in the
weak-ergodicity breaking (web) scenario that states that, for t ≥ t′, C decays in such
a way that

lim
t′→∞

C(t, t′) = qea + Cst(t− t′) (7.1)

lim
t−t′→∞

Cst(t− t′) = 0 ⇒ lim
t−t′→∞

lim
t′→∞

C(t, t′) = qea (7.2)

lim
t→∞

C(t, t′) = 0 at fixed t′ . (7.3)

Equation (7.2) defines the Edwards-Anderson order parameter, qea. For finite t′

there is a crossover between two time-scales controlled by a waiting-time dependent
characteristic time τ0(t′) that is a growing function of t′ whose precise form depends
on the model. For large t ≥ t′ such that t − t′ is small with respect to τ0(t′), the
correlation function first decays from 1 to qea in a tti manner. At longer t− t′ it goes
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further below qea to eventually reach 0 in a manner that depends both upon t and t′

(the aging effect). This behavior suggests the presence of at least two time-sectors in
which the dynamics is stationary and non-stationary, respectively. We shall see that
the number of time-scales, or more precisely correlation scales, depends on the model.

We write C as the sum of a stationary and an aging contribution:

C(t, t′) = Cst(t− t′) + Cag(t, t
′) . (7.4)

The matching conditions at equal times between Cst and Cag are C(t, t) = 1 implying
Cst(0) + Cag(t, t) = 1 with Cst(0) = 1 − qea and Cag(t, t) = qea. Together with Eq.
(7.2) they ensure that in the two-time sector in which Cst decays from 1 − qea to 0,
Cag is just a constant qea. Instead, in the two-time sector in which Cag decays from
qea to 0, Cst vanishes identically.

The name web [?, ?] reflects the fact that for short time-differences the system
behaves as if it were trapped in some region of phase space of “size” qea – suggesting
ergodicity breaking. However, it is always able to escape this region in a time-scale
τ0(t′) that depends upon its age t′. Hence, trapping is gradual and ergodicity breaking
is weak. qea depends on temperature when T < Td.

We have already described, phenomenologically, such a separation of time-scales
in the decay of correlation functions when we discussed the domain growth problem
and glassy dynamics in Section ??. The first term describes in this case the fast
fluctuations within domains while the second term characterises the domain growth
itself. A second example where such a separation of time-scales occurs are the trap
models in phase space. The first term corresponds to the dynamics within the traps
while the second describes the wandering of the system from trap to trap. In glasses,
the first term corresponds to the rapid rattling of each particle within its cage while the
second one describes the destruction of the cages and hence the structural relaxation.

In driven models rendered stationary by a weak perturbation we also find a sep-
aration of time-scales with τ0 increasing with weaker strengths of the perturbation.
We can also propose that C and R separate in two terms, both being stationary but
evolving in different time-scales.

In classical purely relaxational models governed by a Langevin equation with no
inertia the correlation functions are monotonic with respect to both times t and t′, as
it is easily checked numerically. Inertia introduces oscillations and the decay can be
non-monotonic. The magnitude of the oscillations depends upon the relative value of
the mass M with respect to the other parameters in the problem. However, for a wide
choice of parameters the oscillations appear only in the stationary regime, the aging
dynamics having a monotonic decay towards zero. This is relevant since it allows
one to use the general properties of monotonic correlation functions proven in [?] and
discussed in Section to find the two-time scaling of Cag(t, t′).

7.2 The weak long-term memory scenario

Regarding the response function, we propose a similar separation in two terms:

R(t, t′) = Rst(t− t′) +Rag(t, t
′) (7.5)
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with Rst(t − t′) ≡ limt′→∞ R(t, t′). The matching conditions close to equal times
are different for a model with or without inertia. In the former case, R(t, t) = 0,
R(t, t−) = 1/M while in the latter, using the Ito convention, R(t, t) = 0 , R(t, t−) =
1/γ. In both cases the equal-times condition implies Rst(0) = 0, Rag(t, t) = 0 while
the next-to-main diagonal values yield Rst(δ) = 1/M, Rag(t, t− δ) = 0 and Rst(δ) =
1/γ , Rag(t, t− δ) = 0, respectively.

The response tends to zero when times get far apart, and its integral over a finite
time-interval as well:

lim
t→∞

R(t, t′) = 0 , lim
t→∞

∫ t′

0
dt′′ R(t, t′′) = 0 ∀ fixed t′ . (7.6)

These properties imply

lim
t−t′→∞

lim
t′→∞

R(t, t′) = 0 ⇒ lim
t−t′→∞

Rst(t− t′) = 0 , lim
t→∞

Rag(t, t
′) = 0 . (7.7)

However, the contribution of the response to the dynamic equations and to other
measurable quantities is not trivial. Examining the integral of the response function
over a growing time interval one finds that even if the response vanishes, it yields a
contribution to the integration. Figure 49-left shows the integrated linear response
(??). Using (7.5)

χ(t, t′) =

∫ t

t′
dt′′ [Rst(t− t′′) +Rag(t, t

′′)] = χst(t− t′) + χag(t, t
′) . (7.8)

If, for long enough t′, the contribution of the second term in (7.8) were negligible,
χ(t, t′) should be a stationary quantity. Instead, for all t′s studied and for t long
enough one clearly sees a waiting-time dependence that can only come from the
integration of the second term. This is a weak long-term memory (wltm), the system
has an “averaged” memory of its past.

When a system is in equilibrium, the response is simply related to the correlation
via fdt. We then assume (and test on the dynamic equations) that the dynamics in
the stationary regime satisfies fdt:

Rst(τ) =
1

kBT

dCst(τ)

dτ
τ ≥ 0 ,

Rst(ω) = − 2

h̄
lim
ε→0+

∫
dω′

2π

1

ω − ω′ + iε
tanh

(
βh̄ω′

2

)

Cst(ω
′) (7.9)

in a classical and quantum problem, respectively. One can formally prove that fdt

has to hold for any generic relaxing model fro short time-differences [?], see Section .
For longer time-differences, when Cag and Rag vary in time while Cst and Rst have
decayed to zero, one cannot assume the validity of fdt and, as we shall see, the
equations have a solution that explicitly modifies fdt.
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7.3 Slow time-reparametrization invariant dynamics

We have already mentioned that the correlations decay monotonically (only below
qea if M 0= 0). The final insight coming from the numerical solution to the full
equations is that the dynamics becomes slower and slower for fixed waiting-time and
as t−t′ increases. In the stationary regime ∂t2 [C(t, t′), R(t, t′)] and ∂t2 [C(t, t′), R(t, t′)]
are not negligible with respect to the terms in the rhs of Eqs. (6.18) and (6.19). On
the contrary, in the second decay below qea, C and R decay in a much slower manner
such that, ∂tC(t, t′). −µ(t)C(t, t′) and ∂t2C(t, t′). −µ(t)C(t, t′) (similarly for R),
and the time-derivatives can be neglected.

We choose the following strategy to solve the equations in the long t′ limit where
a sharp separation of time-scales can be safely assumed. First, we take advantage
of the fact that one-time quantities approach a limit, as one can verify numerically,
and write the asymptotic form of Eq. (6.25) for µ∞. The integrals on the rhs are
approximated using the separation of C and R in two terms that vary in different
time-scales that we assume are well-separated. We detail this calculation below. As
regards to the equations for C and R, we proceed in two steps. On the one hand, we
choose t− t′ short in such a way that C > qea and we write the dynamic equations for
Cst and Rst. On the other hand, we take t and t′ widely separated so as C < qea and
we write the dynamic equations for Cag and Rag. In this way we double the number
of unknown functions and equations but we simplify the problem enough as to make
it solvable.

Once the time-derivatives are neglected and the integrals are approximated as we
explain in Section the aging equations become invariant under reparametrizations of
time t→ h(t) that transform the two-point functions as

Cag(t, t
′)→ Cag(h(t), h(t

′)) , Rag(t, t
′)→ [dt′h(t

′)] Rag(h(t), h(t
′)) . (7.10)

This is not an exact invariance of the dynamic equations. It is only generated when
dropping the time-derivatives. This invariance was first noticed by Sompolinsky [?]
in his study of the equilibrium dynamics (see also [?] and it later appeared in the
nonequilibrium dynamics [?, ?, ?, ?, ?]. We shall see that this approximation forbids
us to solve completely the dynamic equations, in particular, to fix the time scaling
(select h(t)).

7.4 Correlation scales

Take three ordered times t3 ≥ t2 ≥ t1. The correlations are C(ti, tj) =
1
N

∑

k〈sk(ti)sk(tj)〉 ≡ cos θji . The monotonicity of the decay of the correlations
with respect to the longer time (keeping the shorter time fixed) and the shorter time
(keeping the longer time fixed) allows us to derive general properties that strongly
constrain the possible scaling forms. Indeed, one can relate any three correlation
functions via triangle relations [?] constructed as follows. Using the fact that the de-
cay is monotonic, one can invert the relation between correlation and times to write,
for example, t2 = g(C(t2, t1), t1) with g : [0, 1] × [0,∞] → [0,∞]. This allows us to
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rewrite C(t3, t1) as

C(t3, t1) = C(g(C(t3, t2), t2), t1) = C(g(C(t3, t2), g(C(t2, t1), t1), t1) . (7.11)

We now define a real function f(x, y), f : [0, 1] × [0, 1] → [0, 1], by taking the limit
t1 →∞ while keeping the intermediate correlations fixed

lim
t1 →∞

C(t2, t1) and C(t3, t2) fixed

C(t3, t1) = f(C(t3, t2), C(t2, t1)) .

The fact that the limit exists is a reasonable working assumption. This function com-
pletely characterizes the correlations and their scales in the asymptotic limit. (Note
that we defined f using the correlation between the longest time and the intermediate
as the first argument.)

7.4.1 Properties

The definition of the function f , as well as the properties shown in this Subsection,
are model independent. The form taken by f for each model is determined by the
dynamic equations.

Time reparametrization invariance The function f is invariant under reparametriza-
tions of time that satisfy (7.10).

Associativity Take now four times t4 ≥ t3 ≥ t2 ≥ t1. The correlation between t4 and
t1 can be written in two ways

C(t4, t1) = f(C(t4, t2), C(t2, t1)) = f(f(C(t4, t3), C(t3, t2)), C(t2, t1)) ,

C(t4, t1) = f(C(t4, t3), C(t3, t1)) = f(C(t4, t3), f(C(t3, t2), C(t2, t1))) .

Thus f satisfies f(f(x, y), z) = f(x, f(y, z)), i.e. it is an associative function.

Identity. If one takes t1 = t2

C(t3, t1) = f(C(t3, t2), C(t2, t1)) = f(C(t3, t1), C(t1, t1)) = f(C(t3, t1), 1) , (7.12)

for all C(t3, t1) ∈ [0, 1]. Equivalently, if one takes t2 = t3

C(t3, t1) = f(C(t3, t2), C(t2, t1)) = f(C(t3, t3), C(t3, t1)) = f(1, C(t3, t1)) , (7.13)

for all C(t3, t1) ∈ [0, 1]. The correlation at equal times acts as the identity since
x = f(x, 1) and y = f(1, y) for all x, y ∈ [0, 1].

Zero. Taking t3 and t2 and much larger than t1 in such a way that C(t2, t1) ∼ 0 and
C(t3, t1) ∼ 0 while C(t3, t2) > 0,

0 ∼ C(t3, t1) = f(C(t3, t2), C(t2, t1)) ∼ f(C(t3, t2), 0) . (7.14)
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Equivalently, taking t3 ! t2 and t1, then C(t3, t2) ∼ 0 and C(t3, t1) ∼ 0 while
C(t2, t1) > 0 and one has

0 ∼ C(t3, t1) = f(C(t3, t2), C(t2, t1)) ∼ f(0, C(t2, t1)) . (7.15)

The minimum correlation acts as a zero of f(x, y) since 0 = f(x, 0) and 0 = f(0, y) for
all x, y ∈ [0, 1]. (This property can be easily generalised if the correlation approaches
a non-zero limit.)

Bound. Given that we assume that the system drifts away in phase space, C(t2, t1)
decays as a function of t2 for t1 fixed, and C(t2, t1) increases as a function of t1 for
t2 fixed. This property implies

y = f(1, y) ≥ f(x, y) ∀y, x < 1 , x = f(x, 1) ≥ f(x, y) ∀x, y < 1 . (7.16)

Therefore f(x, y) ≤ min(x, y).

Forms for f In [?] we proved that

f(x, y) = −1 ((x)(y)) Isomorphic to the product (7.17)

f(x, y) = min(x, y) Ultrametricity (7.18)

are the only possible forms that satisfy the properties of f shown above. Note that
for  equal to the identity the first type of function becomes simply f(x, y) = xy,
hence the name. It is also possible to prove that the first kind of function (7.17) is
only compatible with the time scaling [?, ?]

C(t2, t1) = 
−1

(
h(t2)

h(t1)

)

(7.19)

with h(t) a monotonically growing function. The actual correlation can have a piece-
wise form. Here, instead of reproducing the proofs given in [?] we explain these
statements reviewing the scaling forms found for some physical systems and in the
analytic solution to mean-field models.

Examples: domain growth

The correlation decays in two steps, see the right panel in Fig. 46 and for C >
qea = m2

eq the decay is stationary:

C21 ≡ C(t2, t1) = qea + Cst(t2 − t1) , (7.20)

and it can be put in the form (7.19) using h(t) = exp(ln t)) and −1(x) = qea+Cst(x).
Any three correlation satisfying (7.20) also verify t3− t1 = C−1

st (C31− qea) = t3− t2+
t2 − t1 = C−1

st (C32 − qea) + C−1
st (C21 − qea) that implies

C31 = Cst[C
−1
st (C32 − qea) + C−1

st (C21 − qea)] + qea . (7.21)
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This equation is equivalent to (7.17). This means that any three correlations above
qea can be related with an f that is isomorphic to the product, see (7.17), with
−1
st (x) = Cst(ln x) + qea and st(x) = exp(C−1

st (x − qea).
When the times are such that the domain walls move, the self-correlation decays

below qea in an aging manner, with

C21 ≡ C(t2, t1) = Cag(t2, t1) = 
−1
ag

(
R(t2)

R(t1)

)

, (7.22)

−1
ag (1) = qea and −1

ag (0) = 0. It is obvious that any three correlations below qea also
satisfy (7.17)

Take now t3 = t2 + τ32 with τ32 < τ0(t2) and C32 > qea, and t3 and t2 sufficiently
larger than t1 (t3 = t1 + τ31 with τ31 > τ0(t1) and t2 = t1 + τ21 with τ21 > τ0(t1))
such that C31 < qea and C32 < qea. One has

C31 = −1
ag

(
R(t3)

R(t1)

)

= −1
ag

(
R(t3)

R(t2)
(ag ⊗ −1

ag )

(
R(t2)

R(t1)

))

= −1
ag

(
R(t3)

R(t2)
ag(C21)

)

= C21 .

The last idendity is a consequence of R(t3)/R(t2) ∼ 1 since for a sufficiently small
τ32, R′(t2)τ32/R(t2). 1.

Thus, when the times are such that two correlations, say with values a and b, are
both greater than qea one explores the dynamics in the stationary regime and f(a, b)
is isomorphic to the product. When they are both smaller that qea one explores the
dynamics in the aging coarsening regime and again f(a, b) is isomorphic to the product
though with a different function . Finally, if a > qea and b < qea, f(a, b) = min(a, b)
and one finds dynamic ultrametricity.

The structure discussed in the context of the domain growth problem is indeed
generic. Some special values of the correlation act as “fixed points” of f(a, a),
f(a, a) = a. A “correlation scale” spans the values of correlations comprised be-
tween two subsequent fixed points. Within a correlation scale f is isomorphic to the
product. Any two correlations falling into different correlation scales are related by
an ultrametric f . In the domain growth example 1, qea and 0 are fixed points that
are simple to visualize physically. In more abstract models as the sk spin-glass the
form of f is more involved, with a stationary scale between 1 and qea and a dense set
fixed points, hence correlation scales, that fill the interval [0, qea].

Scaling functions

Most solvable models, numerical data and experimental results can be described
with only two correlation scales, a stationary and a slow one. Several scaling func-
tions h(t) for the slow decay have been proposed in the literature. In the following
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Figure 47: Comparison between three h(t)s, power law, enhanced power law and
logarithm. Plot of C(t, t′) = (1− qea) exp(−(t− t′)) + qeah(t)/h(t′) against the time-
difference t− t′ (on the left) and against the ratio of times t/t′ (on the right) for three
waiting times. Note the drift of the curves in the right panel. For the logarithmic
law (sub-aging) the curves drift towards the left for increasing waiting-time. Instead,
for the enhanced power law (super-aging) the curves drift to the right for increasing
waiting-time. For the power law (simple aging) the scaling is perfect. In real systems
the decay of the stationary part towards qea is much slower than exponential (typically
power law with a small exponent) and the separation of time-scales is not so neat.

we summarize and discuss the main ones. In Fig. 47 we compare the decay of the
correlation from qea for three of the four laws discussed below.

Power law: h(t) = atα. This is the simplest scaling also called simple aging. Ferro-
magnetic domain growth realizes this form with α = 1/2 for non conserved dynamics
and α = 1/3 for conserved dynamics [?]. Several solvable model have simple aging, an
example being the classical spherical p = 2 model [?, ?]. In [?] it was conjectured that
a power law also characterized the aging dynamics of the fully connected p spin-model
with p ≥ 3. This was later confirmed with the algorithm of Kim and Latz [?] that
allows one to reach much longer times. Aging below Tc in the simplest trap model
also scales with this law [?]. The molecular dynamic simulations of Lennard-Jones
mixtures show this type of scaling too. Note that for all α, C scales as a function of
t2/t1.

Enhanced power law: h(t) = exp(lnα(t/t0)) This law yields the most accurate de-
scription of spin-glass experimental data. The exponent α typically takes a possibly
T -dependent value about 2 [?].

Stretched exponential: h(t) = exp[(t/t0)α] This law has been proposed to describe
the slowing down of the full correlation above the critical temperature. As far as we
know, no aging model that satisfies a scaling (7.19) with a stretched exponential has
been found yet.

Logarithm: h(t) = lnα(t/t0) In the Fisher and Huse droplet model for spin-glasses,
activated dynamics is assumed and the domains are found to grow as R(t) ∼ ln(t/t0).
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This leads to C(t2, t1) ∼ g(ln(t2/t0)/ ln(t1/t0)). However, this law does not fit the
aging experimental data [?].

Dynamic ultrametricity: Even though it seems mysterious at first sight there is a
simple graphical construction that allows one to test it. Take two times t3 > t1
such that C(t3, t1) equals some prescribed value, say C(t3, t1) = 0.3 = C31. Plot
now C(t3, t2) against C(t2, t1) using t2, t1 ≤ t2 ≤ t3, as a parameter. Depending on
the value of C31 with respect to qea we find two possible plots. If C(t3, t1) > qea,
for long enough t1, the function f becomes isomorphic to the product. Plotting
then C(t3, t2) for longer and longer t1, the construction approaches a limit in which
C(t3, t2) = −1((C31)/(C(t2, t1))). If, instead, C31 < qea, in the long t1 limit the
construction approaches a different curve. We sketch in Fig. 48 two possible outcomes
of this construction. On the right, we represent a model with two correlation scales,
ultrametricity holds between them and within each of them f is isomorphic to the
product. On the left instead we represent a model such that dynamic ultrametricity
holds for all correlations below qea. The construction approaches, in the long t1 limit,
the broken curve depicted in the sketch.

The sk spin-glass [?] and the dynamics of manifolds in an infinite dimensional
embedding space in the presence of a random potential with long-range correlations [?,
?] have ultrametric decays everywhere within the aging regime. This scaling is also
found in the trap model at the critical temperature [?]. Dynamic ultrametricity
in finite dimensional systems has been search numerically. There is some evidence
for it in the 4dEA model. In 3d instead the numerical data does not support this
scaling [?, ?]. Whether this is due to the short times involved or if the scaling
asymptotic is different in 3d is still an open question.

7.4.2 Definition of a characteristic time

Expanding the argument in (7.19) for t2 = t1+τ with τ . t1 one finds, to leading
order,

h(t1)

h(t2)
= 1− τ

tc(t1)
tc(t1) ≡

(
h′(t1)

h(t1)

)−1

, (7.23)

withO
(

τ2
(

h′2(t1)/h2(t1) + h′′(t1)/h(t1)
))

corrections. The characteristic time tc(t1)

is given by

tc(t1) =











t1/α Power law
t1/[α ln

α−1(t1/t0)] Enhanced power law
t1 (t0/t1)

α Stretched exponential
t1 ln(t1/t0) Logarithm

Note that tc(t1) is defined close to the limit of equal times and (7.23) does not make
sense for large τ . Rather often in the literature, the scaling variable x = τ/ta1 has
been used even for large values of τ . This scaling is incompatible with the general
properties of the triangular relations recalled in Section if the exponent a is larger
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Figure 48: Sketch of a check of ultrametricity using the parametric plot C(t3, t2)
against C(t2, t1) for C(t3, t1) = 0.3 < qea fixed. On the left an ultrametric model, on
the right a model with two correlation scales.

than 1 [?]. See the right panel in Fig. 47 to see the different trends of these scalings
when plotted as functions of t/t′.

For the power law tc(t1) scales just as t1. In the cases of the stretched exponential
and the enhanced power law, tc(t1) has a slower growth than the linear dependence
iff α > 0 in the first case and α > 1 in the second. This behavior has been called
sub-aging. For the logarithm tc(t2) grows faster than linearly. This function belongs
to a different class that we called super aging [?].

7.5 Modifications of fdt

One of the most important outcomes of the analytic solution to the mean-field
glassy models is the need to modify the fluctuation–dissipation relations between
linear responses, R(t, tw), and their partner correlations between spontaneous fluc-
tuations, C(t, tw), when T < Td. In this Subsection we discuss different ways of
presenting the modification of fdt expected in rather generic systems with slow dy-
namics.

7.5.1 Time domain

The fdt is a linear relation between χ(t, tw) and C(t, tw) for any pair of times
(t, tw), see Eq. (??). In early simulations of the 3dea model as well as in the analytic
solution to fully-connected disordered models a modification of this relation below
Td appeared. Plotting kBTχ(t, tw) and 1 − C(t, tw) for tw fixed as a function of
ln(t − tw) one typically obtains the pair of curves schematically shown on the left
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Figure 49: Left: sketch of the modification of fdt in the time-domain. Right: sketch
of the modification of fdt in the frequency domain for a glassy system, ω1 > ω2 > ω3.

panel of Fig. 49. The two functions go together until t − tw reaches a characteristic
time τ0(tw) and they then depart demonstrating that fdt does not hold beyond this
time-scale. The characteristic time τ0(tw) is of the order of the time needed to reach
the plateau in the correlation function (this holds for mean-field models but it is not
certain in finite dimensional systems). Summarizing

t− tw < τ0(tw) fdt holds in the fast scale , (7.24)

t− tw > τ0(tw) fdt is modified in the slow scale , (7.25)

with τ0(tw) an increasing function of tw that depends on the system considered (see
Fig. 46).

7.5.2 Frequency domain

Taking a Fourier transform with respect to the time-difference while keeping tw
fixed allows one to work in a mixed frequency-time domain. Since many experimental
set-ups are prepared to apply ac-fields it is particularly important to predict the aspect
fdt modification have when using these parameters. The condition t − tw < τ0(tw)
to explore the fast relaxation roughly translates into ω−1 < τ0(tw), i.e. for a fixed
waiting-time high frequencies are required. The longer the waiting time the lower
the frequency one has to use to see this scale since τ0(tw) increases with tw. Instead,
when t − tw > τ0(tw) one has ω−1 > τ0(tw), and very low frequencies are needed to
explore the slow scale. These conditions imply

ωτ0(tw) > 1 fdt holds in the fast scale ,

ωτ0(tw) < 1 fdt does not hold in the slow scale . (7.26)
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Reversing the argument above, if one weakly perturbs the sample with an ac-field of
a fixed frequency ω1 at a chosen time tw, one can follow the deviation from fdt using
tw as the control parameter. This procedure yields the solid line on the right panel of
Fig. 49. Choosing now a lower frequency ω2(< ω1) the crossover from the slow to the
fast regime occurs at a larger value of tw. One obtains then the dotted curve on the
right panel of Fig. 49. So on and so forth, the smaller the frequency of the applied
ac-field the longer the slow regime lasts and the longer one sees deviations from fdt.
(Note that the probe does not modify the dynamics.) In the Figure we chose to sketch
the behavior of a system with only two-time scales, in which the fdt ratio takes two
constant values separated at single breaking point in which the correlation reaches
the plateau value qea. This procedure is commonly employed experimentally where
we discuss the measurements of Grigera and Israeloff for glycerol.

7.5.3 Time-reparametrization invariant formulation

A more interesting way of displaying the modification of the fdt has been sug-
gested by the analytic solution to the mean-field models discussed in Section . One
of its advantages is that it allows one to classify the systems into sort of “universality
classes” according to the form the fdt modification takes.

The analytic solution is such that, in the asymptotic limit in which the waiting-
time tw diverges after N →∞, the integrated linear response approaches the limit

lim
tw →∞

C(t, tw) = C

χ(t, tw) = χ(C) (7.27)

when tw and t diverge while keeping the correlation between them fixed to C [?].
Deriving this relation with respect to the waiting time tw, one finds that the opposite
of the inverse of the slope of the curve χ(C) is a parameter that replaces temperature
in the differential form of the fdt. Thus, using Eq. (7.27) one defines

kBTeff(C) ≡ −(χ′(C))−1 , (7.28)

that can be a function of the correlation. Under certain circumstances one can show
that this quantity has the properties of a temperature [26] in the sense to be described
later.

One of the advantages of this formulation is that, just as in the construction of
triangle relations, times have been “divided away” and the relation (7.27) is invariant
under the reparametrizations of time defined in Eq. (7.10).

Equation (7.27) is easy to understand graphically. Let us take a waiting time tw,
say equal to 10 time units after the preparation of the system (by this we mean that
the temperature of the environment has been set to T at the initial time) and trace
χ(t, tw) against C(t, tw) using t as a parameter (t varies between tw and infinity). If
we choose to work with a correlation that is normalized to one at equal times, the
parametric curve starts at the point (C(tw, tw) = 1,χ(tw, tw) = 0) and it arrives at
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the point (C(t →∞, tw) → C,χ(t→∞, tw) = χ). Without loss of generality we can
assume that the correlation decays to zero, C = 0. This first curve is traced in red
in Figs. 50. Now, let us choose a longer waiting time, say tw = 100 time units, and
reproduce this construction. One finds the green curves in Figs. 50. Equation (7.27)
states that if one repeats this construction for a sufficiently long waiting time, the
parametric curve approaches a limit χ(C), represented by the blue curves.

=100tw

wt    =10

tw>>teq
χ

10
0

C

χ

−1/T
χ

10
0

C

χ

t w t w t w< <

−1/T

−1/T

(C)eff

Figure 50: The asymptotic behavior of the integrated linear response against the
correlation in a parametric plot, for fixed waiting time and using t as a parameter.
Left: behavior in equilibrium. Right: behavior in a slowly relaxing system out of
equilibrium. See text for an explanation.

When the system equilibrates with its environment, the construction approaches
a straight line with slope −1/(kBT ) as predicted by the fdt. This is the result shown
in the left panel of Fig. 50. Instead, for non-equilibrium systems evolving slowly the
asymptotic limit is different, it is given by a curve χ(C). For solvable fully-connected
models one distinguishes three families, as drawn in the right panel of Fig. 50. They
correspond to some systems undergoing domain growth [?] (e.g. the O(N) model in
d = 3 when N →∞), systems behaving like structural glasses (e.g. the p-spin model)
and spin-glasses (e.g. the sk model). Several numerical studies in more realistic
models of the three cases tend to confirm this classification. However, two provisos
are in order. First, one has to be very cautious about the numerical results given
the very short time scales and rather small system sizes accessible in simulations.
Second, as shown in Section ??, at least one system that undergoes domain growth,
the ferromagnetic chain, has a non-trivial χ(C) like the one found for the sk model.

We have already found these asymptotic χ(C) curves when we discussed the dy-
namics of a (flat) harmonic oscillator in contact with a complex bath made of sub-
systems with different characteristic times and temperatures. Here we claim that the
same structure arises in a glassy model coupled to a white-bath. Different values of
the effective temperature are self-generated in the system.
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This plot is invariant under reparametrisations of time t→ h(t) acting on the two-
point functions as in Eqs.(7.10). A different choice of the functions h only changes
the speed with which the χ(C) curve is traced but not its form.

7.5.4 fdt part

The Fokker-Planck formalism used to derive the fdt can be also be used to obtain
a bound on fdt violations. Indeed, one bounds the difference between response and
variation of the correlation with the Cauchy-Schwartz inequality leading to

∣
∣kBTR(τ + tw, tw)− ∂sC(τ + tw, s)|s=tw

∣
∣ ≤ c

√

−dtwH(tw) (7.29)

where c is a constant and H(tw) ≡
∫

dqP (q, tw)(E(q) − kBT lnP (q, tw)) is a positive
definite function that monotonically decreases towards the free-energy when the sys-
tem eventually equilibrates. One finds a similar bound for Kramers processes and a
generalization that includes the power input when time-dependent or non-potential
forces are applied. For systems such that dtwH(tw)→ 0 sufficiently fast when tw →∞
the bound implies that the lhs vanishes in this limit. This can be achieved in two
ways: either each term is finite and the difference between them vanishes or each
term tends to zero independently. The former possibility is what happens in the fast
regime where fdt holds. The latter holds in the slow regime where both the response
and the variation of the correlation are very small but the relation between them does
not follow fdt. One derives a more useful bound by integrating (7.29) over time:

|kBTχ(τ + tw, tw)− C(τ + tw, tw) + C(tw, tw)| ≤ c

∫ τ+tw

tw

dt′
√

−dt′H(t′) . (7.30)

The terms in the lhs are now always finite while the value of the rhs depends on
the relation between the time-difference τ and the waiting-time tw. For sufficiently
short τ such that the rhs vanishes fdt has to be satisfied in its integrated form. This
result explains the existence of a common straight-line with slope −1/(kBT ) in the
nonequilibrium curves in Fig. 50. For sufficiently long τ such that the rhs takes a
finite value fdt can be violated. In this second scale a departure from the straight
line of slope −1/(kBT ) can occur and it is indeed what happens in systems with slow
non-equilibrium dynamics, see the right panel in Fig. 50. One sees how a separation
of time-scales in the dynamics influences the fdt violations.

In driven systems the bound depends on the power input and only vanishes in
the limit of vanishing applied forces. The fdt is not even enforced in the fast scale
and deviations start as soon as C decays from 1. However, as we shall see below, the
modification of fdt follow a very similar pattern to the one shown in Fig. 50 with
the strength of the applied force playing a similar role to the one of the waiting-time
here.

7.5.5 Diffusion
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In these Lectures we focus on models with a bounded self-correlation for an ob-
servable with zero average that is normalised at equal times. If the averaged ob-
servable does not vanish but the equal-time correlation reaches a time-independent
limit one can still use the simple self-correlation in the generalisations of fdt. How-
ever, in more general diffusive model with an unbounded time-dependent equal-
time correlator it is more natural to compare the behaviour of the “displacement”
∆(t, t′) ≡ C(t, t)+C(t′, t′)−2C(t, t′) (that vanishes by definition at equal times) to the
linear response. In normal diffusion these are linked by R(t, t′) = 1/(2kBT )∆(t, t′).
In glassy models like the massless manifold in a random potential and others this
relation is modified.

8 Solution to mean-field models

In this Section we turn our attention to the solution to the Schwinger-Dyson
equations derived in previous Sections. We start by describing the simplest numerical
algorithm that solves these equations and we next briefly discuss the asymptotic
analytic solution at high temperatures. Next we describe in quite detail the solution
at low T .

8.1 Numerical solution

One can attempt a numerical solution to the set of causal integro-differential
equations (6.18), (6.19) together with the equation for the Lagrange multiplier µ(t).
One of the questions we would like to explore is whether they encode a non-equilibrium
evolution as the one we have already described.

The correlation C(t, t′) and response R(t, t′) are two-time quantities, that is, they
depend on t (which physically corresponds to the time of observation) and t′ (which
corresponds to the age of the system). In the simplest algorithm one discretises the
two-times plane with a uniform grid, t′ = jδ and t = iδ. The correlation and response
on the diagonal and the next-to-main diagonal of the two-times plane (i, j) are known
for all times.

The time-derivatives ∂2tC(t, t′) and ∂2tR(t, t′) in their discretized form are used
to update the two-point functions. Due to causality, to advance one time step, the
integrals only need values of C and R that are already known. This algorithm is
simple and efficient but it is severely limited by the computer storage capacity. Since
one has to store C and R for all previous time steps, the memory used grows as i2

and this number becomes rather quickly prohibitive. In standard pcs one can use
imax ∼ 104, get an acceptable precision for δ ≤ 0.1 and reach total times of the order
of 103.

In the quantum case the presence of non local kernels η and ν, that appear con-
voluted with C and R, renders the numerical solution harder. The larger the cut-off
Λ, the smaller the iteration step δ we need to compute these integrals with a good
precision. The maximum total time is of the order of 102 in this case.
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A different starting point for a numerical solution is the single variable equation
(6.29). This route was followed by Eissfeller and Opper for spin-glasses [?] and it is
usually used in the so-called dynamic mean-field theory. Again, this method is limited
by the storage capacity.

The knowledge of the qualitative features of the solution helps one devising a more
performant algorithm with a variable two-time grid. As we shall see from the analytic
solution, C and R vary rapidly when times are near the diagonal j = i and decay
very slowly far from it. Kim and Latz have exploited this property and wrote such
an algorithm for the spherical p spin model reaching total times of the order of 108.

Finally, one can think of an iterative search where one starts from a trial form of
C and R and uses the dynamic equations to extract the new form. One can expect to
obtain the solution by repeating this procedure until the iteration converges to a fixed
point. This method would allow one to look for solutions of the full set of Schwinger
- Dyson equations that break causality.

The numerical solution for the causal problem, found with the simple uniform grid,
has been of great help in deriving the asymptotic analytic solution. In the following
we describe how this solution builds up.

8.2 Solution at high temperatures

At high temperature the system equilibrates with its environment since

teq(N →∞, T ) = finite . (8.1)

The mere existence of an asymptotic limit implies that one-time quantities as, e.g., the
energy density, E(t), or the Lagrange multiplier, µ(t), have to approach an asymptotic
limit, limt→∞ E(t) = E∞ and limt→∞ µ(t) = µ∞. In equilibrium E∞ = Eeq and
similarly for all one-time quantities. Two time-quantities, as C and R, depend on
times but only through time differences.

To solve the high T dynamics one first assumes that after a transient equilibrium
is reached and a solution of the form µ(t) → µ∞,

C(t, t′)→ Cst(t− t′) , R(t, t′)→ Rst(t− t′) (8.2)

with Rst and C|scst related by fdt, for long waiting-times t′ and all time-differences
t − t′, exists. These properties also apply to D and Σ that behave as a correlation
and a response, respectively. This Ansatz should solve Eqs. (6.18) and (6.19) when
T > Td, with Td the dynamic critical temperature. In order to prove it we take t′

long and we assume that we can separate the integrals in Eqs. (6.19) and (6.18) in a
preasymptotic and an asymptotic contribution,

∫ ∞

0
dt′′ · · · ≈

∫ teq

0
dt′′ · · ·+

∫ ∞

teq

dt′′ · · · . (8.3)

Next, we assume that the two-point functions decay as fast as to ensure that all
preasymptotic contributions vanish, e.g.

∫ teq
0 dt′′ A(t, t′′)B(t′, t′′) ∼ 0 when t′ and
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t ≥ t′ are in the asymptotic regime. Using the Ansatz (8.2) and this assumption the
integrals in the rhs of Eq. (6.19), for a classical problem, read

∫ t′

teq

dt′′Dst(t− t′′)
1

kBT

∂Cst(t′ − t′′)

∂t′′
+

∫ t

teq

dt′′
1

kBT

∂Dst(t− t′′)

∂t′′
Cst(|t′′ − t′|)

=
1

kBT

∫ t′

teq

dt′′
∂

∂t′′
[Dst(t− t′′)Cst(t

′ − t′′)] +
1

kBT

∫ t

t′
dt′′
∂Dst(t− t′′)

∂t′′
Cst(t

′′ − t′)

The first integral in the rhs is a total derivative and it can be readily evaluated, it
yields Dst(t− t′)Cst(0)−Dst(t− teq)Cst(t′− teq) ≈ Dst(τ) where we assumed that t
and t′ are well in the asymptotic regime in such a way that Cst(t′ − teq) ∼ 0, and we
defined τ ≡ t− t′. Integrating by parts the last integral in the rhs one finally obtains
the high T equation for the correlation

G−1
o (τ)Cst(τ) =

1

kBT
Dst(0)Cst(τ) −

1

kBT

∫ τ

0
dτ ′Dst(τ − τ ′)dτ ′Cst(τ

′) (8.4)

with G−1
o (τ) = Mdτ2 + γdτ + µ∞. One can check that Eq. (6.18) coincides with

Eq. (8.4) under the same assumptions. To prove this statement one has to integrate
Eq. (6.18) with respect to t′ from teq to t′ taking care of the fact that t′ appears in
the lower limit of the integral.

Equation (8.4) for the spherical p spin model coincides with the schematic mc

equation [?, ?]. This equation has a decaying solution above a sharp critical tempera-
ture that we call Tmct = Td where the assumptions of tti and fdt are justified. After
a short transient (eliminated by the limit t′ ! teq) the system equilibrates with its
environment even if the thermodynamic limit has already been taken. At very high T
the decay to zero is very fast and typical of, say, a high-T liquid. Closer to Td, how-
ever, a very interesting structure appears. The solution takes the form sketched in the
left panel in Fig. 46. In a logarithmic scale one sees a two step relaxation develop with
a first relatively quick decay towards a plateau at a value that we call qea and next a
slower relaxation towards zero. The length of the plateau increases when temperature
approaches Td from above and it diverges at Td. At Td the height of the plateau, qdea,
follows from the asymptotic analysis of Eq. (8.4). If one loosely considers qdea to be
an order parameter, the high temperature analysis yields qdea > 0 [see Eq. (8.30)] and
the transition is discontinuous. It is important to stress that, as we shall see below,
this does not mean that the model has a first order thermodynamic transition. All
susceptibilities are continuous when going across Td even though qdea > 0. In the
mode-coupling literature these transitions are called type B.

The details of the asymptotic analysis of the schematicmc equation and its relation
with the behavior of real systems has been discussed at length in the literature. We
shall not develop it here. With the purpose of future comparison with the low-
T solution we just recall that the approach and departure from the plateau (beta
relaxation) occurs with two power laws:

Cst(τ) ∼ qdea + caτ
−a + . . . Cst(τ) ∼ qdea − cbτ

b + . . . (8.5)
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given by
1

kBTd

Γ2(1 + b)

Γ(1 + 2b)
=

1

kBTd

Γ2(1− a)

Γ(1− 2a)
=

1

2

V ′′′(qdea)

(V ′′(qdea))3/2
. (8.6)

A similar analysis can be done for a quantum model.

8.3 Solution at low-T

Three families of mean-field models have been found so far. In this Section we
present the solution to the spherical mean-field descriptions of ferromagnetic domain
growth and structural glasses in some detail. We use a generic notation that allows
us to treat the classical and quantum problem simultaneously. The presentation
follows [43]. By the end of this Subsection we discuss the generalisation of these
results to models of “spin-glass” type, models with spatial dependence and the effect
of different microscopic dynamics.

The numerical solution to the dynamic equations at low T shows no evidence for
an arrest in the waiting-time dependence of the decay of C and R. In this regime of
temperatures,

teq(N,T < Td)→∞ (8.7)

and the equations do not admit the choice of a t′ > teq. In order to consider the
crossover towards the equilibration regime one should revisit the derivation of the
dynamic equations allowing for N finite. This program has not been pursued in the
literature and it remains one of the most interesting open problems in the field.

8.3.1 The Lagrange multiplier

We approximate the integral in Eq. (6.23) by separating its support in three in-
tervals

t′′ : 0 → δ0 , t′′ : δ0 → ∆t , t′′ : ∆t → t . (8.8)

The first time-interval contains only finite times t′′. Hence, all correlations and re-
sponses of the form C(t, t′′) and R(t, t′′) vanish due to Eqs. (7.3) and (7.7). In the last
time-interval t′′ is close to t in the sense that correlations of the kind C(t, t′′) are of
the form Cst(t− t′′)+ qea and similarly for the responses. Finally, in the intermediate
time-interval the C and R vary in the aging regime. Of course, we are sloppy in that
we do not precise what are the values of δ0 and ∆t. The definitions of correlation
scales given in Section correct this imprecision exchanging the time limts by limits
in the correlation. Within these assumptions the asymptotic value of µ(t) is given by

µ∞ = A∞ + qea

∫ ∞

0
dτ ′ Σst(τ

′) + D̃qea

∫ ∞

0
dτ ′Rst(τ

′)

+

∫ ∞

0
dτ ′ [ Σst(τ

′)Cst(τ
′) +Dst(τ

′)Rst(τ
′) ] + Last (8.9)
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Σ and D are made of two terms, one contribution from the bath and one contribution
from the interactions. We called Last a term that equals−M ∂2τCst(τ)

∣
∣
τ→0

in a model
with inertia (classical or quantum) and simply kBT in classical models without inertia.
A∞ is the aging contribution:

A∞ = lim
t→∞

∫ t

0
dt′′ [ Σag(t, t

′′)Cag(t, t
′′) +Dag(t, t

′′)Rag(t, t
′′) ] . (8.10)

The bath does not contribute to the integrals in A∞ when the kernels η and ν decay
sufficiently fast to zero as to yield vanishing integrals. This is trivially true for a white
noise. It can be a working assumption for colored noises based on a weak limit of the
strength of the coupling to the noise. More precisely, we are neglecting terms of the
form limt→∞

∫ t
0 dt′′ A(t − t′′)B(t, t′′) where A is either ν or η and B is either Cag or

Rag. In this case

A∞ = lim
t→∞

∫ t

0
dt′′
[

Σ̃ag(t, t
′′)Cag(t, t

′′) + D̃ag(t, t
′′)Rag(t, t

′′)
]

. (8.11)

The second and third terms in Eq. (8.9) come from the constant (non-zero) limit of the
first decay of the correlation qea ≡ limt−t′→∞ limt′→∞ C(t, t′) and the vertex D̃qea ≡
limt−t′→∞ limt′→∞ D̃(t, t′). For the classical spherical p spin model D̃qea =

p
2 q

p−1
ea and

this equation also holds for its quantum extension if we use limτ→∞Rst(τ) . qea, a
property of the wltm scenario. The integral over the stationary parts can be simply
performed using fdt for classical problems but they cannot in quantum problems.

8.3.2 The stationary regime

If (t, t′) are such that C(t, t′) > qea, C(t, t′) = qea + Cst(t − t′) and R(t − t′) =
Rst(t− t′). The Schwinger-Dyson equation for R in this time sector reads

(

M∂2τ + µ∞

)

Rst(τ) = δ(τ) +

∫ τ

0
dτ ′ Σst(τ − τ ′)Rst(τ

′) (8.12)

and it keeps the same form as in the high-temperature phase, apart from the fact
that the constant µ∞ has contributions from the aging regime. The Schwinger-Dyson
equation for C reads

(

M∂2τ + µ∞
)

(qea + Cst(τ)) = A∞ + qea

∫ ∞

0
dτ ′ Σst(τ

′) + D̃qea

∫ ∞

0
dτ ′ Rst(τ

′)

+

∫ ∞

−∞
dτ ′ [Σst(τ + τ

′)Cst(τ
′) +Dst(τ + τ

′)Rst(τ
′)] . (8.13)

One can now Fourier-transform both equations

Rst(ω) =
1

−Mω2 + µ∞ − Σst(ω)
,

(

−Mω2 + µ∞
)

Cst(ω) + µ∞qeaδ(ω) =
(

A∞ + qeaΣst(ω) + D̃qeaRst(ω)
)

δ(ω)

+Σst(ω)Cst(ω) +Dst(ω)Rst(−ω) .
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The formal solution to the equation for Cst is

Cst(ω) =
(

−µ∞qea +A∞ + qeaΣst(ω) + D̃qeaRst(ω)
)

δ(ω)Rst(ω) +Dst(ω)|Rst(ω)|2 .

The first term on the rhs has an imaginary and a real part. The imaginary part
vanishes identically since, due to fdt, both ImRst(ω) and ImΣst(ω) are proportional
to tanh (βh̄ω/2) which is zero at ω = 0 for classical and quantum problems. Con-
cerning the real part of this first term, as we have assumed that Cst(τ) goes to zero
for τ →∞, we need to impose the self-consistent condition

−µ∞qea +A∞ + qeaΣst(ω = 0) + D̃qeaRst(ω = 0) = 0 . (8.14)

This is the condition that fixes qea. We shall find it again in the next section as the
matching condition between the stationary and aging regimes. The final equation for
Cst(ω) is

Cst(ω) = Dst(ω)|Rst(ω)|2 . (8.15)

One can check that these calculations are consistent with the results from µ∞. Actu-
ally, the integrals in equation for µ(t) involving the stationary parts can be evaluated
with the help of the equations for Rst and Cst, Eqs. (8.14) and (8.15), and yield once
again Eq. (8.14).

Similarly to the high-temperature case one can now show that fdt for Σ̃st and
D̃st implies fdt for Rst and Cst. The remainder of the proof, i.e. to show that fdt
between Rst and Cst implies fdt between Σ̃st and D̃st depends only upon the form
of Σ̃st and D̃st as functions of Rst and Cst and is not modified from the one discussed
in Section .

8.3.3 The aging regime

If we now choose the times t, t′ to be well-separated so as to have C(t, t′) =
Cag(t, t′) ≤ qea and R(t, t′) = Rag(t, t′), the web and wltm hypotheses allow us to
throw the second time derivatives on the lhs. We assume that their contribution
is much weaker than the one of each of the integral terms on the rhs. This is an
assumption that we have to verify at the end of the calculation, once the solution for
Cag and Rag is known. It corresponds to the over-damped limit.

Using a separation of time-scales in the integrals the equation for R in the aging
regime becomes

µ∞Rag(t, t
′) = Σ̃ag(t, t

′)

∫ ∞

0
dτ ′Rst(τ

′) +Rag(t, t
′)

∫ ∞

0
dτ ′ Σst(τ

′)

+

∫ t

t′
dt′′ Σ̃ag(t, t

′′)Rag(t
′′, t′) (8.16)

and we call it the Rag-eq. Similarly, the equation for C becomes

µ∞Cag(t, t
′) = Cag(t, t

′)

∫ ∞

0
dτ ′Σst(τ

′) + D̃ag(t, t
′)

∫ ∞

0
dτ ′Rst(τ

′)
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+

∫ t

0
dt′′ Σ̃ag(t, t

′′)Cag(t
′′, t′) +

∫ t′

0
dt′′ D̃ag(t, t

′′)Rag(t
′, t′′) (8.17)

and we call it the Cag-eq. In all integrals over the slow regime we neglected the
contributions of the noise kernels η and ν and we approximated Σag(t, t′) ∼ Σ̃ag(t, t′)
and Dag(t, t′) ∼ D̃ag(t, t′).

8.3.4 The Edwards-Anderson parameter

The Edwards-Anderson parameter, qea, is determined self-consistently from the
matching of limt→∞ Cag(t, t) = limt−t′→∞ limt′→∞ C(t, t′) = qea. Taking the limit
t′ → t− in the Rag-eq and Cag-eq one obtains

µ∞Rag(t, t) = Σ̃ag(t, t)

∫ ∞

0
dτ ′ Rst(τ

′) +Rag(t, t)

∫ ∞

0
dτ ′ Σst(τ

′) , (8.18)

µ∞qea = A∞ + qea

∫ ∞

0
dτ ′ Σst(τ

′) + D̃ag(t, t)

∫ ∞

0
dτ ′ Rst(τ

′) . (8.19)

The first equation admits the solution Rag(t, t) = 0 since Σ̃ag(t, t) is proportional
to Rag(t, t). This corresponds to the high-temperature solution where there is no aging
regime. Here we concentrate on the other possibility. The response becomes smaller
and smaller as time passes – though its integral over an infinite interval gives a finite
contribution. If we neglect all terms that are proportional to Rag(t, t) with respect
to terms that are proportional to qea, only the first term in the power expansions of
Σ̃ and D̃ survive and

(

Σ̃/R
)

qea
≡ lim

t→∞

Σ̃ag(t, t)

Rag(t, t)
D̃qea ≡ lim

t→∞
D̃ag(t, t) (8.20)

that for the p spin model become

(

Σ̃/R
)

qea
=

p(p− 1)

2
qp−2
ea D̃qea =

p

2
qp−1
ea , (8.21)

in accord with the large τ limit of the stationary values (see Section ). Equations
(8.18) and (8.19) become

µ∞ =
(

Σ̃/R
)

qea

∫ ∞

0
dτ ′ Rst(τ

′) +

∫ ∞

0
dτ ′ Σst(τ

′) , (8.22)

µ∞qea = A∞ + qea

∫ ∞

0
dτ ′ Σst(τ

′) + D̃qea

∫ ∞

0
dτ ′ Rst(τ

′) . (8.23)

The second equation is the same as the one arising from the end of the stationary
regime, Eq. (8.14).

From Eqs. (8.14) and (8.15) one derives
∫ ∞

0
dτ Rst(τ) = Rst(ω = 0) =

1

µ∞ − Σst(ω = 0)
, (8.24)
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and

1 =
(

Σ̃/R
)

qea
R2

st(ω = 0) . (8.25)

We remind that the factor R2
st(ω = 0) can be written in terms of the stationary

correlation function using fdt; therefore this is a closed equation for the correlation
that determines qea. In the case of the p-spin model it reads

1 =
p(p− 1)

2
qp−2
ea

(
1

h̄
P

∫ ∞

−∞

dω′

ω′
tanh

(
βh̄ω′

2

)

Cst(ω
′)

)2

. (8.26)

In the classical case, the integral can be readily computed and the final equation for
qea is

p(p− 1)

2
qp−2
ea (1− qea)

2 = (kBT )
2 , (8.27)

that coincides with the result for the purely relaxational dynamics. For p ≥ 3 fixed, qea
is a function of temperature. Equation (8.27) can be solved graphically. The lhs has
a bell shape. It vanishes at qea = 0, 1 and it reaches a maximum at qmaxea = (p− 2)/p.
The equation has two solutions for all temperatures (kBT )2 < (kBTmax)2 = p(p −
1)/2 [(p − 2)/p]p−2 (2/p)2, these merge ar Tmax and disappear for higher T ’s. The
physical solution corresponds to the branch on the right of the maximum, the one
that continues the solution qea = 1 at T = 0. The minimum value of qea is reached
at the dynamic critical temperature Td(< Tmax), where qdea ≡ qea(Td) > qmaxea .

8.3.5 Fluctuation - dissipation relation

In order to advance further we have to relate the response to the correlation. If
we assume that

Rag(t, t
′) =

1

kBT ∗

∂Cag(t, t′)

∂t′
, (8.28)

with T ∗ the value of an effective temperature (see Section ??) that is determined by
Eqs. (8.23) and (8.24) 0 = A∞− qea

Rst(ω=0) + D̃qea Rst(ω = 0). Using Eq. (8.28) and the

equivalent relation between Σ̃ag and D̃ag, we obtain A∞ =

(kBT ∗)−1 limt→∞

(

D̃ag(t, t)Cag(t, t)
)

= (kBT ∗)−1 qeaD̃qea and

1

kBT ∗
=

(p− 2)

qea
Rst(ω = 0) =

√

2(p− 2)2

p(p− 1)
q−p/2
ea . (8.29)

In the classical limit T/T ∗ = (p − 2)(1 − qea)/qea. Note that both in the classical
and quantum case, T ∗ → ∞ if p = 2. Since the case p = 2 is formally connected to
ferromagnetic domain growth in d = 3 (in the mean-field approximation) there is no
memory neither in the classical nor in the quantum domain growth.

TheAnsatz in Eq. (8.28) solves classical and quantum aging equations. The modifi-
cation of the fdt in this regime became thus classical even when quantum fluctuations
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exist. This is an interesting sort of decoherent effect that will become clearer when
we shall discuss the interpretation of this results in terms of effective temperatures.

Using Eq. (8.28) for all values of C below qea we assumed that there is only one
aging correlation scale in the problem. Interestingly enough, one do a more general
analysis using the formalism described in Section and find that the dynamic equations
force the solution to have only one aging correlation scale.

8.3.6 Discontinuous classical transition

The classical dynamic critical point (Td, h̄ = 0) can arise either when qea → 0 or
when T ∗ → T . For the p spin model, using Eqs. (8.27) and (8.29) the latter holds
and

(kBTd)
2 =

p (p− 2)p−2

2 (p− 1)p−1
qdea =

p− 2

p− 1
. (8.30)

The transition is discontinuous since the order parameter qea jumps at Td. How-
ever, it is still of second order thermodynamically since there are no thermodynamic
discontinuities, all susceptibilities being continuous across Td. For instance,

lim
t*tw

χ(t, tw) =
1

kBT
(1 − qea) +

1

kBT ∗
qea →

1

kBT
when T → T ∗ at Td . (8.31)

The dynamic transition occurs at a value Td that is higher than the static transi-
tion temperature Ts. The latter is fixed as the temperature where replica symmetry
breaking occurs (using the standard prescription to fix the parameters in the Parisi
Ansatz to compute the free-energy density). This feature is an explicit realisation of
the discussion on Tg and T0. They are sharp in this model.

8.3.7 The classical threshold level

The asymptotic energy density reads E∞ = − 1
p

∫∞
0 dt′′[Σ(t, t′′)C(t, t′′)+D(t, t′′)R(t, t′′)]

where we used Eq. (6.26). Replacing the solution found above we obtain

E∞ = −1

2

[
1

kBT
(1− qpea) +

1

kBT ∗
qpea

]

≡ Eth . (8.32)

If one compares this expression with the equilibrium energy density, found studying
the partition function, one discovers that

E∞ = Eth > Eeq . (8.33)

Thus, the non-equilibrium dynamics does not approach the equilibrium level asymp-
totically but it reaches a threshold level that is extensively higher than equilibrium
(note that the inequality (8.33) holds for the energy density). The name threshold is
motivated by a similarity with percolation (in phase space).

8.3.8 Two p models
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In Section we took the limit t′ → t−, or equivalently, Cag → q−ea in the equations
for the slow part of the response and the correlation and this lead us to Eqs. (8.25)
and (8.29) for qea and T ∗. Let us now take subsequent variations of this equation
with respect to the correlation and evaluate them in the same limit. It is easy to see
that if we neglect the contributions from the integral between t′ and t, assuming that
the integrands are analytic in this limit, we get new equations linking T ∗ and qea
that, for generic models, are not compatible. Indeed, as we shall see below, the pure
spherical p spin model is the only one for which the solution is given by an analytic
function −1(x) when x→ 1−.

The way out of this contradiction is to propose that the correlation approaches
the plateau at qea with a power law decay and that it departs from it with another
non-trivial power law:

Cst(t− t′) = (1 − qea) + c(1)a (t− t′)−a + c(2)a (t− t′)−2a + . . . . . . (8.34)

Cag(t, t
′) = qea − c(1)b

(

1− h(t′)

h(t)

)b

− c(2)b

(

1− h(t′)

h(t)

)2b

+ . . . (8.35)

with c(i)a and c(i)b constants. If the exponent b is smaller than one, the integrals
generated by taking derivatives with respect to Cag do not vanish when t′ → t−. The
expansion of the stationary and aging equations around qea fix the exponents a and
b. One finds [32]

1

kBT ∗

(Γ(1 + b))2

Γ(1 + 2b)
=

1

kBT

(Γ(1− a))2

Γ(1− 2a)
=

1

2

V ′′′(qea)

(V ′′(qea))3/2
(8.36)

that are to be confronted to Eqs. (8.5) and (8.6) for the high T behavior. We recall that
V(C) is the correlation of the random potential. Importantly enough, the exponents
a and b are now T -dependent and they are related via an equation in which T ∗ enters.

Classical spherical p spin model

Since V(C) = Cp/2 using Eqs. (8.25) and (8.29) to fix T ∗ and qea one finds
(Γ(1 + b))2/Γ(1 + 2b) = 1/2 and b = 1 for all T < Td. The exponent a interpolates
between a = 1/2 at T → 0 and a = 1 at T → Td since (Γ(1−a))2/Γ(1−2a) = T/(2T ∗).

Classical mixed p1 + p2 spherical spin model

For adequate choices of the coefficients in V(C) = a1/2Cp1 + a2/2Cp2 (see below)
one finds T -dependent exponents a(T ) and b(T ).

Ultrametric limit

It is interesting to notice that (Γ(1 + b))2/Γ(1 + 2b) is bounded by one. Thus,
Eq. (8.36) constrains the random potentials for which a solution with only two cor-
relation scales exists. For a particle in a power-law correlated random potential one
sees the transition towards an ultrametric-like solution arrives when the potential
goes from short-range to long-range correlated [32]. To our knowledge this has not

178



been found in a static calculation. An interpretation of the exponents a and b, and
this consequence, in terms of the properties of the tap free-energy landscape is not
known either.

8.3.9 sk model and similar

A different family of models, to which the sk model belongs, are solved by an
ultrametric Ansatz, C31 = f(C32, C21), for all correlations below qea. The χ(C) plot
yields a non-trivial curve (instead of a straight line) for C ∈ [0, qea]. The transition
is continuous qdea = 0. These models are called type A in the mct literature.

Indeed, for a generic disordered model with random potential correlated as in
Eq. (6.6), one finds that the solution is ultrametric if and only if [32]

V ′′′(C)

V ′′′(qea)

(
V ′′(qea)

V ′′(C)

)3/2

< 1 . (8.37)

This bound constrains, for instance, the values of the coefficients in a polynomial
random potential for which the dynamic solution is ultrametric. The fdt is modified
with a C dependent factor given by

T

Teff(C)
= qeaV ′′′(C)

√

V ′′(qea)

4(V ′′(C))3/2
. (8.38)

8.3.10 Mode dependence

The models we solved so far have no spatial dependence. The manifold problem
has an internal structure that leads to a mode-dependence. This model has been
solved for generic potential correlations. We summarize the outcome without pre-
senting its detailed derivation. All modes are slaved to one in the sense that one has
to solve for the dynamics of one of them and the mode-dependence follows from an
algebraic equation. The value of the effective temperature does not depend on the
mode. The mathematical reason for this is the slaved structure of the equations. The
physical reason is that all interacting observables evolving in the same time-scale have
to partially equilibrate and acquire the same effective temperature. The height of the
plateau, qea, is a k dependent quantity. The approach to it and departure from it
also depends on k but only via the prefactors; the exponents a and b, see Eqs. (8.34)
and (8.35, are the same for all modes.

Mode-couling equations including a wave-vector dependence have been derived
by Latz using the Mori-Zwanzig formalism; the structure of the solution to these
equations shares the properties just described.

8.3.11 Quantum fluctuations

The simplest effect of quantum fluctuations is to introduce oscillations in the first
step of relaxation. These disappear at long enough time-differences and they are
totally suppressed from the second decay, that superficially looks classical [43].
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The Edwards-Anderson parameter qea depends upon T and h̄. As expected, quan-
tum fluctuations introduce further fluctuations in the stationary regime and they
decrease the value of qea, qea(T, h̄ 0= 0) < qea(T, h̄ → 0).

The modification of fdt in the quantum model is of a rather simple kind: Rag

and Cag are related as in the classical limit. For the quantum extension of the p spin
model there are two correlation scales, one with the temperature of the environment,
T , the other with another value of the effective temperature, T ∗, that depends on T ,
h̄ and the characteristics of the environment. This is a kind of decoherent effect.

As regards to the transition from the glassy to the liquid or paramagnetic phase,
an interesting effect appears. Keeping all other parameters fixed, the plane (T,Γ ≡
h̄2/(JM)) is separated in these two phases by a line that joins the classical dynamic
critical point (Td,Γ = 0) and the quantum dynamic critical point (T = 0,Γd). Close
to the classical dynamic critical point the transition is discontinuous but of second
order thermodynamically until it reaches a tricritical point where it changes character
to being of first order. This behavior is reminiscent of what has been reported for the
quantum spin-glass studied in [?].

A still more dramatic effect of quantum mechanics is related to the very strong role
played by the quantum environment on the dynamics of a quantum system. Indeed,
the location of the transition line depends very strongly on the type of quantum bath
considered and on the strength of the coupling between system and environment.

8.3.12 Driven dynamics

The effect of non potential forces can be mimicked with a ‘non-symmetric’ force
with strength α playing an analogue role to the shear stress σ. For strengths that are
not too strong, the dynamics presents a separation of time scales with a fast approach
to the plateau and a slow escape from it that is now, however, also stationary. Indeed,
after a characteristic time tsh the full dynamics becomes stationary though the system
is still far from equilibrium. One defines a structural relaxation time, τα, as the
time needed to reach, say, a correlation equal to a half. One relates the structural
relaxation to the viscosity via η ≡

∫

dtC(t). The scaling of η with the shear rate
γ̇ ≡ σ/η has been successfully confronted to the behavior in rheological experiments
in super-cooled liquids and glasses. In terms of the general scalings discussed in
Section , the correlations are characterised by two different functions , one for the
fast decay towards the plateau and another for the slow decay from the plateau, while
the functions h(t) are simple exponentials.

Interestingly enough, from the study of fdt violations above (though close to) and
below Td, when the forcing is weak, one extracts a still well-defined slope of the χ(C)
plot when C evolves in the slow scale. This means that an effective temperature can
also be identified for these systems kept explicitly out of equilibrium (see also [?]).

Oscillatory forces, as the ones used to perturb granular matter, have a different
effect. Aging is not stopped in a finite region of the phase diagram (T -strength of
the force-frequency of the force) [?]. An effective temperature can still be defined as
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the slope of the χ(C) plot drawn using stroboscopic time, with a point per oscillatory
cycle.

9 Effective temperature measurements

In this Section we discuss measurements of FDT violations and tests of the effective
temperature notion in a variety of physical systems out of equilibrium. Since we
cannot make the description exhaustive we simply select a number of representative
cases that we hope will give a correct idea of the level of development reached in the
field. This Section follows closely [?] where references to the original papers are given.

9.1 Diffusion

The dynamics of a particle in a potential and subject to a complex environment
(colored noise or baths with several time-scales and temperatures) has a pedagogical
interest but also admits an experimental realization in the form of Brownian particles
immersed in, e.g., colloidal suspensions and controlled by optical tweezers.

A particle coupled to a bath in equilibrium at temperature T with noise-noise
correlations of type 〈ξ(t)ξ(t′)〉 ∝ (t−t′)−a−1, 0 < a < 2, and under no external forces,
performs normal or anomalous diffusion depending on a. The fluctuation-dissipation
ratio, eq. (??), for t ≥ t′ is

Xxx(t, t
′) =

TRxx(t, t′)

∂t′Cxx(t, t′)
=

D(t− t′)

D(t− t′) +D(t′)
, (9.1)

with the diffusion coefficient D(t) ≡ 1/2 d〈x2(t)〉/dt & ta for a 0= 1 and D(t) = ct
for a = 1. In such colored noise cases Xxx is a non-trivial function of times and it
does not seem to admit a thermodynamic interpretation. Still, for later reference we
consider the long times limit:

X∞ = lim
t′→∞

lim
t→∞

Xxx(t, t
′) &







0 a < 1 subOhmic,
1/2 a = 1 Ohmic,
1 a > 1 superOhmic.

Another illustrative example is the non-Markovian diffusion of a particle in a
harmonic potential and subject to different external baths. As already explained in
Sect. ?? this simple system allows one to show how different environments can impose
their temperatures on different dynamic regimes felt by the particle. Tests of other
definitions of out of equilibrium temperatures in this simple case confirmed that the
definition that appears to have the most sensible behaviour is the one stemming from
the long-time limit of the relations between induced and spontaneous fluctuations.
All other definitions yield results that are more difficult to rationalize: in most cases
one simply finds the temperature of the fast bath and in some cases, as with a static
limit, one incorrectly mixes different time regimes even when their time-scales are
well separated.
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9.2 Coarsening

When a system is taken across a second order phase transition into an ordered
phase with, say, two equilibrium states related by symmetry, it tends to order locally
in each of the two but, globally, it remains disordered. As time elapses the ordered
regions grow and the system reaches a scaling regime in which time-dependencies
enter only through a typical growing length, L(t). Finite dimensional coarsening
systems have been studied in great detail from the effective temperature perspective.
In this context, it is imperative to distinguish cases with a finite temperature phase
transition and spontaneous symmetry breaking from those with ordered equilibrium
at T = 0 only. Some representative examples of the former are the clean or dirty 2d
Ising model with conserved and non-conserved order parameter. An instance of the
latter is the Glauber Ising chain and we postpone its discussion to Sect. .

Let us focus on scalar systems with discrete broken symmetry. When time-
differences are short with respect to a function – typically algebraic – of the typical
growing length L(tw), domain walls remain basically static and the only variation is
due to thermal fluctuations on the walls and, more importantly, within the domains.
This regime is stationary, and induced and spontaneous fluctuations are linked by the
FDT. At longer time-differences domain walls move and observables display the out
of equilibrium character of the system.

The motion of the domain walls in the presence of an external perturbing random
field introduced to measure the staggered response is due to two competing factors:
on the one hand, the system tends to diminish the curvature of the interfaces due to
surface tension, on the other hand the random field tends to pin the domain walls in
convenient places.

The correlation and total susceptibility in the tw → ∞ limit separate in two
contributions C(t, tw) = Cst(t−tw)+C(1)(t, tw) and χ(t, tw) = χst(t−tw)+χ(1)(t, tw).
Numerical studies of Teff focused on the parametric construction χ(C, tw) at fixed
and finite tw where the chosen observable is the spin itself. The resulting plot has
a linear piece with slope −1/T , as in eq. (??), that goes below C = qea = m2 and,
consistently, beyond χ = [1−m2]/T . The additional equilibrium contribution is due
to the equilibrium response of the domain walls that exist with finite density at any
finite tw. In the truly asymptotic limit their density vanishes and their contribution
disappears. Consequently, limtw→∞ χ(C, tw) = Cst ≥ qea satisfies FDT and it is
entirely due to fluctuations within the domains. In cases with L(t) & t1/zd , the slow
terms take the scaling forms

C(1)(t, tw) & fC(t/tw) , χ(1)(t, tw) & t−aχ
w fχ(t/tw) . (9.2)

It would be natural to assume that χ(1)(t, tw) is proportional to the density of defects
ρd(t) & L(t)−n & t−n/zd with n = 1 for scalar and n = 2 for vector order parameter.
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Although this seems plausible aχ is instead d-dependent. Another conjecture is

zd aχ =







n (d− dL)/(dU − dL) d < dU ,
n (with ln corrections) d = dU ,
n d > dU .

(9.3)

dL is the dimension at which aχ vanishes and may coincide with the lower critical di-
mension. One finds dL = 1 in the Ising model, dL = 1 in the Gaussian approximation
of Ohta, Jasnow and Kawasaki, and dL = 2 in the O(N) model in the large N limit.
dU is the dimension at which aχ becomes d-independent and it does not necessarily
coincide with the upper critical dimension. One finds dU = 3 in the Ising model,
dU = 2 in the Gaussian approximation, and dU = 4 in the large N O(N) model.
It was then suggested that dU might be the highest d at which interfaces roughen.
In all cases in which aχ > 0, Teff → ∞. This result was confirmed by studies of
second order FDRs in the 2d Ising model that showed the existence of stationary con-
tributions verifying the non-linear equilibrium relation and aging terms that satisfy
scaling and yield Teff →∞ as in the linear case. The approach by Henkel et al. based
on the conjecture that the response function transforms covariantly under the group
of local scale transformations, fixes the form of the scaling function fχ but not the
exponent aχ and does not make predictions on Teff. The coincidence between statics
and dynamics, see Sect. ??, holds in these cases.

Noise induced spatial fluctuations in the effective temperature of clean coarsening
systems were analyzed in the large N O(N) model with d > 2 and with numer-
ical simulations. The first study shows that time-reparametrization invariance is
not realized and that Teff is trivially non-fluctuating in this quasi-quadratic model.
The second analysis presents a conjecture on the behaviour of the average over local
(coarse-grained) susceptibility at fixed local (coarse-grained) correlation that consis-
tently vanishes in coarsening (but is more interesting in critical dynamics as we shall
discuss in Sect. ).

The results gathered so far and summarized in the conjecture (9.41) imply that
the FD ratio vanishes and thus Teff diverges in quenches into the ordered phase of
systems above their lower critical dimension.

9.3 Critical dynamics

The non-equilibrium dynamics following a quench from the disordered state to the
critical point consists in the growth of the dynamical correlation length, ξ(t) & t1/zeq .
This length does not characterize the size of well defined domains but the size of a
self-similar structure of domains within domains, typical of equilibrium at the critical
point. A continuum of finite time-scales associated to different wave-vectors, τ (k) &
k−zeq , exists with only the k → 0 diverging. At any finite time t, critical fluctuations
of large wave-vectors, kξ(t) ! 1, are in almost equilibrium, while those with small
wave-vectors, kξ(t). 1, retain the non-equilibrium character of the initial condition.
This finite-time separation, and the fact that the order parameter vanishes, leads to
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the multiplicative scaling forms

C(t, tw) & ξ(t− tw)
−d+2−η fC [ξ(t)/ξ(tw), ξ0/ξ(tw)] ,

χ(t, tw) & β − ξ(t− tw)
−d+2−η fχ[ξ(t)/ξ(tw), ξ0/ξ(tw)] ,

with the microscopic length ξ0 ensuring the normalization of the correlation and the
fact that χ vanishes at equal times. These forms imply that beyond the initial equi-
librium part, the χ(C) plot assumes a non-trivial shape that, however, progressively
disappears and approaches the equilibrium linear form at all C > 0. The limit C = 0
is distinct and the limiting parameter X∞ should be non-trivial and it was conjec-
tured to be universal in the sense of the renormalization group. Whether this one
can be interpreted as a temperature is a different issue that has been only partially
discussed. For this reason, we keep the notation X∞ (instead of Teff) in most of this
section.

The correct estimation of X∞ has to take into account that the number of out of
equilibrium modes decreases in the course of time (contrary to what happens in the
random manifold problem in the large N limit, for example). The best determination
ofX∞ is achieved by selecting the k → 0 mode. A thorough review of the properties of
X∞ found with the perturbative field-theoretical approach and some exact solutions
to simple models, as well as the comparison to numerical estimates, is given in. At
the Gaussian level the X∞ of local operators (e.g. powers of the field, first derivatives
of the field, etc.) is independent of the chosen pair – but recalls certain features of
the initial condition and the correlations of the environment. This is not the case for
non-local operators as, e.g. the energy or the tensor. Moreover, when fluctuations
are taken into account with, e.g. a two-loop or first order in ε = 4− d expansion, the
X∞ of local operators is found to depend upon the observables.

In the scalar model, using the field itself as the observable, one finds the diffusive
results, eq. (9.40), at the Gaussian level and corrections when higher orders are taken
into account. For example X∞ = 0.30(5) in d = 2, X∞ = 0.429(6) in d = 3 for a
quench from a disordered state, white noise and up to second order in 4 − d. The
trend of X∞ increasing with d was found in other models too. Instead, X∞ & 0.78
(d = 3) and X∞ = 0.75 (d = 2) if the initial state is magnetized. A larger X∞

implies a lower T∞
eff = Tc/X∞ and the comparison between these values conforms to

the intuitive idea that an ordered initial state leads to a lower effective temperature
than a disordered one. X∞ was found to increase with N in vector models.

A different type of critical phenomena (infinite order) arises in the 2d XY model.
The magnetic order parameter vanishes at all T but there is a low-T critical phase
with quasi long-range order (power-law decaying spatial correlations) that is destroyed
at Tkt where vortices proliferate and restore a finite correlation length. Out of equi-
librium the critical scaling forms apply although with a temperature-dependent ex-
ponent, η(T ), and a growing length scale ξ(t) & (t/ ln t)1/2 (the logarithm is due to
the effect of vortices). The rôle of the EA order parameter is played by the asymp-
totically vanishing function (tw/ ln tw)−η(T )/2 and the crossover between equilibrium
and out of equilibrium regimes takes place at a tw-dependent value of the correla-
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tion. The χ(C, tw) plot at finite tw is curved, it does not reach a non-trivial master
curve for tw → ∞, but Teff(t, tw) = fX [ξ(t)/ξ(tw)]. Quenches from the disordered
phase, T0 > Tkt and heating from a T0 = 0 ground state to T < Tkt demonstrate
that the slow modes’ Teff depends on the initial state and it is higher (lower) when
T0 > T (T0 < T ). We allow ourselves to use the name Teff in this case since these
results point in the direction of justifying its thermodynamic meaning. Similar results
were obtained for 1 + 1 elastic manifolds with and without quenched disorder. As
the dynamic-static link is concerned, Berthier et al. evinced that the extension to
finite-times finite-sizes works, at least at not too high T s where free vortices inherited
from the initial condition are still present.

The exact calculation of the joint probability distribution of the finite-size corre-
lation and linear response in the spherical ferromagnet quenched to its critical tem-
perature was given by Annibale and Sollich. The results prove that these fluctuations
are not linked in a manner akin to the relation between the averaged quantities,
as proposed by Chamon et al., see Sect. ??, for glassy dynamics. The analysis of
correlation-susceptibility fluctuations in non-disordered finite-dimensional ferromag-
nets quenched to the critical point showed that the restricted average of the suscep-
tibility, at fixed value of the two-time overlap between system configurations, obeys
a scaling form. Within the numerical accuracy of the study the slope of the scaling
function yields, in the asymptotic limit of mostly separated times, the value X∞.

The first experiments testing fluctuation dissipation deviations in a liquid crystal
quenched to its critical point appeared recently and the results are consistent with
what has been discussed above.

The coexistence of a single time scale in the aging regime together with a smooth
and time-dependent χ(C, tw) plot arises naturally in a critical regime and it is due to
the lack of sharp time-scale separation.

Although many evaluations of X∞ in a myriad of models tend to confirm that
it mostly behaves as a critical property, the thermodynamic nature of this parame-
ter has not been explored in full extent yet. Measurements with thermometers and
connections to microcanonical definitions have not been performed at critical points.

9.4 Quenches to the lower critical dimension

The kinetic Glauber-Ising spin chain is the prototype of a dynamic model at its
lower critical dimension. Taking advantage of the fact that this is one of the very
few exactly solvable models of non-equilibrium statistical mechanics, several issues
concerning the effective temperature interpretation have been addressed in this case,
notably the observable dependencies.

After a quench from T0 → ∞ to T = 0 the correlation and response vary in a
single time-scale with a simple aging scaling (they are both functions of t/tw) and
the χ(C) relation is a continuous function. The factor Xs(t, t′), associated to the spin
correlation and susceptibility, is smaller than or equal to one and its value X∞

s in
the limit Cs → 0 evolves smoothly from 1/2 (as in models characterized by simple
diffusion such as the random walk or the Gaussian model) to 1 (equilibrium) as t/τeq
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grows from 0 to ∞ [1/τeq = 1 − tanh(2J/T ) is the smallest eigenvalue of the master
equation operator]. Moreover, Xs is an exclusive function of the auto-correlation Cs

as in more complex instances of glassy behaviour.
The value for the long-wavelength analogue, the fluctuating magnetization, X∞

m , is
identical to the local valueX∞

s . The physical origin of the local-global correspondence,
which can also be obtained by field-theoretic arguments, is that the long wavelength
Fourier components dominate the long-time behaviour of both quantities. In contrast,
observables that are sensitive to the domain wall motion have X∞

d = 0, the difference
residing on the interplay between criticality and coarsening, a peculiar feature of
models with Tc = 0.

The dependence on the initial condition is also interesting. A non-zero initial
magnetization does not change the value of X∞

s at T = 0. Instead, demagnetized
initial conditions with strong correlations between spins so that only a finite number
of domain walls exist in the system, yield X∞

s = 0 (the same result is found in the
spherical ferromagnet). The deviations from non-linear FDTs have not been fully
analyzed yet.

The static-dynamics connection sketched in Sect. ?? does not hold in the 1d Ising
chain and the non-trivial χ(C) cannot be used to infer the properties of the equi-
librium state. Indeed, the aging part of the response is finite asymptotically while
the equilibrium P (q) has a double-delta (RS) structure as in higher dimensions. The
reason for the failure is that the hypotheses used to derive the connection are not
fulfilled.

The large N O(N) model in d = 2 shares many common features with the phe-
nomenology described above although it has not been studied in as much detail.

To sum up, a quench to T = 0 at the lower critical dimension does not seem to be
the dimensional continuation of a line of critical quenches in the (T, d) plane (as often
implicitly assumed), but the continuation of a line of T = 0 quenches: the system
behaves as in the coarsening regime, although X∞ 0= 0 for observables that do not
focus on the domain wall dynamics.

9.5 Relaxation in structural glasses

In particle glassy systems a separation of time-scales exists although it is not as
sharp as in mean-field models or coarsening systems, at least within simulational and
experimental time-scales. In atomic glasses the existence of an FDT part implies that
the rapid particle vibrations within the cages occur in equilibrium while the structural
relaxation is of a different out of equilibrium kind, and it is not necessarily ruled by the
temperature of the bath. Tests of the thermodynamic origin of fluctuation-dissipation
violations in the aging regime of these systems were carried through in much greater
detail and we summarize them below.

9.5.1 Simulations of microscopic models
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Mono-atomic and binary Lennard-Jones mixtures, soft sphere systems, and the
BKS potential for silica are standard models for glass forming liquids. Both Monte
Carlo and molecular dynamics simulations suggest that the three first cases belong to
the RFOT class of systems defined in Sect. ?? with Teff = T (1) constant in the aging
regime. T (1) depends weakly on the bath temperature and systems’ parameters but it
does not on the preparation protocol as demonstrated by measurements after quenches
and crunches or the microscopic dynamics. Tests of partial equilibration between
fluctuations at different wave-vector gave positive results. Importantly enough, these
models have a well defined equilibrium behaviour and their energy density is naturally
bounded. Of special interest is the numerical method devised to compute linear
responses in molecular systems with high precision that allowed Berthier to resolve
the paradoxical behavior previously reported for silica.

Numerical evidence for a slow decrease in time of the configurational temperature,
as defined in eq. (??), although with the inherent structure complexity, is in agreement
with the idea of the system’s representative point penetrating below the threshold in
the (free)-energy landscape.

The ratchet effect of an asymmetric intruder in an aging glass was studied nu-
merically by Gradenigo et al. The energy flowing from slow to fast modes is rectified
to produce directed motion. The (sub) velocity of the intruder grows monotonically
with Teff/T and this current could be used to measure Teff.

9.5.2 Kinetically constrained models

Kinetically constrained models are toy models of the glassy phenomenon. Their
equilibrium measure is just the Boltzmann factor of independent variables and corre-
lations only reflect the hard core constraint. Still, many dynamic properties of glass
forming liquids and glasses are captured by these models, due to the sluggishness in-
troduced by the constrained dynamic rules. The literature on kinetically constrained
models is vast; a recent review with tests of Teff was written by Leonard et al. In
short, non-monotonic low-temperature response functions were initially taken as evi-
dence against the existence of effective temperatures in these systems. The confusion
arosed from the incorrect construction of the χ(C) plot by using tw instead of t fixed
(see Sect. ??) that led to the incorrect treatment of the transient regime. Still, even
this taken into account, a large number of observables have negative fluctuation-
dissipation ratios; this might be related to the fact that these models do not have a
proper thermodynamics.

9.5.3 Experiments

Grigera and Israeloff were the first to measure FDT violations in glasses by com-
paring dielectric susceptibility and polarization noise in glycerol at T = 179.8K, i.e.
relatively close to Tg & 196K. At fixed measuring frequency ω & 8Hz, they found
an effective temperature that slowly diminishes from Teff & 185K to roughly 180K
in 105 sec, that is to say in the order of days! This pioneering experiment in such a
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traditional glass former has not had a sequel yet.
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Figure 51: Left: the waiting-time evolution of the effective temperature of glycerol
by Grigera and Israeloff. Right: the parametric χ(C) plot for thiospinel, an insulator
spin-glass by Hérisson and Ocio.

Particle tracking experiments in a colloidal suspension of PMMA particles revealed
an effective temperature of the order of double the ambient one from the mobility-
diffusivity relation.

In the soft matter realm a favorite is an aqueous suspension of clay, Laponite
RG, in its colloidal glass phase. During aging, because of electrostatic attraction and
repulsion, Laponite particles form a house-of-cards-like structure. After a number
of rather confusing reports the status of Teff in this system can be summarized as
follows. The surprisingly high Teff found with dielectric spectroscopy combined with
spontaneous polarization noise measurements was later ascribed to violent and inter-
mittent events possibly linked to the presence of ions in the solution which may be
the actual source of FDT violation. For the moment dielectric degrees of freedom
are invalidated as a good test ground for Teff in this sample. Using other methods
several groups found that Teff detaches from the bath temperature. Strachan et al.
measured the diffusion of immersed probe particles of different sizes via dynamic light
scattering and simultaneous rheological experiments and found a slightly higher Teff

than T . With micro-rheology Abou and Gallet observed that Teff increases in time
from T to a maximum and then decreases back to T . Using a passive micro-rheology
technique and extracting Teff from the energy of the probe particle via equipartition
Greinert et al. also observed that Teff increases in time. In parallel, a series of global
mechanical tests, and passive and active micro-rheological measurements that mon-
itor the displacement and mobility of probe Brownian particles were performed by
Ciliberto’s and D. Bonn’s groups, both finding no violation of FDT over a relatively
wide frequency range. In a very detailed article Jop et al. explain many subtleties
in the experimental techniques employed and, especially, the data analysis used to
extract Teff that could have biased the results quoted above. A plausible reason for
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the lack of out of equilibrium signal in some experiments using Laponite as well as
other colloidal glasses is that the range of frequency-time explored may not enter
the aging regime. Moreover, none of these works studied the degrees of freedom of
the Laponite disks themselves but, instead, the properties of the solvent molecules
or probe particles. More recently, Maggi et al. combined dynamic light scattering
measurements of the correlation function of the colloid rotations with those of the re-
fringence response and a χ(C, tw) plot that is rather constant as a function of C and
slowly recovers the equilibrium form as the arrested phase is approached (tw ranges
from 90 to 1200 min and the violations are observed for time differences between 0.1
and 1 ms, i.e. frequencies between 10 and 1 kHz). Teff is at most a factor of 5 larger
than T . The actual behaviour of Laponite remains mysterious – and not only in what
Teff is concerned!

Oukris and Israeloff measured local dielectric response and polarization noise in
polyvinyl-acetate with electric-force-microscopy. They probed long-lived nano-scale
fluctuations just below Tg, achieved a good signal-to-noise ratio down to very low
frequencies, constructed a parametric plot by keeping tw fixed and found a non-
trivial asymptotic form with no tw dependence within the available accuracy. The
data combine into the parametric plot Teff(C) & TC−0.57 in the aging regime.

9.6 Relaxation in frustrated magnetic systems

Disordered and frustrated magnets behave collectively at low temperatures and
developed ordered phases that although not fully understood are accepted to ex-
ist. As macroscopic glassy systems they present a separation of time-scales in their
low-temperature dynamics and are good candidates to admit a thermodynamic inter-
pretation of the FDT violations.

9.6.1 Remarks on model systems

The physics of spin-glasses is a controversial subject. Some authors push an Ising
domain-growth interpretation of their dynamics – slowed down by domain wall pinning
by disorder – a.k.a. the droplet picture. If the scheme discussed in Sect. were
reproduced under strong disorder, the asymptotic χ(C) plot would have a linear
piece of slope −1/T and a sharp transition at qea to a flat aging piece. The domain-
growth interpretation is not accepted by other authors and more complex scenarii
based on the static and dynamic solution to the SK model are envisaged, with a non-
trivial χ(C) as a result. Much effort has been put in trying to interpret numerical
and experimental data as validating one description at the expense of the other.
Unfortunately, it is very difficult to distinguish between the two. A third possibility
is that, in a loose sense, the spin-glass be like the low-T phase in the 2d XY model,
with quasi long-range order. Yet another proposal is that actual spin-glass samples are
of Heisenberg-type and that chilarity might be decoupled from spin with a chiral-glass
order arriving at a higher critical temperature than the spin-glass ordering.
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The trap model was devised to describe slow dynamics in systems with weak
ergodicity breaking and it was applied, notably, to describe experiments in spin-
glasses. The model shows a glass transition at a Tg below which an equilibrium
Boltzmann state cannot exist. The χ(C) has a slope that varies continuously even
though there is a single scaling of relaxation times with age, it depends non-trivially
on the observable and one cannot use it to define a meaningful Teff. The reason for
this failure seems to be the unbounded nature of the energy and the fact that an
equilibrium distribution does not exist below Tg.

9.6.2 Simulations

Monte Carlo simulations of the 3d Edwards-Anderson (EA) model were carried
out by several groups. One of the hallmarks of the dynamics of the SK model,
dynamic ultrametricity, is absent from all numerical and experimental data analyzed
so far. Magnetic correlation and susceptibility relax in two scales, the by now usual
stationary one for finite time-differences and an aging one in which the data are well
described by a simple t/tw scaling. This aging scaling does not conform with the
droplet picture either, which predicts an asymptotic ln t/ ln tw form. In all studies
so far, the parametric plot was constructed by keeping tw fixed and the curves drift
towards increasing values of χ for longer tws as in a transient or critical system. In
simple coarsening problems the drift with increasing tw goes in the opposite direction
of rendering the aging part of the curves flatter; this remark suggests to discard a
simple droplet picture. The outcome χ(C) found for the longest tw reached was
interpreted as being non-constant – as in the SK model – although this is, in our
opinion, not that clear from the data that could be described by a straight line. The
simultaneous t/tw scaling, the lack of unambiguous evidence for a stable plateau at
qea, and a curved χ(C) in the aging regime is not what would be expected from an
analogy with the SK model. Instead, it would be consistent with critical dynamics
and the 2d XY model similitude. A number of caveats on the numerical analysis
should, however, be lifted before reaching a firm conclusion.

The finite-time finite-length relation between static ℵ(C, ξ(tw)) and long-time out
of equilibrium dynamic χ(C, tw) was put to the test in the 2d and 3d EA models at
finite T . The notable coincidence of the two functions found in the 2d case, in which
there is no complex equilibrium structure, suggests that the claimed coincidence of
χ(C) and ℵ(C) in 3d might also be valid just in the transient regime.

Simulations of the 3d Heisenberg spin-glass model with weak anisotropy suggest
that Teff associated to the spin degrees of freedom is constant and about twice the
critical temperature for spin-glass ordering. As far as we know, chiral degrees of
freedom have not been used to estimate Teff.

As regards fluctuations, the two kinds were measured in the 3d EA spin-glass.
Disordered induced ones, in which one computes strictly local noise-averaged corre-
lations and linear responses, demonstrate the existence of two types of spins in each
sample: rapid paramagnetic-like ones and slow ones. The former satisfy FDT while
the latter evolve in two time-regimes with a fast one satisfying FDT and a slow one in
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which χi(Ci) looks quite flat as in coarsening systems. The simulation suggests that
the two ensembles behave independently of each other and are strongly correlated
with the backbone of the ground state configurations. The average over all sites (at
finite tw) gives rise to a curve with non-constant slope. These results suggest a still
different picture for the spin-glass dynamics in which a rather compact set of spins
undergoes coarsening of the backbone equilibrium configurations while the other ones
behave paramagnetically. This intriguing idea needs to be put to further test.

The analysis of noise induced fluctuations suggests that eq. (??) is valid although
better numerical data would be needed to have definitive evidence for this statement.
A more detailed discussion can be found in the review by Chamon and Cugliandolo.
Very recent studies of non-linear fluctuations that take advantage of FDRs to compute
higher order responses point in the direction of the TRI scenario with a finite Teff.

9.6.3 Experiments

On the experimental side the first attempt to quantify FDT violations in spin-
glasses was indirect. Simultaneous measurements of global magnetic noise and sus-
ceptibility in the thiospinel insulating spin-glass were later performed by Hérisson
and Ocio. The data confirm deviations from the FDT with a χ(C, tw) plot of rel-
atively curved form although still evolving during the experimental time window.
The authors interpreted it as evidence for the full RSB scenario, via the association
χ(C) ↔ ℵ(C). However, as with numerical data, dynamic ultrametricity fails to show
off, the asymptotic limit of the parametric construction is still far, and a clear-cut
distinction between a curved and a linear χ(C) is hard to assess.

More recent experiments exploit two novel techniques, Hall-sensor based magne-
tometer and giant magnetoresistance technology to detect signals from very small
samples. The use of these probes opens the way to perform a systematic study of
FDT violations in magnetic systems of different kind (spin-glasses, super-spin glasses,
disordered ferromagnets...). The first of these measurements appeared recently in a
super-spin glass, a system of magnetic nanoparticles suspended in fluid glycerol with
a single-domain magnetic structure that behaves as one large spin, the orientation
of which is the only degree of freedom. The large magnetic moment facilitates the
observation of magnetic noise. For aging times of the order of 1 h, the ratio of Teff

to the bath temperature T grows from 1 to 6.5 when T is lowered from Tg to 0.3 Tg,
regardless of the noise frequency.

Artificial spin ice is yet another material in which the Teff notion has been tested.

9.7 Driven liquids and glasses

Berthier and Barrat used molecular dynamics of a binary Lennard-Jones mixture
under a steady and homogeneous shear flow. The deviation from FDT is similar to
the one found analytically in disordered spin models of RFOT type with asymmetric
couplings that mimic non-conservative forces. Moreover, it does not depend on the
observable. The tracer particle experiment was also realized. When the tracers’
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Einstein frequency is smaller than the inverse relaxation time of the fluid, a non-
equilibrium equipartition theorem holds with mtrv2z = Teff, where vz is the velocity
in the direction transverse to the flow. For increasing mtr the effective temperature
very slowly crosses over from T to the slow modes value, in perfect agreement with
the notion of a temperature measured by a thermometer sensible to the scale. Teff

also captures the essential phenomenological idea that when a system is sheared more
vigorously its effective temperature increases.

O’Hern et al. also studied fluctuation-dissipation relations in shear fluids. This
group defined an effective temperature through the ‘static limit’ limt→∞ χ(t−tw)/C(t, t),
a kind of average of the slope of the χ(C) plot over the full range of C(t − tw) that
mixes different time scales (in particular, the high and low frequency ones). A more
thorough discussion of the comparison between this definition and the one described
in this review was given by Ilg and Barrat within a fully solvable model that demon-
strates the importance of not mixing time-scales to get physically sensible results.

A first study of the fluctuations of entropy production in a Lennard-Jones fluid
above and below Tg under a shear flow appeared in and the need to take into account
Teff, as obtained from the modification of the FDT below Tg, was signaled in this
paper. A more detailed analysis of the time-scale dependent effective temperature
would be needed to fully test the proposal in Bonnetto et al.

Another prominent example is the current driven motion of vortices in type II
superconductors. Disorder reduces dissipation, is responsible for non-equilibrium
transport and magnetic properties. The external force induces two dynamic phase
transitions separating plastic flow, smectic flow and a frozen transverse solid. A low-
frequencies Teff that decreases with increasing driving force and reaches the equilib-
rium melting temperature when the dynamic transverse freezing occurs was computed
from the transverse motion in the fluid moving phase.

9.8 Granular matter

Several studies of the effective temperature of granular matter have been pursued
theoretically, numerically and experimentally. In the latter front, D’Anna et al. im-
mersed a torsion oscillator in a granular system fluidized by strong high frequency
external vibrations to realize the ‘thermometer’ experiment. They found Teff ∝ Γ2

with Γ the adimensional measure of vibrational intensity, and quite independently of
ω. Wang et al. visualized the dynamics of tracer particles embedded in a 3d granular
ensemble slowly sheared by the rotating inner wall of a Couette cell. Teff, as obtained
from the comparison between the tracer’s diffusion and mobility perpendicular to the
applied rate of strain, is independent of the shear rate used and the tracers properties
but does depend on the packing density of the system. Tests of the thermodynamic
properties of Teff have not been carried through in this system yet. The dependence
on the direction of the applied stress was studied by Twardos and Dennin in a plastic
bead raft close to jamming. As expected, the correlations and linear responses in the
direction of flow do not decay slowly and χ(C) does not have the same properties as
in the transverse direction. Gei and Behringer stressed the fact that in a granular
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assembly the outcome of a mobility measurement depends on whether one imposes
the velocity or the external force.

In the powders literature reference is often made to the ‘granular temperature’, a
measure of the temperature of the fast modes, as given by the kinetic energy of the
grains TK ≡ 2

dEK ≡ 2
d〈v

2〉. Importantly enough, TK is a high frequency measure
that does not really access the structural properties of the sample and, in a sense,
plays the role of the environmental temperature in thermal systems. TK is generically
smaller than Teff, as in thermal systems where TK = T , the temperature of the bath.

9.9 Activated dynamics

Activated processes often occur in systems that are out of equilibrium, in the sense
that their response to an external drive is strongly non-linear or that their phase
space distribution is not the Gibbs-Boltzmann one. The question as to whether an
Arrhenius law governs the activation rate, possibly with an effective temperature,
and how the latter compares to the one defined from the deviations from FDT has
been addressed recently. Ilg and Barrat studied the effect of an out of equilibrium
flowing environment, a weakly sheared super-cooled liquid, on the activated dynamics
between the two stable conformations of dumbbell particles. The transition rate is
well described by an Arrhenius law with a temperature that crosses over from the one
of the equilibrium bath to a higher value close to the Teff of the slow modes of the
driven fluid. The crossover roughly occurs at the value of the rate that corresponds
to the inverse of the α relaxation time of the fluid.

Three related studies are also worth mentioning. An effective temperature, also
consistent with the one stemming from fluctuation-dissipation measurements, appears
in a phenomenological Arrhenius law that describes transverse jumps between chan-
nels in the driven motion of vortex lattices with random pinning. Haxton and Liu
showed that in the shear dominated regime the stress of a 2d sheared fluid follows an
Arrhenius law with the effective temperature. A study of activation and Teff in a 2d
granular system close to jamming was performed by Abate and Durian.

9.10 Biological systems

In biologically inspired problems the relevance of Teff was stressed to reveal the
active process in hair bundles and model cells. Morozov et al. studied a model of the
cytoskeletal network made of semi-flexible polymers subject to thermal and motor-
induced fluctuations and found a Teff that exceeds the environmental temperature T
only in the low-frequency domain where motor agitation prevails over thermal fluctua-
tions. Simple gene network models were studied from the Teff perspective in Lu et al.
Fluctuation-dissipation ratios were used to quantify the degree of frustration, due to
the existence of many metastable disordered states, in the formation of viral capsids
and the crystallization of sticky discs, two self-assembly processes. Fluctuations and
responses of blood cell membranes for varying ATP concentration were measured very
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recently. The measured Teff approaches the bath temperature at high frequencies and
increases at low frequencies reaching 4-10 times the ambient temperature.

Ratchets are simple models of molecular motors, out of equilibrium systems with
directed dissipative transport in the absence of any external bias. Harada and Sasa
proposed to use the violations of FDT in flashing ratchets as a means to measure
the energy input per unit time in molecular motors – an otherwise difficult quantity
to access. Kolton showed that the rectified transverse velocity of a driven particle
in a geometric ratchet is equivalent to the response of a 1d flashing ratchet at a
drive-dependent Teff, as defined from the generalized Einstein relation.

Active matter is driven out of equilibrium by internal or external energy sources.
Its constituents absorb energy from their environment or from internal fuel tanks and
dissipate it by carrying out internal movements that lead to translational or rotational
motion. A typical example are self-propelled particle assemblies in bacterial colonies.
The role played by Teff in the stability of dynamic phases of motorized particle
systems was stressed by Shen and Wolynes. Multiple measurements of Teff were
carried out with molecular dynamic simulations of motorized spherical as well as
linear molecules in interaction. All measurements (from fluctuation-dissipation ratio
and using tracers) yield a constant low-frequency Teff > T when the effect of the
motors is not correlated with the structural rearrangements they induce. Instead,
Teff takes a slightly lower value than T when susceptible motors are used, as argued
in [?]. Such an ‘inversion’ also occurs in relaxational systems in which the initial
configuration is chosen to be one of equilibrium at a lower T than the working one.
In the case of uncorrelated motors, Teff/T was found to follow the empirical law
Teff/T & 1 + γf2 with f the active force relative to the mean potential force and
γ ∼ 15 a parameter. Palacci et al.. investigated Teff by following Perrin’s analysis of
the density profile in the steady state of an active colloidal suspension under gravity.
The active particles used – JANUS particles – are chemically powered colloids and
the suspension was studied with optical microscopy. The measurements show that
the active colloids are hotter than in the passive limit with a Teff that increases as the
square of the parameter that controls activation, the Peclet number, a dependence
that is highly reminiscent of the f2-dependence of the simulations mentioned above.

Joly et al. used numerical techniques to study the non-equilibrium steady state
dynamics of a heated crystalline nanoparticle suspended in a fluid. This problem
models an active colloid that acts as a local heat source and generates a temperature
gradient around it. By comparing the mobility to the velocity correlation function,
they found that the FDT approximately holds at short-time lags with a temperature
value that coincides with the kinetic one. In contrast, at long-time lags data are
compatible with the temperature estimated by using the Einstein relation.

Certainly, many more studies of effective temperatures will appear in this very
active field of research, essentially out of equilibrium, in the near future.
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10 Conclusions

We discussed the behavior of macroscopic classical systems out of equilibrium.
First, we summarized the dynamics of relatively simple problems, the ones that

undergo coarsening, that is to say, the progressive ordering into patches of the two (or
more) competing equilibrium states. We also recalled, briefly, the nucleation process
relevant to describe the dynamics of systems undergoing first order phase transitions.

Next, we entered the realm of the more interesting, and harder to understand,
glassy problems. We modeled these with models with quenched random interac-
tions which, surprisingly enough, render their solution simpler. We mentioned that
the mean-field solution of these models allows for a classification into models that
mimic spin-glass samples and models that are relevant to describe structural glasses,
although there is no explicit quenched randomness in these.

In particular, we analyzed in detail a family of disordered models that yield a
mean-field description of the glass transition and dynamics of super-cooled liquids and
glasses. The relevance of these models to describe structural glasses was signaled and
explained by Kirkpatrick, Thirumalai and Wolynes in the 80s. Their non-equilibrium
dynamics and hence the connection with other systems far from equilibrium started
to develop more recently.

In short, their behaviour is the following. The dynamic transition arises when
the partition function starts being dominated by an exponentially large number of
metastable states yielding a finite complexity. The static transition instead is due
to an entropy crisis, i.e. it occurs when the complexity vanishes and the number of
states is no longer exponential in N , just as in the Adams-Gibbs-di Marzio scenario.
These transitions mimic, in a mean-field way, the crossover to the glassy phase at Tg

and the putative static transition at TK of fragile glasses.
The equilibrium dynamics close and above Td coincides with the one obtained with

the mode-coupling approach. It describes the relaxation of super-cooled liquids and it
contains its most distinctive feature of having a two step decorrelation. The first step
is ascribed to the motion of particles within the cages made by their neighbors while
the second one is the structural relaxation related to the destruction of the cages.

Below Td the equilibration time diverges with the size of the system and the models
do not equilibrate any longer with their environments (unless one considers times that
grow with the size of the system). This is very similar to the situation encountered
in real systems below Tg. The experimental time-window is restricted and one is
not able to equilibrate the samples any longer below Tg. Aging effects are captured.
The correlations still decay to zero but they do in a waiting-time dependent manner.
Their decay also occurs in two steps separated by a temperature-dependent plateau at
a value related to the size of the cages. One can interpret their stiffness as increasing
with the age of the system given that the beginning of the structural relaxation is
delayed and slowed down for longer waiting-times.

The nonequilibrium dynamics below Td approaches a threshold level of flat direc-
tions in phase space and it never goes below this level in finite times with respect to
the size of the system. The aging dynamics corresponds to the slow drift of the point
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representing the system in the slightly tilted set of channels that form the thresh-
old. The motion that is transverse to the channels is related to thermal fluctuations
and the first stationary step of the relaxation towards qea, that charcaterises then
the transverse “size” of the channel. The longitudinal motion along the channels
is related to the structural relaxation. The tilt is proportional to the magnitude of
the time-derivatives and these become less and less important as time passes. More
generally one interprets the long but finite time non-equilibrium dynamics following
saddles that are the borders between basins of attraction of more stable states in
phase space.

For times that scale with the size of the system, N , the sharp dynamic transition is
avoided, the system penetrates below the threshold via activation and it approaches
equilibrium in much longer time-scales. Metastable states below the threshold are
typically minima (the fact that they are local minima can be checked studying the
dynamics with initial conditions set to be in one of them). This structure allows
one to describe the cooling rate effects. For large but finite N and sufficiently slow
cooling rate, the system penetrates below the threshold via activation when this is
facilitated by T , i.e. when passing near Td. To which level it manages to arrive
(roughly speaking to which of the curves in the figure) depends on how long it stays
close to Td. The slower the cooling rate the lower level the system reaches with the
ideal “equilibrium” glass corresponding to an infinitely slow cooling.

The region of phase space reached asymptotically in the thermodynamic limit is
the threshold of flat directions. The replica analysis of the partition function gives
an alternative way of determining its statistical properties. Indeed, by evaluating the
partition function on a marginally stable saddle-point in replica space one selects the
threshold “states”. Dynamic information such as the value of qea is thus obtained with
a pseudo-static calculation. Other facts as, for instance, the scaling of the correlation
are not accessible in this way.

One of the hallmarks of the glassy non-equilibrium dynamics is the modification
of the relation between correlations and responses, namely, the fluctuation-dissipation
theorem. In mean-field models for structural glasses one finds that the integrated lin-
ear response is in linear relation with the associated correlation with a proportionality
constant that takes the equilibrium value 1/(kBT ) when the correlation is above the
plateau and it takes a different value 1/(kBT ∗) when it goes below the plateau. This
behavior has been found in a number of finite dimensional glassy models numerically.

The behavior just described corresponds to a family of mean-field disordered mod-
els to which the p spin models with p ≥ 3 and the Potts glass belong. Other two
families exist and they are related to ferromagnetic domain growth and spin-glasses.
Two representative models are the spherical p spin model with p = 2 and the sk

model, respectively. They are characterized by different scalings of the correlations in
the aging regime and by different forms of the modification of fdt. The classification
in families according to the non-equilibrium behavior has a static counterpart given
by the structure of replica symmetry breaking in the low-T phase.

The modification of fdt allows one to define an observable and correlation-scale
dependent effective temperature. Fast observables like the kinetic energy are equili-
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brated with the environment and the effective temperature equals the thermal bath
temperature for them. Other observables though show different values of the effective
temperature depending on the time-scales on which one investigates them. The effec-
tive temperature has a thermodynamical meaning even if defined out of equilibrium.
In particular, it can be directly read with a thermometer coupled to the desired ob-
servable and a zero-th law holds for interacting observables that evolve in the same
time-scale. As one should have expected the effective temperature shares some of
the qualitative features of the phenomenological fictive temperatures. For instance, a
system that is quenched from high temperatures has effective temperatures that take
higher values than the temperature of the bath, etc. At the mean-field level, when
N →∞, it is history independent but one expects it to depend on the preparation of
the sample for finite size and finite dimensional systems. (This is in close relation to
the discussion above on cooling rate effects.) There is still no precise determination
of which are the necessary conditions a nonequilibrium system has to fulfill to ensure
the existence of well-behaved effective temperatures. A clear condition are the need
to reach a dynamic regime in which the dynamics is slow and heat exchanges are
weak.

Once the effective temperature has been identified one interprets the behavior in
the low T phase as follows: the system adjusts to a situation in which each observable
sees two baths, one is the white external one and the one characterizing the fast motion
of the particles, the other is coloured and at a different temperature T ∗. The latter is
generated by the interactions. In more complex systems – as mean-field spin-glasses –
the asymptotic regime might be multi-thermalised with several time-scales each with
its own value of the effective temperature. These results, first derived explicitly for
p spin fully-connected models actually hold for any resummation of the perturbative
approach that keeps an infinite subset of diagrams (the mca being one such example).
The structure of time-scales and values of the effective temperature is related to the
breaking of supersymmetry down to a residual group.

The structure of the free-energy landscape can be computed exactly for mean-field
models in general, and for the spherical p spin model in particular. We expect its main
features to be reproduced – at least in a smoothen way – in real glassy systems. The
free-energy landscape at fixed and low T has a structure as the one roughly sketched
in Fig. 52. A pictorial image of the aging process can be quite helpful to understand
it. Imagine that one fills phase space with water whose level reaches a free-energy
density value, say, f . At high levels of the water, i.e. for high free-energy densities,
the landscape has only some few isolated stationary states. Looking at the landscape
from above one only sees some maxima that are represented as islands in the second
panel in the figure. Lowering the water level the islands grow in size and some of them
merge: land bridges develop. Lowering still the water level, it eventually reaches a
threshold, that corresponds to f = fth, where land percolates. One is left with a
labyrinthic path of water as drawn schematically in the third panel that represents
a top view of the landscape. This level is “marginal” since the bottom of the water
channels is almost completely flat. Draining water from the system the “connectivity”
of paths is reduced until the water level goes below the threshold, f < fth, where
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minima dominate. In the fourth panel we represent them as lakes immersed in land.
Lowering the water level one sees the sizes of the lakes diminish and some of them dry.
These minima exist until the lowest level, f = feq. A “gap” in free-energy density
separates the threshold and the equilibrium levels.

This picture allows us to give a natural interpretation of the non-equilibrium
dynamics following a quench. Initially, the system is in a configuration typical of
high-T , thus, its initial “free-energy density” is very high. This corresponds to a
high level of water that fills the landscape. As time passes, water abandons the
landscape in such a way that the quantity of water progressively diminishes lowering
its level. The system’s configuration can be associated to a ship and its evolution to
the displacements of the ship sailing on the water. Initially, the water level is very
high and the ship can move very rapidly far away from its initial position. It only
sees some very few isolated islands that it simply avoids along its motion and the
dynamics is very fast. As time passes the water level goes down. Roughly speaking
we can associate the speed of drainage with the magnitude of the rate of change of
the energy-density. When it approaches the threshold the available path becomes a
series of rivers forming a very intricate network. The ship can still follow this network
without remaining trapped in any confining region. Its motion, however, gets slower
and slower. In finite times with respect to N the water level does not go below the
threshold. But for longer times that scale with N it does. When such long times are
attained the ship remains trapped in lakes. For still longer times the higher lakes dry
and, if the ship got trapped in one of them it must be transported through the land to
reach other lakes at lower levels. This action represents an activated process. Part of
this image was introduced by Sibani and Hoffmann phenomenologically. The p spin-
models and the like realize it explicitly. All quantitative features of the landscape
here described with words have been, or in principle can be, calculated analytically.

The value taken by the effective temperature is in direct relationship with the
structure of the free-energy landscape. Indeed, again for p-spin model and the like, it
has been shown analytically that the asymptotic value T ∗ reached for long but finite
times with respect to N is given by β∗ = ∂Σ(β, f)/∂f |fth, with Σ the complexity. For
even longer times such that the system penetrates below the threshold one expects
the effective temperature to take different values related to the complexity at lower
free-energy density levels. The Edwards-Anderson parameter, qea, also changes since
qea(f). In the longest time-scale such that equilibrium is reached and qea equals
the equilibrium value also obtained with a replica calculation using the standard
maximization prescription to determine the breaking point parameter x. This result
is intimately related to Edwards’ flat measure for granular matter and also to the more
recent use of a flat measure over inherent structures to describe the non-equilibrium
dynamics of glasses. Note that the these, being defined using the potential energy-
density landscape, are valid only at zero temperature. However, extensive numerical
checks recently performed suggest that the approach, even if not obviously correct at
finite T , yields a very good approximation.

Within this picture two distinct regimes would appear in the low-T isothermal
dynamics of real systems: a mean-field-like one when the system approaches a pseudo-

198



threshold of flat directions in phase space and a slower activated regime in which the
system jumps over barriers to relax its excess energy density and very slowly progress
towards equilibrium. How and if the aging properties in the first and second regime
resemble is a very interesting open problem.

The existence of a threshold plays a fundamental role in explaining several fea-
tures of many experimental observations in such diverse systems as driven granular
matter, the rheological properties of complex liquids and glasses, etc. Just to cite
two examples, trapping and Reynolds dilatancy effects in granular matter as well as
the existence of a static yield stress and thixotropic behaviour in some rheological
experiments can be interpreted in terms of threshold and sub-threshold states. These
features support the claim that this free-energy structure exists in real physical sys-
tems. Moreover, maybe not surprisingly, this structure also appears in optimization
problems such as xor-sat and k-sat that can be mapped to dilute p-spin models
at zero temperature. In this context the control parameter is the number of require-
ments over the number variables, α, and the static transition, αs, is related to the
sat-unsat transition while the dynamic transition, αd < αs corresponds to the value
where greedy algorithms fail to find the existing solutions.

All these arguments can be adapted to include quantum fluctuations The statics
is studied with the Matsubara replicated partition function, metastability with an ex-
tension of the tap approach and the real-time dynamics with the Schwinger-Keldysh
formalism. The picture that arises is very similar to the one above with some in-
triguing new ingredients as the emergence of truly first order transitions close to the
quantum critical point, highly non-trivial effects due to the quantum environments,
a waiting-time dependent quantum-to-classical crossover in the dynamic scaling, etc.

The models we studied in these notes have quenched random interactions. Real
glassy systems of the structural type do not. One may wonder if this is an important
deficiency of the approach or if similar results can be obtained for models with no
disorder. A large variety of models of mean-field type, or defined on large d spaces,
with no explicit quenched disorder and having the same phenomenology have been
introduced in recent years. Finite d models with similar, eventually interrupted,
dynamic behavior have also been exhibited. Their existence supports the belief that
the scenario here summarized goes beyond simple modelling. Indeed, it is at the basis
of several conjectures for the behavior of other non-equilibrium systems with slow
dynamics that have been later checked numerically. It has also motivated several
experimental investigations in a variety of systems.

A Conventions

1.1 Fourier transform
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Figure 52: Left: a 1d simplified sketch of the free-energy density. Three top views of
the free-energy landspcape: above, at and below the threshold.

The convention for the Fourier transform is

f(τ) =

∫ ∞

−∞

dω

2π
e−iωτ f(ω) , (1.1)

f(ω) =

∫ ∞

−∞
dτ e+iωτ f(τ) . (1.2)

The Fourier transform of the theta function reads

θ(ω) = ivp
1

ω
+ πδ(ω) . (1.3)

The convolution is

[f · g](ω) = f ⊗ g(ω) ≡
∫

dω′

2π
f(ω′)g(ω − ω′) . (1.4)

1.2 Commutation relations

We defined the commutator and anticommutator: {A,B} = (AB + BA)/2 and
[A,B] = (AB −BA)/2.

1.3 Time ordering

We define the time odering operator acting on bosons as

T x̂(t)x̂(t′) ≡ θ(t, t′)x̂(t)x̂(t′) + θ(t′, t)x̂(t′)x̂(t) . (1.5)

For fermions, we define the time ordering operator as

T x̂(t)x̂(t′) ≡ θ(t, t′)x̂(t)x̂(t′)− θ(t′, t)x̂(t′)x̂(t) , (1.6)

T x̂(t)x̂†(t′) ≡ θ(t, t′)x̂(t)x̂†(t′)− θ(t′, t)x̂†(t′)x̂(t) , (1.7)

In both cases θ(t, t′) is the Heaviside-function.
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We define the time-ordering operator TC on the Keldysh contour in such a way
that times are ordered along it:

TC x+(t)x−(t
′) = x−(t

′)x+(t) TC x−(t)x+(t
′) = x−(t)x+(t

′)

TCx+(t)x−(t
′) = −x−(t

′)x+(t) TCx−(t)x+(t
′) = x−(t)x+(t

′) (1.8)

for all t and t′.

2 Classical statics: the reduced partition function

In order to analyze the statistical static properties of the classical coupled system,
we study the partition function or Gibbs functional, Ztot that reads

Ztot[η] =
∑

conf osc

conf syst

exp(−βHtot − βηx) (2.1)

where the sum represents an integration over the phase space of the full system, the
particle’s and the oscillators’, and η is a source. Having chosen a quadratic bath and
a linear coupling, the integration over the oscillators’ coordinates and momenta can
be easily performed. This yields the reduced Gibbs functional

Zred[η] ∝
∑

conf syst

exp

[

−β
(

Hsyst +Hcounter + ηx−
1

2

Nb∑

a=1

c2a
maω2

a
x2

)]

. (2.2)

The ‘counterterm’ Hcounter is chosen to cancel the last term in the exponential and
it avoids the renormalization of the particle’s mass (the coefficient of the quadratic
term in the potential) due to the coupling to the environment that could have even
destabilize the potential taking negative values. An alternative way of curing this
problem would be to take a vanishingly small coupling to the bath in such a way
that the last term must vanish by itself (say, all ca → 0). However, this might be
problematic when dealing with the stochastic dynamics since a very weak coupling
to the bath implies also a very slow relaxation. It is then conventional to include the
counterterm to cancel the mass renormalization. One then finds

Zred[η] ∝
∑

conf syst

exp [−β (Hsyst + ηx)] = Zsyst[η] . (2.3)

The interaction with the reservoir does not modify the statistical properties of the
particle since Zred ∝ Zsyst. This does not necessarily happen quantum mechani-
cally. (For a non-linear coupling Hint =

∑

α cαqαV(x) the counterterm is Hcounter =
1
2

∑

α
c2α

mαω2
α
[V(x)]2.)

3 The instanton calculation
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The path-integral formalism yields an alternative calculation of the Kramers es-
cape time, the Arrhenius exponential law and its prefactor that, in principle, is easier
to generalize to multidimensional cases. For the sake of simplicity let us focus on
the overdamped limit in which we neglect inertia. We first rederive the Arrhenius
exponential using a simplified saddle-point argument, and then show how Kramers
calculation can be recovered by correctly computing the fluctuations around this sad-
dle point. Starting from the following representation of the probability to reach the
top of the barrier from the potential well:

P (xmax, t|xmin) =

〈
∫ x(t)=xmax

x(0)=xmin

Dx δ(ξ − eq[x])

∣
∣
∣
∣
det

(
δeq[x](t)

δx(t′)

)∣
∣
∣
∣

〉

ξ

,

and neglecting the determinant (which is justified if one follows the Itô convention),
then, for a Gaussian white noise ξ:

P (xmax, t|xmin) =

∫ x(t)=xmax

x(0)=xmin

Dx e
− 1

4kBT

∫ t

0
dt′(ẋ+ dV

dx )
2

Expanding the square, we find a total derivative contribution to the integral equal to
2[V (xmax)−V (xmin)], plus the sum of two squares:

∫ t
0 dt

′[ẋ2+(V ′(x))2]. For small T ,
the path, x∗, contributing most to the transition probability is such that this integral
is minimized. Using standard rules of functional derivation one finds

d2x∗

dt′2
= V ′(x∗)V ′′(x∗) ⇒ ẋ∗ = ±V ′(x∗).

In order to be compatible with the boundary conditions x∗(0) = xmin and x(t) = xmax,
the + solution must be chosen, corresponding to an overdampedmotion in the inverted
potential −V (x). The ‘action’ of this trajectory is

∫ t

0
dt′
[

ẋ∗2 + (V ′(x∗))2
]

= 2

∫ t

0
dt′ẋ∗V ′(x∗) = 2[V (xmax)− V (xmin)],

that doubles the contribution of the total derivative above. Hence,

P (xmax, t|xmin) ≈ e−β(V (xmax)−V (xmin)),

independently of t, as in eq. (2.68). This type of calculation can be readily extended
to cases in which the noise ξ has temporal correlations, or non Gaussian tails, and
to see how these effects change the Arrhenius result. The calculation of the attempt
frequency is done using the standard dilute gas instanton approximation developed
by several authors but we shall not discuss it here.

The path-integral that we have just computed is a sum over the subset of noise
trajectories that lead from the initial condition to a particular final condition that we
imposed. Imposing a boundary condition in the future destroys the causal character
of the theory.
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In a one dimensional problem as the one treated in this Section there is only one
possible ‘reaction path’. In a multidimensional problem, instead, a system can transit
from one state to another following different paths that go through different saddle-
points. The lowest saddle-point might not be the most convenient way to go and
which is the most favorable path is, in general, difficult to established.

4 Discrete MSRJD for additive noise

4.1 Stratonovich prescription – Mid-point discretization

The Langevin equation is a stochastic differential equation and one can give a rig-
orous meaning to it by specifying a particular discretization scheme. We adopt the
Stratonovitch prescription where the rules of conventional differential calculus can be
used. This correponds to a mid-point discretization scheme and is coherent with the
convention Θ(0) = 1/2 in the continuum limit.

Let us divide the time interval [−T, T ] into N + 1 infinitesimal slices of width
ε ≡ 2T/(N + 1). The discretized times are tk = −T + kε with k = 0, ..., N + 1. The
discretized version of x(t) is xk ≡ x(tk). The continuum limit is achieved by sending
N to infinity and keeping (N + 1)ε = 2T constant. Given some initial conditions xi

and ẋi, we set x1 = xi and x0 = xi−εẋi meaning that the first two times (t0 and t1) are
reserved for the integration over the initial conditions whereas the N following ones
correspond to the stochastic dynamics given by the discretized Langevin equation:

Eqk ≡ m
xk+2 − 2xk+1 + xk

ε2
− Fk+2(xk+2, xk+1, ...)

+
k
∑

l=1

γkl(xl+2 − xl+1) = ξk+1 , (4.1)

defined for k = 0, ..., N − 1. The notation γkl stands for γkl ≡ ε−1
∫ ε
0− duγ(tk − tl +

u) The ξk (k = 1, ..., N) are independent Gaussian random variables with variance
〈ξkξl〉 = β−1Γkl where Γkl ≡ γkl + γlk. Inspecting the equation above, we notice that
the value of xk depends on the realization of the previous noise realisation ξk−1 so that
there is no need to specify ξ0 and ξN . In the Markovian limit, one has γkl = ε−1γ0δkl
, 〈ξkξl〉 = 2γ0β−1ε−1δkl where δ is the Kronecker delta, and

Eqk ≡ m
xk+2 − 2xk+1 + xk

ε2
− Fk+2(xk+2, xk+1, ...)

+γ0
xk+2 − xk+1

ε
= ξk+1 . (4.2)

4.2 Construction of the MSRJD action

The probability density P for a complete field history (x0, x1, ..., xN+1) is set by the
relation

P (x0, x1, ..., xN+1)dx0dx1...dxN+1
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= Pi(xi, ẋi)dxidẋi Pn(ξ1, ξ2, ..., ξN )dξ1dξ2...dξN . (4.3)

Pi is the initial probability distribution of the field. The probability for a given noise
history to occur between times t1 and tN is given by

Pn(ξ1, ..., ξN ) = M−1
N e

− 1
2

∑N

k,l=1
ξk βΓ−1

kl ξl (4.4)

with the normalization MN ≡
(

(2π)N

detklβΓ
−1
kl

)1/2

. From eq. (4.3), one gets

P (x0, x1, ..., xN+1) = |JN |Pi(x1,
x1 − x0

ε
)Pn(Eq0, ..., EqN−1) , (4.5)

with the Jacobian

JN ≡ det
∂(xi, ẋi, ξ1, . . . , ξN )

∂(x0, x1, . . . , xN+1)
= det

∂(xi, ẋi,Eq0, . . . ,EqN−1)

∂(x0, x1, . . . , xN+1)
, (4.6)

that will be discusssed in 4.3. The expression (4.4) for the noise history probability
reads, after a Hubbard-Stratonovitch transformation that introduces the auxiliary
variables x̂k (k = 1, ..., N),

Pn(ξ1, ..., ξN ) = N−1
N

∫

dx̂1...dx̂Ne−
∑

k
ix̂kξk+

1
2

∑

kl
ix̂kβ

−1Γklix̂l

= N−1
N

∫

dx̂0...dx̂N+1δ(x̂0)δ(x̂N+1) e
−
∑

k
ix̂kEqk−1+

1
2

∑

kl
ix̂kβ

−1Γklix̂l ,

with NN ≡ (2π)N . In the last step, we replaced ξk by Eqk−1 and we allowed inte-
grations over x̂0 and x̂N+1 at the cost of introducing delta functions. Notice that the
Hubbard-Stratonovitch transformation allows for some freedom in the choice of the
sign in front of ix̂k in the exponent. Together with eq. (4.5) this gives

P (x0, x1, ..., xN+1) = N−1
N |JN |

∫

dx̂0...dx̂N+1 (4.7)

×e−
∑

k
ix̂kEqk−1+

1
2

∑

kl
ix̂kβ

−1Γklix̂l+lnPi(x1,
x1−x0
ε )

that in the continuum limit becomes

P [x] = N−1elnPi+ln |J [x]|
∫

D[x̂]e−
∫

du ix̂(u)Eq([x],u)+ 1
2

∫
duvix̂(u)β−1Γ(u−v)ix̂(v) ,

with the boundary conditions x̂(−T ) = x̂(T ) = 0 and where all the integrals over
time run from −T to T . In the following, unless otherwise stated, we shall simply
denote them by

∫

. The infinite prefactor N ≡ lim
N→∞

(2π)N can be absorbed in the

definition of the measure:

D[x, x̂] = lim
N→∞

1

(2π)N

N+1
∏

k=0

dxkdx̂k . (4.8)
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4.3 Evaluation of the Jacobian

In this section we take the continuum limit of the Jacobian defined in eq. (4.6). In
the additive noise case, we start from

JN = det
∂(xi, ẋi,Eq0, . . . ,EqN−1)

∂(x0, x1, . . . , xN+1)

= det












0 1 0 . . .
−1/ε 1/ε 0 . . .
∂Eq0
∂x0

∂Eq0
∂x1

∂Eq0
∂x2

0 . . .
∂Eq1
∂x0

∂Eq1
∂x1

∂Eq1
∂x2

∂Eq1
∂x3

0 . . .
. . . 0

∂EqN−1

∂x0
. . .

∂EqN−1
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=
1

ε
det








∂Eq0
∂x2

0 . . .
∂Eq1
∂x2

∂Eq1
∂x3

0 . . .
. . . 0

∂EqN−1

∂x2
. . .

∂EqN−1

∂xN+1







=

1

ε

N−1
∏

k=0

∂Eqk
∂xk+2

(4.9)

We can safely drop the overall 1/ε factor since it can be included in the normalization.
Notice that causality manifests itself in the lower triangular structure of the last
matrix involved. In the continuous notation, lim

N→∞
JN reads

J [x] = detuv

[
δEq([x], u)

δx(v)

]

. (4.10)

4.4 Markovian case

Let us first consider the Markovian case in which the friction term has no memory
and the force F is a local functional of x which can carry a time-dependence. Defining
F ′ as δFu[xu]/δxv ≡ F ′

u[xu]δ(u− v), the Jacobian reads

J [x] = detuv
[(

m∂2u + γ0∂u − F ′
u[xu]

)

δu−v

]

. (4.11)

Now let us write detuv
[(

m∂2u + γ0∂u − F ′
u[xu]

)

δu−v

]

= detuv
[

(m∂2u + γ0∂u)δu−v

]

detuv

[

δu−v −
∫

w
Gu−wF

′
w[xw]δw−v

]

= detuv
[

(m∂2u + γ0∂u)δu−v

]

expTruv ln [δu−v −Gu−vF
′
v[xv]]

= detuv
[

(m∂2u + γ0∂u)δu−v

]

exp−
∞
∑

n=1

1

n

∫

u



M◦M◦...◦M
︸ ︷︷ ︸

n times





uu

, (4.12)

where we used the matrix notation Muv ≡ Gu−vF ′
v[xv] and product ◦. G is the

retarded Green function solution of
[

m∂2u + γ0∂u
]

G(u− v) = δ(u− v) , (4.13)
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which reads

G(t) =
1

γ0

[

1− e−γ0t/m
]

Θ(t) . (4.14)

Since Θ(u− v)Θ(v − u) = 0, ∀ u 0= v, the n ≥ 2 terms do not contribute to the sum
in eq. (4.12). Furthermore, G(t = 0) = 0 for finite values of m13, implying that the
n = 1 term is zero as well. Therefore we established

J [x] = detuv
[

m∂2u + γ0∂u
]

δ(u− v) . (4.15)

This means that the functional determinant is simply a field independent constant.
One can easily generalize this result for time dependent and non potential forces.

4.5 Non Markovian case

Within the Stratonovich prescription (DONNER LES PAPIERS DES JAPONNAIS,
OU EXPLIQUER MIEUX OU LAISSER TOMBER), the determinant can be seen
as the result of a Gaussian integration over Grassmannian conjugate fields c and c∗.
Let us first recall the discretized expression of the Jacobian obtained in eq. (4.9):

JN =
1

ε
detkl

[
∂Eqk

∂xl+2

]

, (4.16)

where k and l run from 0 to N − 1. Introducing ghosts, it can be put in the form

JN =
1

ε

∫

dc2dc
∗
0...dcN+1dc

∗
N−1 e

∑N−1

k=0

∑N+1

l=2
c∗k
∂Eqk
∂xl

cl (4.17)

=
1

ε

∫

dc0dc
∗
0...dcN+1dc

∗
N+1 e

∑N+1

k=0

∑N+1

l=0
c∗k
∂Eqk
∂xl

cl c0c1c
∗
Nc∗N+1 ,

where in the last step, we allowed integration over c0, c1, c∗N and c∗N+1 at the cost
of introducing delta functions (remember that for a Grassmann number c, the delta
function is achieved by c itself). In the continuum limit, dropping the overall 1/ε
constant (and infinite) factor, this yields

J [x] =

∫

D[c, c∗]eK[c,c∗,x] (4.18)

with

K[c, c∗, x] ≡
∫ T

−T
dduvc∗(u)

δEq([x], u)

δx(v)
c(v) , (4.19)

13If we send m → 0 at the end of the calculation, we still get G(0) = 0 and a constant Jacobian.
However, if m is set to 0 from the begining then G(t) = Θ(t)/γ0 and G(0) = 1/(2γ0) in our
conventions. This leads to the so-called Jacobian extra-term in the action: −1/(2γ0)

∫

u
F ′
u[xu]. It

is invariant under time-reversal of the field xu #→ x−u as long as F ′ is itself time-reversal invariant.
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and with the extra boundary conditions: c(−T ) = ċ(−T ) = c∗(T ) = ċ∗(T ) = 0.
Plugging the Langevin equation (2.9), we have

δEqu[x]

δxv
= m∂2uδu−v −

δFu[x]

δxv
+

∫

w
γw−v∂wδw−v .

The kinetic term in K[c, c∗, x] can be re-written

∫

u

∫

v
c∗u ∂

2
uδu−v cv =

∫

u
c∗u ∂

2
ucu +

1

2
[ċ∗c− c∗ċ]T−T +

1

2
δ0 [c

∗c]T−T .

The last two terms in the rhs vanishes by use of the boundary conditions (c−T =
ċ−T = c∗T = ċ∗T = 0). The retarded friction can be re-written

∫

u

∫

v
c∗u ∂uγu−v cv −

1

2

∫

u
c∗u [γu+T c−T − γu−T cT ] ,

where the second line vanishes identically for two reasons: the boundary condition
(c−T = 0) kills the first part and the causality of the friction kernel (γu = 0 ∀u < 0)
suppresses the second one. Notice that if there is a Dirac contribution to γ centered
at u = 0 like in the Markovian case, the other boundary condition (c∗−T = 0) finishes
to cancel the second part. Finally we have

K[c, c∗x] =

∫

u
c∗u ∂

2
ucu +

∫

u

∫

v
c∗u

[

∂uγu−v −
δFu[x]

δxv

]

cv . (4.20)

4.6 Discrete MSRJD for multiplicative noise

4.7 Stratonovich prescription – Mid-point discretization

The discretized Langevin equation reads:

Eqk ≡ m
xk+2 − 2xk+1 + xk

ε2
− Fk+2(xk+2, xk+1, ...)

+M ′(xk)
k
∑

l=1

γklM
′(xl)(xl+2 − xl+1) = M ′(x̃k)ξk+1 , (4.21)

with the mid-point x̃k ≡ (xk+1 + xk)/2. The Jacobian is:

JN =
1

ε
detkl

[
∂Eqk

∂xl+2
− M ′′(x̃k)

M ′(x̃k)
Eqk

δk+1 l+2 + δk l+2

2

]

, (4.22)

where k and l run from 0 to N − 1. Introducing ghosts, it can be put in the form

JN =

∫

dc0dc
∗
0...dcN+1dc

∗
N+1 c0c1c

∗
Nc∗N+1 e

KN ,
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with

KN ≡
N+1
∑

k=0

N+1
∑

l=0

c∗k
∂Eqk
∂xl

cl −
N+1
∑

k=0

c∗k
M ′′(x̃k)

M ′(x̃k)
Eqk

ck+1 + ck
2

. (4.23)

In the continuum limit,

K ≡ lim
N→∞

KN =

∫

u

∫

v
c∗u
δEqu[x]

δxv
cv −

∫

u
c∗u

M ′′(xu)

M ′(xu)
Equ[x] cu , (4.24)

with the boundary conditions c(−T ) = ċ(−T ) = 0 and c∗(T ) = ċ∗(T ) = 0.

5 Mean-field theory for ferromagnets

In spite of their apparent simplicity, the statics of ferromagnetic Ising models has
been solved analytically only in one and two dimensions. The mean-field approxima-
tion allows one to solve the Ising model in any spatial dimensionality. Even if the
qualitative results obtained are correct, the quantitative comparison to experimen-
tal and numerical data shows that the approximation fails below an upper critical
dimension du in the sense that it does not capture correctly the behavior of the sys-
tems close to the critical point. It is however very instructive to see the mean-field
approximation at work.

Naive mean-field approximation

Using the factorization of the joint probability density that defines the mean-field
approximation, one finds

F ({mi}) = −
∑

i1 $=...$=ip

Ji1...ipmi1 . . .mip −
∑

i

himi

+T
N
∑

i=1

[
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

]

. (5.1)

Note that a Taylor expansion of the entropic contribution around mi = 0 leads to a
polynomial expression that is the starting point in the Landau theory of second order
phase transitions (see Sect. ??).

The local magnetizations, mi, are then determined by requiring that they min-
imize the free-energy density, ∂f({mj})/∂mi = 0 and a positive definite Hessian,
∂2f({mj})/∂mi∂mj (i.e. with all eigenvalues being positive at the extremal value).
This yields

mi = tanh



pβ
∑

i2 $=...$=ip

Jii2...ipmi2 . . .mip + βhi



 (5.2)
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If Ji1...ip = J/(p!Np−1) for all p uplets and the applied field is uniform, hi = h,
one can take mi = m for all i and these expressions become (5.4) and (5.7) below,
respectively. The mean-field approximation is exact for the fully-connected pure Ising
ferromagnet, as we shall show below. [Note that the fully-connected limit of the model
with pair interactions (p = 2) is correctly attained by taking J → J/N and 2d → N
in (??) leading to Tc = J .]

Exact solution

Let us solve the ferromagnetic model exactly. The sum over spin configurations
in the partition function can be traded for a sum over the variable, x = N−1

∑N
i=1 si,

that takes values x = −1,−1 + 2/N,−1 + 4/N, . . . , 1 − 4/N, 1 − 2/N, 1. Neglecting
subdominant terms in N , one then writes

Z =
∑

x

e−Nβf(x) (5.3)

with the x-parameter dependent ‘free-energy density’

f(x) = − J

p!
xp − hx+ T

[
1 + x

2
ln

1 + x

2
+

1− x

2
ln

1− x

2

]

. (5.4)

The first two terms are the energetic contribution while the third one is of entropic
origin since N !/(N(1+x)/2)!(N(1−x)/2)! spin configurations have the same magne-
tization density. The average of the parameter x is simply the averaged magnetization
density:

〈x 〉 = 1

N

N
∑

i=1

〈 si 〉 = m (5.5)

In the large N limit, the partition function – and all averages of x – can be
evaluated in the saddle-point approximation (see Appendix ??)

Z ≈
∑

α

e−Nβf(xαsp) , (5.6)

where xαsp are the absolute minima of f(x) given by the solutions to ∂f(x)/∂x|xsp = 0,

xsp = tanh

(
βJ

(p− 1)!
xp−1
sp + βh

)

, (5.7)

together with the conditions d2f(x)/dx2|xαsp > 0. Note that the contributing saddle-
points should be degenerate, i.e. have the same f(xαsp) for all α, otherwise their
contribution is exponentially suppressed. The sum over α then just provides a nu-
merical factor of two in the case h = 0. Now, since

xsp = −∂f(x)/∂h|xsp = 〈x 〉 = m , (5.8)
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Figure 53: The free-energy density f(m) of the p = 2 (left), p = 3 (center) and p = 4
(right) models at three values of the temperature T < Tc (light dashed line), T = Tc

(dark dashed line) and T > Tc (solid line) and with no applied field. (The curves
have been translated vertically.)

as we shall show in Eq. (5.9), the solutions to the saddle-point equations determine the
order parameter. We shall next describe the phases and phase transition qualitatively
and we shall later justify this description analytically.

Model in a finite field

In a finite magnetic field, eq. (5.7) has a unique positive – negative – solution
for positive – negative – h at all temperatures. The model is ferromagnetic at all
temperatures and there is no phase transition in this parameter.

2nd order transition for p = 2

In the absence of a magnetic field this model has a paramagnetic-ferromagnetic
phase transition at a finite Tc. The order of the phase transition depends on the
value of p. This can be seen from the temperature dependence of the free-energy
density (5.4). Figure 53 displays f(x) in the absence of a magnetic field at three
values of T for the p = 2 (left), p = 3 (center) and p = 4 (right) models (we call
the independent variable m since the stationary points of f(x) are located at the
magnetization density of the equilibrium and metastable states, as we shall show
below). At high temperature the unique minimum is m = 0 in all cases. For p = 2,
when one reaches Tc, the m = 0 minimum splits in two that slowly separate and move
towards higher values of |m| when T decreases until reaching |m| = 1 at T = 0 (see
Fig. 53-left). The transition occurs at Tc = J as can be easily seen from a graphical
solution to eq. (5.7), see Fig. 54-left. Close but below Tc, the magnetization increases
as m ∼ (Tc − T )

1
2 . The linear magnetic susceptibility has the usual Curie behavior

at very high temperature, χ ≈ β, and it diverges as χ ∼ |T − Tc|−1 on both sides of
the critical point. The order parameter is continuous at Tc and the transition is of
second-order thermodynamically.
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p = 2

m
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(m

)

1.50.5-0.5-1.5
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Figure 54: Graphical solution to the equation fixing the order parameter x for p = 2
(left), p = 3 (center) and p = 4 (right) ferromagnetic models at three values of the
temperature T < T ∗, T = T ∗ and T > T ∗ and with no applied field. Note that the
rhs of this equation is antisymmetric with respect to m → −m for odd values of p
while it is symmetric under the same transformation for even values of p. We show
the positive quadrant only to enlarge the figure. T ∗ is the temperature at which a
second minimum appears in the cases p = 3 and p = 4.

1st order transition for p > 2

For p > 2 the situation changes. For even values of p, at T ∗ two minima (and
two maxima) at |m| 0= 0 appear. These coexist as metastable states with the stable
minimum at m = 0 until a temperature Tc at which the three free-energy densities
coincide, see Fig. 53-right. Below Tc the m = 0 minimum continues to exist but
the |m| 0= 0 ones are favored since they have a lower free-energy density. For odd
values of p the free-energy density is not symmetric with respect to m = 0. A single
minimum at m∗ > 0 appears at T ∗ and at Tc it reaches the free-energy density of the
paramagnetic one, f(m∗) = f(0), see Fig. 53-center. Below Tc the equilibrium state is
the ferromagnetic minimum. For all p > 2 the order parameter is discontinuous at Tc,
it jumps from zero at T+

c to a finite value at T−
c . The linear magnetic susceptibility

also jumps at Tc. While it equals β on the paramagnetic side, it takes a finite value
given by eqn. (5.10) evaluated at m∗ on the ferromagnetic one. In consequence, the
transition is of first-order.

Pinning field, broken ergodicity and spontaneous broken symmetry

The saddle-point equation (5.7) for p = 2 [or the mean-field equation (??)] ad-
mits two equivalent solutions in no field. What do they correspond to? They are
the magnetization density of the equilibrium ferromagnetic states with positive and
negative value. At T < Tc if one computes m = N−1

∑N
i=1〈 si 〉 =

∑

x e
−βNf(x)x

summing over the two minima of the free-energy density one finds m = 0 as expected
by symmetry. Instead, if one computes the averaged magnetization density with the
partition sum restricted to the configurations with positive (or negative) x one finds
m = |msp| (or m = −|msp|).
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In practice, the restricted sum is performed by applying a small magnetic field,
computing the statistical properties in the N → ∞ limit, and then setting the field
to zero. In other words,

m± ≡ 1

N

N
∑

i=1

〈 si 〉± =

(
1

βN

∂ lnZ

∂h

)∣
∣
∣
∣
h→0±

= − ∂f(xsp)

∂h

∣
∣
∣
∣
h→0±

= ±|xsp| . (5.9)

By taking the N →∞ limit in a field one selects the positive (or negatively) magne-
tized states.

For all odd values of p the phase transition is not associated to symmetry break-
ing, since there is only one non-degenerate minimum of the free-energy density that
corresponds to the equilibrium state at low temperature. The application of a pinning
field is then superfluous.

For any even value of p and at all temperatures the free-energy density in the
absence of the field is symmetric with respect tom → −m , see the left and right panels
in Fig. 53. The phase transition corresponds to a spontaneous symmetry breaking
between the states of positive and negative magnetization. One can determine the
one that is chosen when going through Tc either by applying a small pinning field
that is taken to zero only after the thermodynamic limit, or by imposing adequate
boundary conditions. Once a system sets into one of the equilibrium states this is
completely stable in the N →∞ limit. In pure static terms this means that one can
separate the sum over all spin configurations into independent sums over different
sectors of phase space that correspond to each equilibrium state. In dynamic terms
it means that temporal and statistical averages (taken over all configurations) in an
infinite system do not coincide.

The magnetic linear susceptibility for generic p is a simple generalization of the
expression in (??) and it is given by

χ ≡ ∂m

∂h

∣
∣
∣
∣
h→0±

=
∂xsp

∂h

∣
∣
∣
∣
h→0±

=
β

cosh2( βJ
(p−1)! x

p−1
sp )− βJ

(p−2)!x
p−2
sp

. (5.10)

For p = 2, at T > Tc, xsp = 0 the susceptibility is given by (T − J)−1 predicting the
second order phase transition with a divergent susceptibility at Tc = J . Approaching
Tc from below the two magnetized states have the same divergent susceptibility, χ ∼
(Tc − T )−1.

For p > 2, at T > Tc, xsp = 0 and the susceptibility takes the Curie form χ = β.
The Curie law, χ = β, jumps to a different value at the critical temperature due to
the fact that xsp jumps.

6 Grassmann variables and supersymmetry

Grassmann variables anticommute θ2 = θ
2
= [θ, θ̄]+ = 0. The integration rules are

∫

dθ =
∫

dθ = 0 and
∫

dθ θ =
∫

dθ θ = 1 while the derivation is such that ∂θ =
∫

dθ
and ∂θ =

∫

dθ.
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In the supersymmetric formalism used in Section one enlarges the usual “bosonic”
space to include two conjugate Grassmann variables θ and θ: t → a = (t, θ, θ). A
“superfield” and its “supercorrelator” are then defined as

Φ(a) ≡ q(t) + ψ(t)θ + ψ(t)θ + iq̂(t)θθ , Q(a, b) ≡ 〈Φ(a)Φ(b)〉 , (6.1)

b = (t′, θ, θ
′
). The latter encodes the usual correlations 〈x(t)x(t′)〉, 〈x(t)ix̂(t′)〉,

〈ix̂(t)x(t′)〉, 〈ix̂(t)ix̂(t′)〉, as well as “fermionic” correlators 〈x(t)ψ(t′)〉, 〈ψ(t)ix̂(t′)〉,
〈ψ(t)ψ(t′)〉, etc. The solutions we construct and study are such that all correlators
that involve only one fermionic variable ψ and ψ vanish. We are then left with
the usual four correlators purely bosonic correlators and the fermion bilinears. One
proves that the latter equal the linear response. If, moreover, we only consider causal
solutions, Q̂(t, t′) ≡ 〈ix̂(t)ix̂(t′)〉 = 0 and

Q(a, b) = C(t, t′)− (θ
′ − θ) (θ′R(t, t′)− θR(t′, t)) . (6.2)

Convolutions, or operational products, and Hadamard, or simple products, are defined
as

Q1(a, b)⊗Q2(b, c) =

∫

dbQ1(a, b)Q2(b, c) ,

Q1(a, b) •Q2(a, b) = Q1(a, b)Q2(a, b) , (6.3)

respectively, with db ≡ dtdθdθ.
For correlators of the causal form (6.2), the convolution and the Hadamard product

respect the structure of the correlator. Indeed, the result of the convolution is again
of the form (6.2) with

Cconv(t, t
′′) =

∫

dt′ [C1(t, t
′)R2(t

′′, t′) +R1(t, t
′)C2(t

′, t′′)] ,

Rconv(t, t
′′) =

∫

dt′ R1(t, t
′)R2(t

′, t′′) , (6.4)

and the result of the Hadamard product is also of the form (6.2) with

Chad(t, t
′) = C1(t, t

′)C2(t, t
′) ,

Rhad(t, t
′) = C1(t, t

′)R2(t, t
′) + C2(t, t

′)R1(t, t
′) . (6.5)

The Dirac delta function is defined as δ(a− b) = δ(t− t′)(θ − θ′)(θ − θ′).

References

[1] A. Cavagna, Supercooled liquids for pedestrians, Phys. Rep. 476, 51 (2009). L.
Berthier & G. Biroli, A theoretical perspective on the glass transition and nonequi-
librium phenomena in disordered materials, arXiv:1011.2578. Rev. Mod. Phys.

213



[2] L. F. Cugliandolo, Dynamics of glassy systems, in Les Houuches 2002 (Springer,
2003).

[3] D. W. Oxtoby, Homogeneous nucleation: theory and experiment, J. Phys.: Con-
dens. Matter 4, 7626-7650 (1992). K. Binder, Theory of first-order phase transi-
tions, Rep. Prog. Phys. 50, 783-859 (1987).

[4] A. J. Bray, Thoery of phase ordering kinetics, Adv. Phys. 43, 357 (1994). P.
Sollich, http://www.mth.kcl.ac.uk/ psollich/

[5] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977). H. K.
Janssen, B. Schaub, and B. Schmittman, Z. Phys. B Cond.Mat. 73, 539 (1989).
P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).

[6] P. G. Debenedetti, Metastable liquids (Princeton Univ. Press, 1997). E. J. Donth,
The glass transition: relaxation dynamics in liquids and disordered materials
(Springer, 2001). K. Binder and W. Kob, Glassy Materials and Disordered Solids:
An Introduction to their Statistical Mechanics (World Scientific, 2005).

[7] K. H. Fischer and J. A. Hertz, Spin glasses (Cambridge Univ. Press, 1991). M.
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