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Note that there seems to be some arbitrariness in the above expressions in terms
of the bosonic fields since by anticommuting two fermionic fields one can in-
troduce a minus sine and thus change a sine into a cosine. We will see in Sec-
tion 4.3.2 how to answer this question in an unambiguous way. The decay of
these correlation functions is trivially obtained from (2.114) by letting kF = 0
and Kρ → 1/Kρ. Here again this is a power law decay. There is no true super-
conducting order (since 〈O〉 = 0) due to the impossibility to break a continuous
symmetry in one dimension. The best the system can do is to have slowly (power
law) decaying correlations.

Having the correlation functions we could start building the phase diagram
in the same way like that for spinless fermions. This would be valid for a system
with g1⊥ = 0. However, the effects of the g1⊥ terms are quite drastic so it
will be good to understand them first. This is of course mandatory if we want
to be able to deal with spin rotation invariant Hamiltonians. It is also a quite
important calculation since sine-Gordon-type Hamiltonians are common in the
one-dimensional world and we will have to learn how to deal with them in more
complicated situations as well.

2.3.2 Renormalization equations for sine-Gordon Hamiltonians

To complete our analysis of the spin sector we have to treat the sine-Gordon
Hamiltonian (2.106). There are many ways one can tackle such a problem. The
fact that interactions (or other terms) can generate non-quadratic terms is a
recurrent fact when dealing with one-dimensional systems. This is obvious from
the exponential form of the single fermion operators. When putting together a
certain number of these operators, quite generally exponentials of the boson fields
will remain. Physically, the effect of the cosine is clear. Contrary to the quadratic
term that lets the field φ fluctuate, the cosine term would like to lock the field φ
in one of the minima of the cosine. There will thus be a competition between the
quadratic part and the cosine. Since the quadratic part contains the conjugate
momentum Π it does not like φ to be blocked and promotes fluctuations. In order
to know who wins and to obtain the low-energy physical properties of (2.106)
we use a renormalization procedure. The ideas of a renormalization procedure
are explained in detail in Section 1.3.2 and I strongly encourage you to read this
section to understand the philosophy of the procedure, before we start with the
gory details of the calculation itself.

As discussed in Section 1.3.2 we change the cutoff of the system while keep-
ing the low-energy properties of the system unchanged. This can be done by
varying the coupling constants (and possibly generating new couplings). There
are various ways to carry this renormalization procedure. I give in this section
a derivation based directly on the correlation functions (José et al., 1977). It
has the advantage of being physically transparent and to extend easily to more
complicated cases (see Section 4.4). An alternative derivation directly on the
partition function is given in Appendix E.1.

Let us consider the correlation function
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R(r1 − r2) = 〈eia
√

2φ(r1)e−ia
√

2φ(r2)〉H (2.117)

If H was the quadratic Hamiltonian H0 of (2.41), the correlation would be (for
r1 − r2 � α)

〈eia
√

2φ(r1)e−ia
√

2φ(r2)〉H0 = e−a2KF1(r1−r2) �
(

α

r1 − r2

)a2K

(2.118)

as shown in Appendix C. Since (2.106) contains a cosine, one cannot compute
(2.117) exactly any more, but one can perform a perturbative expansion in the
cosine term, assuming that the interaction g1⊥ is small. In the following, to
lighten the notations I will denote g1⊥ simply by g. The first-order term is zero,
and if we stop at second order the correlation function is given by

R(r1 − r2) = 〈eia
√

2φ(r1)e−ia
√

2φ(r2)〉H0 +
1
2

(
g

(2πα)2u

)2 ∑
ε1=±1,ε2=±1∫ ∫

d2r′ d2r′′[〈eia
√

2φ(r1)e−ia
√

2φ(r2)eiε1
√

8φ(r′)e−iε2
√

8φ(r′′)〉H0

− 〈eia
√

2φ(r1)e−ia
√

2φ(r2)〉H0〈eiε1
√

8φ(r′)e−iε2
√

8φ(r′′)〉H0 ] (2.119)

where r = (x, y = uτ) and d2r = dx dy. The second term in the integral is the
disconnected terms coming from the partition function in the denominator of
the average. Since the averages are taken with the quadratic Hamiltonian (2.41)
they can be readily performed (see Appendix C). One gets

R(r1 − r2) = e−a2KF1(r1−r2)

[
1 +

g2

2(2πα)4u2

∑
ε1

∫ ∫
d2r′d2r′′e−4KF1(r

′−r′′)

(
e2aε1K[F1(r1−r′)−F1(r1−r′′)+F1(r2−r′′)−F1(r2−r′)] − 1

)]
(2.120)

The terms with ε2 = ε1 vanish (see Appendix C). We can take a as we wish. It
is clear that if one takes a small enough, due to the factor e−4F (r′−r′′) (which is
essentially a power law) the integral over d2r′ d2r′′ is dominated by configurations
where r′ and r′′ are not too distant from each other. One can thus expand the
exponential term linear in a in powers of r′ − r′′. In particular, if we introduce
the center of mass and relative coordinates

R =
r′ + r′′

2
r = r′ − r′′

(2.121)

we can rewrite the correlation function as
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R(r1 − r2) = e−a2KF1(r1−r2)

[
1 +

g2

2(2πα)4u2

∑
ε1

∫ ∫
d2R d2r e−4KF1(r)

(
e2aε1K[r·∇[F1(r1−R)−F1(r2−R)] − 1

)]
(2.122)

Since r is small the exponential can be expanded. The first-order term is zero
because of the sum over ε1. Stopping at second order gives for the correlation
function

R(r1 − r2) = e−a2KF1(r1−r2)

[
1 +

2g2

(2πα)4u2

∫ ∫
d2Rd2r e−4KF1(r)

(aK[r · ∇[F1(r1 −R) − F1(r2 −R)])2
]

(2.123)

The expansion of the quadratic term leads to terms of the form

rirj(∇Ri
[F1(r1 −R) − F1(r2 −R)])(∇Rj

[F1(r1 −R) − F1(r2 −R)]) (2.124)

where i, j denote the two possible coordinates x and y. Let us make use of
the rotation invariance in (x, uτ) of the quadratic Hamiltonian and choose a
cutoff procedure that respects this invariance. The asymptotic properties are
independent of the short distance cutoff so this choice is arbitrary. Such a cutoff
procedure corresponds to restricting r > α. In that case it is easy to see that
because of the integral over d2r in (2.123) only the terms with i = j survive,
the other terms being zero by symmetry x → −x or y → −y. Since moreover∫
d2r x2 =

∫
d2r y2 =

∫
d2r r2/2, one obtains by integration by part over R

R(r1 − r2) = e−a2KF1(r1−r2)

[
1 − g2

(2πα)4u2

∫ ∫
d2R d2r e−4KF1(r)a2K2r2

[F1(r1 −R) − F1(r2 −R)](∇2
X + ∇2

Y )[F1(r1 −R) − F1(r2 −R)]
]

(2.125)

Since F1(r) is essentially a log (F1(r) = log(r/α) when r � α) one can use

(∇2
X + ∇2

Y ) log(R) = 2πδ(R) (2.126)

This identity, well-known for two-dimensional Coulomb systems, can be directly
proven by differentiating (C.25). More generally even with an isotropic cutoff∫

d2q[1− cos(qr)]
1
q2
e−αq = 2π log

[
1
2
(1 +

√
1 + r2/α2)

]
� 2π log[r/α] (2.127)

Applying (∇2
X + ∇2

Y ) on (2.127) obviously gives back (2.126). I will come back
to the analogy between this problem and two-dimensional Coulomb problems in
Section 3.3. Using (2.126) in (2.125) one obtains
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∫
d2R[F1(r1−R)−F1(r2−R)](∇2

X+∇2
Y )[F1(r1−R)−F1(r2−R)] = −4πF1(r1−r2)

(2.128)
The terms F1(r1−r1) are finite (not logarithmically divergent) because the corre-
lation function F1 is regular at a short distance. With our original regularization
scheme (2.64) this term would be zero. The term F1(r1 − r2) is logarithmically
divergent when the distance between r1 and r2 becomes large. The correlation
function is thus

R(r1 − r2) = e−a2KF1(r1−r2)

[
1 +

g2K2a2F1(r1 − r2)
4π3u2α4

∫
r>α

d2r r2e−4F1(r)

]
(2.129)

where d2r = dx dy = 2πr dr. One recognizes an expansion of an exponential
form similar to (2.118) but with an effective exponent Keff

Keff = K − y2K2

2

∫ ∞

α

dr

α

( r
α

)3−4K

(2.130)

where I have used y = g/(πu). The exponent of the correlation function is
precisely what controls the asymptotic (low-energy) properties of the system.
This exponent should remain unaffected by the cutoff. If we vary the cutoff from
α to α′ = α+ dα in the limit of the integral one has

Keff = K − y2K2

2
dα

α
− y2K2

2

∫ ∞

α′

dr

α

( r
α

)3−4K

(2.131)

To keep Keff unchanged one should change the parameter K such that

K(α′) = K(α) − y2(α)K2(α)
2

dα

α
(2.132)

Similarly, to get back (2.130) but with α′ one should rescale the integral and
thus define

y2(α′) = y2(α)
(
α′

α

)4−4K(α)

(2.133)

The forms of (2.132) and (2.133) suggest to parametrize α = α0e
l where α0 is

the original cutoff. Changing α is thus equivalent to change l into l + dl. Using
this parametrization in (2.132) and (2.133) and making an infinitesimal change
gives the renormalization equations

dK(l)
dl

= −y
2(l)K2(l)

2
dy(l)
dl

= (2 − 2K(l))y(l)
(2.134)

Note that these equations are only perturbative in y but are exact in K.
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Before we analyze these equations let us understand them on a physical basis.
The equation for y is simply the scaling dimension of the operator that appears
in the action

y

∫
dx

∫
dτ cos(

√
8φσ) (2.135)

Since the correlation behaves as

〈cos(
√

8φσ(r)) cos(
√

8φσ(0))〉 =
(α
r

)4K

(2.136)

we can say that the operator behaves as

cos(
√

8φσ) ≡ L−2K (2.137)

Thus, the operator in the action behaves as

y

∫
dx

∫
dτ cos(

√
8φσ) ≡ yL2−2K (2.138)

which gives back the equation for y. One can understand the equation for K by
noting that K controls the fluctuations of φσ through the term

u

K
(∇φσ)2 (2.139)

in the Hamiltonian. Since the cosine term wants to order the field φσ its effect
at a purely quadratic level would be to decrease K to make the fluctuations of
φσ more difficult in (2.139). A similar physical picture is given by the Wilson
renormalization of Appendix E.1.

The flow (2.134) is shown in Fig. 2.6. For an infinitesimal y, one sees from
(2.134) that for K < 1 y is relevant (y grows upon a change of scale), whereas
for K > 1 y is irrelevant (y decreases upon a change of scale). One thus expects
a phase transition at K = 1. To further analyze the flow around this transition
let us expand Kρ = 1 + y‖/2. Note that this corresponds to the original y1‖ and
y1⊥ from (2.105). With these variables the flow becomes

dy‖(l)
dl

= −y2(l)

dy(l)
dl

= −y‖(l)y(l)
(2.140)

These equations that correspond to an expansion up to second order in the
interactions are identical to the ones derived in the fermion language (1.58). They
are also identical to the ones derived for the XY problem (Kosterlitz, 1974), as
we will discuss more in Section 3.1. From (2.140) we see that y dy

dl = y‖
dy‖
dl and

thus
A2 = y2

‖ − y2 (2.141)

is a constant of motion. The trajectories are thus hyperbolas. A real corresponds
to the regions (a) and (c) in Fig. 2.6. A imaginary (A2 < 0) is region (b). The
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K

(a)

(b)

(c)

Kc

|y|

K*

Fig. 2.6. Flow corresponding to the eqn (2.134). The trajectories are hyperbolas
(see text). The first diagonal (thick line) is a separatrix between a regime
where y is irrelevant and a regime where y flows to strong coupling.

equations depend only on |y| and thus the flow is symmetric when changing
y → −y. It will be thus sufficient to analyze the case y > 0.

The line y‖ = y is obviously a separatrix between two different regimes, as
shown in Fig. 2.6. Using the constant of motion (2.141) in (2.140) the flow can
be easily integrated. For example, for y‖ > y one has

y‖(l) = A/(tanh(Al + atanh(A/y0
‖)))

y(l) = A/(sinh(Al + atanh(A/y0
‖)))

(2.142)

On the separatrix one has

y‖(l) = y(l) =
y0

1 + y0l
(2.143)

When A > 0 and y‖ > 0, the operator cos(
√

8φσ) is irrelevant. The fixed point
corresponds to y∗ = 0 and y∗‖ = A. Close to the fixed point the flow can be
approximated by

dy‖(l)
dl

= 0

dy(l)
dl

= (2 − 2K∗)y(l)
(2.144)

To obtain the correlation functions we should, strictly speaking, write the renor-
malization equations for the correlation functions themselves. This will be done
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in Section 4.4. However, the trajectories are nearly vertical, thus y → 0 while
K converges to a fixed point value K∗. As a first approximation one can thus
compute the correlation functions using the simple quadratic Hamiltonian (2.41)
but with the renormalized parameters K∗. As a result the correlations have the
asymptotic decay

〈eia
√

2φσ(r)e−ia
√

2φσ(0)〉 �
(α
r

)a2Keff

=
(α
r

)a2K∗

(2.145)

In this regime the RG flow thus allows to get the asymptotic behavior of the
correlation functions. Because the cosine disappears from the asymptotic prop-
erties and the system is described by a pure quadratic Hamiltonian, this regime
is called ‘massless regime’.

When y‖ = y the operator is marginally irrelevant, the flow is along the first
diagonal. We thus see that if one starts from a spin rotation invariant problem y =
y‖ then the rotation invariance is preserved at each step of the renormalization as
it should be. The fixed point corresponds to y∗‖ = y∗ = 0 and thus K∗ = 1. One
can thus still use the expression (2.145), with K∗ = 1. As we discussed in the
previous section this is exactly the value that ensures spin rotation invariance of
the correlation functions, which now is only natural. However, the fact that the
corresponding operator is only marginal gives some additional contributions as
shown in Section 4.4. For some correlation functions this gives rise to logarithmic
corrections. For example,

〈cos(
√

2φσ(r)) cos(
√

2φσ(0))〉 � α

r
log1/2(r/α)

〈sin(
√

2φσ(r)) sin(
√

2φσ(0))〉 � α

r
log−3/2(r/α)

(2.146)

See Section 4.4 for the general expressions.
When y > y‖ the trajectories tend to y‖ → −∞ and y → ∞. The flow

goes to strong coupling. Of course, since the RG equations themselves have been
established in a perturbation expansion in y they cease to be valid beyond a
certain lengthscale for which y(l) ∼ 1. Nevertheless, the equations can be used
below this lengthscale. The flow can be integrated as

arctan(y0
‖/A) − arctan(y‖/A) = Al (2.147)

where
A =

√
y2
0 − (y0

‖)
2 (2.148)

On the special line y‖ = −y < 0 (for which A = 0) one has

y(l) =
y0

1 − y0l
(2.149)

note that this line corresponds also to the spin rotation invariant case since one
can take y = −y1⊥ when y1‖ = y1⊥ < 0. Since the flow goes to strong coupling we
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need to guess the physics of this phase. This is one major advantage of the boson
representation over the fermion one. We can try to analyze the Hamiltonian by
looking at the limit y → ±∞ (and Kσ → 0). On the fermion representation
having a coupling constant going to infinity does not help much, because fermions
operators do not have a classical limit. On the boson Hamiltonian we can expect
that when y → ±∞ the term

yu

2πα2

∫
dx cos(

√
8φσ) (2.150)

imposes that φσ is locked into one of the minima of the cosine. The field φσ

thus orders and we go into a massive phase. If y is very large one can expand
the cosine around the minimum. If y → −∞ the minimum is φσ = 0 and the
Hamiltonian would become

H = H0 +
2yu
πα2

∫
dx φ2

σ(x) (2.151)

In Fourier space the action would thus become

S =
1

2πK
1
βΩ

∑
k,ωn

[
1
u
ω2

n + uk2 +
4Kyu
α2

]
φ∗(k, ωn)φ(k, ωn) (2.152)

Even at k = 0 excitations now cost a finite energy. The spectrum thus has a gap
of order

MP =

√
4Kyu2

α2
(2.153)

These excitations are the ‘phonons’ (that is, the small oscillations) of the field
φ which are now massive. They correspond to a variation of φ within one of
the minima of the cosine. There are other excitations, the solitons, that take φ
from one minimum of the cosine to the other. I will come back to such solutions
later (see also Appendix E.3). Of course, such an expansion is valid only if y is
very large. One can make a more sophisticated approximation using a variational
approach as shown in Appendix E.2. A more accurate method is to combine the
RG with a strong coupling analysis. The boson Hamiltonian is quite useful in
that respect since, contrary to the fermion Hamiltonian, it is easy to analyze the
limit where the coefficient of the cosine becomes large. Let us use the RG up to
a point where the coupling y is of order one. The gap in the spectrum has the
dimension of an energy and thus it renormalizes as

∆σ(l) = el∆σ(l = 0) (2.154)

When y(l∗) ∼ 1 we can use the expansion (2.152), which would lead to a gap
∆σ(l∗) ∼ uy1/2(l∗)/α ∼ u/α. The true gap of the system is thus simply given by

∆σ(l = 0) � e−l∗∆0 (2.155)

where l∗ is the scale at which the coupling is of order one and ∆0 = u/α is
a quantity of the order of the original bandwidth of the system. The complete
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solution can easily be obtained from the flow (2.147). Let us examine it in three
physically different limits.

y � |y‖|. In that case one is deep in the massive phase. From Fig. 2.6 and the
flow (2.147), one sees that the flow is nearly vertical. One can thus approximate
it by

dK(l)
dl

= 0

dy(l)
dl

= (2 − 2K)y(l)
(2.156)

which gives y(l) = y0e(2−2K)l. Thus, the lengthscale l∗ is

el∗ =
(

1
y0

)1/(2−2K)

(2.157)

and the gap is
∆σ(l = 0)/∆0 � (y0)1/(2−2K) (2.158)

The gap is thus a power law of the bare coupling constant, with an exponent
controlled by K. This result can also be obtained by a variational approach (see
Appendix E.2). If one gets closer to the transition K → 1 the gap gets smaller
as it should (remember that y0 � 1).

y‖ = −y. This corresponds to a system which is invariant by spin rotation.
In that case, (2.149) gives (for y � 1)

l∗ =
1
y0

− 1 ∼ 1
y0

(2.159)

The gap is thus
∆σ(l = 0) � ∆0e

−1/y0
(2.160)

and the gap is exponentially small in the coupling constant. This is clearly a
highly non-perturbative result. I will come back to this result when discussing
the Hubbard model in Section 7.1.1.

Close to the Transition. Finally let us get close to the separatrix. In that case
using (2.147) gives

Al∗ → π (2.161)

since A → 0 close to the transition and thus y0
‖/A → ∞ and y‖(l∗)/A → −∞.

Thus, the gap becomes
∆σ(l = 0) � ∆0e

−π/A (2.162)

If we consider that one approaches the transition such as y0 → y‖ then

A ∼
√

2y0(y0 − y0
‖) (2.163)

and thus the gap is exponentially small in the square root of the distance to the
transition.


