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1 Glossary

Pinning: action exerted by impurities on an object. The object has a
preferential position in space, and will only move in response to an external
force if this force is large enough.
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Scaling: the fact that two quantities vary as a powerlaw of one another.
Random manifold: a single elastic structure (line, sheet) embedded in

a random environment.
Bragg glass: a periodic elastic structure embedded in a weakly disor-

dered environment, nearly as ordered as a solid but exhibiting some charac-
teristics normally associated with glasses.

Creep: very slow response at finite temperature of a pinned structure
in response to an external force.

2 Definition of the subject and its importance

Many seemingly different systems ranging from magnets to superconduc-
tors, with extremely different microscopic physics, share the same essential
ingredients, and can be described under the unifying concept of disordered
elastic media. In all these systems an internal elastic structure, such as an
interface between regions of opposite magnetization in the magnetic systems,
is subjected to the effects of disorder existing in the material. A specially
interesting feature of all these systems is that these disordered elastic struc-
tures can be set in motion by applying an external force on them (e.g. a
magnetic field sets in motion a magnetic interface), and that the motion
will be drastically affected by the presence of the disorder. What prop-
erties results from this competition between elasticity and disorder is an
extremely complicated problem which constitutes the essence of the physics
of disordered elastic media. The resulting physics present characteristics
that are the ones of glasses. This poses extremely challenging fundamental
questions to determine the static and dynamic properties of these systems.
Understanding both the static and dynamic properties of these objects is not
only an important question from a fundamental point of view but has also
strong practical applications. Indeed, being able to write an interface be-
tween two regions of magnetization or polarization and the speed of writing
and stability of such regions is what conditions, in particular, our ability to
store information in such systems, as for example recordings on a magnetic
hard drive. The physics pertaining to the disordered elastic media directly
condition how we can use in practise these systems for applications.

3 Introduction

Understanding the statics and dynamics of elastic systems in a random
environment is a longstanding problem with important applications for a
host of experimental systems. Such problems can be split into two broad
categories: (i) propagating interfaces such as magnetic [1, 2, 3, 4], spintronic
[5, 6], or ferroelectric [7, 8] domain walls, fluid invasion in porous media [9],
contact line in wetting [10], epitaxial growth [11] or crack propagation [12,
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Figure 1: Left: an interface in a magnetic system separating two different
polarization of the magnetization (dark and white). The image is 90 ×
72µm2. The roughness of the domain wall due to the presence of disorder in
the system is obvious on the image. Two positions of the interface are shown.
Dark and grey correspond to two consecutive images after the interface has
been pulled to the right by applying a magnetic field to the sample favoring
the magnetization direction on the left of the interface. Such a magnetic
field acts as a force pulling the domain wall [From [1] (Copyright 1998 by the
American Physical Society)]. Right: A vortex lattice image, from Scanning
Tunnelling Microscope, in the superconductor MgB2. The tip of the vortices
on the surface of the sample are shown in the image, and correspond to the
red parts. The image is about 250nm2. In a perfectly pure system, the
vortex lattice is a periodic arrangement (here in a triangular lattice) of
objects of a given size (here the core size of the vortex). Disorder affects
over large distance this perfectly periodic arrangement [From [24] (Copyright
2002 by the American Physical Society)].

13]; (ii) periodic systems such as vortex lattices in type II superconductors
[14, 15, 16], charge density waves [17, 18], magnetic bubbles [19], colloids
[20], Wigner crystals of classical particles [21] or of electrons [22, 23].

Although all these systems have very different microscopic descriptions,
one aspect of their physics is identical at a more macroscopic scale. An
object exists that obeys a macroscopic elastic description. For the case a)
this is an interface separating two different regions of the system, for ex-
ample in a magnetic material a domain wall separating regions of opposite
magnetization. An example of such an interface is shown in Fig. 1. Since
creating an interface costs energy, the interface left to itself would like to be
flat, and there is an elastic cost to its deformations. Since this object lives
inside a microscopic crystal with disorder, it is also subjected to potentials
that tend to roughen it and pin it in specific regions of space. This interface
can be set in motion by applying an external force on it, caused for example
by a magnetic field for the magnetic domain wall or an electric field for a
ferroelectric. For the case b) of periodic systems a similar physics exists.
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A “crystal” of objects (lines for vortices, points for magnetic bubbles and
colloids, or sheets for charge-density waves) exists inside the system. Since
these objects repel each other, in the absence of disorder they would tend
to form a perfect periodic crystal. In a way similar to the interfaces, such
crystals can be set in motion by applying an external force (for example a
current for the case of vortices). The disorder present at the microscopic
level tends to pin this crystal. It is important to note that one is dealing
here with the physics of a crystal embedded in an external medium, contain-
ing impurities. The disorder can thus vary at a lengthscale much smaller
than the lattice spacing of the moving crystal, which leads to a physics rad-
ically novel compared to the one of chemical impurities in a regular solid.
Understanding the physics, both static and dynamics, of these objects has
thus been a considerable challenge in the last 50 years or so. There are
several reasons to this interest, and for the challenges posed by this field of
disordered elastic media.

First at the fundamental level these systems pose extremely difficult and
important questions. It is known since the 1970’s that the presence of dis-
order is crucial [25] and changes the physics completely. Unfortunately the
resulting models are very difficult to solve, and have contributed to push-
ing the limits of our understanding of disordered systems, and to develop
new techniques of statistical physics to deal with such issues. In partic-
ular it is clear that from the competition between disorder and elasticity
emerges a complicated energy landscape with many metastable states. This
results in glassy properties [26] such as hysteresis and history dependence
of the static configuration. Initially viewed as some toy models of glasses
these systems have acquired their own importance and posed their own chal-
lenging questions. Understanding the static properties of such system has
stimulated the development of sophisticated approaches such as replica the-
ory [27], functional renormalization group [28] or numerical methods. Much
progress was recently accomplished both due to these analytical and numer-
ical advances. If the static allows us to improve our techniques of statistical
physics, the dynamics is even more complicated since most of our theoretical
tools fail. These system thus provides wonderful motivations to develop new
techniques to tackle the out of equilibrium dynamics of disordered systems
and to understand and unify the concepts of out of equilibrium physics of
glasses.

Second, in addition to this theoretical motivation, the possibility of re-
alizing such system in so many different physical systems is a tremendous
motivation and challenge. The various realizations allow to put stringent
tests on the proposed theories and have, as we will see, very often served to
kill wrong proposals or to put the theory on the right track in these quite
complicated systems. Experiments in these systems can be remarkable by
the range they offer. For example for vortex systems one can vary the vortex
lattice spacing by several orders of magnitude, just by changing the mag-
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netic field applied to the sample, something impossible to do on a simple
crystal. Similarly, for magnetic domain walls, measurements of the velocity
in response to an external force are spanning about ten orders of magnitude.
This interplay and exchange between theory and experiments has fuelled the
field and contributed greatly to its progress.

Last but not least, the phenomena studied for disordered elastic media
have a potential impact for applications. Creating interfaced in magnetic or
more recently ferroelectric materials is a way to store information (with the
“0” being one direction of magnetization or polarization and “1” being the
reversed one). This idea is at the root of storage of information in a magnetic
hard drive or in a ferroelectric memory, or a magnetic bubble one. How well
one can store the information is thus directly related to the properties both
static and dynamics of such interfaces. In particular the stability of the
written information is only ensured if the interface is pinned and will not
meander, for example by thermal agitation. In a similar way there has been
much interest recently on spintronic materials where the magnetic properties
can be manipulated by applying electrical currents [5, 6]. In the same vein,
multiferroic materials [29] allows to manipulate ferroelectric properties by
the application of magnetic fields. How the disordered interfaces behave
in such materials will certainly condition their possible use for information
technology. In a similar way the vortex lattice in a superconductor is set in
motion by the application of a current, while its motion generates a voltage.
The dynamic properties of the vortex lattice, and how well it is pinned, thus
directly condition the absence of resistance of a superconductor [14, 15, 16],
hence its potential uses. Other examples, such propagation of fractures,
clearly show the potential importance of such phenomena for applications.

This chapter presents the basic concepts and results in this very active
field. Sec. 4.1 presents the basic concepts and discusses the static properties
of interfaces and domain walls. Sec. 4.2 deals with the periodic systems and
their differences compared to the interfaces. Sec. 5 presents the concepts
and important questions for the dynamics of disordered elastic media, with
focus on the depinning in Sec. 5.2, on the large velocity behavior in Sec. 5.3
and response to a small external force in Sec. 5.4. Finally Sec. 6 discusses
the future directions and perspectives of the field.

4 Static properties of disordered elastic media

4.1 Interfaces and basic concepts

Let me introduce in this section the basic ingredients of the systems under
study, and discuss the specific case of interfaces. An interface is a sheet
of dimension d living in a space of dimensions D. For realistic interfaces
D = d + 1 but generalization are of course possible. Calling r the internal
coordinate of the interface and z all its transverse directions, the interface
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Figure 2: A one dimensional interface (such as a magnetic domain wall),
shown in red, living in a two dimensional space (film). The position of the
interface is determined (provided there are no overhangs or bubbles) by the
displacement u(r) from a flat configuration, indicated by the dashed line.
In the absence of disorder, denoted by the blue dots, which pin the line in
preferred positions in space, the line would be flat. The competition between
elasticity and disorder leads to the physics of disorder elastic media and to
glassy properties. The thickness of the line, denoted rf or the correlation
length of the disorder define the Larkin length Lc for which the relative
displacements are of the order of rf , namely u(Lc)− u(0) ∼ rf .

position is labelled by a displacement u(r) from a flat configuration. This
determines totally the shape of the interface provided that u is univalued,
i.e. that there are no overhangs or bubbles. The modelization of a one
dimensional interface (d = 1) in a two dimensional film is shown in Fig. 2.

Since the interface distortions cost elastic energy, its zero temperature
equilibrium configuration in the absence of disorder is the flat one. Deviation
from this equilibrium position are described by an Hamiltonian H[u] which
is a function of the displacements u. For small displacements one can make
the usual elastic approximation

H[u] =
1
2

∫
ddq

(2π)d
c(q)u∗quq (1)

where uq is the Fourier transform of u(r) and c(q) are the so called elastic
coefficients. If the elastic forces acting on the interface are short ranged then
one has c(q) = cq2 which corresponds to

H[u] =
c

2

∫
ddr(∇u(r))2 (2)
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Figure 3: The two universality classes of disorder (the names are coming
from the magnetic realization of such systems). In both figures the domain
wall in red, separates to regions with different order parameters, denoted by
the two thick black arrows. Left: random bond disorder. The impurities,
denoted in blue couple symmetrically to the two sides of the domain wall,
thus only the impurities on the domain wall (denoted with the orange cir-
cle) contribute to the energy. Right: random field disorder. The impurities,
denoted by the blue arrows, favor one of the two sides. Thus all the im-
purities (denotes in orange) between two configurations of the domain wall
contribute to the energy. This leads to a disorder seen by the domain wall
which has long range correlations even if the microscopic disorder is short
range correlated.

For some interfaces where long range interactions play a role different forms
for the elasticity are possible. This is in particular the case when dipolar
forces [30] are taken into account [8] or for the contact line in wetting [31]
and crack propagation [32].

In addition to the elastic energy the interface gains some energy by cou-
pling to the disorder. Two universality classes for the disorder exist (see
Fig. 3). The so called random bond disorder corresponds to impurities that
directly attract or repel the interface. On the contrary, for the so called
random field disorder the pinning energy is affected by all the randomness
that the interface has encountered in its previous motion. On a more tech-
nical level, the random bond disorder couples in a symmetric way to the
two order parameters on each side of the domain wall, while the random
field introduces an asymmetry between these two inequivalent order param-
eters. If V (r, z) denotes the random potential generated by the impurities
the pinning energy writes:

Hdis[u] =
∫
ddr

{
V (r, u(r)) random bond∫ u(r)

0 dzV (r, z) random field.
(3)

As is obvious from Fig. 3, even if the microscopic disorder is short range
correlated, in the case of the random field disorder, the fact that the energy
of the system integrates between two positions of the interfaces, means that
long range correlations exist if one considers only the description in terms
of the interface. The full Hamiltonian given by (1) and (3) determines the
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properties of disordered elastic media, and despite its apparent simplicity
hides an extremely rich physics.

The competition between disorder and elasticity manifests itself in sev-
eral properties of the interface. From the energetic point of view this com-
petition leads to a complicated energy landscape for the configurations of
the system, with many metastable states leading to glassy properties. The
competition manifests itself also in the shape of the interface. In particular,
it deviates from the flat configuration and becomes rough. From the scaling
of the relative displacements correlation function, a roughness exponent ζ
can be defined from the correlation function of the displacements

B(r) = 〈[u(r)− u(0)]2〉 ∝ r2ζ (4)

where 〈 〉 denotes thermodynamic average and · · · denotes disorder aver-
age. There are relations between the shape of the line and the energetic
properties. In particular (4) suggests that displacements would scale with
distance as u(L) ∼ Lζ . Using (2) suggests that the energy of a sample of
size L fluctuates from sample to sample as

∆F (L) ∼ Ld−2+2ζ (5)

Given the complexity of the problem, several approximate methods have
been put forward to guess the role of the disorder. A remarkable model to
probe the physics of such systems was introduced by Larkin [25], and goes
by the name of the Larkin model. The idea is to focus on short length scale
properties. In that case the displacements are small and one can expand the
disorder term in power of the displacements

Hdis =
∫
ddrV (r, u(r)) '

∫
ddr[V (r, 0) + ∇rV (r, 0)|z=0 u(r)] (6)

The first term is a trivial constant and the second one indicates that the
interface is subjected to a random force

HL =
∫
ddrf(r)u(r) (7)

Although this model has several pathologies, it has the advantage of being
quadratic in the displacement field u and thus of being exactly solvable. It
shows that below d = 4, the disorder plays a major role. The displacements
grow as a function of distance and

B(r) = r4−d (8)

This confirms that there is algebraic roughening of the interface with the
displacements growing as a power law of distance. One can define the scaling
u(L) ∼ Lζ , with the Larkin model giving ζ = (4 − d)/2. Below d = 4 the
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disorder is relevant and drastically modifies the physical properties of the
interface compared to those of the non disordered one. In addition to the
exponent itself, since the displacements grow unboundedly, there exists a
lengthscale, Lc, called the Larkin length at which the displacements become
of the order of the only characteristic scale available, namely either the
correlation length of the random potential or the size of the interface rf , as
shown in Fig. 2. Clearly this is also the length where the applicability of the
Larkin model breaks down since beyond that length the potential V (r, z) is
not smooth anymore and thus the expansion in powers of u is not justified.
Beyond this length the system will thus truly feel the effects of the random
potential. One can thus expect metastability, glassy effects and pinning to
appear above that length. One has to determine the physics of this regime
appearing above the Larkin length, which we will call the random manifold
regime. The Larkin length is thus an important lengthscale for the static
properties since it separates two different regimes for the interface. As I will
discuss in Sec. 5, the Larkin length has also considerable consequences for
the dynamics.

To solve the problem in the random manifold regime is not easy and
requires greatly sophisticated techniques of statistical physics. To get a
rough idea, one can simply use a scaling argument, known as Flory argument
[14]. At the scale L the elastic energy scales as cLd−2u(L)2. To estimate
the disorder term is more complicated but one can assume that if L is large
enough one sums random variables V (r, z). If one considers for example the
random bond disorder, because the disorder is short range correlated one
has

V (r1, u1)V (r2, u2) = Dδm(u1 − u2)δd(r1 − r2) (9)

Since a δ(r) function has the dimension of 1/rd, this leads to the scaling

V (r, u) ∼ D1/2u(L)−m/2L−d/2 (10)

where m is the number of components of u (for an interface m = 1). The
disorder term thus scales as

Hdis = D1/2u(L)−m/2Ld/2 (11)

Balancing the elastic and disorder term leads to a scaling u(L) ∼ Lζ with
ζ = 4−d

4+m for the random bond case and ζ = 4−d
4−m for the random field one.

This argument suggests that even in the random manifold, the interface
remains rough, with unbounded displacements growing with an algebraic
roughness. The value of the exponent is characteristic of the universality
class of the disorder, and different from the one occurring below L < Lc
where the Larkin model applies.

Clearly this simple argument needs to be substantiated by more rigor-
ous calculations. Because the system is subjected to a random potential
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and the metastability and glassy effects matter, one can use the techniques
traditionally used for disordered systems and spin glasses. For a one di-
mensional interface, this problem can be solved exactly and the roughness
exponent ζ = 2/3 has been obtained [33, 34]. Note that this exact value is of
course slightly different from the mean field estimate. In higher dimensions
three main methods have been used to tackle this problem. The first one
used the so called replica trick [26] to average over the disorder and then
a variational approach to solve the corresponding field theory [27]. In this
method the initial symmetry between replicas is broken, something familiar
in spin-glasses and characteristics of glasses with many metastable minima
in the energy. This approximate method gives back the Flory exponent. The
second method applies the traditional renormalization technique (RG), so
successful for standard critical phenomena. This consists in looking at the
problem at larger and larger lengthscales, eliminating degrees of freedom,
while changing the Hamiltonian to ensure that the large lengthscale physics
remains invariant. Usually one can expand the interaction potential, and
only a few terms are relevant, which means that the RG consists in the flow
of a few numbers of coupling constants. In the case of disordered elastic sys-
tems, the task is considerably more complex since all powers in the expansion
of the correlator of the disorder have the same scaling dimension. During the
flow the whole correlator of the disorder is modified. One must thus follow
the renormalization of a whole function, hence the name of functional renor-
malization group (FRG) [28]. This leads to a remarkable property. Beyond
a lengthscale that coincides with the Larkin length, the disorder correlator,
initially a smooth analytic function, becomes non-analytic and develops a
cusp. The appearance of this non analyticity is, in this method, the signal
of glassy physics. The FRG allows to obtain the roughening exponent in a
systematic expansion in ε = 4−d. This has been worked out for the moment
up to second order in ε = 4 − d, leading to ζ = 0.20829804ε + 0.0068582ε2

and ζ = ε/3 for the random bond and random field disorder respectively
[35]. Note that for the random field the mean-field (Flory) exponent was
exact due to the long range nature of the disorder. In addition to these an-
alytical approaches, a very useful approach is provided by numerical studies
of such systems, using either molecular dynamics simulations [36], Monte
Carlo techniques [37, 38], or specially designed algorithms [39, 40]. Numeri-
cal approaches are of course quite challenging due to the glassy nature of the
system with many metastable minima close to the ground state. However
they have proven quite useful in obtaining not only the asymptotic regime
but also the full crossover between the Larkin and random manifold regimes,
as well as incorporating the effects of finite temperature.

These predictions can be verified experimentally. I show in Fig. 4 the
roughness exponent as measured in a magnetic and a ferroelectric film. The
algebraic growth of the correlation function B(r) is clearly seen. These two
experimental situations correspond to two different dimensionalities for the
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Figure 4: Measurements of the roughness exponent ζ in two experimental
system. These two examples show the algebraic roughness of the domain
walls. The top figures are the correlation function (4) of the displacements
B(r), and the bottom ones the measured value of the roughness exponent
ζ. Left: Magnetic domain walls in thin magnetic films. An exponent of
ζ ∼ 0.6 is measured compatible with the value ζ = 2/3 expected for a
one dimensional wall in a two dimensional space [From [1] (Copyright 1998
by the American Physical Society)]. Right: Ferroelectric domain wall in
a ferroelectric film. An exponent of ζ = 0.26 is measured. This value is
compatible with the value expected for a two dimensional wall in a three
dimensional space in presence of long range dipolar interactions [From [8]
(Copyright 2005 by the American Physical Society)].

domain walls, due to the different thickness of the material and different
characteristics of the domain wall.

We can thus say that now we have a rather good understanding of the
static properties of the interfaces at least for the simple case of local elasticity
show here. Of course even for the statics this is not the end of the story since
several microscopic systems such as the contact line of a fluid, or ferroelectric
systems have long range interactions (dipolar interactions) making even the
static properties quite challenging to determine. Other open questions will
be discussed in Sec. 6.

4.2 Periodic systems and Bragg glass

Similar concepts apply directly to the case of periodic systems. In all these
systems the constituent elements (lines for vortices, points for colloids and
magnetic bubbles, sheets for phase maxima in the charge density wave sys-
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Figure 5: For a periodic system the possibility to define a displacement u(r)
for the objects (blue dots) compared to the perfect lattice (here a square
lattice corresponding to the intersections of the black lines), necessitates
the absence of topological defects. Left: if there are no topological defect
one can associate for each site R0

i of the perfect lattice a displacement ui, as
indicated by the red arrow. Right: here there is a topological defect, denoted
by the red cross, corresponding to the addition of one line of particles. In
that case the displacement ui is not univalued. From the point of view of
the particles on the left of the topological defect, the orange particle has a
displacement u of half a lattice spacing, while one could take u = 0 looking
only at particles on the right of the topological defect.

tems) form a solid, that is embedded into the microscopic system but can
have widely different characteristics and in particular widely different lattice
spacing. For example in the case of vortices the lattice spacing is controlled
by the magnetic field and can easily be varied. An important characteristic
is thus that in a similar fashion to the interface, this crystal can be em-
bedded in the “external” disorder, that corresponds to the imperfections of
the real microscopic lattice in which this artificial crystal lives. It is impor-
tant to note that the variation of the disorder potential can thus occur at
lengthscales much smaller than the lattice spacing.

Each point of the system can be described by an equilibrium position
R0
i forming a perfect lattice (usually triangular for the vortex lattice), and a

displacement ui relative to this equilibrium position, as shown on Fig. 5. As
for the interfaces the interactions between the objects forming the crystal
favor a perfectly ordered crystal. The energy of the system can be expanded
for small deviations and lead to a quadratic expansion in u characteristics
of an elastic energy. It is important to note that for such an expansion to
be valid it is only necessary for the relative displacements ui − uj between
two neighbors to be small but the displacements themselves can be arbitrary
(for example translating the whole crystal by a uniform displacement does
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not change the energy).

H =
1
2

∑
ij

Cij(ui − uj)2 (12)

where the Cij are the elastic coefficients of the system. Since the interac-
tions can be long range, the elastic coefficients are not necessarily limited to
nearest neighbor only. Note that for such an expansion to be meaningful, it
is necessary for the displacements to be uniquely defined. This assumes that
there are no topological defects (dislocations, disclinations) in the crystal.
Indeed in the presence of such defects, as shown in Fig. 5 the displacements
have two different values when circling around the defect. In order to use
the elastic approximation it is thus important to ascertain that topological
defects are not generated. I will come back to this crucial point below.

As for the interfaces the minimum energy configuration is the perfect
crystal with all ui = 0. In the absence of disorder this perfect crystal can
only be affected by the thermal fluctuations. If temperature becomes too
large the crystal will melt. A rule of thumb for the melting is when the
relative displacements between two neighbors become a sizeable fraction of
the lattice spacing

〈(ui − ui+1)2〉 = C2
La

2 (13)

where 〈· · · 〉 denotes the thermal average and CL is a phenomenological con-
stant which turns out to be of the order of CL ∼ 0.1 to reproduce reasonable
values for the observed melting of solids. This rule of thumb, called the Lin-
demann criterion for melting, gives in fact quite decent results.

In the presence of disorder, one must add to the elastic energy term (12)
the energy coming from the random potential created by the disorder. This
takes the form

Hdis =
∫
ddrV (r)ρ(r) =

∫
ddrV (r)

∑
i

δ(r −R0
i − ui) (14)

and this term will clearly tend to disorder the crystal.
The case of a periodic system constitutes a specially important and in-

teresting situation. Indeed the nature of order and the possible phases are
more complex than for the case of the interfaces. An important question is
thus whether these two systems are in the same universality class or not. In
a general way the order in a periodic system is characterized by a positional
order, indicating if one can find a particular particle of the solid at a given
position, knowing the position of a reference particle. This positional order
can be measured by the structure factor, which is the correlation function of
the Fourier transform of the density S(q) = 〈|ρq|2〉. In a perfect crystal, the
structure factor has divergent peaks at the position of the reciprocal vectors
K0 of the perfect lattice. The presence of such divergent peaks indicates
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Figure 6: A periodic system possesses both positional, orientational and
topological order. Left: positional order. A solid has perfect positional
order if by knowing the position of a reference particle one can predict the
position of a particle at distance L as indicated by the dashed circle and the
red arrow. Right: orientational order. A solid has orientational order if by
knowing the orientation of the bonds in a region of space, one can predict
the orientation at a distance L, as indicated by the red dashed lines. Note
that the system need not possess positional order for the orientational order
to exist. Topological order: topological order exist, if after a triangulation
the topology (i.e. the number of neighbors) of each point of the solid is fixed
and the displacements can be defined in a univalued manner. The picture
on the left possess perfect topological order.

a perfect positional order. The fact that one sees peaks also indicates the
existence of another type of order, namely the orientational order in a solid.
This is illustrated in Fig. 6. The orientational order indicates that if the
bonds are having a certain orientation in a region of space, this orientation
is preserved in the other parts of the solid. Losing the orientational order
replaces the peaks in the structure factor by a ring since the orientation of
a given peak is not defined any more. In standard solids both order are
lost usually at the same time, and the solid melts to a liquid, usually by a
first order phase transition. But we also know that in some cases for pure
systems, such as for example two dimensional solids, the melting may occur
as a two step process where the positional order is lost first and then only
the orientational order, leading to a so called hexatic phase [41]. A summary
of the various cases is shown in Fig. 7. In addition to these standard order
parameters, a periodic system is also characterized by a topological order
corresponding to the fact that the connectivity of the perfect crystal is pre-
served by small displacements. Such order is determined by a triangulation
of the solid and a determination of the topology. If the topology is identical
to the one of the perfect lattice it means that the displacements can be de-
fined in a univalued way across the solid. In the liquid, topological defects
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Figure 7: Decoration images of vortex lattices, illustrating the difference
between solid and liquid phases. The top figures are the images in real
space, while the bottom ones are the structure factor S(q) = 〈|ρ(q)|〉. Left:
the system is in a solid like phase (in fact a Bragg glass phase (see text)).
The system possesses good positional order and orientational order. This
can be seen both from the pictures in real space and from the structure factor
that shows Bragg peaks at the position of the reciprocal vectors K0 of the
perfect underlying lattice. As shown by the triangulation most sites have six
neighbors. Topological defects where sites have five or seven neighbors (as
indicated by the triangles and square black marks respectively) do exist, but
are paired in 5−7 pairs, making the system free of topological defects at large
lengthscales. Right: the system is in a liquid like phase. Positional order
and orientational order are lost. The Bragg peaks are gone and the structure
factor has a ring like structure (indicating the loss of orientational order).
The topological defects are proliferating and are unpaired contributing to
the exponential decay of order in the system [Images from M. Marchevsky,
J. Aarts, P.H. Kes (unpublished)].
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such as dislocations and disclinations destroys this perfect topological order
and the very concept of displacements around an equilibrium position be-
comes ill defined, since in that case the displacement field is not univalued
any more.

As for interfaces the disorder changes the properties of the pure elastic
system. In order to take into account the effect of disorder on periodic
systems, it is thus important to address two different aspects of the problem:
a) what is the effect of the disorder on an approximation of the real system
given by the elastic theory; b) to determine whether the disorder is able
to generate topological defects, in which case the very idea of an elastic
approximation breaks down and another starting point should be found.

As was shown in the groundbreaking paper by Larkin [25], there exists
always for d ≤ 4, a characteristics lengthscale La for which the displace-
ments become of the order of the lattice spacing a of the perfect crystal.
The fact that displacements can become as large as the lattice spacing in-
dicates that the perfect positional order is lost. The question of how this
destruction is taking place and what is the resulting phase is a long stand-
ing problem. Given the complexity of the question no solution existed until
recently, but it is interesting to see that the community converged, by in-
ference on closely related models, to a consensus that was accepted for a
long time but eventually proved wrong. The route followed was to learn as
much as possible from the interfaces. At short distance one can make an
expansion in powers of the displacements, and the system is described by the
Larkin model. This ceases to be valid at the Larkin length Lc for which the
displacements become of the order of the size rf of the particle in the solid.
Note that Lc and La are in general two different lengthscales since the size
of the particle rf and the lattice spacing a are usually different. Naturally
one has Lc < La. For systems such as the vortex lattice or Wigner crystals
the difference can be huge, while for charge-density waves where one expects
to have rf ∼ a and thus Lc ∼ La. Below the Larkin length the system is
described by the Larkin model and thus with an algebraic growth of the dis-
placements with a roughness exponent of ζ = (4 − d)/2. Above the Larkin
length Lc but for displacements smaller than a (i.e. for lengths smaller than
La) one can consider that the various objects of the periodic system don’t
see each other except by their elastic forces. In particular they do not sample
the same random potential given the smallness of the displacements. One
has thus a regime very similar the random manifold regime of the inter-
face. The displacement continues to grow algebraically u ∼ Lζ , albeit with
a different exponent. Above Lc, the connection between the growth of the
displacements and the structure factor (the density-density correlations) is
non-trivial since the model is non-gaussian. Indeed the structure factor is
given by [42]

S(K0 + q) =
∫
ddqeiqrC(r) (15)
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where
C(r) = 〈eiK0u(r)e−iK0u(0)〉 (16)

For Gaussian models such as the Larkin model one had C(r) = exp[−K2
0

2 B(r)] ∼
exp[−K2

0
2 r

2ζ ] indicating a stretched exponential decay of the positional or-
der. Such an exponential decay of the positional order would lead to non
divergent peaks in the structure factor. The constant finding of algebraic
roughening, and the existence of the lengthscale La seemed to suggest that
even beyond La the roughening was also algebraic, with perhaps another ex-
ponent. One would thus naively expect C(r) ' exp[−K2

0
2 a

2(r/La)2ζ ] giving
Lorentzian like non divergent Bragg peaks with a width controlled by 1/La.
In addition to this exponential loss of positional order occurring even in the
elastic theory one could question the very starting point of the analysis,
namely the elastic limit and the single valueness of the displacements. One
could indeed expect topological defects (dislocations, disclinations etc.) to
be generated at the scale La where the displacements were of the order of the
lattice spacing a. Indeed there were arguments [43] (as we will see incorrect)
“showing” that an arbitrarily small disorder would always generate topo-
logical defects at lengthscale La, leading definitely to an exponential loss of
positional order beyond this length. All these elements thus seemed to click
together to suggest the picture of a crystal broken in little crystallites of
size La as shown in Fig. 8. A consensus was thus reached in the commu-
nity that disordered periodic system would just loose translational order and
some theories for the vortex lattices were built on this incorrect premises
. However this picture crumbled on two fronts. On the experimental side,
it was in direct contradictions with experiments showing for example ex-
tremely large regions free of defects [44, 45] or a first order melting [46],
which was hardly compatible with a very disordered solid in which all po-
sitional order would have been lost from the start. On the theory side, our
understanding of glassy systems had reached a point where better solutions
of this problem could be reached. The displacements were found to grow in
fact only logarithmically [47, 48, 49, 42] with distance B(r) = A′d log(r) (or
u(L) ∼ log(L)1/2). The prefactor A′d was computed using either a variational
approach [48, 49, 42] or an FRG one [49, 42]. The elastic disordered systems
have thus a completely different rougheness than the interface. This a priori
surprising behavior can be explained in a qualitative way as shown in Fig. 9.
Quite interestingly the structure factor and positional order could still be
computed for the full model [49, 42], and it was shown that in a quite non
trivial way, the relation C(r) = exp[−K2

0
2 B(r) remains essentially applicable,

leading to a powerlaw decay of the positional order C(r) ∝ (1/r)η, where
the exponent η, is for all practical purposes a number determined only by
the dimension [50]. For example η = 1− 1.2 for a three dimensional vortex
lattice. The algebraic decay of the positional order as well as the value of

17



La

La

Figure 8: Left: the (incorrect) image of an elastic medium in presence of
disorder. The system would be broken into “crystallites” of size La charac-
teristic size for which the displacements become of the order of the lattice
spacing a (u(La) ∼ a). At the same lengthscale to release part of the
elastic energy due to the disorder the system would prefer to create topo-
logical defects (schematically indicated by the red crosses). Beyond the size
La indicated by the blue dashed line, the positional order would be lost
exponentially fast. Right: the Bragg glass, describing the properties of a
disordered periodic system in the presence of weak disorder. Although the
positional order is destroyed at large lengthscale and the lengthscale La for
which displacements are of order a exists, the system preserves quasi-long
range positional order, and perfect topological order. No “crystallite” is thus
associated with the lengthscale La, and no topological defects are generated
by the disorder.
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Figure 9: Schematic explanation of the difference of roughness between the
interfaces and the periodic systems. Left: In an interface the large roughness
is produced by the fact that there are always regions where it is energeti-
cally favorable for the line to go, and from there further to another region,
increasing endlessly the displacements. Right: For a periodic system (here
a periodic system of lines of period a), since what counts it the total energy
of the system there is no interest for one line to make displacements much
larger than the interline distance since it would just steal the disorder from
the neighbor. Thus even with the same disorder, displacements would thus
“saturate” (in fact still grow but very slowly with distance) when they reach
the interparticle distance.
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the exponent indicated that the system still retained divergent Bragg peaks
in its structure factor and thus, although losing indeed the positional order,
the loss was very slow and the system was nearly as ordered as a perfect
solid. Furthermore is has been shown [42] that the argument claiming that
disorder would always generate dislocations was incorrect and that on the
contrary, due to the slow algebraic decay of the positional order, a three
dimensional system is stable to the generation of dislocations, at least when
the disorder is below a certain threshold. This has led to a radically dif-
ferent physics for a periodic disordered system, than the generally accepted
consensus. Namely the two following facts: (a) algebraic (quasi-long range)
decay of the positional order, and divergent Bragg peaks; (ii) absence of
topological defect has led to the prediction [42] that the disordered periodic
system were in fact in a new state of matter, the Bragg glass. Such a system
is a disordered system with glassy properties: energy landscape with many
metastable states, the dynamics of a glass; but which would “look” nearly
as ordered as a perfect solid. After the Bragg glass was first predicted its
existence has been supported by further analytical [51, 52, 53] and numerical
[54, 55] calculations.

The existence of the Bragg glass phase has important consequences and
made it possible to reconcile several apparently contradictory results on
the phase diagram of the vortices. It allows to explain that very large
regions free of dislocations could be observed [44, 45] while the system is
obviously pinned by the disorder. It explains [56] also the narrow peaks
observed in neutron scattering experiment [57, 58], with a width given by
the experimental resolution, which were indicating an excellent degree of
positional order. The powerlaw nature of the peaks was directly tested in
neutron scattering experiments proving directly the existence of the Bragg
glass phase [59]. In addition to its intrinsic properties the presence of the
Bragg glass phase puts strong constraints on the phase diagram. Indeed,
since it is a phase without free topological defects, this phase has to “melt”
either when the temperature becomes too high or the disorder too strong,
since topological defects have to appear. In vortex systems the latter can
be done by changing the magnetic field. The Bragg glass thus provided a
very natural explanation [42, 60, 61] for the existence of a “melting” phase
transition as a function of the magnetic field [62, 63], such a transition
being associated with the destruction of the Bragg glass phase [64, 65]. An
example is shown in Fig. 10.

This section can only cover a fraction of the physics of periodic systems,
and several other questions have been explored. I refer the reader to the
above mentioned literature on the subject for more details.
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Figure 10: Left top: Schematic theoretical phase diagram for vortices as a
function of the temperature T and the magnetic field H, or the disorder D.
The Bragg glass (BrG) that has perfect topological order can melt either
due to thermal fluctuations (red line) or because the disorder becomes too
large (green line). The existence of the Bragg glass thus implies a single
melting curve having a crossover between these two regimes. The melting
of the Bragg glass thus explain the existence of a transition as a function of
the magnetic field. The blue dashed line would be the melting line of the
solid in the absence of disorder [After [61]] Left bottom: Measured phase
diagram for high temperature superconductor BSCCO, showing that both
melting transitions with temperature and with magnetic field are indeed
the same melting curve [From [65] (Copyright 2001 by the Nature group)].
Right: Neutron diffraction on the superconductor BKBO. The structure
factor shows clear Bragg peaks, indicating the good degree of both posi-
tional and orientational order despite the disorder present in the sample.
As shown in the bottom diagram the width of the structure factor does not
change when the magnetic field is changed, since it is controlled by the ex-
perimental resolution, while the height decreases. This is in agreement with
the consequences of a powerlaw divergent Bragg peak, and is thus a test of
the existence of the Bragg glass [From [59] (Copyright 2001 by the Nature
group)].
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Figure 11: The velocity v induced by an external force F of a disordered
elastic system. In the absence of pinning and with a damping coefficient η
the steady state velocity v = F/η is reached. At zero temperature T = 0 the
system stays pinned until a critical force Fc is reached. At finite temperature
a motion can occur even for forces below the threshold F < Fc since the
barriers to motion can always be passed by thermal activation. One can
distinguish three very different regimes in this curve: the large velocity, the
depinning and the small force response (creep).

5 Pinning and dynamics

Let us now turn to the dynamic properties. One of the main interests of such
systems is the fact that their dynamics can easily be probed. Indeed most of
these systems can be set in motion by an external force acting directly on the
interface or on the crystal, and the velocity v versus force F characteristics
is directly measurable. As mentioned before, this is of special importance
since this characteristics is linked to paramount properties of the systems
(voltage-current for vortices, current-voltage for CDW and Wigner crystals,
velocity-applied magnetic field for magnetic domain walls). In addition to
this practical importance, the dynamics will reflect, even in a more dramatic
way than the statics, the competition between disorder and elasticity. In
particular one can expect the dynamics to be dramatically sensitive to the
glassy properties and the energy landscape.

The main issues relating to the application of an external force are shown
in Fig. 11. In the presence of disorder it is natural to expect that, at zero
temperature, the system remains pinned and only polarizes under the action
of a small applied force, i.e. moves until it locks on a local minimum of the
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tilted energy landscape. At a larger drive, the system follows the force F
and acquires a non-zero asymptotic velocity v. So a first set of questions
is prompted by the zero temperature properties: what is Fc and how can
it be computed ? In addition, the v − F curve at T = 0 is reminiscent of
the curve of an order parameter in a second order phase transition. Here
the system being out of equilibrium, no direct analogy is possible but this
suggests that one could expect v ∼ (F − Fc)β with a dynamical critical
exponent β. Whether such an analogy with critical phenomena is true and
what are the physical consequences and calculation of such exponents are of
course important questions.

Another important set of questions pertains to the nature of the moving
phase itself, and in particular to the behavior at large velocity: to what
extent this moving system does or does not ressemble the static one. This
concerns both the positional order properties and the fluctuations in velocity
such as the ones measured in noise experiments. Can we expect novel physics
there, or is the system simply “surfing” over the disorder ?

Finally, how does the system respond to a very small applied force. We
are accustomed to the fact that a normal system when perturbed usually
responds linearly to the perturbation. We could thus expect here naively
v ∝ F , with a coefficient that would define the “mobility” of the interface.
Is this true, or due to the glassy nature of the system, do we have non linear
response and more complicated physics ?

5.1 General description of the dynamics

Computing the dynamics is not an easy task. Let me illustrate the method
on the case of the interfaces. The displacement field in each point is now
a function of the time u(r, t) and has to obey the equation of motion The
starting point is the equation of motion

m
du(r, t)
dt2

+ η
du(r, t)
dt

=
∑

F (17)

where η is a friction coefficient that phenomenologically describes the dis-
sipation processes that take place inside the object (interface, etc.) when
there is motion. Usually one is interested in the steady state motion of the
system in which case in the long time limit, the second order derivative be-
comes smaller than the first order one and a good approximation is to take
m = 0 in the above equation.

The forces are of two types. There are the forces deriving from an Hamil-
tonian

F [u(r, t)] = − ∂H[u]
∂u(r, t)

(18)

The two main contribution (elastic and disorder) lead in the equation of mo-
tion to the elastic forces, trying to keep the interface flat and to the pinning
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forces. In addition to these forces that would be present in equilibrium one
must add two other forces: the first one is the external force. I consider here
only the simple case of a constant external force F . In presence of this force
and in the absence of pinning it is natural to expect the system to reache
a steady state velocity v = F/η. Note that such a state, although time in-
dependent, cannot be described by an equilibrium theory. In particular the
fluctuation dissipation theorem, relating in equilibrium the fluctuations in
the absence of a perturbation and the response of the system to an external
perturbation is not obeyed in general any more. The second force is needed
if we want to describe the system at a finite temperature. In that case one
must add [66] a Langevin force ζ(z, t) which is a noise with correlations

〈ζ(r, t)ζ(r′, t′)〉 = ηTδ(r − r′)δ(t− t′) (19)

The equation of motion thus becomes in its simplest incarnation

η
du(r, t)
dt

= − ∂H[u]
∂u(r, t)

+ F + ζ(r, t) (20)

As is well known the presence of the Langevin noise ensures that in the
absence of an external force F the time evolution of the system reproduces
the thermodynamic ensemble average. In other words the equal time cor-
relations 〈u(z, t)u(z′, t)〉 obtained by averaging over the thermal noises, are
identical to the equilibrium correlation function 〈u(z)u(z′)〉H that one would
have obtained for a system with the Hamiltonian H at the temperature T .

In the absence of disorder the equation becomes quite simple and is
known as the Edwards-Wilkinson equation

η
du(r, t)
dt

= −∇2
ru(r, t) + F + ζ(r, t) (21)

The system thus slides at a constant velocity v = F/η and one can see
that in the moving frame the interface is at equilibrium since the change of
variable u(r, t) = F

η t + δu(r, t) gives for the relative displacements δu(r, t)
exactly the same equation than in equilibrium in the absence of any external
force. Even in this simple case, there are several effects of the motion that
need to be taken into account, in particular the presence of a cutoff in the
system generates terms that would not normally have been incorporated in
the original equation of motion and that can modify the behavior of the
system. The most well know is the so called Kardar-Parisi-Zhang (KPZ)
term [67].

In the presence of disorder the equation of motion becomes extremely
complicated to solve since the pinning force is a random variable depending
on the particular realization of the disorder, and a double averaging must
be done, both on the thermal noise and on the disorder. No perfect method
exists to treat such an equation. Since we are usually more equipped to
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deal with integrals than with differential equations, specially with stochastic
terms, a convenient rewriting of this equation exists, which formally gives
back the equivalent of a path integral and an action. This is the so-called
Martin-Siggia-Rose (MSR) formalism [68, 69]. I refer the reader to the
literature on this relatively specialized method [66]. The advantage is to
allow the averaging over the disorder from the start. This in particular
paves the way for an FRG treatment of the problem.

5.2 Depinning

The first set of questions arises close the depinning. Indeed, in the presence
of disorder the naive expectation is that the interface is unable to move, at
zero temperature, below a certain threshold of force Fc called the pinning
force. Computing this pinning force is not easy. In a remarkable feat of
physical intuition Larkin has shown that the pinning force can be directly
obtained from the static behavior of the system [70]. Indeed the idea is that
the pinning force is related to the appearance of many metastable states
and the presence of the random potential. Because it is quadratic in the
displacements, the Larkin model does not exhibit a pinning force. The idea
would thus be to relate the pinning force to the lengthscale at which the
Larkin model stops to apply. As we discussed before this is the length Lc
for which the displacements are of the order of the correlation length of the
random potential or the width of the elastic object. At that scale the elastic
plus disorder energy is scaling as cLd−2

c r2
f while the additional energy due

to the force scales as

HF =
∫
ddrFu(r) ∼ FLdcrf (22)

Balancing the two terms leads to the famous Larkin collective pinning force

Fc =
crf
L2
c

(23)

This is a remarkable relation since it relates a dynamic property to purely
static quantities. This intuitive result can be substantiated by consider-
ably more complicated calculations. In the next section we will see another
rough estimate based on a large velocity expansion. Finally, starting from
the equation of motion (17), it is possible to obtain Fc from an FRG calcu-
lation [71, 72], confirming from this microscopic calculation Larkin’s result.
Numerical methods have allowed an extremely precise calculation of Fc [39].

Besides the existence of the pinning force itself, the description of the
depinning is a considerable challenge. A very fruitful line of approach for
this problem was suggested by D.S. Fisher [73]. Indeed looking at the v−F
characteristics is strongly reminiscent of the curve of an order parameter as
a function of temperature in a second order phase transition (zero for T > Tc
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and non-zero for T < Tc). This strongly suggests to use an analogy with
a standard critical phenomenon to analyze the depinning. In particular,
one can infer from this analogy that a divergent lengthscale exists at the
transition, and that one can define scaling behavior and critical exponents
as a function of this lengthscale. One can define a critical exponent for
the velocity v ∼ (F − Fc)β, for the correlation length ξ ∼ (F − Fc)−ν and
a dynamical exponent relating space and time divergences τ ∼ ξz. These
exponents are related by scaling relations, analogous to the ones of standard
critical phenomena and that can be computed by looking at the scaling of
the equation of motion. The scaling are

ν =
β

2− ζ
=

1
z − ζ

(24)

Such scaling behavior is directly confirmed from solutions of the equation of
motion, either from FRG or from numerical simulations. The lengthscale ξ
can be identified as the lengthscale of avalanches. Computing and measuring
these exponents is a considerable challenge and sophisticated FRG [71, 74,
72, 35] or numerical [39, 75] techniques have been developed for this goal .

In addition to these quantities characterizing the motion of the line,
other important physical observables are modified by the application of the
external force. This is in particular the case of the roughness of the line.
Right at depinning F = Fc the line is much more rough than when in equi-
librium, since it is one the verge of depinning. There is thus a new roughness
exponent ζdep which can be computed and is ζdep ∼ 1.2. for a one dimen-
sional interface. This result has two very important consequences. The first
one comes from the value of the roughness exponent itself. Since, at least
for a line, this value is larger than one, this immediately suggests that close
to depinning the elastic model will run into trouble. Indeed when u scales
more than linearly with distance, the vary basic of the elastic approxima-
tion ∇u � 1 is violated at large lengthscales. The line will thus have to
generate defects (overhangs) to heal this fact. What is the resulting physics
when this is taken into account is a challenging and yet open question. The
second observation concerns the steady state aspect of the line. At large
lengthscales, because of the finite velocity, the system will average over the
disorder. We will come back in more details on this point in the next section,
but for the moment, stick with this simple vision. In that case, beyond the
length ξ one can expect the disorder to be irrelevant and thus to recover the
pure thermal roughness exponent. The system will thus have the depinning
roughness exponent ζdep for lengthscales below ξ and the thermal one ζth

for lengthscales above ξ. This is summarized in Fig. 12. One important
question is now what happens at a small but finite temperature. The first
effect is of course to smoothen the v − F characteristics. This leads to the
important question of whether one can define a scaling with the tempera-
ture of this thermal rounding of the depinning (see e.g. [77] and references
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Figure 12: Close to depinning the motion proceeds by avalanches between
two configurations α and γ. Above Fc, there exists a divergent lengthscale
(Lopt on the figure) below which the line is characterized by the roughness
exponent ζdep and above which the line shows the thermal roughness ζth. A
normal critical phenomenon would have had a similar divergent lengthscale
for F < Fc. This is not the case for the depinning. A transient divergent
lengthscale Lrelax does exist, but does not show up in the steady state prop-
erties of the line. Contrarily to naive expectations from a “standard” critical
phenomenon, one observes the equilibrium roughness exponent ζeq at short
distances. This shows that the analogy between depinning and “standard”
critical phenomena although very fruitful, must be taken with a grain of
salt. On the right the schematic shape of the line and energy profiles are
shown. [After [76]]
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therein). Even more interesting is the question of the roughness of the line.
The analogy with a critical phenomenon would simply suggest that a similar
divergent lengthscale should exist for F < Fc, leading to the standard pat-
tern of “critical regime”. However, as indicated in Fig. 12, such a divergent
lengthscale does not exist [76]. This leads to a very puzzling behavior and
shows that although the analogy with standard critical phenomena can be
extremely fruitful, it must be taken with a grain of salt. The depinning,
which is by essence a dynamical transition possesses its own physics.

5.3 High velocity phase

Anther important set of questions and physics occurs when the interface is
moving at large velocity, i.e. for F � Fc. This is apparently the simplest
regime since one could expect that at large velocity one has a control pa-
rameter on the theory and that an expansion in 1/v is possible. This is
indeed the case for the v − F characteristics. A large velocity expansion of
the disorder term can be made by going into the moving frame of the elastic
media. One can indeed write u(r, t) = vt + δu(r, t), where the δu(r, t) de-
scribe the displacements in the moving frame. Because the system surfs over
the disorder at very large velocity one can expect the effects of the disorder,
and hence δu(r, t) to be small. This is confirmed by a well controlled large
velocity expansion [78, 79]. In particular, the correction due to the disorder
to the velocity can be computed and behave as

F − ηv
ηv

∝ D
(

1
ηv

) 4−d
2

(25)

This shows clearly that the effects of disorder are kept small at large ve-
locity or large force and become increasingly important as the force/velociy
is getting smaller, in agreement with Fig. 11. The relative correction to
the velocity is growing in dimensions smaller than d = 4, confirming that
disorder is relevant below this dimension. Although one cannot extrapolate
the perturbative expressions, a crude way to estimate the critical force Fc is
when the deviations (25) become of order one. This method gives back the
estimate (23) for Fc, obtained from totally different considerations.

The large velocity expansion allows also to address the physics of the
moving phase, namely what is the shape and properties of the elastic sys-
tem in the moving frame. A calculation of these effects was performed [80],
by computing the displacements δu from the large velocity expansion. This
leads to the striking result that at large velocity the effect of disorder dis-
appears and can be absorbed in a simple modification of the temperature
of the system, leading to an effective temperature Teff . This has important
consequences on the properties of the system in the moving frame. For an
interface, this is consistent with the idea, exposed in the previous section,
that at large distance one recovers the thermal roughening exponent. For
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periodic systems, since there is the possibility of melting, this has the more
drastic consequences that driving the system could induce a velocity con-
trolled melting. Indeed for large velocities, the effective temperature is small
while it would be large for smaller velocities. The system would thus be a
disordered system while static, then close to depinning where the effective
temperature would be large it would be in a melted (liquid) state, and then
recrystallize when moving at larger velocities.

Although the concept of effective temperature is extremely fruitful, in
particular for this dynamic recrystallization, the properties of the moving pe-
riodic system are richer [81] than those a simple solid subjected to a temper-
ature. Indeed periodic systems have a structure in the direction transverse
to the direction of motion. This structure and the corresponding disorder
structure cannot be averaged by the motion, however large the velocity re-
mains. This leads to the fact that disorder remains even when the system
is in motion. In other words a moving periodic system remains a glass.
The way the motion takes place is quite peculiar. The system finds optimal
paths [81] which are a compromise between the elastic energy, disorder and
the motion. These paths are rough, in a similar way than a static system in
a disordered environment is rough. This is shown in Fig. 13. For periodic
systems pinning effects still manifest themselves in the moving system. The
glassy nature and the channel motion have been confirmed both numeri-
cally [82, 83, 84] and experimentally [85]. The channel motion leads to an
interesting consequence. Since the effects of disorder are weakening as the
velocity increases, the channels undergo a transition between a regime for
which the particles in different channels are coupled or decoupled [86, 87]. In
the first case, the system is essentially moving as a “solid” (in fact a moving
Bragg glass) since the topological order is perfect even if the system is still
distorted by disorder. In the second case the channels are decoupled, which
means that a smectic like structure of the particles inside the channels is
expected. These transitions as described in Fig. 13 have also been observed
both numerically and experimentally as shown in Fig. 14. An additional
consequence of the existence of such channels is the existence of a transverse
pinning force [81, 87]. Indeed even if the particles themselves are moving
along the channels, the channels themselves are pinned if one applies an
additional force transverse to the direction of motion. This surprising phe-
nomenon has been numerically confirmed [82, 83, 84], but observing it in a
classical periodic systems it is still an experimental challenge. Experiments
showing the absence of Hall effect in Wigner crystal systems [88] could con-
stitute an experimental proof of such a transverse critical force, but clearly
further experimental data would be needed to unambiguously decide on that
point.
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Figure 13: Motion of a periodic system. The system develop rough channels
which compromise between elastic energy and the transverse component of
the disorder that are poorly averaged by the motion. All the particles follow
on these channels like cars on highways. Depending on the velocity, the
channels are increasingly coupled: Bottom image: close to depinning motion
can proceed through a plastic regime where unpinned and pinned regions
(denoted by the blue circle) coexist; Middle image: topological defects can
exist between the channels, so although the channels themselves are well
formed the particle in them are essentially decoupled leading to a smectic like
behavior; Top image: the channels are coupled and the system is a moving
Bragg glass with both effects of disorder and elasticity and no topological
defects. On the right the corresponding structure factors are indicated.
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Figure 14: Left: numerical simulations confirming the presence of channels
for moving periodic structures and the sequence of transitions depicted in
Fig. 13. The left part of the image are the real space trajectories, while
the right part is the structure factor. The force is increasing from the top
to the bottom of the image [From [83] (Copyright 1999 by the American
Physical Society)]. Right: A decoration image of moving vortices showing
also the presence of channels. The direction of the applied force is indicated
by an arrow. The left column is the raw decoration image, the center one
is the Fourier transform giving the structure factor, the right column is a
filtered version of the image showing the channels more clearly [From [85]
(Copyright 1999 by the Nature group)].

31



r

E

-F r

∆ - Fa

∆ + Fa

∆ -

Figure 15: In the thermally assisted flux flow [89] a region of pinned material
is considered as a particle moving in an energy landscape characterized by
characteristic barriers ∆, schematized by the blue dashed periodic potential,
of period a. Applying an external force tilts the energy landscape. The
motion over barriers can always proceed by thermal activation. Due to the
tilt the barrier to forward motion (in red) is smaller than the reverse barrier
(in green). This results in an exponentially small but linear response when
a small external force is applied to the system.

5.4 Small applied force and creep motion

Finally let us look at the response of the system to a small external force.
At zero temperature, one is below the pinning force, and thus except for
a transient motion the system remains pinned. Motion can thus only take
place due to thermal activation over the energy barriers. The response to
a small external force is thus a method of choice to probe for the nature
of the energy landscape of such systems. For usual systems one expects
the response to be linear. Indeed earlier theories of such a motion have
found a linear response. The idea is to consider that a blob of pinned
material has to move in an energy landscape with characteristic barriers ∆
as shown in Fig. 15. The external force F tilts the energy landscape, thus
making forward motion possible. The barriers are overcome by thermal
activation [89] (hence the name: Thermally Assisted Flux Flow (TAFF))
with an Arrhenius law. If the minima are separated by a distance a the
velocity is

v ∝ e−β(∆−Fa/2) − e−β(∆+Fa/2) ' e−β∆F (26)

The response is thus linear, but exponentially small.
However this argument is grossly inadequate for a glassy system. The

reason is easy to understand if one remembers that the static system is in a
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glassy state. In such a state a characteristic barrier ∆ does not exist, since
barriers are expected to diverge as one gets closer to the ground state of
the system. The TAFF formula is thus valid in systems where the glassy
aspect is somehow killed and the barriers do saturate. This could be the
case for example for a finite size interface. When the glassy nature of the
system persists up to arbitrarily large length scales the theory should be
accommodated to take into account the divergent barriers. This can be done
qualitatively within the framework of the elastic description using scaling
arguments [90, 91, 92, 47]. The basic idea rests on two quite strong but
reasonable assumptions: (i) the motion is so slow that one can consider at
each stage the interface as motionless and use its static description; (ii) the
scaling for barriers, which is quite difficult to determine, is the same as the
scaling of the minimum of energy (metastable states) that can be extracted
again from the static calculation. If the displacements scale as u ∼ Lζ

then the energy of the metastable states (see (2)) scales as given by (5):
E(L) ∼ Ld−2+2ζ . Since the motion is very slow, the effect of the external
force is just to tilt the energy landscape

E(L)− F
∫
ddru(r) ∼ Ld−2+2ζ − FLd+ζ (27)

Thus, in order to make the motion to the next metastable state, one needs
to move a piece of the pinned system of size

Lopt ∼
(

1
F

) 1
2−ζ

(28)

The size of the optimal nucleus able to move thus grows as the force decrease.
Since the barriers to overcome grow with the size of the object, the minimum
barrier to overcome (assuming that the scaling of the barriers is also given
by (5))

Ub(F ) ∼
(

1
F

) d−2+2ζ
2−ζ

(29)

leading to the creep formula for the velocity

v ∝ exp
[
−βUc

(
Fc
F

)µ]
(30)

where Fc is the depinning force and Uc a characteristic energy scale and the
creep exponent µ is given by,

µ =
d− 2 + 2ζ

2− ζ
(31)

Equations (30) and (31) are quite remarkable. They relate a dynamical
property to static exponents, and show clearly the glassy nature of the sys-
tem. The corresponding motion has been called creep since it is a sub-linear
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Figure 16: Experimental verification of the creep law for magnetic and ferro-
electric domain walls. Left: Magnetic domain walls. The film is extremely
thin thus the domain is a line in a two dimensional plane, leading to a
creep exponent of µ = 1/4. The creep law is observed on about ten orders
of magnitude for the velocity [From [1] (Copyright 1998 by the American
Physical Society)]. Right: Ferroelectric films. A creep behavior is observed
over several orders of magnitude giving a creep exponent of µ ∼ 0.58. This
value together with the measured roughness exponent ζ = 0.26 leads to an
effective dimension of d = 2.5 well in agreement with a two dimensional
domain wall in presence of dipolar forces [From [8] (Copyright 2005 by the
American Physical Society)].

response. It is a direct consequence of the divergent barriers in the pinned
system.

Of course the derivation above is phenomenological, so it is important to
ascertain by more microscopic methods whether the results hold. Although
in principle one simply has to solve the equation of motion (20). In practice
this is of course quite complicated. A natural framework for computing
perturbation theory in off-equilibrium systems is the MSR formalism. Using
this formalism and an FRG analysis, one can confirm the creep formula for
the velocity [93, 94]. Numerical simulations also show the absence of linear
response, and the existence of a creep response [95]. Creep has also been
checked experimentally in various systems. Vortices show a creep behavior
with an exponent µ = 1/2 compatible with the existence of the Bragg glass
(d = 3, ζ = 0) [96]. However the range of velocities measurable makes it
difficult to unambiguously check for this law. One spectacular determination
of the creep law was performed in a magnetic film [1]. In such a situation
the roughness exponent is known exactly (ζ = 2/3) and thus the value of the
creep exponent µ = 1/4 is not an adjustable parameter making it a much
more stringent test. As shown in Fig. 16 the velocity was measured over
ten orders of magnitude, a spectacular feat, and a remarkable confirmation
of the creep law. Measurements of the creep law have also been performed
for domain walls in ferroelectrics where a simultaneous measurement of the
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creep exponent and of the roughness exponent was performed [7, 8]. As
shown in Fig. 16 the stretched exponential behavior for the velocity is well
verified, and the formula (31) consistent with what is expected for a two
dimensional domain wall in presence of dipolar forces, corresponding to the
experimental situation.

The FRG derivation allows of course to probe deeper the physical un-
derstanding of the system. In particular it unravelled a new phenomenon.
Although the velocity itself is dominated by events occurring at the ther-
mal lengthscale (28), interesting physics takes place beyond this lengthscale.
Indeed when a portion Lopt of the line has been able to move forward by
thermal activation over the barriers, it serves as a nucleation center to trigger
an avalanche [94] over a much larger lengthscale Lav. The behavior between
these two lengthscales is thus very similar to a depinning phenomenon where
the temperature plays no role. Although of course the velocity is dominated
by the first process, which is the slow one, the shape of the line reflects this
much larger avalanche scale, in a way which is compatible with experiments
[3]. The creep, being controlled by the time to overcome divergent barriers
in the system has several other consequences, in particular on the issue of
the out of equilibrium physics of such systems [97] and its connection to the
aging of glasses [98].

6 Future directions

Both because of experimental drive (no pun intended) but also because of
theoretical advances and the development of the proper tools, this field has
thus known several breakthroughs in the last decade or so. There is now a
good understanding of the static properties both for the interfaces and for
the periodic systems and most of the misconceptions or folklore has been
replaced by solid results. Novel phases have emerged such as the Bragg glass
phase. The steady state dynamics has also made several progress, with the
understanding of processes such as the creep motion. From the point of
view of methods, these systems have made it possible to perfect methods to
deal with glassy systems such as replica methods, functional renormalization
group as well as special numerical methods. These results have found and
continue to find applications in a large variety of experimental domains. De-
spite these advances, it is clear that many questions remain pending, making
it still a very challenging field which is yet in constant progress. Experiments
provide regularly new systems and new challenges and stimulate the theo-
retical analysis. Several lines of research are actually open and should carry
the bulk of the research in that domain in the future.

From the point of view of the static, although the situation without
defects is under control, we know next to nothing when elasticity, disorder
and defects are included. For interfaces this means treating the overhangs
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and bubbles, and for periodic systems all the topological defects such as the
dislocations. Although we know now that the situation without the defects is
robust below a certain threshold of disorder it is clear that being able to deal
with the strong disorder situation is needed for many experimental systems.
This is the case for the high field phase of vortices or strong disorder in the
interfaces, both of which are dominated by defects.

In the dynamics, one of the very challenging questions that one has to
face is the one of the out of equilibrium dynamics, when the system has
not yet reached a steady state. A simple example of such a situation would
be an interface relaxing slowly from a flat configuration or quenched at
low temperatures from a high temperature configuration. Given that these
systems are glasses the time evolution of such cases is highly non-trivial,
and should show a generic phenomenon of glasses known as aging. This
is directly a situation relevant to many experiments. From the conceptual
point of view this is an extremely challenging question since most of the
theoretical tools that we have fail to tackle such situations, and thus new
tools or new concepts need to be invented.

Last but not least, we have dealt mainly with classical systems here.
But disordered elastic systems can also be realized in the quantum worlds
as briefly mentioned in the introduction. The question on how to extend
the concepts of glasses to quantum systems is a largely open question. In
particular one can expect the dynamics to be affected. Indeed classical
systems can only pass barriers by thermal activation, while quantum systems
are good at tunnelling through barriers. The extension of the above concepts
to the quantum world is thus a very challenging direction.

The gold mine of disordered elastic media is thus far from being ex-
hausted. It seems that each nugget we find is only the opening of a new
vein, with even richer stones. The variety of experimental realization is ever
growing, as is the depth of the questions that are now within our grasp.
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