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HOW TO BUILD A QUANTUM COMPUTER (in principle!)

[Note: Ensuing discussion refers to a “circuit-based” QC 
which could in principle implement (e g ) Shor’s factoringwhich could in principle implement (e.g.) Shor s factoring 
algorithm. Requirements for other kinds of application, e.g. 
quantum annealing, are  not necessarily quite so stringent in all 
respects].

First requirement: a set of N (typically »1) 2-stateFirst requirement: a set of N (typically »1) 2 state
systems (“qubits”) on which we can implement 1-qubit operations 
on (all) individual qubits and 2-qubit operations on (at least some) 
pairs of qubits. 

(Why not 3, 4. . . –state systems?)

The “language” of qubits: the Bloch sphere
Consider an arbitrary quantum system restricted to move 

in a 2D Hilbert space. Let’s choose a definite basis in this space and 
label the axes (arbitrarily) |0〉 and |1〉. Then an arbitrary pure state of 
the system can be writteny

Moreover an arbitrary Hermitian operator in the space may beΩ̂

2 2| | 0 |1        with |   | | | 1αα β β〉 +Ψ = + 〉 =〉

normalization
Moreover, an arbitrary Hermitian operator      in the space may be 
written in matrix form as

L t i t d th it t i d th th t d d

Ω

00 10

10 11

ˆ Ω Ω⎛ ⎞
Ω ≡ ⎜ ⎟Ω Ω⎝ ⎠

1 0ˆ ⎛ ⎞Let us introduce the unit matrix                 and the three standard  
Pauli matrices satisfying   

1 0
1

0 1
⎛ ⎞

≡ ⎜ ⎟
⎝ ⎠ˆ ˆ ˆ, ,x y zσ σ σ

{ }2 ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ0, 1, , 2 , ,i i i j ij i j ijk kTr iσ σ σ σ δ σ σ ε σ⎡ ⎤= = = =⎣ ⎦
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Explicit form of the Pauli matrices (in the “standard” 
representation):

0 1 0 1 0
ˆ ˆ ˆ

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

Now, we have

if d fi

, ,
1 0 0 0 1x y zi

σ σ σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

*
00 10

10 11

ˆ Ω Ω⎛ ⎞
Ω ≡ ⎜ ⎟Ω Ω⎝ ⎠

so if we define
( ) ( ) ( )

( )

* *
00 11 10 10 10 10

00 11

1 1 1, , ,
2 2 2

1
2

x y

z

Ω ≡ Ω +Ω Ω ≡ Ω +Ω Ω ≡ Ω −Ω

Ω ≡ Ω −Ω1 1ˆˆ ˆ ˆ(i.e. 1, )
2 2i iTr tr σΩ ≡ Ω Ω ≡ Ω

where Ω is a real scalar and      a real vector. Consequently, Ω

( , )
2 2i i

then any Hermitian operator      can be represented in the formΩ̂
ˆˆ ˆ1 σΩ=Ω +Ω⋅

q y,
any qubit is isomorphic to a spin ½.

Since the density matrix     is a Hermitian operator with 
unit trace, it is a special case of (*) and can be written in the 
form  

ρ̂

( )1ˆ ˆ12 nρ ε σ= + ⋅( )
 unit vect
2

or, 2| |)n

ρ

ε ρ= ≡

Note that  2 21ˆ (1 )2Tr ρ ε= +

Since in general                 with the equality holding (only) 
f t t l d

2ˆ ˆTrTr ρ ρ≤

ε = 1 for a pure state,
0 ≤ ε < 1 for a mixed state.

for a pure state, we conclude

Thus,
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Any pure state of a qubit is uniquely described by specifying 
the corresponding vector    on the unit sphere (“Bloch 
sphere”). The physical significance of     is that it is the 

n
n

direction along which the “spin” of the qubit “points,” i.e.
ˆ 1n σ⋅ =+

Relation to the representation
| Ψ 〉 | 0 〉 β | 1 〉

ϕ

|0〉

| Ψ 〉 = α | 0 〉 + β | 1 〉:
| 0 〉 obviously satisfies

σz | 0 〉 = + | 0
so corresponds to             (N. pole) n z=

θ

Similarly, |1〉 satisfies
so corresponds to              (S. pole)
What about the general case? Writing

|1 |1zσ 〉=− 〉
n z=−

| | , | |0 |1ˆn σ α β⋅ Ψ〉 = Ψ〉 Ψ〉= 〉+ 〉

|1〉

we find explicitly

so up to an overall phase (physically irrelevant)

sin/ cot1 cos 2
i ie e
ϕ ϕθ θα β θ

−
= ≡−

so, up to an overall phase (physically irrelevant)

Mixed state: ε<1, but (except for ε=0) still specified by unit 
vector     on Bloch sphere. Can be represented as mixture of 

| cos |0 sin |12 2
ieϕθ θΨ〉= 〉+ 〉

n p p
states polarized ± along    , with “polarization”
(ε=0 corresponds to            , i.e. no information at all about          

state of “spin”). 

n 1( )2 P P ε⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− =−+1 ˆˆ 12ρ =
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SINGLE-QUBIT OPERATIONS
It is helpful to think explicitly in terms of a literal spin-1/2 
particle e g a nuclear spin: results are easily transcribed toparticle, e.g a nuclear spin: results are easily transcribed to 
the case of a general 2-state (qubit) system. Let’s suppose 
we start with a fixed dc field       along the z-axis, and allow 
the spin to equilibrate, i.e. to reach state |0〉.

(Δ i li ( ffi i tl kl l d) th l b th ith

0H

(Δ: implies (sufficiently weakly coupled) thermal bath with 

0H

rf tθ γ= H precession at
0γH

target 
state

kT«μH0)

lab. Larmor
rfH

lab.

0H

lab.

Apply oscillating rf field in xy-plane at Larmor frequency; ideally
cos sint tω ω+H H H0 0

0 0

cos sin ,rf x yt tω ω
ω γ

= +
≡

H H H
H

In practice, usually use plane-polarized rf and neglect effects of 
“counter-rotating” component).
In frame rotating with Larmor frequency ( )γ ω≡Hg q y

In lab. frame, θ is same but ϕ precesses at Larmor frequency 
γH0. Can fix ϕ at any desired value (in principle!) by turning 

0
const.(say 0), | | ~

t
rf rfdtϕ θ γ γ τ= = ∫ H H

0 0, ( )γ ω≡H

off       . Thus, can access any target state.
Minimum time required (easiest to see with plane-

polarized rf: must be able to neglect counter-rotating term):

0H

0
1τ ω−



3C2.5

2-QUBIT OPERATIONS

A separable 2-qubit state can be 
represented by 2 Bloch spheres:

However, an entangled 2-qubit state has no such simple pictorial 
i b i

represented by 2 Bloch spheres:

1 2

1 1 1
1 1 1

| | ( ) | ( )
( ) cos |0 sin |1 , etc.2 2

n n
in e

ϕ χ
θ θ ϕϕ

Ψ〉 = 〉 〉

= 〉 + 〉

1n
2n

representation: at best we can write

or more simply

1 2 1 2 1 2| ( , )| ( ) | ( )dn dn n n n nϕ χΨ〉 = Ψ 〉 〉∫ ∫

complex function

00 1 2 01 1 2 10 1 2 22 2 2| |0 |0 |0 |0 |1 |0 |0 |0α α α αΨ〉 = 〉 〉 + 〉 〉 + 〉 〉 + 〉 〉
How to create entangled states, starting from unentangled ones?

Ex: CNOT gate.
The classical CNOT gate is a special case of the gate

( )( , ) , ( )x y x y f x→ ⊕
control

for (e.g.)
It has the action

(0,0) → (0,0)
(0,1) → (0,1)

(0) 0, (1) 1.f f= =

( )( , ) , ( )x y x y f x→ ⊕
x
y

x
y⊕f(x)

target

(1,0) → (1,1)
(1,1) → (1,0)

The corresponding quantum CNOT gate corresponds to a Û 
represented by the matrix 1 0 0 0⎛ ⎞ep ese ted by t e at 1 0 0 0

0 1 0 0ˆ
0 0 0 1
0 0 1 0

CNOTU

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=
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Suppose we start from some simple unentangled 2-qubit state, e.g.

Then application of Û gives (since

1 1 2
1| (|0 |1 )|0
2

Ψ〉 = 〉 + 〉 〉

|0 |0 |0 |0〉 〉 → 〉 〉Then application of ÛCNOT  gives (since

which is clearly entangled. Note that          is well defined (actually         

1 2 1 2

1 2 1 2

|0 |0 |0 |0 ,
|1 |0 |1 |1 )
〉 〉 → 〉 〉
〉 〉 → 〉 〉

1 2 1 2
1ˆ | (|0 |0 |1 |1 ) (*)
2CNOTU Ψ〉 = 〉 〉 + 〉 〉

1ˆ
CNOTU −

ˆ ) and “disentangles” the state (*).

It is a theorem (not proved here!)* that for a 2-qubit system the 
combination of all single-qubit unitary gates and CNOT is 

CNOTU=

universal, i.e. starting from (e.g.) |0〉1|0〉2 we can reach any 
arbitrary target state of the 2-qubit system, entangled or not. 
Further, an arbitrary state of an N-qubit system, however 
entangled, can be reached by applying a succession of single-qubit 
gates and 2-qubit CNOTs. Thus,gates and 2 qubit CNOTs. Thus,

single-qubit operations + CNOT suffices for QC.

HOW TO IMPLEMENT Û IN REAL LIFE SYSTEM?HOW TO IMPLEMENT ÛCNOT IN REAL-LIFE SYSTEM?
Most convenient method may depend on specific physical nature 
of 2-qubit system, but consider for definiteness 2 real (e.g. nuclear) 
spins ½:

*See e.g. Nielsen and Chuang section 4.5.2.
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2-SPIN QUANTUM CNOT GATE (schematic)

Consider 2 spin-1/2 nuclei with different magnetic moments in dc 
field coupled by Ising-type interaction:0 || ,zHfield            coupled by Ising-type interaction:

Energy level diagram:

0 || ,zH

1 1 0 2 2 0 1 2 ( 1)1 1 1ˆ
2 2 2Z Z Z ZH Jγ σ γ σ σ σ ==− − −H H

1 2
1

1 22|1 | 0 ( )Jω ω〉 〉 + −
1

2 Jω +
2 Jω −

1 2
1

1 22| 0 |1 ( )Jω ω〉 〉 − + +

1 2
1

1 22|1 | 0 ( )Jω ω〉 〉 − +

1| 0 | 0 ( )Jω ω〉 〉 − − −

Suppose we wish to treat 1 as the “control” and 2 as the “target” 
bit. Then         should leave the states |0〉1|0〉2 and |0〉1|1〉2 unaffected 
but interchange |1〉1|0〉2 and |1〉1|1〉2 . This can be done by applying 
an rf field with polarization along x-axis (i.e. plane-polarized) with 

1 2 1 22| 0 | 0 ( )Jω ω〉 〉

ˆ
CNOTU

p g ( p p )
frequency ≈ ω2 – J,

such that

2ˆ( ) ( ) cos ( )rft x f t J tω= −�H H

slowly varying envelope function

2 ( ) .f f t dtγ π
∞

≈∫H

This will not induce transitions
provided the Fourier component of  H(t) at            is negligible, 
which roughly speaking implies (for “reasonable” (f(0)). 

1 2 1 2|0 |0 |0 |1〉 〉 ↔ 〉 〉

( ) .rf f t dtγ π
−∞
∫H

2 Jω +

11J −τ (so, conditions may be 
more stringent than for 
1-qubit gate)“length” of pulse
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SOME PROBLEMS IN IMPLEMENTING QC IN REAL LIFE

1. Initialization: must be able to be sure of starting from a known 
initial state (typically |0〉 |0〉 |0〉 )initial state (typically |0〉1|0〉2…|0〉N)

2. Readout: must be able to read out final state (typically an eigenstate 
of computational basis such as |0〉1|1〉2|1〉3…|0〉N) with high fidelity.

3. Reliability of 1- and 2-qubit operations.

4. Individual addressability of qubits (e.g. by spatial/frequency 
selection)

5. Scalability (crudely speaking, difficulty of implementing QC with 
N qubits should be ~Nd not eN)

Both microscopic and macroscopic (superconducting) qubits meet these 
requirements to varying degrees. But the most generic and often the 
most severe problem in QC ismost severe problem in QC is 

DECOHERENCE

Generic definition of decoherence: any deviation of actual quantum 
state from “target” one due to its interaction with its environment.

Suppose in a given basis target state isSuppose in a given basis target state is

then, 2 kinds of error:

(a)

(b)

2 2|0 |1 cos |0 sin |1tt t i
t eθ θ ϕα β〉+ 〉 ≡ 〉+ 〉

t| | , i.e. tα α θ θ≠ ≠ (“bit flip”)

(“ h fli ”)(b)

but this is basis-dependent, e.g. phase flip in     -basis becomes bit 
flip in     -basis. Generally, define in computational basis.

arg( *) arg ( *), i.e. t t tαβ α β ϕ ϕ≠ ≠

ˆzσ
ˆxσ

(“phase flip”)
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ORIGINS OF DECOHERENCE

A. Environment describable classically (e.g. 50 Hz
background, passing truck . . .)

Environment may exert random force on system. Simple example: 
spin in field constant in (  -) direction, but subject to random 
fluctuations in magnitude: 

z

ϕ

0H 0ΔH

(t) = z( + (t))Δ0H H H

random

(t) (t)ddn
dt dtn ϕγ γ= × ⇒ =H H

⇒ in Larmor frame,

⇒ in Larmor frame,
0

t

(t)

(t) = (t )dt

d
dt
ϕ γ

ϕ γ ∫

= Δ

Δ ′ ′

H

H
so for any one run (“realization”), ϕ(t) is definite, and if we 
could write a “density matrix for this realization”                , it 
would be

0

{ }ˆ ( )tρ ΔH

{ }
2

2 2 2
2

2 2

cos sin cos
ˆ ( )

sin

exp ( )

excos sinp /2( )

i t

i
t

t

θ θ θ

θ θ
ρ

ϕ

ϕ θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
Δ =H

But since we don’t in practice know ΔH(t) and thus ϕ(t), we 
have to average over realizations of the noise, i.e. the “true”
is given by

ρ̂
2

2 2 2
2

2 2 2

cos sin cos
ˆ( )

sin

( )

*( )cos sin

F t

F t
t

θ θ θ

θ θ θ
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

where  
2 2 2⎝ ⎠

0
( ) exp ( ) exp ( )

t
F t i t i t dtϕ γ≡ ≡ Δ ′ ′∫ H
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Recap: in presence of “longitudinal” classical noise diagonal elements 
of density matrix unaffected, but off-diagonal elements suppressed 
by factor

( ) exp ( )
t

F t i t dtγ= Δ ′ ′∫ H

For Gaussian-distributed noise,                                 so

If noise is “white”

0
( ) exp ( )F t i t dtγ= Δ∫ H

21
2exp exp ,iα α= −

21
2

00
( ) exp ( ) ( )

t t
F t dt dt t tγ= − Δ Δ′ ′′ ′ ′′∫ ∫ H H

( )( ) ( ) ( )t t t tηδΔ Δ′ ′′ ′ ′′H HIf noise is white

⇒ off-diagonal elements of       progressively suppressed to zero. 
More generally, if 

( )( ) ( ) ( )t t t tηδ=Δ Δ −′ ′′ ′ ′′H H

ρ̂

∞

21
2then ( ) expF t tγ η= −

then for t»τ,

so exponential suppression is fairly generic (though not universal).

2( ) ( ) ( ) ( ), ( )t t f t t f x dx τ
∞

−∞
Δ Δ = Δ − =′ ′′ ′ ′′ ∫H H H

2
21

2( ) expF t tγ τ
⎧ ⎫
⎪ ⎪⎛ ⎞⎜ ⎟⎨ ⎬⎝ ⎠⎪ ⎪⎩ ⎭

= − ΔH

B. Environment quantum-mechanical. 
Suppose that we start with a separated state of system (S) and 

environment (E):
| |0 | |1 ( )β⎛ ⎞

⎜ ⎟Ψ 〉 〉+ 〉
Set of coordinates of E

so the system is in a pure state, with a density matrix

| |0 | |1 ( )origS E yα β χ⎛ ⎞
⎜ ⎟
⎝ ⎠−Ψ 〉 = 〉+ 〉 ×

2

2
| | *ˆ

* | |S
α α βρ
αβ β
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=

Now suppose that as a result of S-E interaction, the S-E complex 
evolves so that

where                             (and may even be 0). What is     ? 

| |β β⎝ ⎠

0 1| |0 | ( ) |1 ( )S E y yα χ β χ−Ψ 〉 = 〉 〉+ 〉 〉′

0 1( )| ( ) 1y yχ χ〈 〉 ≠ ˆSρ′
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FUNDAMENTAL THEOREM OF DECOHERENCE:
If                                                     then the reduced density 0 1|0 ( ) |1 ( ) ,S E y yα χ β χ−Ψ = 〉 〉+ 〉 〉

matrix      of S is given by

where

ˆSρ
2

2
| | *ˆ

* |*
ˆ[ ]

|
ˆ ES S ES T

F
rF ρ ρα α βρ

αβ β
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−==

0 1( )| ( ) (so 0 | 1)F y y Fχ χ ≤ ≤≡

Generally, F=F(t) and decreases with increasing t, usually (though 
not always) to 0 as t→∞.

Thus, at any given time t, effect of interaction with 
environment is qualitatively similar to that of classical noise

0 1( )| ( ) ( | )y yχ χ

environment is qualitatively similar to that of classical noise.
Δ: However, unlike classical noise, the effect of correlations with a 
quantum environment may be “spontaneously reversible” (“false 
decoherence”): e.g. neutron in interferometer, effect of coupling of 
magnetic movement to zero-point radiation field!

source
“|0〉”

“|1〉”
Detection 
“screen”“|1〉” screen

( | 0) |1 ) ( )
S E

yorα β χ
−

= + 〉 ⋅Ψ( | 0) |1 ) | ( )orS E yα β χ−Ψ = + 〉 〉

0( )
|1 | ( )

|0 |S E y
β

α χ−

+ 〉 〉
Ψ = 〉

⇒ decoherence sometimes looks worse than it really is!

1

1 1

|1 | ( ) ,
( ) | ( ) 1

y
y y

β χ
χ χ
+ 〉 〉
〈 〉
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WAYS TO FIGHT DECOHERENCE:

1 Isolate system from its environment while leaving it open to1. Isolate system from its environment, while leaving it open to 
influence from experimenter. (ex: trapped ions)

2. Use “decoherence-free subspace” (DFS) (subspace in which 
coupling to environment is proportional to unit matrix). Ex: 
nuclear spins in solid, environment = long-wavelengthp , g g
blackbody field

⇒ states |0〉1 |1〉2,   |1〉1 |0〉2 degenerate independently of value of 
H(t)

1 2
ˆ ˆ ˆ( ) ( )S E Z ZH tγ σ σ− = + H

1 2

λ

H(t)
⇒form DFS. (can use as single “logical” qubit)

3. (extreme form of (2)): use topologically protected subspace 
(guarantees any “local” operator ) (quantum Hall effect, 
Sr2Ru04. . . . —speculative at present)

1̂∝
2 4 p p )

4. Spin-echo (“bang-bang,” “dynamical decoupling”) technique, 
view down   -axis for “longitudinal” noise: z

ϕ
⇒ ⇒

–ϕ

⇒

works provided

x

y t = 0 t = T(-ε)

π rotation
around x-axis

t = T(+ε)

⇒

t = 2T

p

i.e. provided correlation time of noise »T. (e.g. 1/f noise.

2

0
( ) ( )t dt t dt

τ τ

τ
=∫ ∫H H
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WAYS TO FIGHT DECOHERENCE (cont.):

5. Quantum error correction
In most situations, the most dangerous type of , g yp

decoherence is “phase noise,” that is unwanted rotations of the 
relative phase of the states |0〉 and |1〉 (unwanted rotation of the 
“spin” around the z-axis in the computational basis). This will be 
generated by an interaction with the environment proportional to

: e g But by an appropriate alternativeˆ ˆ( )Z σ≡ ( )Z tγ σ H: e.g.                     But by an appropriate alternative 
choice of axes we can convert this to something proportional to

.  This kind of error clearly interchanges the 
states in the new basis, so that

( )ZZ σ≡ ( ).Z tγ σ H

ˆ 0 1ˆ
1 0

X xσ
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

≡ ≡

|0 |1 |1 |0α β α β〉+ 〉⇒ 〉+ 〉
Is it possible to detect and correct such errors? The problem is 
that any measurement on the qubit by itself is liable to destroy 
complete information about its state.

Let’s bring in two more “ancilla” qubits and encode the 

|0 |1 |1 |0 .α β α β〉+ 〉⇒ 〉+ 〉

state α|0〉1 + β|〉1 as follows:

(We don’t specify how we do this, but note that it does not 
violate the “no-cloning” theorem). Suppose now a single error 

1 1 1 2 3 1 2 3|0 |1 |0 0 0 |11 1α β α β〉 + 〉 ⇒ 〉+ 〉

g ) pp g
occurs on one (and only one) of the three qubits (the probability 
of more than one error is 3p2–2p3, which is <p for p <1/2). We 
then have (including the original error-free state) the 
possibilities:

1 2 3 1 2 3|0 0 0 |11 1
|1 0 0 |01 1

α β
β

〉+ 〉
〉+ 〉

(no error)
( bit 1)

Note that no states are common to any two rows.

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

|1 0 0 |01 1
|01 0 |1 0 1
|0 0 1 |11 0

α β
α β
α β

〉+ 〉
〉+ 〉
〉+ 〉

(error on bit 1)
(error on bit 2)
(error on bit 3)
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Recap:
if no error,
if error on bit 1,
if error on bit 2

1 2 3 1 2 3

1 2 3 1 2 3

|0 0 0 |11 1
|1 0 0 |01 1
|01 0 |1 0 1

α β
α β
α β

〉+ 〉
〉+ 〉
〉+ 〉if error on bit 2,

if error on bit 3,
so each case falls in a different 2D subspace of the 3D Hilbert 
space!

(Note this doesn’t work for 2 qubits, where one has 3 
ibiliti ( 1 2) b t l 4D

1 2 3 1 2 3

1 2 3 1 2 3

|01 0 |1 0 1
|0 0 1 |11 0

α β
α β

〉+ 〉
〉+ 〉

possibilities (no error, error on 1, error on 2) but only a 4D 
Hilbert space).

So if we make a measurement only of which of the 4 2D 
subspaces the system is in (i.e. we measure the projectors on 
these subspaces), without asking (e.g.) “are you |010203〉 or 
|011113〉?”, then the subspace is “decoherence-free” as regards 
the measurement! So, supposing e.g. that the result is subspace 2 
(error on bit 1), even after the measurement the state is still 
α|100203〉 + β|011203〉. Knowing the error, we now correct simply 
by applying the operator         (i.e. flip bit 1, leave bits 2 and 3 1 2 3

ˆ ˆˆ 11Xy pp y g p ( p ,
alone).

Δ: further developments necessary to deal with the 
possibility of bit flips as well as phase flips (in the 
computational basis). But ∃ many theorems are the effect that 
“fault-tolerant quantum computation” is possible provided the

1 2 3

fault-tolerant quantum computation  is possible provided the 
original probability of error is low enough. Usual figure of merit 
is the product                 where ω0 is the inverse of the minimum 
time for a single 1- or 2-qubit gate (e.g. Larmor frequency for 1-
qubit, J–1 for 2-qubit) and Tϕ is the  “decoherence time” (~ time 
f ff di l l t f t 0) U ll th ht th t

0Q Tϕω=

ˆfor off-diagonal elements of to →0) Usually thought that a 
minimum requirement is 

ρ̂

410Q>


