Lecture 3A

The Josephson effect:
« semiclassical » considerations

1.Flux quantization in a superconducting ring

Let’s start by revisiting the topic of the Meissner effect.As in lecture 2A,let’s imagine a
superconducting ring whose thickness d is much less than its mean radius R,and also much
less than any other relevant lengths such as the London penetration depth,d<< 4 .

Recall that the eigenfunction z.of s.is of the general
form  y. (I1,0,0,) = 7, (I, —T1,,0,0,:R)

where R is the center-of-mass coordinate.For a simple BCS (s-wave)

superconductor the dependence on the spins and on the relative
coordinate is fixed,so we fix these at some arbitrary« reference » .

values,letussay r,-r,=0,0,=-0,=" ,and concentrate /IL
on the dependence on the center-of-mass coordinate,which we
: This quantity is essentially the Ginzburg —
now renamer: y (nr,c.0,), =Y (r) ( q y y g
Landau order parameter).

§uppose we had a single particle described by a Schroedinger wave function
v ('t)Then we have for the (single-particle) density and current (in the absence of a

magnetic vector potential) the standard expressions:
P(rt) =y (r) [, jass (rt) = (=R / m)(y "'V —c.c)

=l 0,=-0;



So,if we write y(rt) in terms of its amplitude and phase:

w (rt) =y (rt) | expig(rt)

p(rt) =y [, j(rt) =]y | V(rt)
So can define a quantity with the dimensions of velocity:
v(rt)= j=(A/ m)Ve(rt)

Next,consider a system of bosons (e.g.He-4) with BEC. Write the condensate wave
function Zo(rt) in the form Zo(rt)=A(rt)expig(rt) then the density and mass current

of the condensate are given by ’
p(rt) =Ny (®) | 2o (rt) [,

i, (1) =(-iR/ 2mN, O, (V2() ) =/ MIN, O A () V(1)
So we can d¢fine a « condensate velocity » \é(rt) by
v (rt) = j(rt) / p(rt) = (h I m)V g (rt)
(note the condensate number has dropped out!).For historical reasons,in the He-4
literature this quantity-is actually usually called the « superfluid velocity » and
denoted V,(rt). It follows immediately from the definition of V(1) thatit satisfies
V xv,(rt) =0,
$ v, (rtyedl =nh/m

where n must be 0 if the contour C lies in a simply connected region,but
otherwise may be a nonzero integer.

then we have



How much of the liquid is associated with the superfluid velocity?Answer:at T=0,
all of it!l.e. at T=0,

i(rt) = p(rH)v, () @,

(more generally,coefficient is « superfluid density » /s
(in 4-He at T=0,condensate fraction is only ~10%,but Q=c )

(c) BEC of diatomic molecules (neutral):
Associated mass is now 2m (m=fermion mass),so write

p(rt) sl w (rt) [, jo(rt) = (=in/ 2(2m))(y 'V y —c.)
with l//(l"[) now the wave function of the molecular center of mass. Again define
w(rt) = A(rt) expig(rt),
v (rt) = v, (rt) = j.(rt) / p.(rt) = (7 /2m)V ¢(rt)
We still have Vxv, =0,
but now CJS V. edl=nh/2m
Again,at T=0
1(rt) = p(rt)v(rt)
So again,condensate « drags » the rest of the liquid with it.

(d) Cooper pairs ,neutral:as BEC of diatomic molecules,but « condensate fraction » now
very small (~10%)



(e) Cooper pairs in superconductors:
The only complication is that the electrons are electrically charged.For a single electron
moving in an EM vector potential A(rt),the expression for the probability density is unmodified,
p(rt) =y (rt) [
but the expression for the probability current is modified:
j(rt) =@/ 2m)(=ihy Vi —eA(rt) + H.c.)
and so the velocity now has an extra term:

v(rt) = (A/ m)(Va(rt)—eA(rt)/ 7)

For a BEC of diatomic molecules composed of two charged fermions,and also for Cooper
pairs of electrons in a superconductor,the argument goes through as above,with the
difference that since the relevant wave function w(rt)is that of the center of mass,not
only is the mass m replaced by 2m as above but the appropriate charge to putinis

not e but 2e,so the pair velocity (« superfluid velocity ») v, (rt) is given by

| v, (rt) = (2 /2m)(V g(rt) — 2eA(rt))
|

Once again,the probability current,and thus the
electric current,associated with the superfluid velocity is ,at T=0,the total
number (charge) density:writing explicitly the electric current,

Jo (rt) = n(rt)ev,(rt) = nev,(rt)



Under conditions where n(rt) is well approximated by n (equilibrium density of
electrons) we can combine the two fundamental equations to give

ji, (rt) = (ner / 2m)(V g(rt) — 2eA(rt) / i) (1)
Consequences of (1):(a)since
VxVg(rt) =0, we have for any geometry
Vx j, (rt) = —(ne* / m)V x A(rt) = —(ne* / m)B(rt) (2)
(note that not only 7 ,but factor of 2 has fallen out!).Specializing to the time-
independent case,we can combine this with the relevant Maxwell equation
VxH :ﬂo_1VXB: Ja (1)
to give the result we obtained previously:

—V x(Vx jel ()= V? jel (r)= ;’“L_Z jel (r)’/lL = (/Uom / ﬂez)l/2
Ve j,(rt)=0p(rt)/ot=0

Thus,electric current (and magnetic field) is exponentially small in a (3D) bulk super-
conductor at distances >>A, from the surface,independently of the topology.

(b)However,in a multiply connected topology,the fact that B(r)vanishes does not
imply that A(r) necessarily does!In fact,eqn.(2) is perfectly compatible with

a contribution to egn.(1) from an irrotational term which does not contribute to (2).
(In a simply connected topology such as a sphere,such a term is not allowed as,since
B(r) is zero everwhere in the bulk ,it would violate Stokes’ theorem).But now eqn.(1)
has an interesting consequence:



Flux quantization in a bulk superconducting ring: <

We know (a)current vanishes on any path which circles the ring at
a distance >> A from either surface (b)quite generally,

Jg (r)=(nen/2m)(Vo(r) —2eA(r) / n)

Thus,quite generally,deep inside a bulk superconducting
ring (or indeed far from the surface in any geometry)

we must have
Vo(r)=2eA(r)/ i

(where ¢(I‘)is the phase of the Cooper-pair order parameter and A(r) the
electromagnetic vector potential).For a simple ring as in the figure,we can integrate
This equation around the ring:since #(r) must be single-valued modulo 27 ,we get
for the flux @ trapped through the ring

@ Ecﬁ SA(r)-dl = (h/2e)<_[>cv¢(r)-dl =(n/2e)-2n7 =nd,

where CIBEh/E is the superconducting flux quantum.Thus,the flux through a thick
superconducting ring is quantized in units of h/2e (~2-10"°Tm®0r2-107"Gem®)

How does this happen physically?Suppose we apply through the hole an arbitrary
flux @ ., (in general not equal to an integral number of flux quanta).The system
will respond by generating a Meissner current on the internal surface (i.e.the edge of
the hole) of just sufficient a magnitude to cancel the difference between the applied
flux and the nearest quantized value.Note for future reference that this process costs
a self-inductance energy inductance energy equalto LI?/2=(®d_, —nd, )’ /2L where
L is the self-inductance of the ring and “et the externally applied flux.



Let’s consider the special case ®..=®,/2. Then the groundstate
is doubly degenerate;the two states correspond respectively
to total trapped flux @=0or®, and circulating current 1=xd,/2L,

hence energy E=o,/8L in each case.The question arises:could
these two states be possibly used as the basis states of a qubit?
Certainly,they are well separated in energy from the next lowest
pair of states (v =20,,-1,), which have flux different by (3/2)®,
from the externally applied value and hence energy higher by
o,2/L. On the other hand,there is a serious problem in using this basis as a qubit:the energy
barrier which must be crossed to make a transition between them is enormous.The reason
is that to pass between the two quantized values of the flux one must pass through
unquantized values,and to relax the quantization condition the ring has to become normal.
The energy cost (the superconducting condensation energy density times the volume) is of
order A’N(O)v Where a is the BCS energy gap;for reasonable values of the parameters
(say sample dimensions a few microns) this is of the order of an MeV.(In addition,going
through the normal phase would almost certainly inevitably generate heavy dissipation).
Thus,one wouldlike to find some means of keeping the two « quantized » states

while drastically lowering the barrier between them.

One way to do this is by interrupting the ring with

a region where superconductivity is strongly

suppressed-a Josephson junction.




Josephson junctions
A Josephson junction (J.J) may be defined as any region
separating two bulk superconducting regions,in which
superconductivity is strongly suppressed.Some types of
J.J.:tunnel oxide barrier,microbridge,point contact...

The crucial property of a J.J. is that the phase difference
A¢ of the pair wave function ¥(") across it may be varied
away from zero without costing energies of a « bulk »
order of magnitude.Suppose we start with A¢=0 and
gradually increase as .As we do so,the amplitudé of
will decrease somewhat so as to minimize the sum of the
« volume » and « bending » energies.When we come to
to the point s4-, ,there are two possibilities:
(A)The amplitude remains everywhere nonzero at this
point.Then the phase 4(r) remains meaningful throughout
the junction,and the phase difference ag={vg(r).ai is
defined in the range [-«x,«] ;the energy is oE)vioust not a
periodic function of ag .This is the « hysteretic » case,
and is of little interest in the context of qubits.
(B)The amplitude may tend to zero at some point in the
junction.In this case it is clear that values of a¢ differing
by 2r are equivalent,so that the energy associated with the
junction must be a unique periodic function of a¢.This is
the nonhysteretic case,which is usually realized in tunnel-
oxide junctions and is of interest for guantum computing.
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Energetics of a Josephson junction
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ifference a4 0f the Coo u
across a hysteretic J.J. is defined only modulo 2z ,and the energy must therefore be a

periodic function of it.Moreover,time-reversal invariance implies that it must be even under
Ad—>-ag S0 the most general form is

E(Ag) = Y. A, cos(n- Ag)

However,in a tunnel-oxide barrier it can be shown that if the single-electron tunnelling
matrix element is t,then the n-th term in the sum is of order t* .Hence,for a « weak »
junction (small t) only the lowest nontrivial term need be kept;writing the coefficient as

g, ,we have

E(Ag)=-E,cosA¢  (canonical form of Josephson energy)

The quantity g, is usually positive (so that the minimum energy occurs for 4¢=0),and
we will assume this in what follows.To obtain a numerical value of E, we need a specific
model of the junction in question;for a tunnel-oxide junction of the type originally
considered by Josephson,the classic calculation of Ambegaokar and Baratoff gives

E, =m /2R, « resistance of junction when bulk metals in normal state

This form seems consistent with experiment on most simple junctions.However,one can
equally well regard E, as a phenomenological parameter to be fitted from experiment,
and this is often done when the junction is used as (part of) a qubit.



Energetics of a SQUID ring (superconducting ring containing a JJ)
In addition to the energy E;(Adassociated with the Josephson junction,a SQUID ring has a

self-inductance energy LI?/2 associated with the current | circulating in it.Since the total
flux ©® is a sum of the externally applied flux @, and the contribution LI from the circulating
current,we can express this term as a function of @ :E(®)=(®-®,,)*/2L

However, the variables A4 and @ are not

independent:recall that for any path deep in a

bulk superconductor,we have the relation

V(r)=2eA(r)/ h

Integrating this relation along the path shown $ A¢
and using the fact that the contribution to [cA-dl

from the part of the path which goes through

the junction itslef is negligible,we obtain

Ap=27D 1D,
Thus,the total (« potential ») energy associated

with a SQUID ring is a unique function of the
total trapped flux ®:

E(®)=(®-®,,)*/2L-E, cos(22d | D,) O

In general this expression has a number of meta- M >
stable minima separated by potential barriers.




The current though a Josephson junction

Let’s consider the condition for (stabie or metastable) equiibrium of the SQUID ring, se/6m-0.:
in explicit form this reads

(-sign of no significance,simply
(®-®, )/ L+(27E, | ®,)sin2zd/ D,) =0 (%)

reflects convention for A¢

or,since as we have seen Li=0-o_ and A¢=2:0/d,, relative to ¢ )

| = (~27E, / ®,)sin Ag “(*)
Thus,in equilibrium (where the current flowing in the ring must equal that through the
junction) the current through the junction is equalto (-)!.sin A ¢
where the quantity 1. =27E,/®, is the « critical current »(maximum supercurrent) of the
junction. The relation (*) can be derived by other methods;since it relates the current
uniquely to the phase drop,we may take it to be valid also under nonequilibrium conditions.
We can now use this result to derive a more general dynamics for the SQUID.

Dynamics of a SQUID ring

Consider now a state of the ring where the trapped flux » does not correspond to a stable
or metastable minimum,so that condition (%) is not fulfilled.This is equivalent to the
statement that the current flowing in the bulk ring is not equal to that flowing across the
junction (which is still given by the expression (*):note that the relation aAg=2:0/®, is valid
even in a time-dependent state,provided the relevant frequencies are <<the bulk plasma
frequency).Where can the extra current go? If for the moment we neglect the possibility
of the junction carrying a « non-Josephson » current,the only possibility is into the
capacitance shunting the junction.



We conclude,then,that in a nonequilibrium situation
there is a build-up of charge on the «plates » of the
« capacitor » formed by the junction.Suppose this
charge is Q,then the associated voltage is Q/C,where
C is the capacitance of the junction (a quantity which
we can rarely calculate from first principles,but may
be able either to estimate or to take from experiment).
Now the voltage V developed across the junction is just
the rate of change of flux through the ring*: v =-d®/at
Since the extra current flowing into the capacitance is
the difference between that in the bulk ring and that
flowing through the junction,we have ®
(@-D,)/ L+ sin(2ad/ d,)=dQ/dt=C(dV /dt)

or setting vV =-0®/dtand rearranging,

C(d?*® /dt*)+ (I, sin2ad / D, +(®-D,,)/L=0
Finally,we need to take into account that in addition to the supercurrent I sinag ,the junction
may be able to carry a « normal » current given by the standard Ohm’s-law formula |1=v/R
Adding this to the current balance and expressing V in terms of the flux as above,
we finally find the following equation for the total trapped flux in the SQUID ring:

C(d*®/dt?*)+(dd@/dt)/ R+ (. sin(2zD/ ®,) +(®-D,,)/L=0

This is known as the «RSJ(C) » (resistively shunted junction with capacitance)model of a
SQUID;it is evidently analogous to a particle moving in the « potential » E{D),with « mass »
C .Note that so far we have treated the total trapped flux as an essentially classical
variable:The only place QM comes in is in the determination of the various energies involved.



The special case (most) relevant to quantum computing
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the flux variable moves is given by
V(D)= E(®@)=(P-D,,)°/2L-(1.D,/27)cos(2zD | D)

A particularly interesting case occurs when the

onoral the « notential » in whir
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Y (®)(= E(@))

external flux is close to @,/2 and the dimension-

less parameter g =2.L1_ is just greater than 1.

then the potential has the « quadratic-plus-quartic »
shape shown:

V(D) =V (X) = —ax® + X" —yX,
X=@-P,/2

where if V is measured in units of @/2/2Land x in units of @,
a=pB-LB=p16y=2,, -,/2)

The coefficients « and 43 are determined by the intrinsic SQUID parameters,while the

coefficient 7 ,which governs the asymmetry of the potential (the offset between the

two classical minima ) is controlled by the externally applied flux.Indeed,it may be

easily shown that the positions x, of the minima,and their energy splittingg  ,are

given by the approximate formulae

X, =+(6(8, -1’ AE=2|D_ D, /2|-D,/L

ext

These results will be essential when we come to consider the effects of QM on the
behavior of the SQUID.

SA 4



We finally need to consider two other geometries

involving J.J’s which may be used as qubits. r Ap j
The conceptually simpler of the two is the

« Cooper-pair box » geometry shown:the pair of
boxes is isolated from the rest of the world,so the L R
total number of electrons on it is conserved.In this
geometry we may take the wave function of the
COM of the Cooper pairs to have the schematic
form

P(r)za(t)¥ (r)+b®)¥e(r)

where the (real) wave function ¥ (r)(‘Px())
is localized on the left (right) of the junction.The amplitude of the coefficients a and b will
in general depend on the normalization of Y. and is not of great interest;what is of much
more interest is the quantity
Ag(t) =arg(a(t) / b(t))

which is the phase drop across the J.J.As in the case of a junction in a SQUID ring,we may
reasonably assume that the supercurrent through the junction is related to ag(t)
by the equation

I(t) =1.sinAg(t) (*)
and that the energy associated with a given value of A4(1) is,as in that case,given by

E(A¢)=—E, cos(Ag),E, =27x1. /D,

In the literature,eqgn.(*) is often called the first Josephson equation.



To complete the dynamics,we need an equation for the evolution of the phase difference A¢().
For this it is helpful to refer back to the SQUID case.There,the fluxo) trapped in the circuit
was related to a¢t).by D) =(D,/27)AAt), so Faraday’s law implies

d(Ag(t)) / dt = 2eV (t) / 7 ( #)
where V(t) is the voltage developed around the circuit,and hence equals the voltage drop
across the junction.lt is therefore plausible that eqn.(#) should apply equally to the « box »
situation (Another derivation is given in lecture 3B).Egn.(#) is called the « second Josephson
equation » in the superconductivity literature.

We can now combine the two Josephson equations and use the fact that in the absence
Of any normal current through the junction the supercurrent must be equal to the time rate
Of change of the charge imbalance across the junction,which in turn is related to the voltage
V(t) by the capacitance of the junction (mutual capacitance of the two boxes):

1 (t) = I sin(Ag(t)) = dQ(t) / dt = CdV (t) / dt = (C®D, / 27)d>(Ag(t) / dt?

Or rewritten in terms of E, ,
d2Ag/ dt? +(E, / C)sin(Ag) =0

This is the analog of the SQUID equation in the absence of any dispative normal current.
As in that case,we can incorporate also a normal current given by V(t)/R;the effect is to add
To the RHS a term (D, /27R)d A/ dt

The final geometry we need to consider is that of a J.J.in an open circuit with a constant
input current :



I |
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The analysis in this case goes through much as in the case of the Cooper-pair box;the
only difference is that the current-balance equation contains an extra term due to the
externally input current | The « capacitance » which is now relevant is that of the
junction itself,so we find (neglecting the normal current)

I sinAg(t) = I, (t) + CdV (t) / dt
which when combined with the second Josephson equation gives

d2Ag(t) / dt? + (E, / C)sin Ag(t) = (27 / CD)1,, (1)

Note that in a steady state we have simply
sinAg=1_1/1.

i.e.the phase difference is controlled by the (constant) external current;since it is time-

independent,no voltage is developed across the junction and no normal current flows

(nor does any charge accumulate in the junction capacitance).



