LECTURE 4A

CiivnaAarcAandAii~rtirna ~rthhi+-
SQUPCTLUTIGUCLITIE QUDILS
We recall the basic requirements (lecture 1B) for a quantum computer: we need a set of
systems (« qubits »)each with a well-defined 2D Hilbert space,with the properties:
(1)easy initialization
(2)easy readout
(3)possibility of implementing 1-and 2-qubit operations,in particular arbitrary 1-bit gates
and (e.g.) CNOT
(4)scalability
(5)(reasonable degree of ) freedom from decoherence.
It is convenient to define for any given type of qubit a computational basis (CB)(usually,the
basis in which initialization and readout occurs) and to represent the qubit as a « spin % »
with the CB given by the eigenstates (0,1) of the Pauli matrix o,

Rather generally,the basic variables used in superconducting qubits are the phase
difference A¢ across a Josephson junction (in the case of a SQUID ring expressed in terms
of the flux o trapped through the ring) and the canonically conjugate variable an .The
external parameters used to control these variables include

gate voltage v,
external current (of CBJ) 1.,

external flux o, through SQUID ring
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In describing the use of Josephson systems as qubits,
there are three further characteristics of Josephson I
junctions,not so far introduced,which we shall find
useful:

(1)The critical current of a junction can be modulated

by applying a magnetic field in the plane of the junction.
Crudely speaking,this is because in the presence of the
field the phase difference varies over the dimension
perpendicular to the field;the total critical current

(or equivalently the coupling energy)is then the
(algebraic) average over this dimension,

leading in general to destructive interference.The

general formula is of Fraunhofer type:
I.(H)=1.(0)|sinx/ x|, x=7HA, | @,

where the « effective » area of the junction is its length
times the sum of its actual width plus the bulk London
penetration depths of the two metals.

(2) If a junction has to carry a current greater than its critcal current,then it inevitably develops
a voltage across it.This is easy to visualize in the « washboard potential » picture:if the slope
exceeds Ic,then there are no longer any stable or even metastable minima,and the relative
phaseas accelerates down the slope until brought to a steady-state nonzero value by the
shunting conductance 1/R.In this state the voltage (which we recall from the second Josephson
relation is proportional to the « velocity » of A¢ ) is nonzero.Thus, the presence or absence of a
finite voltage across the junction can be used as an indicator of whether or not 11,




Junctions in parallel (dc SQUID)

This arrangement in some sense combines a CBJ

with an rf SQUID (ring with single junction).For

simplicity consider identical junctions with the signs

of the phase drops a4.A¢, defined as shown,then Ady T T Ag,
the total Josephson energy is

E,* =-E, (cosAg, +CcosAd,)
there is a term associated with the external current,

which by invoking Kirchhoff’s law in equilibrium is 1‘ |
—1, (A +Ag,) [ 2
and finally a term arising from the self-inductance of the loop,which as in the simple rf SQUID
case is given by
Ey=(@-®,) /2L
If we define A¢=(Ad+A4,)/2.5=A4-A4, then E, =-2E,cos(s/2)cosAg However,by the same
argument as used in the single-junction ring, ¢ =22®/®, Substituting this in the expression for
the total Josephson energy and adding the external-current term,we find for the total potential
energy of the dc SQUID the result
V(®:Ag)=(D-D,,)° /2L -2E, cos(ad / D) cosAg— I A

Thus for fixed total trapped flux @ the dc SQUID behaves like a simple CBJ with critical current
21, cos(zd [ d,) = 1. (D)
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In particular,when the external current exceeds | (@) the junction switches from the zero-
voltage to the voltage state.Now o is of course a dynamical variable,but in equilibrium it is
determined by minimizing v(®) ,and hence is a function of @, ;in particular,fors <<1 itis
approximately equal to @,, .Hence,the switching behavior can be controlled by @,,.



Types of superconducting qubit-overview

Name Computational basis Control

(approximate) parameter
eigenstates of
1.Charge qubit AN v,
2.Flux qubit D,ieAd Do
3.Phase qubit Ag |

4.Hybrids,e.g. dc
SQUID,  quantronium »

y "N

—

Ag(~ D)

¥

Iext (t)



Charge qubit r AN _‘1,

The Hamiltonian is expressed in terms of the
phase difference across the junction, A4,

and the conjugate variable aN,which is the
number of pairs transferred across the junction
(relative to some (integer) reference value):

H(A¢,AN) = —E, cosAg+E; (AN)* —2eV AN

It is important to bear in mind that we can use @
this effective Hamiltonian only provided the

characteristic energy scales E, ,E. are small compared to the superconducting energy gap 2,
which is about 3K for Al at about 16K for Nb.Thus we need g, ,E. <1K,which requires a capacitance
of the order of 5 femtofarads or less,corresponding to a typical dimension of the

CPB of order of a few microns .It is also necessary ,in order to avoid complications associated
with the presence of quasiparticles,that the temperature satisfy the condition T < a/k, Inn “80mK
for Al,where N is the total number of electrons on the CPB (typically ~10° ).

The nature of the energy eigenstates depends strongly on the ratioE, /Ec .if this is >>1,we

are in the « Josephson » regime and the energy eigenstates are approximately eigenstates of

A¢ (with mean-square fluctuations << 2z ).The lowest states are therefore very harmonic-
oscillator-like,and thus useless for building a qubit.We need therefore to go to the limit where

E, <E. .In this limit it is more natural to work in the eigenbasis of AN ; it is often

convenient to view the system as the analog of an (in general driven) quantum pendulum,

with the analog of A¢ being the angle made by the pendulum with the vertical; an is then
the analog of the angular momentum of the pendulum.




The Hamiltonian of the charge gubit in the charge basis E. (AN)* — 2eV AN

In the charge basis the charging energy has the form A
Ec (AN)* —2eV AN

so would be a (shifted) parabola if AN were a continuous
variable.However, aN can take only discrete (integral)
values,so the allowed states correspond to points on this
curve,with positions determined by  .In particular,if

v, isclose tothevalue g j2=e/c-~01-1mv) then the two
lowest states are nearly degenerate,and are separated from
next lowest states by a distance >> their splitting 0 1

AE; =e(V —E, / 2¢) ;they therefore form to a good approximation a 2-state system,and we can take
the computational basis as the eigenstates of charge,so that the charging part of the
Hamiltonian has the form g, =-aE.c, What form does the Josephson energy take in this
basis? From the « pendulum » analogy it is clear that in the A¢ -basis the eigenstates of

have the representation  expi(AN)A¢ and thus the matrix elements of the expression cosAg

are % between neighboring values of an and zero everywhere else

: <AN |cosA¢|AN'>=(1/2)6

AN,AN %1

Now within the 2D Hilbert space of the lowest two states these matrix elements are identical
(apart from the factor of /%) to those of the Pauli matrix o.,s0 we can write the effective
Hamiltonian in the form

H = -AE.(V,)o, - (E, I 2)o,

thus demonstrating explicitly its potential as a qubit.



Recap:the « 2-state Hamiltonian » of a charge
qubit has the form
H =-AE. (\/g)aZ —(E, /2)o,

where the charging energy AE. can be $ EJ
manipulated by the experimenter as a

function of time through the externally

applied gate voltage v, .Evidently the

eigenvalues of this Hamiltonian are

E ==[(E, /2)* +(AE. (V)1 V >
and as a function of v, behave as shown g
in the figure.Thus by performing spectroscopy on the qubit we can determine the values of the
two parameters  E, and AE.(v,)

An interesting point concerning the charge qubit is the extent to which it can really be
described,as we have done,entirely in terms of the behavior of an individual Cooper pair.One
might at first sight think that when a pair tunnels from (say) L to R of the CPB,all the electrons
on the individual electrodes L and R « recoil » in response to the tunnelling.If that were
really so,the tunnelling matrix element would be reduced by the tiny FC ( Franck-Condon )factor
corresponding to the (very small) overlap of the initial and final states of the « other » electrons.
Fortunately,it turns out that provided the dimension of the box is >>the Debye screening length
(almost always true in practice) there is little recoil and the FC factor is very close to 1.Thus,
contrary to the case of the « flux qubit » to be discussed,the charge qubit does not involve a
high degree of « disconnectivity » (crudely speaking,a quantum superposition of states in which
a large number of microscopic particles are behaving differently),and thus while of great interest
In the context of quantum computing is not particluarly relevant to the « realization » problem.




We now discuss the various conditions necessary for this system to be a viable qubit
(1)Initialization is achieved simply by applying a sufficient bias and allowing sufficient time for
the system to come to thermal equilibrium.Since the values of E, and E.  are typically of
orderl K,while to eliminate quasiparticles T must be <80 mK,in equilibrium only the lower
energy eigenstate is occupied.

(2)Readout is not a trivial problem for the charge qubit.In the original experiment of Nakamura
et al.,it was achieved by coupling one side of the CPB to a « probe » junction (presumably a
tunnel oxide junction with a normal counterelectrode,though this is not stated) so that
when the excited state of the qubit is realized,it decays to the groundstate with emission of
two quasiparticles,producing a measurable current in the probe circuit.Most of the more
recent experiments use an SET (single-electron transistor) for the detection:this is itself a
« box »,but made of a normal metal and biassed with an external voltage:the current through
this system,which is what is directly measured,is a sensitive function of the
gate bias voltage.In the experiments,the charge
gubit is capacitatively coupled to the SET,which
can be used to read out the state of the qubit.This
has the advantage that the « measurement » can be
switched on or off by applying or removing the -I
voltage bias on the SET (unlike the Nakamura setup, (_l
where the « detection » is on permanently,so that SET
one has to perform one’s qubit operations in a time

small compared to the quasi-particle tunnelling @
(decay) time).




3.Qubit gates
a)Single-qubit gates
These are relatively simple to realize,by appropraite variation of the externally applied gate
voltage in time.E.g.one can start with a large bias so as to realize the groundstate,then move
adiabatically (i.e.over a time scale >>#7/E, ) to the « crossing » point (AE. =0 ) and then apply a
weak voltage oscillating at the frequency corresponding to the splitting at this point,namely

2E, ;note that in the language of the NMR analogy the « external (dc) field » is now along x and
the oscillating field along z,s0 if it has the right duration («z/2pulse ») it has the usual effect of
rotating the « spin » into the plane perpendicular to the fieldproducing a linear superpostion of
the energy eigenstates, 2*’(0>+|1>) in the enrgy basis.More generally,one can rotate around
the x-axis through an arbitrary angle and then allow a period of free
precession so as to realize an arbitray single-qubit gate (cf.lecture 1B).
b) 2-qubit gates
The easiest way to achieve a 2-qubit gate is to couple
one’s two qubits capacitatively .In the setup shown
in the figure the coupling provided by the capacitance
¢, is of the form

H ,=(2¢)°(AN - AN,)/2C

int = ((29)2 / 2Cint)azlo-zz
where we choose the CB to be that of the number - ‘1’ -

eigenstates for each qubit.Of course,it is not easy to
vary y_ in time.However,once one has the above

coupling one can perform 2-qubit operations such as
CNOT by the spectroscopic technique described in
Lecture 1B.

(also:stripline coupling)




4.Scaling
Quite generally with superconducting qubits (not just of « charge » type),because we are

dealing with relatively macroscopic electrical circuits,the business of connecting them up is
essentially classical electrical engineering,and so it is not usually anticipated that scaling up to
many qubits will present any intrinsic difficulties.Of course, it is not necessarily trivial,once one
has many qubits,to make sure that one is connecting up (say) 1 and 2 without at the same time
influencing 3,but the difficulties are the same as encountered in classical engineering,and many

techniques have been developed to deal with them;this is probably the least of our problems.
5.Decoherence

This is usually anticipated to be the most serious problem that has to be overcome before we
can realistically contemplate using superconducting devices as practical qubits.Let’s review
some general results concrning decoherence in a 2-state system.As argued in lecture 3B,we can
rather generically model the (quantum) environment giving rise to the decoherence (and to
dissipation in the classicallimt) by a bath of SHO’s,with a coupling which is linear in the oscillator
coordinates.When we are talking about a continuous variable,the coupling may have a
complicated form as a function of the system coordinate,but when we project on to the lowest
2D state (qubit basis) it is clear that the most general form allowed is
Hy  =—0-Q

where the vector @ may be thought of a sort of « fluctuating magnetic field » due to the
action of the environment,with components given by the expressions

Q=3 .C.x,
All effects of the environemnet,both dissipative and decoherent,are encpasulated in the
« coupling spectral densities »  3%(w)=(7/2)>,(C,"*Im,0,)5(w-w,) ,which may be obtained,at least
in principle,by comparing the coefficients in the continuous limit with the classical dissipation
(cf.lecture 3B) and projecting on the qubit space.




Recap:for any 2-state system,the most general form of the Hamiltonian of the isolated system
is of the form

Hy=—0c-H(t)
where the vector H(t) is a (possibly time-dependent) c-number « magnetic field »,and the
most general system-environment interaction is of the form

Hy  =—-0-Q
where the (vector) operator ¢ is a « fluctuating magnetic field » whose effects are
completely parametrized by the coupling spectral densities J1“(») defined above.

In the case of the charge qubit (and,actually,of most kinds of superconducting qubit) we
can actually simplify the description a little further.In most of these cases we can choose the
« spin »axes so that only o,and o, correspond to physically important macroscopic physical
quantities,while the third Pauli matrix, o,,has no simple physical significance.In this case
we can omit the y-component of not only H(t) but also of . We note that,having originally
chosen our CB to correspond ,say,to number eigenstates (so that o, corresponds to AN),we can
now rotate the basis in the xz-plane so that the CB now corresponds to (say) the energy
eigenstates for the given value of the gate voltage.However,it is extremely important to note
that the coupling spectral densities J19(w) will now in general be functions of the basis, i.e.
of the value of the gate voltage. For the ensuing discussion we will assume the energy basis.

Quite generally,as in traditional NMR theory we can distinguish the energy relaxation time
T. ,which is the relaxation time from the upper to the lower state,and the phase relaxation time
T, ,which is the time for the relative phase of the two components in the energy basis to
decohere.ltis T, which is most relevant to the « figure of merit » of the qubit.(Since
we shall see below that the order of magnitude of T, is never smaller than that of T, ,the
corresponding figure of merit is always at least as good).



We now examine the effects of the x-and z-coupling (i.e. of @, and 2. ) on the characteristic
times T, and T,.ltis clear that the x-coupling can induce transitions between the levels,
with a rate proportional to 1%(w,),where «,=AE/n with AE=2H, the energy splitting.It thus
contributes to T, *(in fact,we shall see that in our « xz » model it is the only contribution). It is
slightly less obvious,but follows with a little thought,that this coupling also contributes to

T,"an amount one half of its contribution to T." .Thus,as already stated,r, can never be longer
than 1 in order of magnitude.

Now consider the effects of the z-coupling.From the symmetry,this cannot induce relaxation
of the z-component of spin,so cannot contribute to T1,* .However,it can and does contribute to
precession of the xy-plane component (cf.lecture 1B),so can contribute to the dephasing rate
1,* (this contribution is often called « pure dephasing » in the literature).The theory of this
term is a little more delicate;in the model considered it is proportional to the quantity
lim, ,, coth(re/ 2k,T)- (@) ,and thus vanishes in the limit T->0 for any form of 3”(») which tends
to zero faster than a constant (e.g.for the « ohmic » form 1“(w)xw).In the case of 1/f noise
one can get a nonzero effect even in the limit T->0,(but the decay of the phase is not in general
pure exponential);l will not go into the details here.The main point to note is that in general
there are effects which influence the dephasing but cannot be seen in the energy relaxation.

In the case of interest,that of a charge qubit,the principal contributions to the coupling
spectral densities are likely to come from the fluctuations in the gate voltage,so that in the
number basis they appear in the z-coupling.This then means that at the crossing point,if we use
the energy representation,they will appear only in the x-coupling,which means that their
influence on the two T’s is of the same order of magnitude .(At the crossing point,the energy
eigenstates are superpositions of the two number states with equal weight,so are insensitive to
gate voltage fluctuations).Unfortunately there may also be a nonnegligible contribution to the
z-coupling from fluctuations of the Josephson energy,on which more below.



2.Flux qubit | | AV (D)
Recall that the general expression for the potential

energy of a SQUID ring in an external flux @,
is ,as a function of the total trapped flux @
V(D)= (D-D,,)* [ 2L—(I,D, / 27) cos(22D | D,
and that if the quantity g =2zL1_/0,
is just greater than 1 this reduces,near its minimum,

to the form x=®/2,-1/2) < > o
V(X) =—ax’ +(B12)x* —yx ->
where if V is measured in units of ®,2/2L,
a=p-1B8=68y=2d, D,-1/2)
Let us now apply QM to this situation,with the KE given by Q"/2C where Q is the
« momentum » canonically conjugate to the trapped flux @ .It is convenient to define a
« semiclassicality parameter » ; by
A=(8Cl. @ | 7°1?)"? ~ 4-104(Cl, )2
in Si units.in the real-life SQUIDs used for qubits*, 2 is invariably >>1 (typically ~5-10).Then the

behavior of the system,for » small enough that the two wells are well-defined,is criticallly
sensitive to the value of the quantity¢s defined by

g= (,3,_ _1)3/22'

For¢ <1 the groundstate is delocalized between the two wells,and the general structure of the
levels is harmonic-oscillator-like,so that at least prima facie this situation is not much use for
quantum computing (though cf.below on the phase qubit).

*though not in charge-mode qubits,where it may be ~1 or even <1.



On the other hand,for ¢>>1 the groundstate is a doublet,
corresponding in the first approximation to states localized
In one or other of the two wells,with a zero-point width
which is of order 2 relative to their separation (see

figure).For the moment we will take these states to form Pa—
the CB (computational basis),so that at this level the « qubit

Hamiltonian is simply -7o. .However, tunnelling between 1
the wells provides a term proportional to -Ac, ,where the

tunnelling matrix element A can be straightforwardly
calculated in the WKB approximation and is given by !
A=A(B -2 (271, I CD,) 2 -exp(-212¢)

with A a numerical factor of order unity.Note that since g, is by hypothesis close to 1,the
prefactor is of order (5. -)"o. ,where . isthe LC-resonance frequency of the ring
interrupted by the junction capacitance C;typically this of the order of tens of GHz.

Thus,the Hamiltonian truncated to the lowest 2D Hilbert space of the system (the
« qubit basis » is of the form

H=-y(®,)o, - Ao,

It is thus exactly analogous to that of the charge qubit,with the CB now corresponding to flux
rather than charge eigenstates and the control parameter v, replaced by ®.. .Just as in that
case,the levels drawn as a function of @.. show the typical level-repulsion diagram of fig.7,
and just as there ,while one needs to make rough estimates to get the parameters in the right
ballpark,it may be more sensible to determine the exact values not a priori but by spectroscopic

experiments which in effect measure this diagram.



We now consider the satisfaction of the various criteria for qubit operation for a flux qubit;many
of the considerations are formally closely analogous to those already met for a
charge qubit,so we can go quite fast.

(1)Initialization:to initialize in the flux basis we apply a large exteranl flux and allow the system
to reach thermal equilibrium.Provided the bias energy is >> the thermal energy, we are
guaranteed to end up in the groundstate.(Note that just as in the case of the charge qubit,to
avoid complications due to quasiparticles we need T «a/k,InN ~8omk ,50 since typical level
splittings are ~a few tenths of a K this condition is likely to be automatically fulfilled).
(2)Readout:this is typically done by coupling the flux through the system —(« qubit » ) to a dc
SQUID (« detector »),biassing the latter with an external current of magnitude such that if in
the flux basis the o, -value of the qubit is (say) -1 then 1. >1,,,50 that the detector remains in
the zero-voltage state,while if the qubit state is +1 then the critical current
is lowered so that | <|_and the detector jumps into the running (voltage) state.As in the
charge case,this arrangement has the advantage that the detector can be turned on or off by
manipulating the externally input current.In real life,one does not usually couple the qubit
to the detector sufficiently strongly that every « measurement » is 100% efficient,this would risk
inducing back-action from the detector which might itself dephase the qubit.Rather,one
couples very weakly,so that the probablity of the dc SQUID « firing » is only slightly different
for the two values of the qubit o¢.,and repeats the measurement many times so as to
accumulate meaningful statistics.(This is often also true for the SET measurement of a charge
qubit).This is by no means ideal from the point of view of quantum computing,cf.lecture 4B.)
(3)Scaling:see discussion of charge qubit.Let’s note at this point that contrary to the case of the
charge qubit,the two « flux » basis states do differ in the behavior of a macroscopic number of
electrons (exactly how many is a matter of rather tricky definition) and may therefore be
regarded as genuinely «macroscopically distinct ».



4.Qubit gates

a)Single-qubit gates

In analogy to the charge case,one can implement an arbitrary single-qubit gate by appropriate
manipulations of the control variable,in this case the external flux.The general principles are

identical to those for the charge qubit.
b) 2-qubit gates N\

The simplest way of coupling two flux qubits
together is inductive.In the setup shown,there
is @ mutual inductance energy which for arbitrary

values o, o, of the fluxes through the two rings U
is given by ,T‘
Ep = 0,0,/ M
1 M 2

where M™is actually a shorthand for the relevant
element of the inverse of the (self- and mutual)
inductance matrix.When projected on to the 2D qubit space,this takes the standard form
E Ao, A=ADAD, [ 4M
where A®; js the distance in flux space betwen the two states of the j-th qubit.As in the
charge case,it is not easy to change this coupling as a function of time,but as there one can
now implement (e.g.) a CNOT operation spectroscopically.A somewhat more flexible
alternative couples the two qubits indirectly,via an element such as a superconducting
inductor itself incorporating a Josephson junction;since the effective inductance of the
latter,and hence the effective coupling mediated by it,is a function of the externally input
current,this enables the constant A to be changed as a function of time.



Flux gbit 1 Flux gbit 1
5.Decoherence

The formal treatment of decoherence goes through exactly as in the charge case,with the
(c-number or fluctuating) external flux replacing the (c-number or fluctuating ) gate voltage.

In analogy to that case,the most obvious mechanism of decoherence is the fluctuating external
flux,e.g.due to the 60 Hz background;to some extent this can be minimized by using a more
elaborate geometry than a single ring,so as to minmize the effcetive area which the circuit
presents to « naturally occurring » magnetic fields while leaving it sensitive to that applied by
the experimenter.However,even when the contributions of this fluctuating flux are minimized,
there still appears to be a residual decoherence,which is usually attributed to fluctuations in
the critical current of the Josephson junction itself:note that since the tunneling splitting
depends exponentially on this quantity (see above) the effect is considerably magnified.We will
come back to this question in the context of the phase qubit,where it has been particularly
extensively investigated.



3.Phase qubit
At first sight a single Josephson junction biassed by an externally input current would not seem
to be a particularly promising candidate for a qubit;if we consider the Hamiltonian of such a

system in the absence of a bias current,namely
H=p,, /2C-1.®,/27cosAgp

where ay is the phase difference acrossthe Junction and »p,, the « momentum » conjugate
to it,we find that the ratio of the height of the barrier between neighboring (actually
equivalent) wells to the zero-point energy is of the order of the « quasiclassicality parameter »
A =(8Cl. @, | 7°n*)"* ~ 4-10"(Cl,)"?

and since in practice this quantity is almost always >>1,the lowest levels of the system are
very harmonic-oscillator-like and hence of little use for quantum computing.

However,the situation changes markedly when we inject an external current and add the
corresponding term  —i_Ag¢ to the Hamiltonian (see lecture 3B),so that

H=p,,’/2C+V(A¢).V (Ap) =-1.D, /27 COSAp— I, AP
Consider in particular the case where 1.,
is just slightly smaller than Ic,so that the AV (X)
value of a¢ in the zero-voltage state is
close to z/2;then the potential has the form,
up to a constant,
V(x)=ax® - px°, x=Ag—sin (I /1,

as represented in the figure.Note that in the
« interesting » region (A¢<a/p) the « excursion »
of A¢ is <«<2r,50 the fact that it is only defined
modulo 2, need not worry us.




The crucial point,now,is that because of the strong « Running »
anhrmonicity of the potential in the region (voltage)

close to x=0 the energy levels are not equally spaced. state
Moreover, it is possible to tune the parameters so that 12)

while the groundstae (|0>)and first excited state (| 1>)
have negligible probability of decay by tunnelling \
through the barrier into the running (voltage) state,the D
lifetime of the second excited state (| 2>) against this 10)
process is quite small.Consequently,it is possible to use

the states |0\ and |1\ as the qubit basis,and the state

| 2> for readout (see below).

One rather inconvenient feature of the simple CBJ is that there is only a single control
parameter,namely the external bias current 1,, .One can improve the situation by replacing the
simple junction with a dc SQUID,so as to take advantage of the dependence of the critical
current on the flux through the latter.

On the conditions for use as a qubit:
1)Initialization is achieved as in other cases by thermalization.
2)Readout is achieved in a novel way:namely,teh system is detected to be in state |1\ by
applying an rf pulse (of the external current) tuned to the |1>->|2> transition (because of the
unequal level spacing,it is possible to do this while avoiding the excitation of [0>2)1>
transitions).Once it is in state | 2>,the systen rapidly tunnels out through the barrier into the
running state,generating a voltage across the junction which is picked up in the external
circuit.

3)Scaling:see on charge qubits




4.Qubit gates
a)1-qubit gates

It is perhaps not imediately obvious how,using the single control parameter !..(t) ,one can
implement arbitray 1-qubit gates on a pahse qubit.However,the principel is teh same as in
the charge qubit:if one sets

I () =1,+51_,
then the dc splitting will be set by 1, ,while the ac current term will have matrix elements
between (inter alia) the states |0> and |1>,and thus contribute an ac field in the x-direction.
The only difference with the charge case (operated at the crossing point) is that the ac
current term will also modulate the splitting,i.e.contribute an ac field in the z-direction;
however,provided sl <<1, the effect of this term should be small.Cosnsequently,one can carry
out all the usual single-qubit manipulations.
b)2-qubit gates
The only immediately obvious way of coupling
two phase qubits is via a common capacitance,
and this is what has usually been done.In the
standard notation with the computational basis

|0>and | 1>,the result is to couple all components _I_

cos wt

>

)F

of the « spins »,but in the approximation of small
anharmonicity the leading term turns out to be of -
the form  const-, o,, -.NOte that,unlike the coupling

terms in previous cases,this does not commute with

the single-qubit Hamiltonain,so while it is still possible

to implement (e.g.) a CNOT gate the analysis is more
complicated.

4



5.Decoherence

The only obvious sourecof decoherence in a CBJ (phase qubit),apart from the leads, is
fluctuations in the critical current of the junction itself,and this question has been intensively
investigated over the last 2-3 years.There is a theoretical expectation that a realistic junction
may contain a number of « tunnelling two-level systems (TTLS) » analogous to those
commonly supposed to occur in amorphous materials and to dominate their properties below
1K.It is thought that when such a system tunnels between its two equilibrium positions,this
should affectc the critical current of the junction and thus give rise to phasenoise.Recently,
more or lesss direct spectroscopic evidence,from the details of the junction I-V
characteristics,has been obtained for this scenario.Much work is currently going into attempts
to improve the fabrication of tunnel oxide junctions so as to reduce the number of these
TTLS or get rid of them entirely.




