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Chapter 1

Introduction

The material discussed in these notes can also be found in more specialized books. Among them

• Statistical mechanics and functional integrals [1, 2, 3, 4]

• Many body physics [5, 3]

These notes are still in a larval stage. This is specially true for chapters 3 and 7. Despite the at-
tempts to unify the notations and eliminates mistakes, factors of 2 and other errors of signs, it is clear
that many of those remain. I’ll try to update the notes from time to time. If you find these notes useful
and feel like helping to improve them, do not hesitate to email to me (Thierry.Giamarchi@Physics.UniGE.ch)
if you have found errors in those notes or simply to let me know if there are parts that you would like
to see improved or expanded.
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Chapter 2

Equilibrium statistical mechanics

2.1 Basics; correlation functions

In statistical mechanics one is interested in getting basic quantities such as the partition function.
Space is meshed with a network on which some variable describe the state of the system. To be more
specific let us consider an Ising model, on a square lattice. On each site i exists a spin σi = ±. The
state of the system is describe by all spin variables σ1, σ2, . . . σN , where N grows as the volume of the
system. The set of all these variables is a configuration that we denote in the following as {σ}. To
compute physical quantities one needs in addition an Hamiltonian describing the energy of the system
for a given configuration. To be specific let us again consider a Ising type Hamiltonian

H0 = −
∑
i,j

Ji,jσiσj (2.1)

A physical quantity such as the partition function results from the sum over all configurations of the
system

Z =
∑
{σ}

e−βH0 =
∑

σ1=±

∑
σ1=±

· · ·
∑

σN=±
e−βH0[{σ}] (2.2)

The difficulty if of course to make the sum over the humongous (thermodynamics) number of variables.
From Z or F = −T log(Z) many simple physical quantities can be directly extracted (specific heat,
etc.).

In addition to these rather global quantities, one is often interested in correlation functions, mea-
suring thermodynamics averages of local observables or products of local observables. Some examples
are

〈σi1〉 (2.3)
〈σi1σi2〉 (2.4)

where the thermodynamics average 〈〉 stands for

〈O[α, . . . , β]〉 =
∑

{σ}O[σα, . . . , σβ]e−βH0∑
{σ} e

−βH0
(2.5)

Where O is any operator. Note that the correlation functions depends on the spatial positions α, . . . , β,
the average having been made over the microscopic variables σ.
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In fact the correlation functions can also be obtained from a partition function. If one adds to the
Hamiltonian a source term

− βHs =
∑

i

hiOi (2.6)

one introduces the partition function, that now depends on a thermodynamics number of external
sources

Z[h1, h2, . . . , hN ] =
∑
{σ}

e−β[H0+Hs] (2.7)

and the associated free energy F [h1, h2, . . . , hN ]. It is then easy to see that

〈[Oα . . . Oβ ]〉 =
1

Z[h = 0]
∂Z[h1, h2, . . . , hN ]

∂hα . . . ∂hβ

∣∣∣∣∣
{h}=0

(2.8)

Of course this is a rather formal relation since computing Z[h1, h2, . . . , hN ] is in general a formidable
task.

Similar formulas can be derived from the free energy. In particular one can obtain from the free
energy

〈Oα〉 = −β ∂F [h1, h2, . . . , hN ]
∂hα

∣∣∣∣
{h}=0

(2.9)

It is easy to see that differentiating the free energy leads to the so-called connected correlations

− β
∂F [h1, h2, . . . , hN ]

∂hα∂hβ

∣∣∣∣∣
{h}=0

= [〈OαOβ〉 − 〈Oα〉〈Oβ〉] (2.10)

Each time one differentiate an average one gets two terms one coming from the numerator one from
the denominator. Thus

∂hγ 〈. . .〉 = [〈. . . Oγ〉 − 〈. . .〉〈Oγ〉] (2.11)

It is thus easy to obtain the higher derivatives.
The ingredients that we have illustrated on this example of the Ising model are totally general. It

is important to understand that what is generally needed is to be able to perform the sums over the
microsocpic degrees of freedom.

2.2 External field; linear response

Among the various correlation functions some are of special importance. Let us assume that a physical
variable of the system can be coupled to an external field, in a way similar to (2.6). In our Ising example
this is the case if one puts the system in a magnetic field. The natural variable associated with such
a perturbation is the magnetization of the system. One would have two way to compute it. Adding
the magnetic field to the Hamiltonian H0 leads to

Hh = −h
∑

i

σi (2.12)

From H = H0 + Hh one can compute the free energy F [h]. Standard thermodynamics tells us that
the total magnetization M of the system is simply given by

M = −dF [h]
dh

(2.13)



This relation comes immediately from (2.8) using O = −∑i σi. M describes the response of the system
to the external field h. Even for this simple case (h is space independent) is is quite complicated to
get the magnetization.

To generalize this notion of response, let us consider an operator Oi (that can a priori depend on the
position) that couples to an external field hi (that can also depend on space) trough the Hamiltonian

Hp = −
∑

i

hiOi (2.14)

Let us furthermore assume that Oi is such that in the absence of perturbation Hp one has 〈Oi〉0 = 0,
where 〈〉0 denotes averages performed with H0 alone. If it is not the case one can simply subtract the
average value from Oi. In that case one can measure the response of the system, that is given by

Oi[{h}] = 〈Oi〉 (2.15)

The notation Oi[{h}] means that the value Oi at point i depends in fact on the value of the external
field at all points, i.e. of the whole set of values of h at each spatial point. For even a simple H0 it is
hopeless to expect to compute the full response Oi.

A simpler case, but of considerable interest, is to compute the linear response of the system. Indeed
if the external field is small one can expand (2.15), in powers of the external field. The lowest order
term is linear in the external field (hence the term linear response). One has

Oi[{h}] = 0 + ad
∑
j

χijhj (2.16)

which is the most general linear term that one can write. The factor ad is here for convenience
(see below). At that stage this merely defines χ. If we assume in addition that H0 is invariant by
translation, then χij can only depend on the distance between i and j (that we denote symbolically
by i − j). A more transparent way to write the convolution (2.16) is to go to Fourier space. Let us
recall the convention that we use for fourier transform on the lattice.

hq = ad
∑

i

e−iq·rihi (2.17)

hi =
1
Ω

∑
q=2πn/L

eiq·rihq (2.18)

where we have introduced a lattice spacing a (a can be set to 1 at that stage since it is purely formal).
The volume of the system is Ω = Nad and one introduces a distance r = ai. The sum over q runs
from q = −π/a to q = +π/a, i.e. over N values of n. This corresponds to the standard Brillouin zone.
In that case ∑

i

eiq·ri = Nδq,0 (2.19)

where δi,j is the discrete δ. For a continuous system ri → r, one has the continuous Fourier transform

h(q) =
∫
Ω
ddre−iq·rh(r) (2.20)

h(r) =
1
Ω

∑
q=2πn/L

eiq·rh(q) (2.21)



where Ω = Ld is the volume of the system. The relation between the lattice variables and the
continuous ones is thus

hi → h(r) (2.22)
hq → h(q) (2.23)

For the continuous case ∫
dreiq·r = Ωδq,0 (2.24)

still with a discrete δ. In the limit where the volume of the system goes to infinity, one can use

1
Ω

∑
q

→ 1
(2π)d

∫
ddq (2.25)

Ωδq,0 → (2π)dδ(q) (2.26)

where δ(q) is the Dirac δ.
Using these definitions for the Fourier transform one can rewrite (2.16) as

Oq = ad 1
N

∑
ij

∑
q′
e−iqri+iq′rjχi−jhq′ (2.27)

using ri = rj + rl one has

Oq = ad 1
N

∑
jl

∑
q′
ei(q

′−q)rje−iqrlχrl
hq′ (2.28)

= ad
∑

l

e−iqrlχrl
hq (2.29)

= χqhq (2.30)

Thus in Fourier space the relation between the response and the external field is truly linear, each
q mode being independent. This is a direct consequence of: (i) the invariance by translation of the
system which makes the Fourier base diagonal; (ii) the linear approximation for the response. The
susceptibility χq (or in real space χij) thus contains all the information we need to get the linear
response of the system to any external perturbation. The good point is that χ can be computed in
the absence of the perturbation Hp with the much simpler Hamiltonian H0 and thus we have better
chance to obtain it.

Let us get its general expression. To linear order in the perturbation Hp we get from (2.15)

Oi[{h}] �
∑

{σ}Oi(1 + β
∑

j Ojhj)e−βH0∑
{σ}(1 + β

∑
j Ojhj)e−βH0

� 〈Oi〉0 +
∑
j

β[〈OiOj〉0 − 〈Oi〉0〈Oj〉0]hj (2.31)

thus we can identify
adχij = β [〈OiOj〉0 − 〈Oi〉0〈Oj〉0] (2.32)

which is the so called connected correlation function, i.e. the correlation where the average values
have been subtracted. Indeed

〈OiOj〉 − 〈Oi〉〈Oj〉 = 〈(Oi − 〈Oi〉)(Oj − 〈Oj〉)〉 (2.33)
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Figure 2.1: Vibrations of a classical lattice. On each site one defines a displacement ui.

With our hypothesis 〈O〉0 = 0 the correlation function is equal to its connected part.
Equ. (2.32) is a truly amazing equation. It shows that the linear response of the system is totally

determined by the fluctuations of the same system in the absence of the external perturbation. This
result is totally general and its only strong hypothesis is the fact that the system has reached thermal
equilibrium. Since the imaginary part of the susceptibility of the system also determine dissipation
that can take place in the system (we will come back to this point later), this result is also known as
the fluctuation dissipation theorem. It has a crucial importance since it allows to compute properties
of the system out of the unperturbed state alone.

As an example, let us apply it to the relatively trivial case of an isolated Ising spin. In that case
H0 = 0. The response to an external magnetic field (2.12) can be computed exactly for this trivial
case

m =
eβh − e−βh

eβh + e−βh
= tanh(βh) (2.34)

leading to a susceptibility χ = β. This can be readily obtained from (2.32). Since H0 = 0

〈σσ〉0 = 1 (2.35)

Note that the uniform susceptibility (usually denoted simply χ), i.e. the response to a uniform
external field hi = h is of course the q = 0 Fourier component of the susceptibility. This is simply the
integrated correlation function

χ =
∑
j

β〈OiOj〉0 (2.36)

Thus the longer range the correlations, the stronger the response of the system will be. This can be
physically understood since a correlated region behaves as a gigantic spin that can respond coherently
to the external field.

2.3 Continuous systems: functional integral

So far we have delt with systems defined on a lattice. Although all systems in condensed matter exists
on some kind of network, it is often very useful to be able to take a continuous limit, remembering
the underlying lattice only as an ultraviolet cutoff. How to deal with such cases ?

The first step is to have a variable that varies smoothly enough at the scale of the microscopic
lattice so that a continuous variable can be defined. Let us take the very simple example of the
vibrations of a classical lattice as shown on Fig. 2.1 On each site one defines a displacement ui. The
energy is given by

H =
∑
i,z

k

2
(ui − ui+z)2 (2.37)



where z spans the nearest neighbors, c the elastic constants. At low enough temperatures ui varies
smoothly at the scale of the lattice a, thus one can define the continuous variable u(r) by u(ri) = ui.
Since u(r) is smooth

ui+z − ui = �z · �∇u(r) (2.38)

Thus (2.37) becomes

H =
k

2

∫
ddrρ0

∑
αβ

∑
z

zαzβ(∂αu(r))(∂βu(r)) (2.39)

where the α, β at the coordinates x, y, ... This is the standard elastic Hamiltonian. On a square lattice
in dimension d, (2.39) becomes

H =
c

2

∫
ddr(�∇αu(r)) · (�∇βu(r)) (2.40)

with the elastic constant for the continuum c = kρ0a
2.

Sometimes it is not totally obvious to find the proper continuous limit. For the Ising model for
example the spin σi is a discrete variable which only takes the values σi = ±1. This a direct gradient
expansion is not possible and and one should use another variable to take the continuum limit. This
point will be examined in more details in the exercises.

Using the continuous limit, one can thus compute the thermodynamic properties of “continuous”
systems. If one keep in mind the original lattice (or artificially introduces one if needed) the partition
function and thermodynamics averages are now well defined

Za =

(∏
i

∑
ui

)
e−βH({u}) (2.41)

〈O(ri)a〉 =
1
Z

(∏
i

∑
ui

)
O(ri)e−βH({u}) (2.42)

where I have put the index a to point out that these are the quantities defined for a finite lattice
spacing a. As before the integration should be done on each point of the lattice over all the possible
states of the microscopic variables. One can now consider that the partition function and correlations
functions of the system in the continuum are quite logically given by

Z = lim
a→0

Za (2.43)

O(r) = lim
a→0

O(ri)a (2.44)

Depending on the precise normalization, the partition function Z can contain an infinite constant. This
normalization constant correspond to a shift (sometimes infinite) in the entropy. As we will discuss it
is much simpler to compute the correlation functions since most normalization factors cancels leaving
well defined and unambiguous results directly in the continuum limit.

Let us consider the simple example of the Hamiltonian

H =
1
2

∫ ∫
drdr′V (r − r′)u(r)u(r′) (2.45)

The discrete partition function is thus

Za =

(∏
i

∑
ui

)
e
− 1

2
βa2d

∑
ij

Vi−juiuj (2.46)



We thus have to perform Gaussian integrals. Since they will come over and over again (these are
mostly the only one one knows how to do !) let us remind the main formulas∫ +∞

−∞
e−ax2

dx =
√
π

a
(2.47)∫+∞

−∞ e−ax2+bxdx∫+∞
−∞ e−ax2dx

= e
b2

4a (2.48)

∫+∞
−∞ e−

1
2
ax2
x2dx∫+∞

−∞ e−
1
2
ax2
dx

=
1
a

(2.49)

The last formula can easily be obtained by derivating the second one with respect to b. Here we have
the matrix form of these Gaussian integrals∫

du1

∫
du2 · · ·

∫
duNe

−
∑

ij
uiMijuj (2.50)

where Mij is an N × N real symmetric positive definite matrix. General formula exist for these
integrals as well and∫

du1du2 · · · duN

(2π)N/2
e
− 1

2

∑
ij

uiMijuj+
∑

i
xibi =

1
(DetM)1/2

e
1
2

∑
ij

biM
−1
ij bj (2.51)

∫
du1

∫
du2 · · ·

∫
duNukule

− 1
2

∑
ij

uiMijuj∫
du1

∫
du2 · · ·

∫
duNe

− 1
2

∑
ij

uiMijuj
= (M−1)kl (2.52)

and as well for the other ones. But rather than blindly using them, let us see how to obtain them.
What complicates the integral (2.50) is the non-diagonal nature of the matrix M . Let us thus make a
change of variables in a basis where the matrix M is diagonal. It is not a necessity but in general one
favors transformations for which the Jacobian is a constant, in order not to have to worry to compute
the Jacobian. In the basis, where M is diagonal (2.50) can just be computed as the product of the
integrals (2.47). Since the product of the eigenvalues of the matrix is its determinant we recover (2.51).
Note that the correlation function Gij = 〈uiuj〉 is the solution of the equation

∑
ij GijMjk = δik.

Let us see some applications. For the Hamiltonian (2.45) one should thus find a basis in which the
Hamiltonian is diagonal. The invariance by translation of the Hamiltonian immediately suggests that
the Fourier transform is a good basis. Let us check it on the discrete expression (2.46)

a2d
∑
ij

Vi−juiuj =
ad

NΩ

∑
ij

Vi−j

∑
qq′

ei(qri+q′rj)uquq′

=
ad

NΩ

∑
lj

Vl

∑
qq′

ei(q+q′)rjeiqrluquq′

=
ad

Ω

∑
l

Vl

∑
qq′

δq+q′,0e
iqrluquq′

=
ad

Ω

∑
q

(
∑

l

Vle
−iqrl)uqu−q =

1
Ω

∑
q

Vququ−q (2.53)

Note that this expression is exactly the one that one would have obtained directly from the continuous
expression (2.45) and using the Fourier transform in the continuum.



Using (2.53) one can now compute (2.46). Since the uq are a priori complex variables, it means
that we need the equivalent of the Gaussian integration formulas for complex variables. Let us assume
that we have u = Reu+iImu. We denote the integration over the real and imaginary part symbolically
by ∫ ∫

dReudImu
π

=
∫ ∫

dudu∗

2iπ
(2.54)

One has for the Gaussian integrals on the complex variables u and u∗.∫ ∫
dudu∗

2iπ
e−auu∗

=
1
a

(2.55)∫ ∫ dudu∗
2iπ ue−

1
2
auu∗∫ ∫ dudu∗

2iπ e−
1
2
auu∗ = 0 (2.56)

∫ ∫ dudu∗
2iπ uu∗e−

1
2
Auu∗∫ ∫ dudu∗

2iπ e−
1
2
Auu∗ =

2
A

(2.57)

The fact that
∫ ∫

dudu∗ is the correct notation can be checked by using polar coordinates, since using
rules for the Jacobians gives the correct result

∫ ∫
dudu∗

2iπ
e−auu∗

=
∫ ∞

0
ρdρ

∫ 2π

0
dθ
e−aρ2

π
=

1
a

(2.58)

so we can use all the rules for change of variables in all confidence. One can easily generalize these
rules to N complex variables

(∏
i

∫
duidu

∗
i

2iπ

)
e
−
∑

ij
u∗

i Hijuj+
∑

i
h∗

i ui+hiu
∗
i =

e
∑

ij
h∗

i (H−1)ijhj

DetH
(2.59)

In order to use the Fourier transform, there is still the problem of the change of variables in the
integrals. One starts with N real values ui and we go to N complex fields uq. It thus seems that we
have twice as much variables at the end. Of course this is not the case since for real variables the
Fourier transform satisfies u−q = u∗q . This is fortunate since this ensures that (2.53) is indeed real.
We should thus halve the number of allowed values of q to, let us say positive values. Thus∫

du1

π1/2

∫
du2

π1/2
· · ·
∫
duN

π1/2
→ J

∏
q>0

∫ ∫ duqdu
∗
q

2iπ
(2.60)

where J is the Jacobian of the transformation, which is a constant. Note that the q = 0 mode should
be treated with care in (2.60) since uq=0 is real. So either one treats it separately, or simply use
formally antiperiodic conditions in the Fourier transform, which shifts all q by π/L. This shift is
totally unimportant in the thermodynamic limit where the number of q modes becomes large. This
ensures that there is no q = 0 mode and (2.60) is totally exact in that case. Of course both methods
give the same result. Using these variables (2.53) becomes

1
2Ω

∑
q>0

(Vq + V−q)[(Reuq)2 + (Imuq)2] (2.61)



Note that for all systems for which the potential depends only of the distance between two points, i.e.
for which V (x) = V (−x) one has Vq = V−q. Thus (2.46) becomes

Za = J
∏
q≥0

(
πΩ
βVq

)
(2.62)

Leading to a partition function

Fa = −TΩ
1
Ω

∑
q≥0

log[
1

βV (q)
] + Fnorm (2.63)

The factor Fnorm is a shift of the free energy trivially proportional to the temperature and containing
all normalization factors. This factor changes the entropy by a simple constant (not normalizing the
number of configurations changes the entropy). The rest of the free energy is the important part of
the free energy since it depends on the coupling V (q). Note that in the limit of large volume 1

Ω

∑
q is

well behaved (see (2.25)). Throwing away the factor Fnorm, the free energy becomes

Fa = −TΩ
1
Ω

∑
q≥0

log[
1

βV (q)
]

→ −TΩ
1

(2π)d

∫
ddq log[

1
βV (q)

] (2.64)

Dealing correctly with the free energy would imply to worry about the normalization of the functional
integral. Since this is rather unpleasant and difficult to do directly in the continuum limit, it is
simpler to work with the correlation functions. In that case all normalization factors disappears. As
an example let us compute

〈[u(r1) − u(r2)]2〉 =
1
Ω2

∑
qq′

(eiqr1 − eiqr2)(eiq
′r1 − eiq

′r2)〈uquq′〉 (2.65)

In 〈uquq′〉 any normalization factor disappears between the numerator and denominator. Using the
expressions (2.53) and (2.49), it is easy to check that 〈uquq′〉 = 0 if q �= q′. More precisely

〈uquq′〉 = δq−q′,0
Ω
βVq

(2.66)

Thus

〈[u(r1) − u(r2)]2〉 =
1
Ω

∑
q

[2 − 2 cos(q(r1 − r2))]
βVq

→ 1
(2π)d

∫
ddq

[2 − 2 cos(q(r1 − r2))]
βV (q)

(2.67)

Thus both the partition function and correlation can thus be computed by integrating over the
infinite number of variables (2.60). Formally this integration is denoted

∏
i

(∫
dui

)
=
∫

Du[r] (2.68)



to indicate that one has to integrate over all possible realization of the function u(r). Precise normal-
ization is not important provided we stick to correlation functions.

If one had to go systematically to the lattice this would bring little help. However now that we
know that the thing can be done let us show how it can be done simply directly in the continuous
limit. As mentioned before, in the correlation functions the normalization factors. disappear between
numerator and denominator, so we do not have to bother about them, or about Jacobians (provided
there are constants) when we make a change of variables. Using (2.59), one easily sees that

〈uiu
∗
j 〉 =

1
Z

∂Z

∂h∗i ∂hj

∣∣∣∣∣
h,h∗=0

= H−1
i,j (2.69)

We can now use this result for each value of q > 0. Or one can extend the sum over q to all values
keeping in mind that ∑

q

Vququ
∗
q =

∑
q>0

[V (q) + V (−q)]uqu
∗
q =

∑
q>0

2V (q)uqu
∗
q (2.70)

One has thus simply the rule

〈u(q1)u∗(q2)〉 =
∫
Du[q]u(q1)u∗(q2)e−

1
2

∑
q

A(q)u(q)u∗(q)∫
Du[q]e−

1
2

∑
q

A(q)u(q)u∗(q)
=

1
A(q1)

δq1,q2 (2.71)

This is the central result all the rest can be forgotten. Note that this result coincides with the simple
result (2.49) for independent real variables. In (2.71) q is a mere index that denotes any variable, and
not necessarily momentum. This is the main message. To deal with functional integration, use you
intuition and knowledge of normal integrals. Nearly everything works as before, and when in doubt it
is usually very easy to go back to the lattice representation to check. Any change of variables (where
now the variable is a whole function) can be performed, provided one takes care of the Jacobian. In
order to avoid this one usually tries to stick to transformations such as shifts u(r)+f(r) where f is an
arbitrary function or Fourier transforms that have a constant Jacobian. Integrals are then performed
using simple rules such as (2.71).

Let us go back to our correlation function, that can be now computed in five seconds, using (2.71)
without having to worry any more

〈[u(r1) − u(r2)]2〉 =
1
Ω2

∑
qq′

(eiqr1 − eiqr2)(eiq
′r1 − eiq

′r2)〈u(q)u(q′)〉

=
1
Ω

∑
q

[2 − 2 cos(q(r1 − r2))]
βV (q)

(2.72)

which is the result that we painstakingly obtained going through the lattice (2.67).
Finally, because it will be useful in some occasions let us see how one can derive a functional. Here

again things work much like ordinary derivatives, since it is the continuous limit of what we would
have for a lattice system. For example

∂H[u]
∂u(r0)

(2.73)

would simply be on the lattice
∂H[u1, u2, u3, u4, . . . , uN ]

ad∂ur0
(2.74)



Let us take for example (2.75).

H =
∫
drmu(r)2 (2.75)

Then we have

∂H[u]
∂u(r0)

=
∂ad∑

imu
2
i

∂adur0

= 2mur0 = 2mu(r0) (2.76)

which is the same than we would have obtained directly in the continuum, using standard rules on
derivatives, forgetting that u is a function and ending with the rule

∂u(r1)
∂u(r2)

= δ(r1 − r2) (2.77)

Another useful rule to compute the derivative is to get it through slight changes in the function, as
for standard derivatives. For an arbitrary (but “small” function ũ(r)) one has

H[u+ ũ] −H[u] =
∫
dr
∂H[u]
∂u(r)

ũ(r) (2.78)

which again allows to extract the functional derivative.

2.4 Examples: elastic systems

After this very formal section, we will apply this technology to simple and physical examples. The
example that will come over and over again in this course is the one of elastic systems. Two main
reasons dictate this choice. First, it is simple enough that many results can be derived. Second, and
more importantly, it is of crucial importance for a large number of physical systems of considerable
current interest, both for classical and quantum systems. Before we embark on the calculations let us
see some of the examples of the classical systems that can be described by elastic systems. We will
examine the quantum case in the next chapter.

The first example that comes to mind is of course the simple crystals. Beyond the natural crystals,
one can make artificial ones where the “atoms” are either colloids, magnetic bubbles, charged spheres
(see Fig. 2.2) or even vortices in type II superconductors (see Fig. 2.3 and Fig. 2.4). Magnetic domain
walls in magnets are also examples of such elastic structures (see Fig. 2.5).

The basic building brick can thus be quite complicated (a line for vortices). Understanding the
physical properties of such systems is a formidable task and a largely open subject. Indeed in addition
the effect of thermal fluctuations, these crystals are embedded in an external space and in general,
contrarily to normal crystals, subject to disorder. This disorder competes with the natural order of the
crystal and lead to many interesting properties, among them glassiness. In addition these systems can
in general by subjected to an external force and they will start sliding, leading to quite complicated
dynamics. The dynamics is in general of crucial importance. For example in type II superconductors,
the motion of the vortices is caused by the presence of a current in the superconductor. Since the
vortices are lines of magnetic field, when they move they generate an electric field, opposed to the
current. The system is thus not superconducting any more but has a finite resistance. Thus the
physics of the vortex lattice has direct consequences on the usefulness of superconductors.



Figure 2.2: The crystal is formed by small charges that repel via Coulomb interaction. The size of
the cell is few centimeters [6].
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Figure 2.3: In type II superconductors the magnetic field can penetrate as filament of flux surrounded
by supercurrent. This form vortices that repel, and lead to a crystal with a lattice spacing controlled
by the external magnetic field.



Figure 2.4: The tip of the vortices can be imaged by sprinkling magnetic particles on the compound
(Bitter decoration technique). The resulting image [7](left) can then be triangulated to see the po-
sitions of the vortice. This is a small part of a very large image (∼ 100000 vortices). Note that the
lattice is topologically perfect.

Figure 2.5: A magnetic domain wall between two regions of opposite magnetization in a thin magnetic
film is another example of an elastic structure. It is a manifold of internal dimension 1 embedded in
a space of dimension 2. Two different domain walls are shown in black and grey [8].



u
Figure 2.6: A manifold (interface). For the interface u(z) is the displacement compared to the flat
position, z the internal coordinates. The total spatial dimension d is usually d = z + 1.

ur

Figure 2.7: The relative displacement correlation function B(r) measures how the displacement
grows as a function of distance. It can be directly observed in decoration experiments such as shown
on Fig. 2.4.

We will thus examine in this section the features of the clean classical elastic systems and complicate
the problem as we move along this course.

Let us consider a crystal where we denote by R0
i the equilibrium position of the particles, and by

ui the displacements relative to their equilibrium positions. The interaction between the particles of
the crystal can be approximated by an elastic Hamiltonian. Although it is possible in principle to
stick to the lattice, it is much more convenient to go to the continuum. The Hamiltonian becomes

H =
1
2
c

∫
ddr(∇u(r))2 (2.79)

where c is the elastic constant. Of course a true elastic Hamiltonian is more complicated (bulk,
tilt and shear) coefficients, but this isotropic elasticity will be enough for our purposes. The elastic
approximation assumes that |ui+1 −ui| � a. One can also describes interfaces, such as the one shown
on Fig. 2.6 by an elastic energy such as (2.79) the integral being now only on internal variables.

Let us compute various quantities. The simplest one is the relative displacement correlation
function

B(r) = 〈[u(r1) − u(r2)]2〉 (2.80)

which is an indication on how fast the thermal fluctuations disorder the crystal (see Fig. 2.7) In fact



we already computed it in (2.72). Indeed in Fourier space (2.79) is simply

H =
c

2
1
Ω

∑
q

q2u(q)u∗(q) (2.81)

and thus

〈[u(r1) − u(r2)]2〉 =
1
Ω

∑
q

[2 − 2 cos(q(r1 − r2))]
βcq2

=
T

(2π)d

∫
ddq

[2 − 2 cos(q(r1 − r2))]
cq2

(2.82)

The expression (2.82) has various interesting features. First, if there are no thermal fluctuations T = 0
one quite naturally finds that the crystal is perfectly ordered. Second, we see that the atoms are less
and less perfectly positionned if one looks at larger and larger lengthscale. How (2.82) behaves at large
lengthscale tells us whether we have a crystal at all or not. At large lengthscales the cosine oscillates
and can be neglected. We thus see that for d > 2 (in practise d = 3) the integral is convergent. The
correlation function saturates to a finite value. This means that although the thermal displacements
put the atoms out of place, they do not wander too much around their equilibrium position. A crystal
can thus exist. On the other hand in d = 2 and d = 1 the integral is divergent. This means that the
correlation function grows unboundedly as

〈[u(r1) − u(r2)]2 ∼ T log[(r1 − r2)/a] d = 2 (2.83)
〈[u(r1) − u(r2)]2 ∼ |r1 − r2| d = 1 (2.84)

and there can be no crystal because of the thermal fluctuations. This is another example, albeit
devious, of the Mermin-Wagner theorem stating that one cannot break a continuous symmetry (here
the translation) in d ≤ 2. The low energy modes (here the phonons) restore the symmetry.

To go further let us express the density of the crystal in the continuum limit. This is a little tricky.
Let us first look at the case of the interface, which is simpler. If r denotes total space, whereas z is
for the internal coordinates, x the direction along the interface (see Fig. 2.6) the density is

ρ(r = (z, x)) = δ(x− u(z)) (2.85)

which can be conveniently expressed as

ρ(r = (z, x)) =
∫
dλeiλ(x−u(z)) (2.86)

For the periodic case equivalently one has

ρ(r) =
∑

i

δ(r −R0
i − ui) (2.87)

One can wonder why we keep the discrete nature of ui in (2.87) while we performed the continuous
limit in H. This is due to the fact that in systems such as the vortex lattice, the lattice spacing is in
fact quite large and thus many things (disorder for example) can vary at a lengthscale much shorter
than the lattice spacing. It is thus crucial to remember the discrete nature of the lattice to compute
the density at a given point r. On the other hand we know (this is the elastic limit) that u itself varies



very slowly at the scale of the lattice spacing a so we can use this fact to simplify (2.87). In order to
take the continuum limit, one can introduce a smooth displacement field u(r, z) by

u(r) =
∫

BZ

ddr

(2π)d
eiqr

∑
j

e−iqRjuj (2.88)

such that u(Ri) = ui and which has no Fourier components outside of the Brillouin zone (BZ). In
terms of the smooth field (2.88) one can introduce the relabeling field

φ(r) = r − u(φ(r)) (2.89)

In the absence of dislocations there is a unique solution of (2.89) giving u(r) as a function of φ(r). φ
is a smooth vector field labeling the lines, and which takes an integer-like values at each location of a
particle

φ(Ri + u(Ri)) = Ri (2.90)

Substituting (2.89) in (2.87) one gets

ρ(r) =
∑

i

δ(Ri − φ(r))det[∂αφβ(r)] (2.91)

Using the integral representation of the δ function, (2.91) becomes

ρ(r) = det[∂αφβ ]
∫

ddq

(2π)d
ρ0(q)eiqφ(r) (2.92)

where
ρ0(q) =

∑
i

eiqRi (2.93)

is the density of the associated perfect system. For the case of a perfect lattice ρ0(q) is

ρ0(q) = ρ0(2π)d
∑
K

δ(q −K) (2.94)

Using (2.94) in (2.92) one gets formula (2.95).

ρ(r) = ρ0det[∂αφβ ]
∑
K

eiK·φ(r) (2.95)

Assuming that we are in the elastic limit ∂αuβ � 1 one can expand (2.95) to get

ρ(r) � ρ0[1 − ∂αuα(φ(r)) +
∑
K �=0

eiK(r−u(φ(r)))] (2.96)

In (2.96) one can replace u(φ(r)) by u(r) up to terms of order ∂αuβ � 1. Note that in doing so u
has negligible (suppressed by powers of a/ξ) Fourier components outside the Brillouin zone, and thus
there is a complete decoupling between the gradient term and higher K terms. We have realized a sort
of Fourier decomposition of the density, separating terms varying at lengthscales much larger than the
lattice spacing , to Fourier components varying with harmonics of the periodicity of the lattice. This
can be schematically seen on Fig.2.8. Formula (2.96) is quite remarkable and allow to extract many
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Figure 2.8: Eq. (2.96) realizes a Fourier decomposition of the density relative to the wavevectors
corresponding to the lattice spacing. It is easy to see physically that the q ∼ 0 component is ∝ ∇u. A
variation of the density at the scale of the lattice spacing can be decomposed in cos(K(r − u)) where
a constant (at the scale of the lattice spacing) u would just shift the peaks of the cos. Putting all
harmonics together gives back (2.96)

informations. Note the similarities with the expression for the interface where instead of the discrete
sum, we have here an integral. In fact both these expressions can be written as∫

dqρ0(q)eiq(r−u(r)) (2.97)

where ρ0(q) is the density of the associated perfect system
First let us add to the Hamiltonian a field coupling to the density

Hµ = −
∫
drµ(r)ρ(r) (2.98)

If this field varies very slowly at the scale of the lattice (we take it constant at the end) only the q ∼ 0
matters

Hµ �
∫
drµ(r)ρ0∇u(r) (2.99)

One can thus compute the response of the lattice, i.e. the variation of the density when the external
field is applied. Here again only the q ∼ 0 component matters

δρ(r) � −ρ0〈∇u(r)〉 (2.100)

In linear response this is given by (2.32). Thus

χ(r) = βρ2
0〈∇u(r)∇u(0)〉

=
βρ2

0

Ω2

∑
q,q′

(iq)(iq′)〈uquq′e
iqr〉

=
βρ2

0

Ω2

∑
q

q2
Ω
βq2c

eiqr

=
1
Ω

∑
q

ρ2
0

c
eiqr (2.101)



Thus χ(q) = ρ2
0/c and we recover directly that the coefficient c gives the compressibility of the system.

Another important quantity measured in X-ray or neutron experiments is the structure factor

S(q) = 〈ρ(q)ρ∗(q)〉 (2.102)

The Fourier transform of the density is given by (this time we look at large q)

ρ(q) = ρ0

∫
dr
∑
K

ei(K−q)r−iKu(r) (2.103)

Thus quite naturally has peaks around the vectors of the reciprocal lattice. The structure factor is
thus given by

S(q) = ρ2
0

∫
dr1

∫
dr2e

−iq(r1−r2)
∑

K1K2

ei(K1r1−K2r2)〈ei(K1u(r1)−K2u(r2))〉 (2.104)

We use the standard decomposition in center of mass and relative coordinates r1 = R + r/2 and
r2 = R− r/2. The integration over R can be performed because the u vary slowly at the scale of the
lattice spacing i.e. of K−1. It gives

S(q) = ρ2
0Ω
∫
dr
∑
K

ei(K−q)r〈ei(K(u(r/2)−u(−r/2))〉 (2.105)

Thus the shape of the peaks in the structure factor is just given by the Fourier transform of the
positional correlation function

CK(z) = 〈eiK[u(r)−u(0)]〉 (2.106)

Clearly the broader the peak the faster the decay of CK(r). CK(r) is therefore a direct measure of the
degree of translational order that remains in the system. Three possible cases are shown in figure 2.9.
C(z) can easily be computed using functional integrals.

C(z) =
1
Z

∫
Due−

cβ
2Ω

∑
q

q2u(q)u∗(q)
eiK[u(z)−u(0)]

=
1
Z

∫
Due−

cβ
2Ω

∑
q

q2u(q)u(−q)+ 1
2

∑
q
(u(q)A(−q)+u(−q)A(q)) (2.107)

with

A(−q) = iK
(eiqr − 1)

Ω
(2.108)

Simply completing the square (that’s the magic of functional integrals !) gives

C(z) =
1
Z

∫
Due−

1
2

∑
q

V (q)[u(q)+
A(q)
V (q)

][u(−q)+
A(−q)
V (−q)

]
e

1
2

∑
q

A(q)A(−q)
V (q) (2.109)

with V (q) = cβq2

Ω . Since the change of variable u(q) → u(q) +A(q) is a simple shift the integration on
the numerator still cancels exactly with the partition function in the denominator, leading to

C(z) = e
1
2

∑
q

A(q)A(−q)
V (q)

= e
− 1

2
1
Ω

∑
q

[2−2 cos(q(r1−r2))]

cβq2

= e−
K2

2
〈[u(z)−u(0)]2〉 (2.110)
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Figure 2.9: The positional correlation function C(r), controls the shape of the peaks in the structure
factor S(q). It C(r) tends to a constant, one recovers perfect δ function peaks, albeit with a reduced
weight (the Debye-Waller factor). This is the case for thermal fluctuations in d > 2. If C(r) → 0
perfect translational order is lost. When C(r) decreases fast enough (exponential like for example)
the peaks in S(q) have a finite height. One can thus extract from C(r) a characteristic length beyond
which translational order is lost (this is the half width of the peaks). If C(r) decreases as a power
law, one can still have divergent peaks, although not perfect δ. The system has quasi long range
translational order. This is the case of thermal fluctuations in d = 2 (Berezinskii-Kosterlitz-Thouless).



Thus in d = 3 the integral is convergent and thermal fluctuations leave perfect δ functions Bragg peaks,
but with a weight that is not 1, due to the thermal fluctuations. In d = 2 B(r) is logarithmically
divergent. C(r) behaves as a power law with an exponent that is proportional to the temperature.
The Fourier transform is again a power-law. There is no δ function any more, sign that there is no
perfect crystal, but there are power-law divergent Bragg peaks. In d = 1, B(r) is linear, which Fourier
transform is a Lorentzian. The peaks are not divergent any more but have a width proportional to
the temperature.

For the case of the interface one has a similar result. The Fourier transform of the density is given
by

ρ(q) =
∫
dzdxei(λ−qx)x−iλu(z)−iqzz

= (2π)
∫
dze−iqxu(z)−iqzz (2.111)

The structure factor is thus given by

S(q) =
∫
dz

∫
dz′eiqz(z′−z)〈eiqx[u(z′)−u(z)]〉

= Ω
∫
dzeiqzz〈eiqx[u(z)−u(0)]〉 (2.112)

An interesting case for this expression is d = 1 + 1. In that case B(z) ∼ |z| and the structure factor
is given by

S(q) =
q2xT

(q2xT )2 + q2z
(2.113)

Thus when qx = 0 the structure factor is the same than for the perfectly straight interface S(q) = δ(qz).
Looking at finite qx means than one is more aware of the wandering of the interface in the x direction.
In that case the structure factor is a lorentzian, whose width is controlled by how much wandering
there is.

Finally let us look at the real stuff. What happens if we put our periodic (or interface) in a
disordered potential. One would have to add to the Hamiltonian a term like

HV =
∫
drV (r)ρ(r) (2.114)

where V is some random potential. If one wants to compute some average value, it is now a function
of the precise realization of the disorder

〈O〉V =
∫
Du[q]Oe−β(H0+HV )∫
Du[q]e−β(H0+HV )

(2.115)

Rather than to deal with a specific realization of the disorder one want to have an ensemble average
over all possible realizations, in order to have to avoid to deal with a random variable. Of course in
doing so one hopes that the system (which only see a single realization of the disorder but which is
very large) self-averages the disorder between its different spatial parts, and that the ensemble average
coincides with the experimental answers. One thus computes

〈O〉V =
∫

DV (r)p(V )
∫
Du[q]Oe−β(H0+HV )∫
Du[q]e−β(H0+HV )

(2.116)



where p(V) is a functional giving the probability of having a given realization of the disorder. Usually
p is chosen Gaussian and uncorrelated.

p(V ) = Ce−D−1
∫

drV (r)2 (2.117)

where C is the normalization ensuring that
∫
DV p(V ) = 1. This ensures that

V (r)V (r′) = Dδ(r − r′) (2.118)

Even with such a simple p(V ) doing the average over the disorder is tremendously complicated, since
one has to average together numerator and denominator. Treating (2.114) is too complicated for these
lectures, but there is simplification originally introduced by Larkin. If one assumes that u is small
then the density can be expanded in powers of u and the disorder replaced by

Hf =
∫
drf(r)u(r) (2.119)

where f is a random force acting on the particles. This model will eventually break down if the
displacements can become large, but it will work at short distance and in any case we can always
examine it as a model per se. The advantage is that the model is still quadratic and thus solvable.

One can write

H =
1
Ω

∑
q

c

2
q2u(q)u(−q) +

1
2
[f(−q)u(q) + f(q)u(−q)] (2.120)

=
1
Ω

[
∑
q

c

2
q2[u(q) +

f(q)
cq2

][u(−q) +
f(−q)
cq2

] − 1
2Ω

∑
q

f(q)f(−q)
cq4

] (2.121)

Thus one can define the new variable ũ(q) = u(q) + f(q)
cq2 . The correlation function is given by

〈u(q)u(−q)〉f = 〈ũ(q)ũ(−q)〉f +
f(q)f(−q)

(cq2)2
(2.122)

Because of the form of (2.121) it is easy to see that

〈ũ(q)ũ(−q)〉f = 〈u(q)u(−q)〉f=0 =
βΩ
cq2

(2.123)

Thus for a given realization of the disorder the correlation function is the sum of two terms. One is
the standard thermal fluctuation term, which does not depend on the disorder any more. The other is
entirely due to the disorder. The average over disorder is easily performed since it is again a Gaussian
functional integral, leading to

〈ũ(q)ũ(−q)〉 =
βΩ
cq2

+
∆

(cq2)2
(2.124)

The disorder term is thus much more singular than the one due to the thermal fluctuations. Note
that it is independent of the temperature. Since the term behaves as 1/q4 it means that below four
dimensions the displacement correlation function B(r) will grow unboundedly. Thus in the presence
of disorder, however weak, no perfect crystal can exist below four dimensions. Below four dimensions
one has

B(r) ∝ ∆r4−d (2.125)

More details on the physical consequences will be seen as an exercise.





Chapter 3

Calculation of Functional Integrals

In the previous examples we examined some theories for which we were lucky to have a quadratic
Hamiltonian. In this case the Gaussian integrals are easy to perform and most correlation functions
can be computed exactly. However one is rarely so lucky. In this chapter we will examine some simple
methods that allow to make progress on more complicated Hamiltonians. Needless to say the list is
not exhaustive.

3.1 Perturbation theory

Let us assume that we can write our Hamiltonian in the form

H = H0 +Hpert (3.1)

where H0 is a theory we know how to solve exactly (for example a quadratic Hamiltonian) and Hpert

the annoying part. A simple example is given by the well known Ginzburg-Laudau energy for which

H =
1
2

∫
ddx[c(∇u(x))2 +mu(x)2] + λ

∫
ddxu(x)4 (3.2)

which is a generic energy for most critical phenomena. It is obvious that we can take

H0 =
1
2

∫
ddx[c(∇u(x))2 +mu(x)2] (3.3)

Hpert = λ

∫
ddxu(x)4 (3.4)

If the perturbation is small one can compute any correlation function by expanding the functional
integral in powers of Hpert (i.e. in powers of λ). One has thus to compute for any correlation function

〈Oµ(u) . . . Oν(u)〉 =
∑∞

n=0
1
n!

∫
Due−βH0(−βHpert)nOµ(u) . . . Oν(u)∑∞
n=0

1
n!

∫
Due−βH0(−βHpert)n

(3.5)

Since all the terms in the sum have to be computed with the quadratic Hamiltonian H0 they can be
trivially done. One can thus, given some time and effort, compute any correlation function up to a
given order in an expansion in powers of λ.
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Doing such a calculation brutally would be extremely tedious. Due to the properties of Gaussian
integrals tremendous simplifications occur. Indeed let us consider for example a correlation such as

〈u(r1)u(r2)u(r3)u(r4)〉 (3.6)

where the average is taken with a quadratic Hamiltonian such as H0. This correlation function can in
principle be obtained by adding source terms to the Hamiltonian in the way explained in Section 2.1.

If the Hamiltonian H0 is quadratic it can always be written as

βH0 =
1
2

∫
dx

∫
dyu(x)G−1(x− y)u(y) (3.7)

such that
〈u(x)u(y)〉0 = G(x− y) (3.8)

The “matrix” G and G−1 are inverse i.e. δ(x1 − x2) =
∫
dx3G(x1 − x3)G−1(x3 − x2). This is the

continuous version of the relation (2.52). In presence of the source terms the partition function becomes

Z =
∫

Due−
1
2

∫
dxdyu(x)G−1(x−y)u(y)+

∫
dxh(x)u(x)] (3.9)

which can be rewritten as

Z =
∫

Due−
1
2

∫
dxdy(u(x)−

∫
dzG(x−z)h(z))G−1(x−y)(u(y)−

∫
dzG(y−z)h(z))]e

1
2

∫
dxdyG(x−y)h(x)h(y) (3.10)

using the change of variable ũ(x) −
∫
dzG(x− z)h(z) it is easy to see that

Z = Zh=0e
1
2

∫
dxdyG(x−y)h(x)h(y) (3.11)

Using (2.8) it is easy to show that

〈u(r1)u(r2) . . . u(rn)〉 =
∂e

1
2

∫
dxdyG(x−y)h(x)h(y)

∂h(r1)∂h(r2) . . . ∂h(rn)

∣∣∣∣∣∣
h=0

(3.12)

It is easy to check that

〈u(r1)u(r2) . . . u(rn)〉 =
∑

pairings

G(rα − rβ)G(rγ − rδ) . . . G(rµ − rν) (3.13)

This is known as Wick’s theorem, and is a completely general property of Gaussian integrals. For
example for the four points correlation function

〈u(r1)u(r2)u(r3)u(r4)〉 = G(r1 − r2)G(r3 − r4) +G(r1 − r3)G(r2 − r4) +G(r1 − r4)G(r2 − r3) (3.14)

Wick’s theorem makes the calculation of any order in (3.5) now completely automatic. Another
important simplification occurs. Let us illustrate it by computing the two point correlation function
at first order in perturbation. (3.5) leads to

〈u(r1)u(r2)〉 =
∫
Duu(r1)u(r2)e−βH0(1 − βHpert)∫

Due−βH0(1 − βHpert)

=
〈u(r1)u(r2)〉0 − β〈u(r1)u(r2)Hpert〉0

1 − β〈Hpert〉0
= 〈u(r1)u(r2)〉0 − β[〈u(r1)u(r2)Hpert〉0 − 〈u(r1)u(r2)〉0〈Hpert〉0] (3.15)



Thus only the connected correlations appear in the expansion. The denominator eliminates all terms
that have no connections (contractions) between the operators of the correlation function and the
interaction Hamiltonian. Thus when writing all possible contractions at a given order as in (3.14) one
should only keep the connected ones. This takes care of the denominator in (3.5). One can further
simplify the writing of the terms in the perturbation expansion by using the symmetry factors of all
possible contractions, and writing pictorially the contractions in terms of diagrams. Each contraction
can be written as a line to which the weight G(r1 − r2) is associated. Writing all the terms of the
perturbation thus corresponds to writing all possible connected diagrams. This technique known as
Feynman diagrams will be examined in more details on examples in the exercises.

3.2 Variational method

Let us now examine another method, which can be useful even in the absence of a small parameter in
the Hamiltonian. Quite generally one can write

Z =
∫

Due−βH

=
∫

Due−βH0e−β(H−H0)

= Z0〈e−β(H−H0)〉0 (3.16)

where the index 0 denoted the partition function and the averages with respect of the Hamiltonian
H0. Here H0 can be any Hamiltonian. Thus the free energy satisfies

F = F0 − T log[〈e−β(H−H0)〉0] (3.17)

Given the convexity of the exponential (see e.g. [2]) it is easy to check that one has always

〈e−β(H−H0)〉 > e−β〈(H−H0)〉 (3.18)

and thus
F ≤ Fvar = F0 + 〈H −H0〉0 (3.19)

The “best” H0 is obviously H, i.e. the one for which the variational free energy Fvar is minimum. The
idea is to take a simple enough H0 so that one can compute (for example a quadratic one), and to
optimize it to try to get as close as possible of the physics of the original Hamiltonian.

Let us take an example. We start from the so called sine-Gordon Hamiltonian

H =
c

2

∫
ddx(∇φ(x))2 − g

∫
ddx cos(2φ(x)) (3.20)

with g > 0. The physical origin of such an Hamiltonian will be seen in exercises. Obviously at T = 0
one can expect φ = 0 to be the optimal configuration. If the temperature is not too high one can
reasonably expect that an approximation where one takes into account harmonic oscillations around
this equilibrium position is a good one. Let us thus take for H0

H0 =
1

2Ω

∑
q

G−1(q)φ(q)φ(−q) (3.21)



and try to optimize by finding the best G(q). The variational energy is

Fvar = −T
∑
q>0

log[TG(q)] +
c

2
T
∑
q

q2G(q) − gΩe−
2
Ω

∑
q

TG(q) (3.22)

and thus
∂Fvar

∂G(q)
= 0 (3.23)

leads to
G−1(q) = cq2 + 4ge−

2
Ω

∑
q

TG(q) (3.24)

which is a self consistent equation for G(q). Obviously one can write G−1(q) = cq2 + m where the
mass m satisfies

m = 4ge−
2
Ω

∑
q

T
cq2+m (3.25)

Let us look for example at the two dimensional case. The integral in that case is divergent. One has,
putting back an upper cutoff Λ

1
(2π)2

∫
ddq

1
cq2 +m

=
1

(2π)

∫ Λ

0
qdq

1
cq2 +m

� 1
(4πc)

log[
cΛ2

m
] (3.26)

One has thus the selfconsistent equation

m = 4g
(
m

cΛ2

) T
2πc

(3.27)

It is easy to see that for T > 2πc this equation has only m = 0 for solution. The sine-Gordon
system behaves thus as a free theory and the cosine potential is irrelevant. One the other hand at
low temperatures a non zero mass appears. More examples of the variational method will be seen as
exercises.

3.3 Saddle point method

Finally let us see a very useful method to evaluate the functional integrals when one can find a
parameter such that

H = NH̃[u] (3.28)

where N → ∞. Let us illustrate the method on the simple integral∫
dxe−Nx2

(3.29)

In that simple case is is easy to see that the configuration that will be mostly favored will be the one
such that H̃[u] is minimal. In the above example this corresponds to x = 0. All other configurations
will acquire exponentially small Boltzman weights in the limit N → ∞. Thus one can make the
approximation that ∫

dxe−NH̃[x] ∼ e−NH̃[x0] (3.30)



where x0 is the configuration that minimizes H̃ i.e. such that

∂H̃[x]
∂x

∣∣∣∣∣
x0

= 0 (3.31)

In fact quite generally no minimum for real variables exists. However is is generally possible to find
for a complex variable z configurations such that (3.31) is verified. Around this configuration z0 there
are two orthogonal directions in the complex plane, one for which one has a minimum of H̃[z] and
one for which is it a maximum. In the above mentioned example z = 0 correspond to a minimum
of weights along the real axis since H̃[x] = x2 whereas it is a maximum along the imaginary axis
since H̃[iy] = −y2. Thus quite generally it is impossible to find a minimum, but one is stuck with a
saddle point. This does not cause any problem. One can always deform the contour of integration
from the real axis to pass through the saddle point configuration z0 in the direction for which this
is a minimum of the energies. It is then easy to check that the formula (3.30) which replaces the
sum over all configurations by the single saddle configuration z0 remains exact. One can thus now
compute the various correlation functions using the saddle point configuration only. Formally one can
go beyond the saddle point solution (i.e. make an expansion in powers of 1/N) by integrating over the
fluctuations around the saddle point. Since the small deviations around the saddle point are obviously
quadratic, such an integration is always possible.

Examples of the saddle point method will be seen as exercises.





Chapter 4

Quantum problems; functional integral

Let us now turn to quantum problems. Ultimately we want to understand the problem of many
quantum objects coupled together and in equilibrium with a thermal bath. Various methods have
been devised to tackle this type of problem (see e.g. [5]). Here we will see how to use functional
integrals can help. Before we try the many body problem, let us see the case of a single particle.

4.1 Single particle

Let us consider a single quantum object described by a wavefunction |ψ〉 and an Hamiltonian H. Let
us denote the pair of conjugate variables u and Π. These can be the space x and momentum P , or
other variables. The evolution of the wavefunction is given by the Schroedinger equation

H|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 (4.1)

note that H can in principle depend explicitly on time (e.g. if the system is in a time dependent
external potential). The equation (4.1) defines the evolution operator that brings the system from
time t1 to time t2 by

|ψ(t2)〉 = U(t2, t1)|ψ(t1)〉 (4.2)

Knowing the evolution operator allows thus to compute all properties of the system. The evolution
operator obeys

ih̄
∂U(t, 0)
∂t

= H(t)U(t, 0) (4.3)

with the boundary condition U(0, 0) = 1. If everything was simple numbers the solution would simply
be

U(t, 0) = e−
i
h̄

∫ t

0
dt′H(t′) (4.4)

but since H(t) is an operator, in general H(t) and H(t′) do not commute. If the hamiltonian is time
independent one has simply

U(t2, t1) = e−iH(t2−t1) (4.5)

More generally the evolution operator obviously verifies, for t1 < t2 < t3

U(t1, t3) = U(t1, t2)U(t2, t3) (4.6)
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One can use this property to split the interval tf , ti in N segments of length ε = (tf − ti)/N to get

U(tf , ti) = U(tf , tN−1)U(tN−1, tN−2) · · ·U(t2, ti) (4.7)

If N is large enough, even if the Hamiltonian is time dependent one has

U(t+ ε, t) = e−
i
h̄

H(t)ε (4.8)

Thus (4.7) and (4.8) allow in principle for a complete calculation of the evolution operator. A more
rigorous derivation of the evolution operator can be obtained from the equation (4.3). One can formally
solve this equation in powers of H. Solving iteratively (4.3) gives

U(tf , ti) = 1 + (−i/h̄)
∫ tf

ti

dt1H(t1) + (−i/h̄)2
∫ tf

ti

dt1

∫ t1

ti

dt2H(t1)H(t2) + · · · (4.9)

Notice that in (4.9) the operators are always ordered so that the operator at the later time is on the
left. One can formally rewrite this expression by introducing a time ordering operator T such that it
always reorder the operators in this order

T (O(t1)O(t2)) = θ(t1 − t2)O(t1)O(t2) + θ(t2 − t1)O(t2)O(t1) (4.10)

Using this notation it is easy to see that (4.9) can be rewritten as

U(tf , ti) = 1 + (−i/h̄)
∫ tf

ti

dt1H(t1) +
(−i/h̄)2

2!

∫ tf

ti

dt1

∫ tf

ti

dt2T [H(t1)H(t2)] + · · · (4.11)

In which one recognize the formal expansion of an exponential

U(tf , ti) = T [e
− i

h̄

∫ tf
ti

dtH(t)
] (4.12)

which of course coincide both with the naive expression (4.4) if the operators commute and also with
(4.5) if H is time independent. It is also easy to show that (4.12) and (4.7) coincide in the large N
limit.

All these expressions of the evolution operator still use operators, which is relatively inconvenient
because of their non commutative nature. Let us try to explicitly evaluate (4.8). We consider here
only the simple case where the Hamiltonian is totally separated in u and P , for example

H = H0(P ) + V (u) (4.13)

which is a very common case (typically H(P ) = P 2/(2m)). More complicated cases are analyzed in
[3, 4]. We can compute all the matrix elements of the evolution operator 〈uf |U(tf , ti)|ui〉. Using that
u is a complete basis one has

〈uf |U(tf , ti)|ui〉 =
∫
duN−1

∫
duN−2 · · ·

∫
du2〈uf |U(tf , tN−1)|uN−1〉〈uN−1|U(tN−1, tN−2)|uN−2〉 · · ·

〈u2|U(t2, ti)|ui〉 (4.14)

We have thus reduced the calculation of the evolution operator to a functional integral. The building
block is the matrix element

〈u2|e−
i
h̄

H(t)ε|u1〉 (4.15)



τ

u

iτ 1+iτ
Figure 4.1: . The evolution operator can be defined as a functional integral over all trajectories
starting at ui at time τi and ending at uf at time τf .

There are various degrees of rigor with which one can compute (4.15). Or course the calculation should
be done only to order ε, since ultimately one wants to take ε→ 0. To order ε

e−
i
h̄
(H0(P )+V (u))ε � e−

i
h̄

H0(P )εe−
i
h̄

V (u)ε (4.16)

Thus

〈u2|e−
i
h̄

H(t)ε|u1〉 =
∫
dp〈u2|e−

i
h̄

H0(P )ε|p〉〈p|e− i
h̄

V (u)ε|u1〉∫
dp〈u2|p〉〈p|u1〉e−

i
h̄

H0(p)εe−
i
h̄

V (u1)ε∫
dp

1
(2π)d

e
i
h̄

p(u2−u1)e−
i
h̄
[H0(p)+V (u1)]ε

∫
dp

1
(2π)d

e
i
h̄

ε[p
(u2−u1)

ε
−[H0(p)+V (u1)] (4.17)

Going back to (4.7) we see that we can formally describe the matrix element 〈uf |U(tf , ti)|ui〉 of the
evolution operator, by saying that we define an arbitrary trajectory u(t) starting at ui at time ti and
ending at uf at time tf . If we discretize the time as in Fig. 4.1, uk can be viewed as the value of the
variable at time tk. In that case

uk+1 − uk

ε
=
u(tk + ε) − u(tk)

ε
� du

dt

∣∣∣∣
tk

(4.18)

Let us consider for example the case H0(P ) = P 2/(2m). In that case one can easily perform the



integration over p in (4.17).

〈u2|e−
i
h̄

H(t)ε|u1〉 =
(

m

2πiεh̄

)d/2

e
i
h̄
[m

2

(
u2−u1

ε

)2−V (u1)]ε (4.19)

Thus (4.7) becomes (with the convention u1 = ui, uf = uN )

〈uf |U(tf , ti)|ui〉 =
N−1∏
j=2

∫
duj

A
e

i
h̄

∑N

i=1
[m

2

(
uj+1−uj

ε

)2

−V (uj)]

=
∫ u(tf )=uf

u(ti)=ui

Du[t]e
i
h̄

∫ tf
ti

[m
2

(
du(t)

dt

)2
−V (u(t))]

(4.20)

where A is the normalization defined in (4.19) One recognizes in (4.20) the action S of the system

S =
∫
dtL(t) =

∫
dt[
m

2

(
du(t)
dt

)2

− V (u(t)] (4.21)

where L(t) is the Lagrangian. Note that one does not need to perform the integration over p. An
alternative form for (4.20) is

〈uf |U(tf , ti)|ui〉 =
∫ u(tf )=uf

u(ti)=ui

Du[t]Dp[t]e
i
h̄

∫ tf
ti

dt[p
(

du(t)
dt

)
−H[t]]

(4.22)

where one recognize also the Lagrangian

p

(
du(t)
dt

)
−H[t] = L(t) (4.23)

The formula (4.20) is quite remarquable. It shows that the evolution operator can be viewed as the
sum over all possible “trajectories” of the particles. The weight of each trajectories is given by eiS/h̄.
Thus in the classical limit h̄ → 0 only the trajectory that minimizes the action survives. This is the
classical trajectory. In the quantum case, all trajectories contribute and interfere. (4.20) provides thus
a marvelous link between our intuition for classical system and the quantum world. From a practical
point of view, (4.20) has replaced the problem of computing the matrix elements of various operators
by “simple” integration over numbers, for which we can apply all our knowledge of integrals. It is
thus a powerful technique.

Let us examine a direct consequence. Suppose that the system is now in contact with a thermostat.
The partition function of the system is given by

Z = Tr[e−βH ] (4.24)

where Tr denotes the trace, i.e. the sum over any complete basis of state. Note that here for the system
to reach thermal equilibrium the Hamiltonian should be time independent. Using u as a complete
basis, the partition function becomes

Z =
∫
du〈u|e−βH |u〉 (4.25)

One can thus formally split the temperature β into N segments of size ε = β/N to get for the partition
function

Z =
∫
du

∫
duN−1 · · ·

∫
du2〈u|e−εH |uN−1〉 · · · 〈u2|e−εH |u〉 (4.26)



One thus immediately recognize that (4.26) and (4.7) are identical except for two points: (i) uf = ui =
u and one has to integrate over u; (ii) more importantly instead of e−

i
h̄

Hε one has e−Hε = e−
1
h̄

H(εh̄).
Formally one has thus replaced the it in the exponential by a formal time τ which in the end will run
from 0 to βh̄. This change is often denoted as going to imaginary time. One can follow the same steps
than the one leading to (4.20) to get for the partition function

Z =
∫
du

∫ u(βh̄)=u

u(0)=u
Du(τ)e−

1
h̄

∫ βh̄

0
dτ [m

2

(
du(τ)

dτ

)2
+V (u(τ))] (4.27)

The partition function (4.27) is thus the sum over all closed trajectories over a fictitious (imaginary)
time τ . Note that the argument in the exponential is indeed the continuation of the action to the
imaginary time

i

∫
dtL(t) →

∫
dτL(it→ τ) (4.28)

Note that contrarily to the action in real time (4.21), the imaginary time action Sβ

Sβ =
∫ βh̄

0
dτ [

m

2

(
du(τ)
dτ

)2

+ V (u(τ))] (4.29)

is a positive form. The integral in imaginary time (4.27) thus does not pose any problem of convergence.
This is one of the advantages of the imaginary time.

As for he real time there is an equivalent “Hamiltonian” representation where one does not integrate
over p

Z =
∫

Du(τ)Dp(τ)e
1
h̄
[i
∫ βh̄

0
dτp
(

du(τ)
dτ

)
−
∫ βh̄

0
dτH[p(τ),u(τ)]] (4.30)

From now on, in order to lighten the notations we will set h̄ = 1. The h̄ is the various formulas
can be put back by dimensional analysis.

4.2 Correlation functions; Matsubara frequencies

We have seen as one can compute the partition function of a quantum system through function
integrals. The expression (4.27), thus immediately prompts for the question of correlation functions,
analogous to (2.5)

〈O(τ1)O(τ2) · · ·O(τp)〉 =

∫
u(0)=u(β) Du(τ)e−SβO(τ1)O(τ2) · · ·O(τp)∫

u(0)=u(β) Du(τ)e−Sβ
(4.31)

where the O(τi) are some functions of the u(τi). Note that as for classical systems the correlation
function (4.31) can be defined directly through derivative of a partition function as in (2.8). One
can already note many similarities between the partition function of a quantum system computed
through path integrals and the ones of classical systems. There are indeed deep connections that will
be explored in details in Section 4.4

The important question is of course the meaning of such a correlation function (4.31). Note
that although we discuss here mostly the imaginary time case, a similar question can be asked for
equivalent correlation functions with the real time action. To understand its meaning let us go back
to our quantum system. If we start from a certain state |ψ(t = 0)〉 we can have an operator O1 acting
on the state at time t1.

O1|ψ(t1)〉 = O1U(t1, 0)|ψ(t = 0)〉 (4.32)



we can the let this new state evolve until time t2 and then apply an operator O2. The result is a new
state

O2U(t2, t1)O1U(t1, 0)|ψ(t = 0)〉 (4.33)

and so on if we want to have p operators acting at time t1, t2, · · · , tp (let us limit ourselves to p = 2 for
this example). Thus (4.33) represent the state starting from |ψ(t = 0)〉 and whose evolution in time
has been modified by the application of the operators O1 and O2 at time t1 and t2. We could want to
see how this state compares with the evolution of |ψ(t = 0)〉 at time t2 in the absence of application
of any operator. The result is

〈ψ(t = 0)|U †(t2, 0)O2U(t2, t1)O1U(t1, 0)|ψ(t = 0)〉
〈ψ(t = 0)|U(0, t2)O2U(t2, t1)O1U(t1, 0)|ψ(t = 0)〉 (4.34)

An alternative representation for (4.34) is to use the Heisenberg representation, where the states are
time independent and the operators evolve with time according to (for a time independent Hamilto-
nian)

Ô1(t) = eiHtO1e
−iHt (4.35)

where we denote by Ô1(t) the operator in Heisenberg representation. (4.34) obviously become (for
t2 > t1)

〈ψ(t = 0)|Ô2(t2)Ô1(t1)|ψ(t = 0)〉 (4.36)

Let us consider the analytical continuation to imaginary time of the operators in Heisenberg repre-
sentation

Õ1(τ) = eτHO1e
−τH (4.37)

Note that now contrarily to the real time [Õ(τ)]† �= Õ†(τ). One could compute

Tr[e−βHÕ2(τ2)Õ1(τ1)]
Tr[e−βH ]

(4.38)

but this expression is unusable since the operators in general do not commute. Let us use again our
time ordering operator T , applied now to imaginary time. Let us assume that all τ ∈ [0, β] and define
Tτ in a similar way than (4.10),

T (Õ(τ1)Õ(τ2)) = θ(τ1 − τ2)Õ(τ1)Õ(τ2) + θ(τ2 − τ1)Õ(τ2)Õ(τ1) (4.39)

and compute
Tr[e−βHTτ (Õ2(τ2)Õ1(τ1))]

Tr[e−βH ]
(4.40)

The denominator is simply the partition function Z. Because of the time ordering operator, one can
rearrange the operators in (4.40) as

Tr[e−(β−τ2)HO2e
−(τ2−τ1)HO1e

−τ1H ] τ2 > τ1 (4.41)
Tr[e−(β−τ1)HO1e

−(τ1−τ2)HO2e
−τ2H ] τ1 > τ2 (4.42)

Using |u〉 as a complete basis one can rewrite (4.41) as (for example for τ2 > τ1)∫
du

∫
du2

∫
du1〈u|e−(β−τ2)H |u2〉〈u2|O2e

−(τ2−τ1)H |u1〉〈u1|O1e
−τ1H |u〉 (4.43)



If the operators O are functions of u
O|u〉 = O(u)|u〉 (4.44)

Thus we can rewrite (4.43) as∫
du

∫
du2

∫
du1O2(u2)O1(u1)〈u|e−(β−τ2)H |u2〉〈u2|e−(τ2−τ1)H |u1〉〈u1|e−τ1H |u〉 (4.45)

Now each matrix element in (4.45) can be written as a functional integral as before. For example

〈u2|e−(τ2−τ1)H |u1〉 =
∫ u(τ2)=u2

u(τ1)=u1

Du[τ ]e−
∫ τ2

τ1
dτL(τ)

(4.46)

This gives for (4.45)

I =
∫
du

∫
du1

∫
du2O2(u2)O1(u1)

∫ u(β)=u

u(τ2)=u2

Du[τ ]
∫ u(τ2)=u2

u(τ1)=u1

Du′[τ ]
∫ u(τ1)=u1

u(0)=u
Du′′[τ ]

e
−
∫ β

τ2
dτL(u(τ))

e
−
∫ τ2

τ1
dτL(u′(τ))

e−
∫ τ1
0

dτL(u′′(τ))

=
∫

u(0)=u(β)
Du[τ ]O2(u(τ2))O2(u(τ1))e

−
∫ β

0
dτL(u(τ)) (4.47)

which is obviously the same as (4.31). Thus the correlation functions obtained through the functional
integral have a very natural interpretation in terms of operators. They are the average of the operators
acting at time τ1, τ2 etc. The order in which the operators have to be taken is given by the time
ordering. The fact that the correspondance between functional integrals and operators has to involve
some specification to order is the operator is obvious from the fact that a path integral only involves
numbers so that everything is independent of order in the path integral.

The path integrals are thus an extremely convenient way to obtain directly the time ordered
correlation functions in imaginary time. Note that similar considerations can be done for the real
time, with similar prescription in real time provided that the Hamiltonian is time independent. The
case of a time dependent Hamiltonian is more complicated, and we will address this issue in Section 7.

The fact that correlation functions computed through functional integral correspond to something
in the operator representation is of course good news ! The bad one, is that the said correlation
function has absolutely no physical significance. The imaginary time is a purely formal index that
has no direct correspondance to the real time. Fortunately as we will see in Section 5.2 the imaginary
time correlation functions are easily related to physical objects through an analytical continuation.

Since we have now the correlation functions, let us examine some of their properties. The functional
integral sums over all functions u that satisfies u(0) = u(β). One can thus view the system as having
periodic boundary conditions along the imaginary time direction as shown on Figure 4.2 This means
that all correlation functions can be also viewed as periodic functions on the interval [0, β]. The Fourier
transform as a function of time of the correlation functions

G(iωn) =
∫ β

0
dτeiωnτG(τ) (4.48)

G(τ) =
1
β

∑
n

e−iωnτG(iωn) (4.49)

is performed over a discrete set of frequencies ωn = 2πn/β. These are called the Matsubara frequencies.
The notation G(iωn) is there to recall that one is working with frequencies associated with imaginary
time.
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Figure 4.2: Since the functional integral is on periodic trajectories such that u(β) = u(0), it is
equivalent to consider that the system is defined on a torus whose circumference is β.

Even if most of the correlation functions in imaginary time do not have direct physical significance,
a notable exception are the correlation functions for ωn = 0. Indeed if one adds to the Hamiltonian a
time independent perturbation, this give in the lagrangian

Lpert = −
∫ β

0
dτ

∫
dxh(x)O(x, τ) = −

∫
dxh(x)O(x, ωn = 0) (4.50)

where O is as usual some operator of depending on u. Thus one can perform linear response as in
Section 2.2 to find that

〈O(x)〉 =
∫
dx′χ(x, x′)h(x′) (4.51)

It is easy to see that because of the time invariance of the Hamiltonian only the ωn = 0 component
can be nonzero in (4.51). Since the hamiltonian is time invariant

〈O(x)〉 =
1
β

∫ β

0
dτ〈O(x, τ)〉

=
1
β
〈O(x, ωn = 0)〉 (4.52)

Thus the susceptibility is given by

βχ(x, x′) = 〈O(x, ωn = 0)O(x′, ωn = 0)〉 − 〈O(x, ωn = 0)〉〈O(x′, ωn = 0)〉 (4.53)

This formula allows for the calculation of most of the thermodynamic properties of the system.

4.3 Many degrees of freedom: example of the elastic system

So far we have only considered the case of a single quantum particle. How can we extend the analysis
of the previous section to a many body problem. In principle this is very easy, we just introduce a



complete basis for the N particles |u1, u2, u3, . . . , uN 〉, and repeat all the steps of the previous section.
This will obviously lead to the same expressions. In fact there is a catch, although this procedure is
obviously correct if the particles are discernables in some way, for the case of indiscernables particles,
this will not work. Indeed in that case one should only consider wavefunctions that are either totally
symmetric or antisymmetric (depending on whether one has bosons or fermions). Imposing this
restriction in first quantization leads to rather untractable expressions, and one has to use second
quantization. Establishing the functional integral in that cas is more complicated and goes beyond
the scope of this course. We will come back to this at the end of this section.

Let us focuss to a case where the particles, although quantum are still discernables. A relevant
example is again provided by an elastic system. Let us imagine a crystal of quantum particles (either
fermions or bosons). If the system can be described by an elastic energy it means that each particle
has a label (corresponding to its equilibrium position in the crystal), and is thus discernable. All the
results of the previous sections can be applied. The Hamiltonian of the system is (on a lattice)

H =
∑

i

[
Π2

i

2M
+

1
2
k(ui+1 − ui)2] (4.54)

which is the standard phonon Hamiltonian. u has the dimension of a distance, k is an energy divided
by a distance squared (E/L2). Πi is the conjugate momentum to ui. We go to the continuum limit.
We want to keep the dimensions of u as a distance. Thus ui → u(r) and Πi → adΠ(r) in order to
ensure that the continuum variables u(r) and Π(r) are canonically conjugate, i.e.

[u(r),Π(r′)] = ih̄δ(r − r′) (4.55)

If we use ρ0 = 1/ad which is the density of particles, the Hamiltonian becomes (using
∑

i =
∫
ddrρ0)

H =
∫
ddr[

Π(r)2

2Mρ0
+ ρ0

1
2
c(∇u(r))2] (4.56)

where c = ka2 has now the dimension of an energy. Π(r) is a momentum density. This leads to the
action in imaginary time

S =
∫
dτ

∫
ddrρ0[

1
2
M(∂τu(r, τ))2 +

1
2
c(∂ru(τ, r))2] (4.57)

The action of the system can be written in Fourier space

S =
1
2

1
Ω

∑
q

1
β

∑
n

ρ0[Mω2
n + cq2]u(q, ωn)u∗(q, ωn) (4.58)

Let us use this formula to compute the compressibility of the quantum system. Using (4.53) it is
simply given by

χ =
1

Ωβ
〈ρ(q, ωn = 0)ρ(−q, ωn = 0)〉 (4.59)

and using (2.96) this leads to

χ =
ρ2

0q
2

Ωβ
〈u(q, ωn = 0)u∗(q, ωn = 0)〉

=
ρ0q

2

Mω2
n + cq2

∣∣∣∣∣
ωn=0

=
ρ0

c
(4.60)



Finally, even if we do not treat the case fully let us give some hints of the structure of the functional
integral for undiscernable quantum particles. Because of the indiscernable character of the particles it
is useful to work directly in second quantization. The Hamiltonian is expressed in term of the creation
and destruction operators c† and c. For example

K = H − µN =
∑
k

(εk − µ)b†kbk (4.61)

where we work in the presence of a fixed chemical potential µ. One would like to build a functional
integral similar to the expression (4.22), where we take for u the destruction operator c. To find the
equivalent of the “conjugate momentum” for the destruction operator we can recall that for bosonic
systems

[b, b†] = 1 (4.62)

and thus b† is essentially, up to a factor of i the conjugate momentum. Recalling that [x, P ] = ih̄ one
can take formally P = ib†.

Thus using (4.30), and the expression for P , the action to put in the functional integral becomes

S =
∫ β

0
dτ
∑
k

η∗k(τ)[−∂τ − (εk − µ)]ηk(τ) (4.63)

=
∑
ωn,k

(iωn − (εk − µ))η†k,iωn
ηk,iωn (4.64)

The symmetry condition on the bosons wavefunctions imposes again that ωn = 2πn/β. One can thus
easily compute the boson Green’s function out of the functional integral

G(k, τ) = −〈Tτ b(τ)b†(0)〉 (4.65)

Its Fourier transform is given by

G(k, iωn) =
1

iωn − (εk − µ)
(4.66)

Of course the precise demonstration of the above machinery requires more work. In particular one
needs to define the eigenstates of the destruction operators (the so called coherent states) and I refer
the reader to [3] for more details.

Fermion systems are more complicated since the creation and destruction operator anticommute,
and thus the above procedure fails. It is however possible to formally define a similar functional
integral if one does not integrate over numbers, but over quantities called Grassman numbers that
have the property that two such numbers obey ab = −ba. Formally the structure remains the same
and the “action” of the system is again given by (4.63), and in particular the Green’s function (4.66) is
identical. However because of the antisymmetry of the fermionic wave function, one must now ensure
that ψ(τ + β) = −ψ(τ) thus ωn = π

β (2n+ 1).

4.4 Link with classical problems

As we have already noticed the functional expression for a quantum system in imaginary time looks
remarkably similar to the ones for a classical system for which the time τ would play the role of an



System Quantum Classical
Dimension d d+1

β Temperature Size of system in direction z
h̄ quantum fluctuations Temperature

Table 4.1: Equivalence between a quantum system of dimension d and a classical system in dimension
d+ 1.

extra dimension. This identification allows for a deep connection between the physics of a quantum
system in d dimensions and the one of a classical system in d+ 1. Indeed let us compare for example
a quantum system in d dimension whose Hamiltonian is given by (4.56). Its action is given by (see
(4.57) (where we have put back the h̄):

Sβ =
∫ βh̄

0
dτ

∫
ddrρ0[

1
2
M(∂τu(r, τ))2 +

1
2
c(∂ru(τ, r))2] (4.67)

and the partition function is given by

Z =
∫

Du[r, τ ]e− 1
h̄

Sβ (4.68)

One easily sees that (4.67-4.68) are exactly identical to the ones of a classical system in d+1 dimensions.
The extra dimension (which for the classical system we denote z) is of a finite size βh̄. The Hamiltonian
of the classical system is given by

H =
∫
ddrdβh̄

0 τρ0[
1
2
M(∂zu(r, z))2 +

1
2
c(∂ru(r, z))2] (4.69)

The equivalent of the temperature for the classical system in (4.68) is played by h̄. One has thus the
correspondance between the classical and quantum system summarized in table 4.1

This remarkable equivalence has several important consequences. Let us mention some of them
(the list is only limited by your imagination)

It is sometimes useful, when dealing with a classical or a quantum system to investigate its quantum
or classical equivalent. Although the two problems are identical one formalism (classical or quantum)
can be more adapted to solve it (or realize that the problem has already been solved by someone else).
Very often classical problems are more easy to solve numerically, and one can use the equivalence to
obtain from the solution of the associated quantum problem.

We have a good physical intuition of the phase transitions that take place in a classical system.
Since the temperature of the classical system is h̄, i.e. the degree of quantumness (or equivalently one
parameter in the Hamiltonian) of the quantum problem we see that a quantum phase transition can
also take place in the quantum problem when some parameter is varied in the Hamiltonian. If the
quantum Hamiltonian has a continuous symmetry, then since the size in the classical problem in z is
given by β it means that for example a d = 2 quantum problem can have a quantum phase transition
only at β = ∞ since in that case it corresponds to a classical three dimensional problem. At finite β the
classical problem is effectively two dimensional at large lengthscales and no ordered state that breaks
a continuous symmetry can exist. Similarly for the breaking of a discrete symmetry a d = 1 quantum
system can have a quantum phase transition at T = 0. At finite temperature no ordered state can
exist. We also see that as for classical phase transition, the quantum phase transition will be in general



characterized by a divergent length ξ and critical exponents. There is however an important difference
when compared with classical systems. In classical problems the space is in general isotropic, thus
the correlation length should in general have the same critical exponents in all spatial directions. For
the quantum problem the time plays a special role, so that the direction z in the associated quantum
problem has in general a different critical exponent than the true spatial directions. So if one assumes
that

ξ ∼ t−ν (4.70)

where t = |1− T/Tc| is the deviation to criticality in the classical problem and ν the standard critical
exponent we can define a divergent length along the z (or τ) direction as

ξτ ∼ t−νz (4.71)

where z is the so called dynamical exponent. This is the power that allows to relate time and space.
For example for the action (4.57) the energy varies as

ω2
n + k2 (4.72)

or equivalently ω = ck where c is some velocity. Thus space and time have the same scaling and z = 1.
If we had had an energy such that (∇u)2 was replaced by (∇u)4. Then ω ∼ ck2. In that case τ ∼ L2

which means that if a length diverges as t−ν a time should diverge as t−2ν and thus z = 2. Similarly
for the bosonic functional integral (4.63) ω ∼ ck2 and z = 2. Except for the introduction of this new
exponent, the quantum phase transitions behave quite as their classical equivalents. In particular they
obey scaling relations among the exponents.

Finally one can notice that for quantum phase transitions one is naturally led to solve for the
problem of systems on a torus as shown in Figure 4.2, for which some of the dimensions are essentially
infinite while the time direction is of size β. It would thus be very interesting to know the correlation
functions in such a special geometry. If β = ∞ the system is infinite in all directions and has in
general a critical point, at which the correlation functions decay as power law of the distance. An
interesting question is how this power law is modified when one goes to a finite β. Fortunately, for
two dimensional classical systems, it is possible to answer this question directly, using the fact that
the correlation functions of the infinite system at criticallity are in fact invariant not only by rotations
and rescaling but by all conformal transformations (i.e. transformations that preserve angles) of the
plane. It means that if one knows the correlation function of the infinite system, one can deduce via
a conformal transformation the correlation function of the system on a torus. Going into the details
of this powerful method would take us too far for this course, and I refer the readers to [9] for more
details on that point.



Chapter 5

Perturbation; Linear response

5.1 Method

Let us now turn for the quantum problem to the same type of questions than we looked at for the
classical ones in Section 2.2. We add to the Hamiltonian of the system a perturbation, a priori time
and space dependent

Hpert =
∫
dxh(x, t)O(x) (5.1)

where h(x, t) is some external field (magnetic field, electric field, pressure, etc.), and O(x) the operator
to which it couples (magnetization, current, density, etc.). As for the classical systems we choose O
such that in the absence of perturbation its average is zero 〈O(x)〉 = 0, since one can always subtract
this average value. Since the Schroedinger equation give the time evolution of the quantum system,
we are now in a position to compute the response to a time dependent perturbation. This was not
possible for the statistical problem, since the statistical equilibrium itself does not define the time
evolution of a system. We will come back to this point in Section 7.

As for the classical problem computing the full response is hopeless so we will get the linear part
of the response.

〈O(x0, t0)〉 �
∫
dxdtχ(x0 − x, t0 − t)h(x, t) (5.2)

Note that here t denotes the real (true) time of the system.
To compute the response we have first to define what the average means with a time dependent

Hamiltonian. To do so we introduce the density matrix ρ(t) and define the average at time t as

〈A〉t = Tr[ρ(t)A] (5.3)

If the Hamiltonian is time independent the density matrix is thus just

ρ =
1
Z
e−βH (5.4)

To determine the time evolution we consider that on an eigenbasis the density matrix is simply given
by

ρ =
∑
n

cn|n〉〈n| (5.5)

if |n〉 are the energy eigenstates cn = e−βEn/
∑

n e
−βEn . We assume that the time evolution is solely

given by the evolution of the wavefunctions. This amounts to say that the coefficients cn are not
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changing as the system is evolving with time, and thus the populations of the levels. The time
evolution is thus supposed to be adiabatic. In other words the thermal bath is introduced at a given
time when the perturbation does not exist (let us say t = −∞) and the levels are populated according
to the (time independent) distribution e−βEn . The thermal bath is then removed and the perturbation
switched on slowly, so that the wavefunction evolves. Using the Schroedinger equation and (5.5) it is
easy to show that

∂ρ(t)
∂t

= −i[H(t), ρ(t)] (5.6)

To obtain the linear response we consider that ρ(t) = ρ0 + f(t) where f(t) is the part proportional
to perturbation h. Keeping only the linear terms, (5.6) becomes

i
∂f(t)
∂t

= [H0, ρ0] + [H0, f(t)] + [Hpert, ρ0] (5.7)

Since ρ0 = 1
Z0
e−βH0 , one has [H0, ρ0] = 0. One can transform (5.7) into

e−iH0t
[
i
∂

∂t

(
eiH0tf(t)e−iH0t

)]
eiH0t = [Hpert(t), ρ0] (5.8)

One can introduce, the Heisenberg representation of the operators

Â = eiH0tAe−iH0t (5.9)

Using this representation (5.8) becomes

i
∂

∂t

(
eiH0tf(t)e−iH0t

)
= [Ĥpert(t), ρ0] (5.10)

Beware that since Hpert is already time dependent the time dependence in Ĥ has two origins. (5.10) is
easily integrated, using the fact that the perturbation is absent at time t = −∞ and thus f(−∞) = 0
to give

f(t) = −ie−iH0t
∫ t

−∞
dt′[Ĥpert(t′), ρ0]eiH0t (5.11)

Note that because of the explicit time dependence of Hpert

e−iH0tĤpert(t′)eiH0t �= Ĥpert(t′ − t) (5.12)

Using (5.11) we can now compute the average values

〈A(t)〉 = Tr[(ρ0 + f(t))A] (5.13)

Let us choose for simplicity an operator whose average value in the absence of perturbation is zero
(otherwise one can simply subtract the average value). In that case

〈A(t)〉 = Tr[Af(t)]

= −iTr[
∫ t

−∞
dt′e−iH0t[Ĥpert(t′), ρ0]eiH0tA] (5.14)



Using the cyclic invariance of the Trace Tr[ABC · · ·D] = Tr[BC · · ·DA] one obtains

〈A(t)〉 = −iTr[
∫ t

−∞
dt′[Ĥpert(t′), ρ0]eiH0tAe−iH0t]

−iTr[
∫ t

−∞
dt′[Ĥpert(t′), ρ0]Â(t)] (5.15)

Using (5.1) one gets

〈A(t)〉 = −iTr[
∫ t

−∞
dt′
∫
dx′[Ô(t′, x′), ρ0]Â(t)]h(x′, t′) (5.16)

Using
Tr[[A,B]C] = Tr[ABC −BAC] = Tr[B[C,A]] (5.17)

one can rewrite (5.16) as

〈A(t)〉 = −iTr[ρ0

∫ t

−∞
dt′
∫
dx′[Â(t), Ô(t′, x′)]]h(x′, t′)

= −i
∫ t

−∞
dt′
∫
dx′〈[Â(t), Ô(t′, x′)]〉0h(x′, t′) (5.18)

where 〈〉0 denotes averages taken with the unperturbed Hamiltonian H0. It is thus convenient to
define a so called retarded correlation function (quite generally we take a space dependent operator
A(x))

Gret
A,O(x− x′, t− t′) = −iθ(t− t′)〈[Â(t, x), Ô(t′, x′)]〉0 (5.19)

Quite generally one thus has for the susceptibility (5.2)

χ(x− x′, t− t′) = Gret
A,O(x− x′, t− t′) (5.20)

The retarded correlation (also called Green’s) function is thus the one that is physically observable.
The θ function is due to the causality and expresses the fact that a measure at time t can only depend
on the perturbation at anterior times. Rather than working in space time, it is better to go to Fourier
space. Indeed since H is time independent the Fourier transform of (5.2) will be diagonal

〈O(q, ω)〉 = χ(q, ω)h(q, ω) (5.21)

with

χ(q, ω) =
∫
ddrdte−i(qr−ωt)χ(r, t) (5.22)

Using (5.19) gives

χ(q, ω) =
∫
ddr

∫
dtGret

A,O(r, t)eiωt−iqr

= −i
∫
ddr

∫ +∞

0
dteiωt−iqr〈[Â(t, r), Ô(0, 0)]〉0 (5.23)



5.2 Analytical continuation

The retarded Green’s functions are thus the one that one wants to compute since they describe the
physical response of the system to an external perturbation. Unfortunately there is no systematic way
of computing them directly. As we have seen in section 4.2 the correlation function that have a simple
expression in term of a functional integral (and thus that can be computed systematically, at least
perturbatively) are the time ordered correlation functions. Fortunately, the two are easily related.

To see this let us express formally the correlation functions using a the eigenstates of H that we
denote |n〉. If we introduce the time ordered correlation function (see (4.40))

G(τ) = −〈TτA(τ)O(0)〉 (5.24)

(note that A and O can be dependent of r but that we will not write it explicitly to keep the notations
simple). We can express it formally as (for e.g. τ > 0)

G(r, τ) = − 1
Z

∑
n,m

〈n|e−βHA(τ)|m〉〈m|O(0)|n〉

= − 1
Z

∑
n,m

〈n|e−βHeτHAe−τH |m〉〈m|O|n〉

= − 1
Z

∑
n,m

e−βEneτ(En−Em)〈n|A|m〉〈m|O|n〉 (5.25)

The Fourier transform with Matsubara frequencies gives

G(iωp) =
∫ β

0
dτG(τ)

= − 1
Z

∑
n,m

e−βEn〈n|A|m〉〈m|O|n〉e
β(iωp+En−Em) − 1
iωp + En − Em

=
1
Z

∑
n,m

〈n|A|m〉〈m|O|n〉e
−βEn − e−βEm

iωp + En − Em
(5.26)

A similar representation can be used with the retarded Green’s functions

Gret(t) = −iθ(t)〈[Â(t), Ô(0)]〉
= −iθ(t)

∑
n

〈n|e−βH [Â(t), Ô(0)]|n〉

= −iθ(t)
∑
n,m

〈n|e−βHÂ(t)|m〉〈m|Ô(0)|n〉 − 〈n|e−βHÔ(0)|m〉〈m|Â(t)|n〉

= −iθ(t)
∑
n,m

e−βEneit(En−Em)〈n|A|m〉〈m|O|n〉 − e−βEneit(Em−En)〈n|O|m〉〈m|A|n〉

= −iθ(t)
∑
n,m

〈n|A|m〉〈m|O|n〉eit(En−Em)[e−βEn − e−βEm ] (5.27)

The Fourier transform is
Gret(ω) =

∫
dtGret(t)eiωt (5.28)



Because of the θ(t) factor in Gret(t) the integral is effectively from t = 0 to t = ∞. Because of the
integration to t = ∞ one has to make sure that the integral is convergent at large time. One way to
do this is to add a small convergence factor to the fourier transform

Gret(ω) =
∫ +∞

0
dtGret(t)ei(ω+iδ)t (5.29)

where δ = 0+. Note that this convergence factor has a physical interpretation. As we saw in order
to compute the time dependence of the density matrix the way we did, we had to apply the pertur-
bation adiabatically from t = −∞. Thus h(t) was changed into h(t)e−δ|t| in order to ensure that the
perturbation vanishes at t = −∞. Thus the linear response relation (5.2) becomes

〈O(x0, t0)〉 �
∫
dxdtχ(x0 − x, t0 − t)eδth(x, t)

� eδt0

∫
dxdtχ(x0 − x, t0 − t)e−δ(t0−t)h(x, t) (5.30)

One thus recovers an adiabatic response in which the susceptibility contains the factor e−δ(t0−t) which
is exactly the convergence factor that we used. Using (5.29) and (5.27) one gets

Gret(ω) = −i
∑
n,m

〈n|A|m〉〈m|O|n〉[e−βEn − e−βEm ]
∫ +∞

0
dtei(ω+iδ)teit(Em−En)

=
∑
n,m

〈n|A|m〉〈m|O|n〉[e−βEn − e−βEm ]
1

(ω + iδ + En − Em)
(5.31)

Comparing (5.31) and (5.26) one easily sees that the Matsubara and retarded Green’s functions are
related through the analytic continuation

Gret(ω) = GMatsubara(iωn → ω + iδ) (5.32)

This is a quite remarkable formula since it allows us to compute physical observable directly from the
path integral formulation. Note that it is quite natural to go from back from the imaginary time τ = it
by such a kind of analytic continuation. What is not obvious is the fact that the time ordered function
give a correlation with a commutator in real time. The ω + iδ is not arbitrary and is due to the
causality of the retarded correlation functions. Using (5.31) it is easy to show, since the eigenvalues
En,m are real, that for a complex variable z the Green’s function verifies the relation

G(z) =
−1
π

∫
dω

1
z − ω

ImGret(ω) (5.33)

In particular taking z = ω + iδ and the relation
1

x+ iδ
= P 1

x
− iπδ(x) (5.34)

where P is the principal part, one gets the Kramers-Kroenig relation

ReGret(ω) =
−1
π

∫
dω′P 1

ω − ω′ ImG
ret(ω′) (5.35)

The causality and analytical properties of the Green’s function thus imposes very strong contraints,
and the knowledge of either the real or imaginary part is enough to completely determine the function.
Such relations are useful since some experiments measure one or the other, but it is rare to be able to
have the full function.

One also notes from (5.31) and (5.35) that when O = A† (which is usually the correlation function
one is interested in), ImG(ω) is an odd function of ω whereas ReG(ω) is an even function.



5.3 Fluctuation dissipation theorem

To get a complete physical understanding of the meaning of the susceptibility χ let us examine the
change of energy of the system. In the absence of an external perturbation the energy is conserved.
This is not the case any more when the system is subject to a time dependent external potential, and
some energy is injected in the system. The energy of the system at time t is given by

E(t) = Tr[ρ(t)H(t)] (5.36)

and thus the change of energy is

dE(t)
dt

= Tr[ρ(t)
dH(t)
dt

] + Tr[
dρ(t)
dt

H(t)] (5.37)

Using the equation of evolution (5.6) for ρ(t) one can rewrite the second term in (5.37) as

− iTr[[H(t), ρ(t)]H(t)] = −iTr[ρ(t)[H(t), H(t)] = 0 (5.38)

using the cyclic invariance of the trace. Thus

dE(t)
dt

= Tr[ρ(t)
dH(t)
dt

] = 〈dH(t)
dt

〉 (5.39)

Let us consider a simple sinusoidal perturbation of the form

Hpert = Oheiωt +O†h∗e−iωt (5.40)

In that case
dE(t)
dt

= iω[〈O〉theiωt − 〈O†〉th∗e−iωt] (5.41)

Using linear response one has

〈O(t)〉 =
∫
dt′χOO(t− t′)heiωt′ + χOO†(t− t′)h∗e−iωt′ (5.42)

Rather than compute the change in energy at a given time, since we deal here with a sinusoidal
perturbation we can average over one period (we assume ω > 0)

dE(t)
dt

=
1
T

∫ T =2π/ω

0
dt
dE(t)
dt

(5.43)

Using (5.41) and (5.42) one gets

dE(t)
dt

= iω[χOO†(ω) − χO†O(−ω)]hh∗

= ωi[χOO†(ω) − χO†O(−ω)]hh∗ (5.44)

Using the definition (5.23) one obtains

χ(ω)∗ = +i
∫ +∞

0
dt〈[O(t), O†(0)]〉∗e−iωt

= −i
∫ +∞

0
dt〈[O†(t), O(0)]〉e−iωt

= χ(−ω) (5.45)



as it should be for an hermitian operator. Thus (5.44) becomes

dE(t)
dt

= ωihh∗[χOO†(ω) − χOO†(ω)∗]

= −2ωhh∗ImχOO†(ω) (5.46)

Thus the imaginary part of the susceptibility controls the dissipation of energy in the system.
Using (5.31) one can write for the imaginary part

ImχOO†(ω) = −π
∑
n,m

〈n|O|m〉〈m|O†|n〉[e−βEn − e−βEm ]δ(ω + En − Em)

= −π
∑
n,m

|〈n|O|m〉|2e−βEn(1 − e−βω)δ(ω + En − Em) (5.47)

Thus the imaginary part is always negative for ω > 0 leading to a positive dissipation as it should be.
Thus (5.23) relates the response of the system to an external perturbation (and thus the dissipation

of the energy brought by this perturbation) to a correlation function of the system in equilibrium.
This relation is known as the fluctuation-dissipation theorem. It is the analogous of what we saw for
classical systems. It is a very strong relation since it relies on two quite general assumptions: (i) that
we restrict to linear response; (ii) more importantly that the system is in thermodynamic equilibrium.
Compared to the case we saw for classical systems, since here we have the equation of motion (the
Schroedinger equation) and not juste the condition for thermodynamic equilibrium, we are able to
deal with time dependent perturbation as well.

5.4 Kubo formula

We already saw the example of the compressibility, given by the density-density correlation function.
Another famous example is the conductivity of a system. Two ways can be used to compute it. The
simplest derivation, far from being rigorous is to add to the Hamiltonian a perturbation similar to the
one we used for the compressibility

Hpert =
∫
ddrV (r, t)δρ(r) (5.48)

where δρ = ρ − ρ0 is the density where we have subtracted the average value in the absence of the
perturbation V . We can compute in linear response

〈δρ(q, ω)〉 = χ(q, ω)V (q, ω) (5.49)

where χ(q, ω) is the Fourier transform of the retarded Green’s function

〈δρ(r, t); δρ(0, 0)〉ret = −iθ(t)〈[δρ(r, t), δρ(0, 0)]〉 (5.50)

As usual we compute first the correlation function in Matsubara frequencies and then perform the
analytical continuation. If the Hamiltonian is invariant by translation, then it cannot couple different
values of q and ω and it is easy to see that the only non-zero component is

〈δρ(q, iωn)δρ(−q,−iωn)〉 (5.51)



We will perform in section 6.1 the full calculation of the compressibility for the crystal case. For now
let us focuss on the conductivity. This is the quantity giving the relation between the current j and
the electric field E inside the system. The electric field is simply given by E = −∇V . To obtain the
current one can use the continuity equation

∂ρ(r, t)
∂t

+ ∇r · j(r, t) = 0 (5.52)

This implies, when written in term of the Fourier transforms

iωρ(q, ω) = iq · j(q, ω) (5.53)

The problem with this derivation is that j is a vector, but for the moment let us assume that j and q
are aligned, in that case we can get from (5.49)

〈j(q, ω)〉 =
ω

q
χ(q, ω)V (q, ω)

=
ω

q
χ(q, ω)

1
−iqE(q, ω) (5.54)

This could be expressed in a more convenient way, using again the relation (5.53) as

〈j(q, ω)〉 =
i

ω
〈j(q, ω); j(−q,−ω)〉retE(q, ω) (5.55)

The conductivity is thus simply given by the current-current correlation function.
The derivation given above is simple but suffers from various imprecisions. Let us now give a

more rigorous derivation. Instead of adding a potential V to the Hamiltonian let us now consider the
addition of a vector potential A. For a time dependent potential vector

E(r, t) = −∂A(r, t)
∂t

(5.56)

The vector potential is put in the Hamiltonian via the minimal substitution Π → Π − qA, where A
is the operator corresponding to the applied potential vector. The current is given by the functional
derivative (α = x, y, z)

jα(r, t) = − ∂H

∂Aα(r, t)
(5.57)

For example for a single particle with a kinetic energy Π2/(2M) the Hamiltonian in presence of the
potential vector is

1
2M

∑
α

(Πα − q

∫
ddrAα(r, t)|r〉〈r|)2 (5.58)

and the α (α = x, y, z) component of the current is given by

jα(r, t) =
q

2M
[Π|r〉〈r| + |r〉〈r|Π] − q2

M
Aα(r, t)|r〉〈r| (5.59)

which is the standard quantum mechanical extension of j = qρv with v = (P − qA)/m. Thus the
current itself contains the potential vector A. If one wants the linear response in A one should thus



expand both the current and the Hamiltonian. Let us call j0 = j(A = 0), i.e. the current in the
absence of vector potential. For the quadratic kinetic energy (5.58) this is

j0α(r, t) =
q

2M
[Π|r〉〈r| + |r〉〈r|Π] (5.60)

At linear order in the vector potential, the average value of the current is thus given by

〈jα(r, t)〉 =
∑
β

∫
dr′dt′

∂〈jα(r, t)〉
∂Aβ(r′, t′)

Aβ(r′, t′) (5.61)

The derivative contains two terms, the explicit dependence of the current operator with the potential
vector and the fact that in the average value the Hamiltonian contains the potential vector. The
second contribution can be computed in linear response, since

H = H[A = 0] −
∫
dr
∑
α

j0α(r)A(r, t) (5.62)

at linear order in A. Thus

〈jα(r, t)〉 =
∑
β

∫
dr′dt′

〈 ∂jα(r, t)
∂Aβ(r′, t′)

〉
H[A=0]

− 〈j0α(r, t); j0β(r′, t′)〉ret

Aβ(r′, t′) (5.63)

which can be rewritten

〈jα(r, t)〉 =
∑
β

∫
dr′dt′[− 〈 ∂2H

∂Aα(r, t)∂Aβ(r′, t′)
〉
∣∣∣∣∣
A=0

− 〈j0α(r, t); j0β(r′, t′)〉ret]Aβ(r′, t′) (5.64)

Since H is a function of Π − qA only differentiating with respect to A is the same than with respect
to Π. One thus has

∂2H

∂Aα(r, t)∂Aβ(r′, t′)

∣∣∣∣∣
A=0

= q2
∂2H

∂Π2
δ(r − r′)δ(t− t′)δαβ (5.65)

As usual it is simpler to go to Fourier space. One has

Aα(q, ω) =
1
iω
Eα(q, ω) (5.66)

In fact since the perturbation is applied adiabatically, all ω should be ω + iδ once again, but we
will stick to the notation ω to keep the notation simple. Thus the full conductivity matrix σαβ(q, ω)
relating the current to the electric field through

jα(q, ω) =
∑
β

σαβ(q, ω)Eβ(q, ω) (5.67)

is given by

σαβ(q, ω) =
1
iω

[−χjα,jβ
(q, ω) − e2δαβ〈

∂2H

∂Π2
〉] (5.68)

where the first term is the Fourier transform of the retarded current current correlation function

χjα,jβ
(r, t) = −iθ(t)〈[jα(r, t), jβ(0, 0)]〉 (5.69)



The second term is purely imaginary. It is called the diamagnetic term. For a simple quadratic
Hamiltonian the diamagnetic term is simply

− ne2

iωM
(5.70)

whereas if the kinetic energy comes from a tight binding Hamiltonian ε(k) = −t cos(k) one would have

1
iω

〈T 〉 (5.71)

i.e. the average value of the Kinetic energy itself. The equation (5.68) is known as the Kubo formula.
It is a very important special case of linear response since it allows to compute a transport property
of the system. Because of the iω in the denominator the dissipation is now given by the real part of σ.
The real part of the conductivity is thus totally given by the current-current correlation function. In
order to get the uniform conductivity, one should first take the limit q → 0 keeping ω finite. Then one
can take the ω → 0 limit to get the static conductivity. Note that this is a quite different procedure
than the one used to obtain the thermodynamic response of the system. In that case it is important
to take first ω → 0 to have a static perturbation. This perturbation can have any wavevector q. This
difference of limit is quite crucial, since as we just saw both the conductivity and the compressibility
are given, up to factors of q and ω by the same correlation function (i.e. density density or current
current).

When the current commutes with the Hamiltonian the conductivity is easily computed. Physically
this means that the current is conserved, and thus one naively expects the conductivity to be infinite.
Because the current commutes with H, one has J(r, t) = J(r, 0). Thus the commutator∫

dr[jα(r, t), jβ(0, 0)] =
∫
dr[jα(r, 0), jβ(0, 0)] = 0 (5.72)

and thus the conductivity is totally given by the diamagnetic term. It is of the form

σαβ(q, ω) = −δαβ
D

i(ω + iδ)
(5.73)

where I have put back the small convergence factor in ω. The conductivity is thus given by

σαβ(ω) = δαβD[πδ(ω) − iP(
1
ω

)] (5.74)

It is thus purely imaginary at any finite frequency and the static conductivity is infinite. Note that in
that case one has obviously ∫ +∞

−∞
Reσαβ(ω) = πe2〈∂

2H

∂Π2
〉 (5.75)

This identity known as a sum rule is in fact true quite generally, even if the current does not commute
with the Hamiltonian. It rest only on the fact that except for the kinetic energy the rest of the
hamiltonian is a function of the density only (and not on Π). It can be proven by looking at the
spectral representation for the conductivity.



5.5 Scattering, Memory function

For a system for which the current commutes with the Hamiltonian, the conductivity is thus trivial.
The difficulty is of course to compute it when there is some source of scattering present in the system
and the current is not conserved any more. Ways of solving this problem depend on the particular
nature of the problem and there is no general method. Naively one could imagine to try naive
perturbation theory in the scattering coupling constant. However it is easy to see that the conductivity
does not have any simple perturbative expansion in the scattering. Indeed the conductivity is infinite
in the absence of scattering and expected to be finite when the scattering is finite, which is obviously
non perturbative. Looking at the Drude result for the conductivity σ = ne2τ/m where τ is the lifetime
strongly suggest that the resistivity should have a well defined perturbation theory in the scattering.
However no Kubo formula for the resistivity exists which makes it difficult to compute perturbatively.

An approximation to compute the conductivity tries to use this idea of a perturbative expansion
for the resisitvity. The idea is to notice that in a presence of a finite lifetime one would expect a
conductivity of the form (Drude form)

σ(ω) =
iCste

ω + i/τ
(5.76)

One will thus rewrite the Kubo formula in this way. If the conductivity is non-infinite at zero frequency
the Kubo formula (5.68) can be rewritten as

σ(ω) =
i

ω
[−χ(ω = 0) + χ(ω)] (5.77)

where χ is the retarded current-current correlation function which can be rewritten as

σ(ω) =
iχ(0)

ω +M(ω)
(5.78)

with
M(ω) =

ωχ(ω)
χ(0) − χ(ω)

(5.79)

M is known as the memory function. So far the transformation is exact. The approximation consist
in computing M perturbatively in the scattering. If the scattering is zero, χ(ω) = 0 for ω finite. Thus
at lowest order in the scattering and at finite frequency

χ(0) − χ(ω) ∼ χ(0) (5.80)

which is just the diamagnetic term. The numerator can be shown to be at least of order two in the
scattering. Indeed integrating by part twice in χ(ω) leads to

− ωχ(ω) = [〈F ;F 〉ω − 〈F ;F 〉ω=0]/ω (5.81)

where the F operators take into account that the current is not a conserved quantity F = [j,H] and
〈F ;F 〉0ω stands for the retarded correlation function of the operator F at frequency ω. Since the F
operators are proportional to the scattering, at the lowest order in the scattering the averages can be
computed with the Hamiltonian H0 in the absence of scattering. Thus the memory function can be
perturbatively computed as

M(ω) =
[〈F ;F 〉0ω − 〈F ;F 〉0ω=0]/ω

−χ(0)
(5.82)



Since the Hamiltonian in the absence of scattering is usually simple the averages can now be done.
It is important to note that the expansion is perfectly controlled for a fixed frequency, when the
scattering becomes small. The (uncontrolled) hope, is that the result will remain well behaved even
in the opposite limit which is the one important experimentally, namely fixed scattering constant and
frequency going to zero. Although it is of course not always the case, check on many examples shows
that the method, which corresponds to a sort of hydrodynamics approximation is quite reliable.



Chapter 6

Examples

Now that we have the whole machinery working, let us try to apply it to some concrete situations.

6.1 Compressibility

To warm up we go back to the compressibility of the crystal, that we already computed in section 4.3.
We start with the crystal Hamiltonian (4.56). The first step is to write the action in imaginary time.
This was already done in (4.57) and (4.58). We want the compressibility, which is the response to the
addition of

δH = −
∫
ddrµ(r)δρ(r) (6.1)

Given the conventions taken for the perturbation for the linear response (compare (6.1) with (5.1)),
the compressibility will be given by minus the retarded density-density correlation function.

To obtain the retarded correlation function, we have first to compute the density-density correlation
function in imaginary time (note the minus sign needed to obtain the proper analytical continuation
as explained in Section 5.2).

χρρ(r, τ) = −〈Tτδρ(r, τ)δρ(0, 0)〉

= − 1
(Ωβ)2

∑
q1,ωn1,q2,ωn2

ei(q1r−ωn1τ)〈δρ(q1, ωn1)δρ(q2, ωn2)〉 (6.2)

Thus the Fourier transform is simply given by

χρρ(q, ωn) = − 1
(Ωβ)

∑
q2,ωn2

〈δρ(q, ωn)δρ(q2, ωn2)〉 (6.3)

We ultimately want the uniform (i.e. q → 0) compressibility, thus we can use for the variation of the
density

δρ(r, t) = ρ(r, t) − ρ0 = −ρ0∇u(r, t) (6.4)

and thus
δρ(q, ω) = −ρ0(iq)u(q, ω) (6.5)

Using (2.71) and (4.58) one obtains

〈u(q, ωn)u∗(q2, ωn2)〉 =
βΩ

ρ0(Mω2
n + cq2)

δq,q2δωn2,ωn (6.6)
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And thus

χρρ(q, ωn) = − ρ0q
2

Mω2
n + cq2

(6.7)

To obtain the retarded function we now make the analytical continuation. The susceptibility is

χ(q, ω) = −χret
ρρ (q, ω) = − χρρ(q, iωn)|iωn→ω+iδ (6.8)

This gives

χ(q, ω) =
ρ0q

2

−M(ω + iδ)2 + cq2
(6.9)

In order to get the compressibility one has first to take the ω = 0 limit and thus one recovers

κ =
ρ0

c
(6.10)

which is the static compressibility and is identical to the value (4.60) we obtained directly from the
Matsubara calculation

But the formula (6.9) contains much more information. In particular it gives the response of the
system to a time and space dependent potential. Let us assume that we excite the system with a
sinusoidal potential. We readily see that there is a divergent response for the system if

ω2 =
c

M
q2 (6.11)

This means that this modes can exist even if the external potential is infinitesimally small. These
are thus collective modes of the system. In that case one recognize the acoustic phonons. Since the
imaginary part is infinitesimal these modes can propagate without damping. Let us look at what
would happen if one added a long range interaction in the system. The Hamiltonian would get an
additional part

HL =
1
2

∫
drdr′V (r − r′)δρ(r)δρ(r′)

=
1

2Ω

∑
q

ρ2
0V (q)q2u(q)u∗(q) (6.12)

In fact the short range elasticity corresponds to V (r) = δ(r), i.e. to a constant V (q). If one has a
Coulomb potential V (r) ∼ 1/r. Thus the Fourier transform behaves as

V (q) ∼ 1
q2

d = 3

V (q) ∼ 1
|q| d = 2 (6.13)

V (q) ∼ log(1/|q|) d = 1

The eigenmodes of the system becomes in this case

Mω2 = q2[c+ ρ0V (q)] (6.14)

Leading at small q and ω to modes behaving as

ω(q)2 ∼ C + q2 d = 3
ω(q)2 ∼ |q| d = 2 (6.15)
ω(q)2 ∼ q2 log(1/|q|) d = 1

One recognizes here the plasmon modes.



6.2 Conductivity of quantum crystals; Hall effect

Let us now move to the transport properties. As we saw the conductivity is given by the current
current correlation function. In order to determine the current in the crystal we can use again the
continuity equation (5.52). Since we are interested in the current for small q, we can use (6.4) to
obtain

− ρ0

∂
∑

β ∇βuβ(r, t)
∂t

+
∑
β

∇βjβ(r, t) = 0 (6.16)

an obvious solution to this equation is simply

jβ(r, t) = ρ0∂tuβ(r, t) (6.17)

and thus the charge current is
jβ(r, t) = eρ0∂tuβ(r, t) (6.18)

where e is the charge of the carriers. A physical way to understand this relation is to look at the
higher harmonics of the density. The density can be viewed as a wave

ρ(x, t) = ρ0 cos(K(x− u(x, t)) (6.19)

thus the maxima of the wave are at x = u(x, t) and thus the wave move with a velocity ∂tu(r, t). This
is an handwaving derivation but the continuity equation shows that this answer is correct.

To compute the conductivity we thus have to look in imaginary time to the correlation function

χαβ(r, t) = −〈Tτ∂τuα(r, τ)∂τuβ(0, 0)〉 (6.20)

Normally we would just proceed with the calculation. However in the case of the crystal there is a
slight simplification that is worth mentioning. If we look at the Fourier transform, and integrate by
part (I have made apparent the time difference τ − τ ′)

χ(q, iωn) = −
∫ β

0
dτe+iωn(τ−τ ′)〈Tτ∂τuα(q, τ)∂τ ′uβ(−q, τ ′)〉

= −
∫ β

0
dτe+iωn(τ−τ ′)θ(τ − τ ′)〈∂τuα(q, τ)∂τ ′uβ(−q, τ ′)〉 + θ(τ ′ − τ)〈∂τ ′uβ(−q, τ ′)∂τuα(q, τ)〉

= −
∫ β

0
dτe+iωn(τ−τ ′)iωn[θ(τ − τ ′)〈uα(q, τ)∂τ ′uβ(−q, τ ′)〉 + θ(τ ′ − τ)〈∂τ ′uβ(−q, τ ′)uα(q, τ)〉]

+〈[uα(q, τ), ∂τuβ(−q, τ)]〉

= −
∫ β

0
dτe+iωn(τ−τ ′)ω2

n[θ(τ − τ ′)〈uα(q, τ)∂τ ′uβ(−q, τ ′)〉 + θ(τ ′ − τ)〈∂τ ′uβ(−q, τ ′)uα(q, τ)〉]

+〈[uα(q, τ), ∂τuβ(−q, τ)]〉 + 〈[uα(q, τ), uβ(−q, τ)]〉

= −
∫ β

0
dτe+iωn(τ−τ ′)ω2

n〈Tτuα(q, τ)uβ(−q, τ ′)〉 + 〈[uα(q, τ), ∂τuβ(−q, τ)]〉 (6.21)

In (6.21) the first term is simply the correlation function of the u. The ω2
n in front comes from the

time derivative in the current. Using the fact that

∂τu(τ)
∂τ

= [H,u(τ)] (6.22)



the second term can be rewritten as

〈[uα(q, τ), [H,uβ(−q, τ)]]〉 (6.23)

Using the crystal Hamiltonian (4.58) one sees that (6.23) is exactly identical to the diamagnetic term.
The fact that the time derivative act on the Tτ product thus compensate exactly here the diamagnetic
term, leaving for the full conductivity

σαβ(q, ω) = e2ρ2
0

1
Ωβ

i

ω

[
ω2

n〈uα(q, iωn)u∗β(q, iωn)〉
]
iωn→ω+iδ

(6.24)

where we have put back the small convergence factor in the frequency. Note that this form is identical
to (5.54) that one would obtain with the continuity equation. Using again the correlation function for
the u

〈uα(q, iωn)u∗β(iωn)〉 =
δαβΩβ

ρ0(Mω2
n + cq2)

(6.25)

one obtains for the conductivity σ(ω) = σ(q = 0, ω)

σαβ(ω) =
δαβe

2ρ0i

(ω + iδ)
= δαβD[πδ(ω) + iP(

1
ω

)] (6.26)

Thus we recover a perfect conductivity. Physically the crystal can slide when submitted to an external
potential.

The above derivation was essentially using the operator form of the current. Let us show that one
can recover the same result directly from the functional integral. We will show it for simplicity in one
dimension to avoid carrying out the axis index α but of course the result and method are quite general.
We will use a reparametrization of the elastic Hamiltonian in term of the “phase” φ(x) = πu(x)/a
and its conjugate variable Π(x) such that [φ(x),Π(x′)] = ih̄δ(x− x′). We rewrite the Hamiltonian

H =
h̄

2π

∫
dx[

1
h̄2 vK(πΠ(x))2 +

v

K
(∂xφ(x))2] (6.27)

where v has the dimension of a velocity and K is dimensionless. This parametrization is quite useful
in term of fermionic problems but The system density is simply

ρ(x) = ρ0 −
1
π
∂xφ(x) + ρ0

∑
p

eip[ 2π
a

x−2φ(x)] (6.28)

where p is a relative integer. Using the expression of the current j(r, t) = e
π∂tφ(r, t) from the continuity

equation and the Heisenberg equation for an operator

∂tO(t) =
i

h̄
[H,O(t)] (6.29)

it is easy to see that the current operator is

j(r, t) =
e

h̄
(vK)Π(r, t) (6.30)

Thus the current-current correlation function in imaginary time is

χ(τ − τ ′) = −(
evK

h̄
)2〈Π(x, τ)Π(x′, τ ′)〉S (6.31)



This correlation can be computed by functional integration

〈Π(x, τ)Π(x′, τ ′)〉S =
∫
DΠ

∫
Dφ e−S/h̄Π(x, τ)Π(x′, τ ′)∫
DΠ

∫
Dφ e−S/h̄

(6.32)

Since the Hamiltonian is quadratic in Π it is easy to perform the Π integration explicitly. One gets

〈Π(x, τ)Π(x′, τ ′)〉S = − h̄2

(πvK)2
〈∂τφ(x, τ)∂τ ′φ(x′, τ ′)〉S + D (6.33)

The second term exactly cancels the diamagnetic term, whereas the first one is exactly the one we
already computed in (6.24). Once again the functional integration avoids to have to deal with the
time ordering operators and such nasty complications linked with the operators.

Now that we know the full conductivity tensor we can study the effect of other external pertur-
bations. Before we embark on the effects of scattering let us look at the simple effect of putting an
external magnetic field on the system. Let us assume that we have a two dimensional crystal in the
x− y plane and that we put a magnetic field along the z direction. In that case B = ∇∧A is realized
if we take for example A = (−By/2, Bx/2, 0). The elastic Hamiltonian in the presence of the external
field, and taking into account that we have two components for the displacement field becomes

1
2
[
∫
d2r

∑
α

1
ρ0M

(Πα − aAα)2 + ρ0

∑
αβ

c(∇αuβ(r))2] (6.34)

where we have assumed isotropic elasticity. The operator A needs to be made more precise. To do so
let us go back to the expression for the current of a single particle. In that case

Hkin =
1

2M
(Π −

∫
drA(r)|r〉〈r|)2 (6.35)

leading to the current (5.59). For many particles one has

Hkin =
∑

i

1
2M

(Πi −
∫
drÅ(r)|r〉〈r|)2 (6.36)

and the current becomes

jα(r, t) =
q

2M

∑
i

[Πi|r〉〈r| + |r〉〈r|Πi] −
∑

i

q2

M
Aα(r, t)|r〉〈r| (6.37)

Since one wants the long wavelength part of the current one has to understand the current at point r
as an average of the current operator on a volume large compared to the lattice spacing an centered
around point r. Since the wavefunctions of a given site are essentially zero above the lattice spacing∫

r0

dr|r〉〈r| ∼ 1 (6.38)

for the particles around the site r0. Thus (6.39) becomes

jα(r, t) =
q

M
[Πri=rρ0] −

q2

M
Aα(r, t)ρ0

=
q

M
[Π(r)] − q2

M
Aα(r, t)ρ0 (6.39)



which is the result that we derived directly from the continuity equation and the expression of the
density operator in the continuum limit.

In the presence of the magnetic field, one can proceed in a similar way. The operator projecting
the particle i at point r is (is it easy to check that they have the same matrix elements)

|r〉〈r| = δ(r −R0
i − ui) (6.40)

and thus for all the particles
|r〉〈r| =

∑
i

δ(r −R0
i − ui) (6.41)

The Hamiltonian becomes

Hkin =
∑

i

1
2M

(Πi −
∫
drÅ(r)

∑
i

δ(r −R0
i − ui))2

=
∑

i

1
2M

(Πi − Å(R0
i + ui))2

=
∫
ddr

1
2Mρ0

(Π(r) − ρ0Å(r + ui))2 (6.42)

We can write it in a more convenient form noting that Aα = −εαβrβB/2 where εαβ is the antisymmetric
tensor εxy = −εyx = 1 and εxx = εyy = 0. Thus the potential vector part in (6.42) reads

Aα = −B
2
εαβ(rβ + uβ(r, t)) (6.43)

We can go from the Hamiltonian to the action by performing the integration on Π, using (4.30). The
action will be given by ∑

α

∫
d2r

∫ β

0
dτiΠ∂τuα(r, τ) −H(Π, u) (6.44)

The integration over Π can be done easily doing first the shift Π → Π − qA leading to the action

∑
αβ

∫
d2r

∫ β

0
dτ [i

−eB
2

εαβρ0(rβ + uβ(r, t))](∂τuα(r, τ)) +
∑
α

ρ0
1
2
[M(∂τuα(r, τ))2 + c(∇βuα(r, τ))2]

(6.45)
One can easily see that the term containing

∫ β
0 dτr∂τ is a total derivative over time and thus vanishes

due to the periodicity in time. The action is thus given by

∑
αβ

∫
d2r

∫ β

0
dτ [i

−eBρ0

2
εαβuβ(r, t))](∂τuα(r, τ)) +

∑
α

ρ0
1
2
[M(∂τuα(r, τ))2 + c(∇βuα(r, τ))2] (6.46)

The second part in (6.46) is the standard elastic action. The first term is easy to identify. If we consider
the Lorentz force it is simply given by qv ∧ B where v is the velocity. Here v = ∂τu. The energy
associated to the work of the Lorentz force is simply fu and one recovers the expression in (6.46).
One can easily rewrite the action in Fourier space. It is convenient to use a matrix representation

1
2βΩ

∑
q,ωn

(u∗x(q, iωn), u∗y(q, iωn))

(
ρ0[Mω2

n + cq2] +ωnBeρ0

−ωnBeρ0 ρ0[Mω2
n + cq2]

)(
ux(q, iωn)
uy(q, iωn)

)
(6.47)



It is important to note that although we used a matrix to show the coordinates x, y, they are nothing
more than another indice and do not play a special role compared to r or τ . We have to diagonalize the
actions. We know how to do that for r and τ by using the Fourier transform. Because the correlations
in q, ωn are diagonal we only have to invert the resulting 2×2 matrix to obtain the correlation functions
〈uα(q, ω)u∗β(q, ω)〉. If we denote

G−1(q, ωn) = ρ0

(
Mω2

n + cq2 +ωnBe
−ωnBe Mω2

n + cq2

)
(6.48)

Then the conductivity is simply given by

σαβ = −e2ρ2
0i(ω + iδ)Gαβ(q, iωn → ω + iδ) (6.49)

Let us first look at the effect on the conductivity. The longitudinal conductivity is given by

σxx(ω, q = 0) = σyy(ω, q = 0) =
−ie2ρ0(ω + iδ)Mω2

n

M2ω4
n +B2e2ω2

n

∣∣∣∣∣
iωn→ω+iδ

=
−ie2ρ0(ω + iδ)M
M2ω2

n +B2e2

∣∣∣∣∣
iωn→ω+iδ

=
−ie2ρ0ωM

−M2(ω + iδ)2 +B2e2
(6.50)

Thus the static conductivity is now zero at zero frequency. The conductivity is however infinite at a
frequency

ωc = eB/M (6.51)

which is known as the cyclotron frequency. Physically this traduces the fact that the electrons in the
presence of the magnetic field describe circular orbits.

We can also look for the Hall resistance. It is defined in a geometry where no current can flow along
the y direction. One has a current flowing along x. The Hall resistance is defined as RH = Vy/Ix.
Using the relation between the current and the field(

Ex

Ey

)
=

(
ρxx ρxy

ρyx ρyy

)(
Jx

Jy

)
(6.52)

and between the field and the current(
Jx

Jy

)
=

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
(6.53)

shows that the resistivity and conductivity tensor are invert of one another. The Hall resistance
can be deduced from (6.52) by imposing that Jy = 0, and using Ey = −Vy/Ly. In that case one
has Ey/Jx = ρyx. We could compute σ and then deduce ρ but we can save some time. Since the
conductivity tensor is given (up to a factor ω) by the matrix G, the resistivity tensor is simply

ραβ =
i

e2ρ2
0(ω + iδ)

[G−1]αβ (6.54)



One can thus read directly the Hall resistance from the action

ρyx =
−iωneB

(ω + iδ)e2ρ0

∣∣∣∣
iωn→ω+iδ

=
−B
eρ0

(6.55)

The Hall resistance is thus equal to its classical value, unaffected by the interactions among the
particles in the crystal and the quantum fluctuations. Note that quite remarkably this result would
remail valid for the crystal even if one add scattering provided it is isotropic, i.e. it acts only on the
diagonal elements of the action.

6.3 Commensurate systems

Let us now move to more complicated systems. One particular case of interest is when the crystal is
put in an external potential. This can be due for example to the periodic potential of the atoms of
the underlying microscopic system in which the quantum crystal is created. One has thus to add to
the elastic Hamiltonian a term

H =
∫
ddrV (r)ρ(r) (6.56)

where V (r) is a potential. Once again we can use the decomposition of the density. If V (r) has only
Fourier component at a wavelength large compared to the lattice spacing, then (6.59) becomes

H = −ρ0

∫
ddrV (r)∇u(r) (6.57)

It is then easy to the see that the potential V (r) can be trivially absorbed by the change of variables

u(r) → u(r) − 1
M

∫ r

ddr′V (r′) (6.58)

Such a redefinition of u will of course affect the correlation functions, but since the current is given
by ∂τu, the current, and hence all transport properties, will be unaffected.

We thus have to take into account higher harmonics of the potential. If we consider a potential
which is periodic with a periodicity close to the one (let us say with a wavevector K0) of the crystal
we will get from (6.59)

H = −ρ0

∫
ddrV0 cos(K0u(r)) (6.59)

we thus recover that a periodic external potential leads to a sine Gordon type Hamiltonian.
Such an Hamiltonian is not exactly solvable but we can try to get the transport properties using

the variational approach introduced in Section 3.2. Let us focuss for simplicity to the case of a one-
dimensional quantum system at T = 0 and use again the notations of Section 3.2. In that case
because of the time direction we have to deal with a two dimensional classical system. As we analyzed
in Section 3.2, there are two possible phases, depending on the parameter K. If K > Kc = 2 the
periodic potential is irrelevant. The variational solution is G = G0. The conductivity is thus the one
of a perfect crystal with a Drude peak at ω = 0. On the other hand for K < Kc a mass appears in
the propagator. The conductivity would become in the variational approximation

σ(ω) =
e2vK

π

i

ω + iδ

ω2
n

ω2
n +m

∣∣∣∣∣
iωn→ω+iδ

(6.60)



when the mass m is zero one recovers the standard result. For a finite mass the conductivity would
has a delta function peak at a frequency

√
m and thus be zero at ω = 0. This traduces the fact that

the crystal is pinned by the periodic potential and cannot slide when a small external force is applied.
The fact that the conductivity is non zero only at a single frequency is obviously an artefact of the
variational approximation that has replaced the original problem where all modes are coupled by a
single Harmonic one. We will see a better expression for the conductivity, using a memory function
approach, in the exercises.





Chapter 7

Out of equilibrium classical systems

In the previous sections we have focussed on systems that are in thermodynamic equilibrium. However,
in many situations it is interesting to know what happens when the system is pushed out of equilibrium.
This can be the case when the perturbation that one applies is too strong to use linear response.

Obviously such problems are much more difficult to treat since we loose most of our theoretical
tools. I will illustrate on the simple case of classical systems some of the techniques that can be used
to tackle this kind of problems.

7.1 Overdamped dynamics

Instead of dealing with the equilibrium of the system, let us now focuss on the dynamics of a classical
system. We thus have to solve the equation of motion

ma =
∑

F (7.1)

where a is the acceleration of the system and F all the forces. Since we are dealing with macroscopic
system we expect them to reach some kind of stationary state even when they are out of equilibrium,
and thus we will focuss here on systems that have an overdamped dynamics. The equation of motion
becomes

η
du

dt
=
∑

F (7.2)

where u is some internal coordinates of the system and η a friction coefficient. It is easy to see that
even if one added the intertial term it would not affect the low frequency properties if the system
reaches some stationary state. Indeed it would be proportional to ω2u whereas the damping is ωu,
and thus always negligible at small ω. We will thus drop this term completely from now on. If the
system can be described by an Hamiltonian H the forces at given by −∂H/∂u. Thus the equation of
motion is quite generally given by

η
∂u

∂t
= −∂H[u]

∂u
+ Fother (7.3)

where Fother describes the force that do not derive from a potential energy and that can drive the
system out of equilibrium. For example this can be for a crystal and externally applied constant
force F that will make the crystal slide. For example if one takes a crystal with an elastic energy the
equation of motion would be

η
∂u(r, t)
∂t

= ∂2
ru(r, t) + Fext (7.4)
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If we could solve this equation, given the initial configuration u(t0) we could compute all properties
of the system. For example if one takes the case of the driven crystal. An obvious solution is
u(r, t) = u0 + F

η t which describes the fact that the crystal move uniformly with the velocity F/η. In
general of course solving the equation (7.3) is an incredibly complicated task.

7.2 Link with thermodynamics

Before we embark on a way to rewrite the equation (7.3) in a more convenient form, let us see how one
can recover the case of a system in equilibrium with a thermostat at temperature T . If one consider
a system whose state can be described by a random variable up, with a certain probability P (u), one
can define an evolution law (known as a Markov chain), that gives the variable up+1 as a function of
the variable up. We want the successions of random variables up to sample a given distribution that
we call e−S(u) (in practice for us this will be the Boltzmann distribution), i.e. that is one averages the
sequence of variables one get the results according to the distribution S

1
N

∑
p

f(up) =
∫
duf(u)e−S[u] (7.5)

for N becoming large enough.
In order to reach that goal it is sufficient that (i) the evolution law that transform the variable x

into the variable y allow to reach any configuration; (ii) that the rule of transformation satisfies the
reversibility condition

e−S[x]P (x→ y) = e−S[y]P (y → x) (7.6)

Indeed it is easy to see that if (7.6) is satisfied the distribution e−S[x] is stationary. The probability
to have the variable y is indeed given, if x is distributed along e−S[x] by

P (y) =
∫
dxe−S[x]P (x→ y)

=
∫
dxe−S[y]P (y → x)

= e−S[y] (7.7)

by normalization of P (x → y). In addition any initial distribution will converge to the equilibrium
distribution. If we define the distance of the distribution Mp(x) at “time” p as

Dp =
∫

|Mp(x) − e−S[x]|dx (7.8)

then at time p+ 1 the distance is

Dp+1 =
∫
dy|

∫
dxMp(x)P (x→ y) − e−S[y]|

=
∫
dy|

∫
dx(Mp(x) − e−S[x])P (x→ y)|

≤
∫
dy

∫
dx|(Mp(x) − e−S[x])P (x→ y)|

≤
∫
dx|Mp(x) − e−S[x]| = Dp (7.9)



the equality beeing obviously only reached at equilibrium. Thus if we have a way to construct such
an evolution in “time” we see that simply performing averages of the variables will allow us to reach
thermal equilibirum distributions. For the hamiltonian H this can be done by adding to the equation
(7.3) a “thermal” noise.

η
∂u

∂t
= −∂H[u]

∂u
+ ζ(r, t) (7.10)

Let us take this thermal noise uncorrelated from different sites and different times.

〈ζ(r, t)ζ(r′, t′)〉 = Γδ(r − r′)δ(t− t′) (7.11)

It thus obeys the probability distribution

P (ζ) = e−
1
2Γ

∫
drdtζ2(r,t) (7.12)

where Γ is a coefficient we will determine. If one discretize (7.10) one gets

η(ut+dt − ut) = −∂H[ut]
∂ut

+ ζ(r, t) (7.13)

Thus the probability to go from the variable ut to ut+dt is equal to the probability to find a ζ(r, t)
that satisfies (7.13). One has thus

P (x→ y)
P (y → x)

=
∏

r P (ζ(r, t) = η∂tu(r, t)|ut
+ ∂H[ut]

∂ut
)∏

r P (ζ(r, t) = − η∂tu(r, t)|ut+dt
+ ∂H[ut+dt]

∂ut
)

= e
− 1

Γ

∫
dr
∫ t+dt

t
dtη∂tu

∂H[ut]
∂ut

= e−
η
Γ

[H[u(t+dt)]−H[u(t)]] (7.14)

This gives back the Boltzmann distribution provided that one takes for the thermal noise Γ = ηT .
The equation (7.10) is known as a Langevin equation. It allows to directly recovers the equilibrium
solution out of a dynamical solution. Let us consider for example the case of the crystal. In that case
one can easily solve the equation in Fourier space

(−iηω + cq2)u(q, ω) = ζ(q, ω) (7.15)

In order to recover the thermal average one would have to perform the average over time of

I = 〈u(q, t)u∗(q, t)〉 (7.16)

where 〈〉 denotes the average over the thermal noise. If we choose the initial time at which the thermal
noise is applied at t = −∞ then the correlations become invariant by translation in time and thus the
time average is not necessary ((7.16) is at equal time). The correlation function is thus just given by

I =
∫
dω1(2π)

∫
dω2(2π)

〈ζ(q, ω1)ζ(−q, ω2)〉
(−iηω1 + cq2)(−iηω2 + cq2)

=
∫
dω(2π)

ηT

(−iηω + cq2)(iηω2 + cq2)

=
T

cq2
(7.17)

which is just the thermal propagator.



7.3 MSR Formalism

Dealing with the Langevin equation (7.10) is thus very convenient since it allows to solve both for
equilibrium and non-equilibrium situations. Unfortunately dealing with an equation is not very conve-
nient. So we will rewrite the equation as an integral. Indeed all correlation functions can be computed
by averaging over all configurations u that satisfy the equation of motion. In other word we have to
compute averages with ∫

Duδ(η∂tu =
∑

F ) (7.18)

It is easy to rewrite this constraint in an exponential form by introducing a second field.∫
Du(r, t)Dû(r, t)e−iû(r,t)(η∂tu−

∑
F ) (7.19)

We have now reduced our problem to a functional integral. The price to pay to deal with the dynamics
is that this integral now contains two independent fields instead of one, for the case of equilibrium.
This formalism is known as the Martin-Siggia-Rose formalism. It is in fact the application to the
classical case to a more ancien (but more heavy formulation) formalism to deal with the out of
equilibrium quantum systems, known as the Keldysh technique. (7.19) can be further simplified since
the integration over the thermal noise can be explicitly performed. We thus end up with the following
measure ∫

Du(r, t)Dû(r, t)e−S[u(r,t),û(r,t)] (7.20)

with
S =

∫
drdti[û(r, t)(η∂tu+

∂H[ut]
∂ut

− Fother)] − ηT

∫
drdt(iû(r, t))(iû(r, t)) (7.21)

Since one has two fields, there are now several correlation functions that can be computed. Let
us illustrate the various correlation functions by taking the action corresponding to a crystal. In that
case the action can be written

S =
(
u(−q,−ω) û(−q,−ω)‘

)( 0 i
2 [iηω + cq2]

i
2 [−iηω + cq2] ηT

)(
u(−q,−ω)
û(−q,−ω)‘

)
(7.22)

This can be easily inverted to lead to

〈u(q, ω)u(−q,−ω)〉 =
2ηT

(ηω)2 + (cq2)2
(7.23)

〈u(q, ω)û(−q,−ω)〉 =
i

−iηω + cq2
(7.24)

〈û(q, ω)û(−q,−ω)〉 = 0 (7.25)

What is the meaning of each of these correlation function. The 〈uu〉 one is the usual correlation.
It is easy to check that 〈ûû〉 will always be zero. To understand 〈uû〉, let us add to the Hamiltonian
a small perturbation linearly coupled to the field u

δH = −
∫
drf(r)u(r) (7.26)

It is easy to see that this will give rise to a term f(r) in the action (7.21). Thus if one computes the
reponse of the field u to the perturbation the response will be given by

R = 〈u(r, t)〉f (7.27)



and thus at linear order the response to the field f is simply given by

R = i〈u(r, t)û(r′, t′)〉 (7.28)

We see that contrarily to the equilibrium case where correlation and response were trivially related
by the fluctuation dissipation theorem, here they correspond to two different entities. This is natural
since for out of equilibrium systems the fluctuation dissipation theorem will not hold in general. One
thus need to different fields for the two different objects that are the correlation and the response
in such systems. Of course in equilibrium, i.e. when no external forces are present the fluctuation
dissipation theorem will hold and correlation and response will be trivially related.

As an example let us look at our elastic system In that case the correlation C and the response R
are given by

Cqω =
2ηT

(cq2)2 + (ηω)2
Cqt = T

e−cq2|t|/η

cq2
(7.29)

Rqω =
1

cq2 − iηω
Rqt =

θ(t)
η
e−cq2t/η (7.30)

They are related by the fluctuation-dissipation theorem TRrt = −θ(t)∂tCrt. The θ(t) is there to ensure
causality.

This formalism has several advantages, in particular when dealing with disordered systems. More
examples will be seen in the exercises.
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