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Finite-temperature crossovers in periodic disordered systems
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We consider the static properties of periodic structures in weak random disorder. We apply a functional
renormalization group approach (FRG) and a Gaussian variational method (GVM) to study their displacement
correlations. We focus in particular on the effects of temperature and we compute explicitly the crossover length
scales separating different regimes in the displacement correlation function. We compare the FRG and GVM
results and find excellent agreement. We show that the FRG predicts, in addition, the existence of a third length
scale associated with the screening of the disorder by thermal fluctuations and discuss a protocol to observe it.
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I. INTRODUCTION

Understanding the properties of elastic systems in dis-
ordered environment represents a key problem in physics
because of their relevance in a number of experimental
situations and their own theoretical interest. Despite very
different microscopic mechanisms, a large variety of systems
can be described as elastic manifold embedded in random
media [1]. Typically these are divided into two categories. One
encompasses interfaces in magnetic [2,3], ferroelectric [4,5]
materials or spintronic systems [6], fluid invasion in porous
media [7] and fractures [8,9]. The second concerns random
periodic systems such as charge-density waves [10], vortex
lattices in type II superconductors [11] and Wigner crystals
[12]. All these systems are characterized by the competition
between an elastic energy that wants the manifold flat or the
periodic system ordered and the impurities—that are inevitably
present in any real system—that tend to distort it in order to
accommodate it in the optimal positions. This competition
results in a number of interesting physical features ranging
from self-similarity in their static correlation functions to a
very rich (and glassy) dynamical behavior [13].

While the static asymptotic properties of both interfaces
and periodic systems are well understood at present at very low
temperature, the effects of temperature are still unclear in most
systems. In particular, for interfaces this question has recently
been the focus of several studies (see, e.g., Refs. [14–17] and
references therein).

The corresponding question in the second class of systems,
i.e., in periodic structures, is still largely not explored.
Despite the similarities in the theoretical modeling, periodic
systems show some important differences compared to in-
terfaces, in particular, for weak disorder quasi-long-range
positional order exists [18–20], at variance with the power-law
roughening of interfaces. In most of the analyses on such
systems the effect of temperature has been mostly disregarded
since they are controlled by a zero temperature fixed point
and thus low temperatures are not essentially affecting the
asymptotic behavior of the correlation functions with dis-
tance. However, as is the case of interfaces, temperature
can affect both the amplitude of asymptotic regimes and
generate crossover scales and intermediate distance regimes.
It is thus interesting, especially in view of contact with
experimental systems, to have a better understanding of such
effects.

Two methods that have been employed with great success
for the study of periodic systems are the functional renor-
malization group (FRG) method and a Gaussian variational
method (GVM). Initially introduced for interfaces [21,22],
they have been extended to deal with periodic systems as
well [18,19,23,24] and shown to give consistent results to
each other. Static correlation functions have been computed
using these methods [18,25,26]. However, for the FRG the
zero-temperature fixed point was assumed from the start, so
the relevant length scales created by the finite temperature
were not investigated.

In this paper we fully incorporate the temperature effects in
the FRG and use this technique to investigate the various scales
that are created by the finite temperature in the displacement
correlation functions. We compare these results with the ones
obtained by the GVM and we show that they give consistent
results, concerning the different length scales characterizing
the relative displacement correlation functions of the system.

The paper is organized as follows: In Sec. II we introduce
the model for periodic disordered elastic systems and in
Sec. III we outline the strategy to study the problem by
use of the functional renormalization group technique. In
Sec. III A we explain the way the Fourier transform of the
displacement correlation function (FTD) is computed by FRG
and in Sec. III B we discuss the length scales that characterize
the displacement correlation function obtained by FRG. In
Sec. IV we use a variational approach to obtain the crossover
lengths.

In Sec. V we compare the results for the exponents
governing the FTD and the different length scales obtained
within the two approaches and discuss their salient features.
In Sec. VI we conclude.

II. MODEL

We consider a periodic elastic system where the position
of each particle is characterized by a coordinate Ri = Ro

i + ui

and Ro
i forms a perfect lattice. ui is the displacement field that

we consider in the elastic limit ui+1 − ui � a, where a is the
typical lattice spacing. In this case ui can be replaced by a
continuous field and the energy of the system in a disordered
environment can be approximated by the Hamiltonian:

H = c

2

∫
ddr |∇u|2 +

∫
ddr W (r)ρ(r,u), (1)
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FIG. 1. A set of lines forming a periodic lattice in a plane, put in
a random environment, can be described in the elastic limit by the
Hamiltonian (1).

where c is the elastic constant. For simplicity, we have taken
the displacements ui as scalars and thus considered here only
a single elastic constant. The extension to more complex
elastic forms is straightforward (see, e.g., Ref. [19]). The
Hamiltonian (1) would, for example, describe a set of lines
constrained to move in planes in a two-dimensional or three-
dimensional lattice (see Fig. 1 for the two-dimensional ver-
sion). The density ρ can be expressed [19] using the vectors of
the reciprocal lattice K , ρ = ρ0

∑
K �=0 eiK(x−u(r)), where ρ0 is

the average density and x is the coordinate along the direction
of u. If we take the random potential W (r) to be Gaussian
and with correlations W (r)W (r ′) = δ(r − r ′)D0, the effective
potential in the Hamiltonian (1) reads V (r,u) = W (r)ρ(r,u)
with correlations V (r,u)V (r ′,u′) = R(u − u′)δ(r − r ′) and
R(u − u′) = D0ρ

2
0

∑
K �=0 eiK(u(r)−u′(r)), where we disregarded

rapidly oscillating terms. In the following, for simplic-
ity we will assume R(u) as made of a single harmonic,
namely:

R(u) = D cos(Ku), (2)

and we will work with the correlator of the random force
Fdis such that Fdis(r,u)Fdis(r ′,u′) = δ(r − r ′)�(u − u′) with
�(u − u′) = −R′′(u − u′). Such a situation is, for example,
pertinent for charge-density waves [10].

We identify the roughness exponent ζ as the one en-
tering in the correlation of the displacement field 〈(u(r) −
u(0))2〉 = |r|2ζ . Various regimes can be identified in the
relative displacement correlation function. In particular, at
zero temperature, systems with a single harmonic exhibit
two regimes depending on the length scale: a Larkin regime
where ζ = (4 − d)/2 at the smallest scales [27] crossing over
to the random periodic phase asymptotically with ζ = 0 and
logarithmic grow of the displacements ζ = 0. In the presence
of several harmonics a third regime (random manifold) would
exist for the displacements [19]. We will concentrate here
on the simple case of the single harmonic to focus on
the additional length scales appearing with the temperature.
We also consider that the elastic model is valid at all
temperatures, i.e., that no topological defects will appear in the
system. Such an assumption is exact for the above system of
lines.

III. FUNCTIONAL RG APPROACH

We define �̃(u) = Sd�d

(c�2)2 �(u) and T̃ = Sd�d

c�2 T , where Sd

is the surface of the hypersphere in d dimension divided by
(2π )d and � is an ultraviolet cutoff.

Upon variation of the cutoff the correlator of the disorder
and the other physical quantities are renormalized. The main
difficulty of such disordered systems is that the whole function
should be kept, leading to a functional renormalization. The
FRG equation governing the statics of the correlator of the
force specialized to random periodic (RP) systems having a
roughness exponent ζ = 0 reads [19,22,28]:

∂l�̃(u) = ε�̃(u) + T̃ �̃′′(u)

+ �̃′′(u)[�̃(0) − �̃(u)] − (�̃′)2

∂lT̃ = (ε − 2)T̃ . (3)

At zero temperature this equation is known to lead to a
singularity around the origin �̃(0) after a finite length scale
lc in the flow. In particular, the static length scale at which
the curvature of the correlator �′′(0) blows up for T = 0 is
defined as [22,28]:

lc = 1

ε
log

[
1 + ε

3�̃′′
0(0)

]
, (4)

the so-called Larkin length. The presence of temperature in
the flow (3) cures this nonanalyticity rounding the singularity
(cusp in the function �). For d > 2 the cusp around the
origin in presence of temperature appears asymptotically at
large scales for which the temperature renormalizes to zero
according to (3). The fixed point solution for RP systems for
u ∈ [0,1] is known exactly and reads [19,28]:

�̃∗(au) = a2ε

6

[
1

6
− u(1 − u)

]
. (5)

The function is continued periodically for u �= [0,1] and the
nonanalyticity around u = 0 is evident.

In order to study the effects of finite temperature we need
not only the fixed point but the full flow. To study numerically
the flow we start the procedure with a correlator of the form
�̃(u) = �̃0 cos(2πu) with �̃0 = 0.005 and we focus on the
flow in the interval u ∈ [−0.5,0.5]. We discretize this domain
in 2N + 1 intervals with N = 1000. The discretization in the
running length of the flow is set to δl = 10−6. The flow is
then obtained by solving the differential equations using a
finite-difference method. We used a forward first derivative
for u < 0 and a backward first derivative for u > 0. The
point u = 0 was treated with a central first derivative until
its second derivative reaches a threshold value beyond which
it was taken a forward derivative. Second-order derivatives
were considered all central.

In Fig. 2 we show the behavior of the correlator �̃l(u) under
FRG with the temperature initialized to the values T̃ = 0.01
(upper panel) and T̃ = 0.1 (lower panel). In the upper panel of
Fig. 2 we see that the flow tends “monotonically” towards the
fixed point. In the lower panel of Fig. 2, instead, the correlator
first flows towards a vanishing amplitude function and after a
certain length scale flows towards the fixed point �̃∗, shown
with a red solid line.
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FIG. 2. (Color online) The disorder correlator at different scales
with two different initial temperatures: T̃ = 0.01 in the upper panel
and T̃ = 0.1 in the lower panel. The flow in the two cases differs. In
the upper panel the flow is “monotonically” towards the asymptotic
value �̃∗. In the lower panel the flow is first towards a vanishing
amplitude function and then, only after a finite length scale, the flow
goes back to the asymptotic zero temperature function �̃∗.

A. Displacement correlation function within the FRG

We can now compute the FTD:


(q) = T G̃(q) = 〈u(q)u(−q)〉, (6)

which satisfies the RG flow equation (specialized to the case
ζ = 0):


(q,T ,�) = edl
(qel,T e(2−d)l ,�(l)). (7)

One can set el∗q = 1/a in (7) and obtain:


(q,T ,�) =
(

1

qa

)d[
Tl∗

ck2
+ �l∗ (0)

c2k4

]
k=1/a

∼ q−ν . (8)

The expression between squared brackets is the perturbative
result at finite temperature, as obtained within the Larkin
model [27], which is valid at the length scale k−1 = a. The
formula defines the exponent ν which is directly related to the
roughness exponent ζ via ζ = (ν − d)/2.

In Fig. 3 we show the results obtained for the FTD
at T̃ = 0.1 and ε = 0.5. The logarithmic plot with dashed
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FIG. 3. (Color online) With a solid red line we show the displace-
ment correlation function as obtained from Eq. (8) with T̃ = 0.1 and
ε = 0.5. Dashed lines highlights the different regimes characterized
by different exponents. In particular, at large q one finds the
thermal regime with ν � 2 (green dashed line), at intermediate q

the Larkin regime (blue dash-dotted line) with ν � 4, and at small
q the asymptotic exponent typical of random periodic system, i.e.,
ν = d = 3.5 (pink dotted line).

tangents shows the three regimes encountered as a function
of q. At very short length scales temperature fluctuations
dominate the correlation and disorder is unimportant. One
has a thermal regime with an exponent ν = 2. One then
crosses over to the Larkin regime with the exponent ζ =
(4 − d)/2, i.e., ν = 4 (which from our plot gives an exponent
ν � 3.9). Finally, at large scales one recovers the exponent
ν = d = 3.5, which characterizes the random periodic systems
whose asymptotic behavior is given by ζ = 0 and logarithmic
correlation functions.

These three regimes define two crossover scales that we
compute in the next section. In addition to these length scales
that could be expected on a physical basis, we will show that
the FRG gives evidence of a third length scale.

B. Crossover length scales within the FRG

We can identify the crossover length lth = q−1
th that sepa-

rates the thermal from the Larkin regime by considering only
the linear flow of �̃. Indeed, in these two regimes the effective
disorder remains small.

Let us solve the linearized flow,

∂l�̃(u) = ε �̃(u) + T̃ e−l(d−2)�̃′′(u). (9)

Defining Dl = T̃
∫ l

0 dl′e−(d−2)l′ = T̃
d−2 [1 − e−(d−2)l], the solu-

tion is given by [17]:

�̃(u) = eεl

√
4πDl

∫
du′ e− (u−u′ )2

4Dl �̃l=0(u′) (10)

and if we choose �̃l=0(u) = �̃0 cos(Ku) it gives:

�̃(u) = �̃0e
εle−K2Dl cos(Ku)

� �̃0e
εle−K2 T̃

d−2 cos(Ku). (11)

Using the solution (11), we can extract qth from Eq. (8), as
the point where the thermal part of 
(q) equals the disordered
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term. This gives:

qth =
√

�0

cT
e
−K2 T Sd �d−2

2c(d−2) = K

√
D̃

c̃T
e−K2 L2

l
4 , (12)

where we introduced the Lindemann length which measures
the strength of thermal fluctuations:

L2
l = 〈u2〉T = 2T

∫
ddq

(2π )d
1

cq2
� 2T Sd

c(d − 2)
�d−2. (13)

Here and in the following we define c = c̃/ad and D = D̃/ad ,
where c̃ and D̃ have the dimension of an energy and the squared
of an energy.

The Larkin length lL = q−1
L , which marks the end of

the Larkin regime and the passage towards the asymptotic
random periodic regime, can be defined as the point where
the nonlinear terms in the flow of �̃ become important with
respect to the linear terms. From this criterion one gets:

qL �
[
�0SdK

2

c2ε

]1/ε

e
−K2 T Sd �d−2

εc(d−2)

= 1

a

[
D̃Sd (Ka)4

c̃2ε

]1/ε

e−K2 L2
l

2ε . (14)

The criterion to have a Larkin regime becomes qth > qL. This
criterion is always satisfied at low and high temperatures.
However, there might be some intermediate range of tempera-
ture where the criterion is not satisfied and the Larkin regime
disappears. We will come back to that point in Sec. V.

Quite interestingly, in addition to the above length scales qth

and qL an additional crossover length scale can be identified
from the FRG. Indeed, an additional length scale can be defined
by the scale at which in the flow of �̃ the linear term in the
flow (3) proportional to the temperature dominates with respect
to the one multiplying ε. This defines:

qT � 1

a

[
c̃ ε

T Sd (Ka)2

] 1
2−ε

� 1

Ka2

√
c̃ ε

T Sd

. (15)

At high-enough temperatures, the inverse length scale q >

qT is associated with the flow of the correlator that tends
towards a vanishing amplitude function, as shown in Fig. 2 for
T̃ = 0.1. This behavior, understood as an effective reduction
of the influence of the disorder due to thermal fluctuations
upon increasing the length scale, is manifested also in the
(disordered part of the) FTD, as we discuss in Sec. V and show
in Fig. 6. The quantity (15) can be made small as needed upon
increasing the temperature, always avoiding, though, ending
in a melting regime for too-large thermal fluctuations.

IV. GAUSSIAN VARIATIONAL APPROACH

In order to complement the FRG analysis we consider a
GVM and compare the two methods. Such a comparison,
in addition to providing some more transparent physical
interpretation to the length scales, is also of practical sig-
nificance. Although the FRG is essentially exact when ε � 1
it become quantitatively unreliable in the interesting physical
dimensions, and it is very difficult to be generalized to more
complicated elastic terms. On the other hand, the variational

method can also handle such complications and thus can be
used in more realistic situations also to compute the thermal
crossover scales.

We follow here the methodology of Ref. [19] and thus give
only the main steps.

A. Replicated Hamiltonian

The starting point of the Gaussian variational method is the
following replicated Hamiltonian [19]:

Hn = c

2

∑
a

∫
ddx(∇ua(x))2

− D

2T

∑
a,b

∫
ddx cos{K[ua(x) − ub(x)]}, (16)

where K is defined in Eq. (2). We look for the best quadratic
Hamiltonian, approximating (16):

Hn
0 = 1

2

∑
a,b

∫
ddq

(2π )d
G−1

ab (q)ua(q)ub(−q), (17)

where G−1
ab is a n × n matrix of variational parameters. We can

choose G−1
ab of the form:

G−1
ab (q) = cq2δa,b − σab, (18)

where σab does not depend on q. The matrix G−1
ab is found

optimizing the variational free energy Fn
var = 〈Hn − Hn

0 〉0 +
Fn

0 , where the average is over Hn
0 and Fn

0 = −T log Hn
0 . We

define the connected part as G−1
c (q) = ∑

b G−1
ab (q). From the

minimization one obtains:

G−1
ab = cq2δa,b + 1

T

∂

∂Gab

〈
Hn

dis

〉
, (19)

and the following saddle point equations follow:

σa �=b = D

T
K2e− K2

2 Bab(x=0),

Bab(x) = 〈[ua(x) − ub(0)]2〉,

= T

∫
ddq

(2π )d
[Gaa(q)

+Gbb(q) − 2 cos(qx)Gab(q)],

σaa = −
∑
b �=a

σab = σ̃ ,

Gc(q) = 1

cq2
, (20)

which should be evaluated in the n → 0 limit. In the following
we restrict ourselves to the study of the full replica symmetry
breaking (RSB) ansatz of Gab as it is known to be the correct
one [19,21].

B. RSB ansatz

We parametrize the matrix Ĝ with its diagonal terms G̃ and
the off-diagonal terms by the function G(u) with u ∈ [0,1].
Similarly, one has σ̃ and σ (u). It is also convenient to introduce
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the function:

[σ ](u) = −
∫ u

0
dv σ (v) + uσ (u). (21)

We use the inversion formulas for hierarchical matrices defined
in Ref. [21]. The saddle point equations become

σ (u) = D

T
K2e− K2

2 B(x=0,u),

B(x = 0,u) = 2T

∫
ddq

(2π )d
[G̃(q) − G(q,u)]. (22)

We look for a solution of the form σ (u) = const for u > uc

and σ (u) some function of u for u < uc, uc being itself a
variational parameter [19]. From the rules of inversion of
algebraic matrices we obtain:

B(x = 0,u) = 2T

∫
ddq

(2π )d

{
1

G−1
c (q) + [σ ](uc)

+
∫ uc

u

dv
σ ′(v)

[G−1
c + [σ ](v)]2

}
. (23)

Taking a derivative of (22), beyond the solution σ ′(u) = 0, in
the limit σ ′(u) �= 0 one obtains:

1 = σ (u)
∫

ddq

(2π )d
K2T

[cq2 + [σ ](u)]2

= σ (u)
T K2cd

cd/2
([σ ](u))

d−4
2 (24)

with

cd =
∫

ddq

(2π )d
1

(q2 + 1)2
= (2 − d)π1−d/2

2d+1 sin(dπ/2)
(d/2)

= (2 − d)πSd

4 sin(dπ/2)
. (25)

Taking a derivative of (24) one gets:

[σ ](u) =
(

u

u0

) 2
d−2

, (26)

with u0 = 2T K2cdc
−d/2/(4 − d) = T ũ0. The solution (26) is

valid at small u and we now determine the breakpoint uc

beyond which [σ ] =  is constant. We of course keep special
care in making the study for a finite T . This can be done as
follows. We write (26) as:

[σ ](u) = 

(
u

uc

) 2
d−2

(27)

with uc = u0
d−2

2 . From Eqs. (22) and (24) one finds:


4−d

2 = DK4cd

cd/2
e− 1

2 K2B(0,uc) (28)

with

B(0,uc) = 2T

∫
ddq

(2π )d

[
1

cq2 + 

]
. (29)

C. Displacement correlation function with the GVM

One can now compute the roughness:

B(x,0) = 〈(ua(x) − ua(0))2〉

= 2T

∫
ddq

(2π )d
[1 − cos(qx)]G̃(q) (30)

with

G̃(q) = G̃th(q) + G̃dis(q)

= 1

cq2
+ 1

cq2

∫ 1

0

dv

v2

[σ ](v)

cq2 + [σ ](v)
, (31)

where we have used the rules of inversion of hierarchical
matrices [21] and that σ (0) = 0. Therefore,

B(x) = Bth(x) + Bdis(x), (32)

where

Bth(x) = 2T

∫
ddq

(2π )d
[1 − cos(qx)]

1

cq2
(33)

is the thermal part of a nondisordered system and

Bdis(x) = 2T

∫
ddq

(2π )d
[1 − cos(qx)]

× 1

cq2

∫ 1

0

dv

v2

[σ ](v)

cq2 + [σ ](v)

= 2T

∫
ddq

(2π )d
[1 − cos(qx)]

×
[
I (q) + 1

cq2

(
u−1

c − 1
) 

cq2 + 

]
. (34)

We want to deal with the integral:

I (q) = 1

cq2

∫ uc

0

dv

v2

vμ

u
μ

0 cq2 + vμ
, (35)

where we define μ = 2
d−2 . With q0 =

√
1
c
( uc

u0
)μ = √

/c the

limit q/q0 � 1 reads:

I (q)
q/q0�1� 1

qd
Y − 1

uccq2
+ O(1), (36)

with Y = (d−2)π
2u0 sin[ π(d−2)

2 ]
c− d

2 , which gives the desired power-law

behavior q−d at large distances. While in the limit q/q0 � 1
one gets:

I (q)
q/q0�1� 1

cq2uc

[
1

μ − 1

q2
0

q2
+ O

(
q4

0

q4

)]
. (37)

We see that the correlation function is made by a thermal part:

G̃th(q) = 1/(cq2), (38)

a term corresponding to a modified Larkin regime:

G̃L(q)
q/q0�1� 1

cq2

1

uc



cq2

[
μ

μ − 1
− uc

]
= 1

cq2

1

uc



cq2

[
2

4 − d
− uc

]
, (39)
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and for large distances the term which gives logarithmic
growth:

G̃RP (q)
q/q0�1= 1

qd
Y. (40)

D. Crossover length scales within the GVM

The previous expressions allow us to extract the crossover
scales within the GVM. We define lL and, correspondingly,
qL = l−1

L the length such that qL = q0 = √
/c which corre-

sponds to the region of validity of the Larkin regime. Assuming
lL � a, one has B(0,uc) � L2

l , where Ll is the Lindemann
length defined in (13) and one has from (28):

qL =
√



c
= 1

a

[
D̃(Ka)4cd

c̃2

]1/ε

e−L2
l K

2/2ε (41)

and

uc = 2T K2cd

(4 − d)c
qd−2

L . (42)

In the limit T → 0 the breakpoint uc goes to 0 but qL remains
finite. In the limit of high temperature instead qL → 0 and also
uc. Similarly to what has been done with the results obtained
by FRG, the crossover between the thermal and the Larkin
regime can be determined by the condition:

G̃th(qth) = G̃L(qth). (43)

This gives:

qth =
√



c

1

uc

√
2

4 − d
− uc

=
√

(4 − d)K2D

2cT
e−L2

l K
2/4

√
2

4 − d
− uc

� K

√
D̃

c̃T
e−l2

T K2/4. (44)

Roughly with this definition one has qth > qL as far as ucε/2 <

1 and qth = qL for ucε/2 � 1. This condition might be violated
at intermediate temperatures if disorder is sufficiently high
leading to the disappearance of the intermediate Larkin regime.

V. COMPARISON BETWEEN FRG AND GVM AND
DISCUSSION

In this section we discuss and compare the results obtained
by FRG and by GVM.

All the results are valid in the elastic limit ui+1 − ui � a

and concerning the FRG they are expected to be accurate
at small ε, where ε = 4 − d. In Figs. 4 and 5 we show the
logarithmic derivative of the full solution of the displacement
correlation function ν(q) = d log 
q

d log q
for different temperatures

that highlights the different regimes and the associated expo-
nents. Figure 4 is obtained by FRG, according to Eq. (8), while
Fig. 5 is the result of the GVM, i.e., Eq. (31). In both cases we
have considered ε = 0.5.

The two figures clearly show that at high and low
temperatures three regimes, characterized by three different
exponents, are present: the thermal regime with ν = 2, the
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FIG. 4. (Color online) Logarithmic derivative of 
(q) obtained
by FRG for different temperatures. In particular, we show T̃ =
0.15, T̃ = 0.1, T̃ = 0.05, T̃ = 0.02, T̃ = 0.01, T̃ = 0.001, and
T̃ = 0.0001 from left to right, respectively, with light blue, red, green,
blue, black, pink, and orange solid lines. The other parameters are
ε = 0.5 and c = 1. �̃l=0(0) = 0.005.

Larkin regime with ν = 4, and the asymptotic random periodic
with ν = d, which for the parameters used here is ν = 3.5.
Correspondingly, the roughness exponent is ζ = (ν − d)/2,
and it is associated to logarithmic grow of the displacements
when ν = d.

As can be seen both from the figures and also from the
analytical estimates both methods are in remarkable agreement
for the crossover scales. In particular, the crossover inverse
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FIG. 5. (Color online) Logarithmic derivative of 
(q) obtained
by GVM. The temperatures shown here are T = 0.5, T = 0.3, T =
0.01, T = 0.001, T = 0.00001, and T = 0.000001, from left to right,
respectively, with light blue, red, green, blue, black, and pink solid
lines. The other parameters have been fixed to c = 1, a = 1, ε =
0.5, and D = 0.05. With this choice of parameters one sees that
the intermediate Larkin regime, at intermediate temperatures, tends
to disappear. Moreover, one also sees that at low temperatures the
inverse length scale qL, namely the inverse length scale associated to
the passage from the Larkin to the random periodic regime, saturates
to its T = 0 value, while qth is pushed towards larger and larger values
as T goes to zero. At high temperatures qL and qth are sent to smaller
and smaller values with qL < qth.
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length scale between the thermal and the Larkin regime is
given in Eqs. (12) and (44) while the one between the Larkin
and the random periodic is (14) and (41) [in the limit of small
ε the quantity cd appearing in (41) goes as cd = Sd/ε]. Note
that, apart from the Lindemann length, the quantity qth does
not depend on the dimension of the system, contrarily to qL,
which does directly depend on ε. The disorder strength instead
appears explicitly in both expressions. As is clear from both
the FRG and GVM studies below the scale lth, the disorder is
essentially absent and the system behaves like a pure thermal
system.

These two length scales have very different behavior at low
and high temperatures. In both cases at high-enough tempera-
tures the Lindemann length intervenes in an exponential way
in the corresponding length scale reflecting the exponential
screening of the disorder by thermal fluctuations. This is
visible on Figs. 4 and 5, which confirm that the two inverse
length scales are sent towards smaller and smaller values with
qth > qL. Note that this high-temperature limit is only valid
with systems for which the elastic limit can be enforced even
if the temperature is high, such as, e.g., the system of lines of
Fig. 1. In pointlike solids the topological defect will be induced
by the temperature and the solid will melt when the Lindemann
length equals Ll ∼ Cla where Cl ∼ 0.1 (Lindemann criterion
of melting).

At low temperature Ll � a the exponential factor plays
little role. This implies that qL becomes essentially temperature
independent at low temperature in agreement with the fact
that the problem is asymptotically determined by the zero
temperature fixed point, when the disorder is small. Of course,
for finite disorder the full solution of the flow is needed and
some residual of weak temperature dependence will be present
in the scale qL. This qualitative behavior is clearly visible in the
full solution in Figs. 4 and 5 where one sees that all the curves
at low-enough temperature overlap in the crossover region
around qL. On the contrary, the crossover inverse length qth

between the thermal and the Larkin regime is pushed towards
larger and larger values as T goes to zero.

For intermediate temperature Figs. 4 and 5 show that the
Larkin regime tends to disappear in agreement (for high-
enough disorder strength) with the analysis carried on within
the FRG and the GVM. This regime of temperatures is shown
with the fourth blue line and the fifth black line in Fig. 4 and
with the third green line and the fourth blue line in Fig. 5.

We finally mention that within the FRG we find an addi-
tional length scale that is not present within the GVM. Such
a scale is given in Eq. (15) and does depend on temperature
and on the dimension of the system but it is independent of
the disorder strength. It corresponds to a flow of the correlator
towards a vanishing amplitude function (see the lower panel of
Fig. 2). It would be interesting to test experimentally if such a
length scale can be observed. However, this length scale does
not show in an obvious way in the displacement correlation
function since it is not accompanied by a change of exponent.
This is due to the fact that at that corresponding length scale the
system is dominated by the thermal part of the displacement
and that such a length scale only affects the “disorder” part of
the correlation. In order to observe it, it is necessary, as can be
seen from Fig. 6, to subtract the thermal part. In particular,
if one keeps only the term proportional to temperature in
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FIG. 6. (Color online) The solid red line indicates the disordered
part of the FTD which shows at large momenta an unexpected
increasing behavior upon increasing q. The dash-dotted blue line
is the full FTD as in Eq. (8) where the thermal part washes out
the nonmonotonicity. The dashed green line is the result as obtained
from the flow when only the linear term proportional to temperature is
kept. In this plot ε = 0.5 and T̃ = 0.5. From these values one obtains
qT � 0.16.

the flow, the disordered part of the FTD for q = e−l reads


(q,T ,�) = ( 1
q

)d�0e
− T̃ K2

d−2 (1−qd−2). At high temperature, in the
regime q > qT , this correction of the FTD to the thermal
part results in an unexpected behavior that decreases upon
decreasing of q (see Fig. 6). This corresponds to a screening
of the disorder by thermal fluctuations leading to a reduced
disorder as one looks at larger and larger length scales. Note
that although this length scale is always present in our purely
elastic model, it is even more subject to the constraints on
the high-temperature limit (in a model where melting, i.e., the
presence of topological defects can occur) than the two other
length scales. Indeed, (15) can be written for small ε as

qT /� � (�a)
d
2 −3 ε1/2

Ll/a
, (45)

where we have assumed � ∼ K . One can estimate �a ∼ π

and Ll/a ∼ C ∼ 0.1 if the melting can occur. In that case
one would need a system which is effectively close to four
dimensions (with, e.g., long-range elastic couplings such as
in ferroelectrics [29]). On the contrary, in the model of lines
of Fig. 1 the inverse length scale qT should be visible, in
particular, if the temperature is high enough.

VI. CONCLUSIONS

We have considered a system described by an elastic Hamil-
tonian and subject to a disordered environment with periodic
correlation functions, as it could be for charge-density waves.
We have analyzed the system by functional renormalization
group techniques and a Gaussian variational approach. Both
approaches can be applied to arbitrary dimensions even if
the FRG is believed to be accurate around 4 − ε dimensions.
Within these two methods we have computed the relative
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displacement correlation and its logarithmic derivative, taking
into account the effects of a finite temperature.

We find three regimes as a function of the wave vector
(or in real space the distance) for which the FTD behaves
essentially with a power law of the wave vector characterized
by different exponents in each regime: the thermal, Larkin,
and random periodic regimes. In the first regime the system
behaves as a pure elastic system at finite temperature. In the
second (Larkin) the system sees a disorder which is essentially
like a random force, while in the asymptotic and last regime the
periodicity plays a full role and leads to a logarithmic growth
of the correlations in real space. For each transition from one
regime to the other we have determined the crossover length
scale as a function of the parameters defining the model, and
in particular the temperature. Both the FRG and GVM give
consistent results on these two length scales.

At large temperatures, in an ideal elastic systems these two
scales would grow exponentially with the Lindemann length
of the systems. In practice, one should of course worry about
the melting of the corresponding periodic system.

At low temperatures the thermal regime length scale goes to
zero while the length scale separating the Larkin and asymp-
totic regimes stays finite, consistently with previous results.
At intermediate temperatures depending on the parameters it

is possible to remove the Larkin regime and to have a direct
transition between the thermal and random periodic (Bragg
glass) regime. Besides these three regimes we find by FRG
an additional length scale which characterizes the FTD once
the thermal part is subtracted. Within such length scale and
at high-enough temperature one finds that the disordered part
of the FTD has a nonmonotonic behavior with q, as shown in
Fig. 6.

It would of course be interesting to check if the predicted
temperature dependence of the length scales computed here
can be observed in experiments or simulations. In particular,
finding evidence of the scale qT of Eq. (15) by measuring the
relative displacement correlation and subtracting the thermal
part should prove interesting.

As a future perspective, it is of interest to see how these
crossover length scales and the FTD are modified by the
influence of a finite velocity which is present in the driven
system at finite temperature.
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[21] M. Mézard and G. Parisi, Replica field theory for random
manifolds, J. Phys. I 1, 809 (1991).

032101-8

http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.80.849
http://dx.doi.org/10.1103/PhysRevLett.113.027205
http://dx.doi.org/10.1103/PhysRevLett.113.027205
http://dx.doi.org/10.1103/PhysRevLett.113.027205
http://dx.doi.org/10.1103/PhysRevLett.113.027205
http://dx.doi.org/10.1103/PhysRevLett.89.097601
http://dx.doi.org/10.1103/PhysRevLett.89.097601
http://dx.doi.org/10.1103/PhysRevLett.89.097601
http://dx.doi.org/10.1103/PhysRevLett.89.097601
http://dx.doi.org/10.1103/PhysRevLett.94.197601
http://dx.doi.org/10.1103/PhysRevLett.94.197601
http://dx.doi.org/10.1103/PhysRevLett.94.197601
http://dx.doi.org/10.1103/PhysRevLett.94.197601
http://dx.doi.org/10.1126/science.1145516
http://dx.doi.org/10.1126/science.1145516
http://dx.doi.org/10.1126/science.1145516
http://dx.doi.org/10.1126/science.1145516
http://dx.doi.org/10.1088/0305-4470/16/14/028
http://dx.doi.org/10.1088/0305-4470/16/14/028
http://dx.doi.org/10.1088/0305-4470/16/14/028
http://dx.doi.org/10.1088/0305-4470/16/14/028
http://dx.doi.org/10.1016/S0022-5096(01)00137-5
http://dx.doi.org/10.1016/S0022-5096(01)00137-5
http://dx.doi.org/10.1016/S0022-5096(01)00137-5
http://dx.doi.org/10.1016/S0022-5096(01)00137-5
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1103/PhysRevLett.101.045501
http://dx.doi.org/10.1080/00018730410001684197
http://dx.doi.org/10.1080/00018730410001684197
http://dx.doi.org/10.1080/00018730410001684197
http://dx.doi.org/10.1080/00018730410001684197
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1103/PhysRevE.71.046105
http://dx.doi.org/10.1103/PhysRevE.71.046105
http://dx.doi.org/10.1103/PhysRevE.71.046105
http://dx.doi.org/10.1103/PhysRevE.71.046105
http://dx.doi.org/10.1016/j.physb.2012.01.017
http://dx.doi.org/10.1016/j.physb.2012.01.017
http://dx.doi.org/10.1016/j.physb.2012.01.017
http://dx.doi.org/10.1016/j.physb.2012.01.017
http://dx.doi.org/10.1103/PhysRevB.82.174201
http://dx.doi.org/10.1103/PhysRevB.82.174201
http://dx.doi.org/10.1103/PhysRevB.82.174201
http://dx.doi.org/10.1103/PhysRevB.82.174201
http://dx.doi.org/10.1103/PhysRevB.82.184207
http://dx.doi.org/10.1103/PhysRevB.82.184207
http://dx.doi.org/10.1103/PhysRevB.82.184207
http://dx.doi.org/10.1103/PhysRevB.82.184207
http://dx.doi.org/10.1103/PhysRevE.87.042406
http://dx.doi.org/10.1103/PhysRevE.87.042406
http://dx.doi.org/10.1103/PhysRevE.87.042406
http://dx.doi.org/10.1103/PhysRevE.87.042406
http://dx.doi.org/10.1103/PhysRevB.82.140201
http://dx.doi.org/10.1103/PhysRevB.82.140201
http://dx.doi.org/10.1103/PhysRevB.82.140201
http://dx.doi.org/10.1103/PhysRevB.82.140201
http://dx.doi.org/10.1103/PhysRevLett.72.1530
http://dx.doi.org/10.1103/PhysRevLett.72.1530
http://dx.doi.org/10.1103/PhysRevLett.72.1530
http://dx.doi.org/10.1103/PhysRevLett.72.1530
http://dx.doi.org/10.1103/PhysRevB.52.1242
http://dx.doi.org/10.1103/PhysRevB.52.1242
http://dx.doi.org/10.1103/PhysRevB.52.1242
http://dx.doi.org/10.1103/PhysRevB.52.1242
http://dx.doi.org/10.1051/jp1:1991171
http://dx.doi.org/10.1051/jp1:1991171
http://dx.doi.org/10.1051/jp1:1991171
http://dx.doi.org/10.1051/jp1:1991171


FINITE-TEMPERATURE CROSSOVERS IN PERIODIC . . . PHYSICAL REVIEW E 91, 032101 (2015)

[22] D. S. Fisher, Interface Fluctuations in Disordered Systems: 5–ε

Expansion and Failure of Dimensional Reduction, Phys. Rev.
Lett. 56, 1964 (1986).

[23] O. Narayan and D. S. Fisher, Dynamics of sliding charge-density
waves in 4-ε dimensions, Phys. Rev. Lett. 68, 3615 (1992).

[24] O. Narayan and D. S. Fisher, Critical behavior of sliding charge-
density waves in 4-ε dimensions, Phys. Rev. B 46, 11520 (1992).

[25] S. E. Korshunov, Replica symmetry breaking in vortex glasses,
Phys. Rev. B 48, 3969 (1993).

[26] S. Bogner, T. Emig, and T. Nattermann, Nonuniversal correla-
tions and crossover effects in the Bragg-glass phase of impure
superconductors, Phys. Rev. B 63, 174501 (2001).

[27] A. Larkin, Effect of inhomogeneities on the structure of the
mixed state of superconductors, Sov. Phys. JETP 31, 784 (1970).

[28] P. Chauve, T. Giamarchi, and P. Le Doussal, Creep and depinning
in disordered media, Phys. Rev. B 62, 6241 (2000).

[29] A. Larkin and D. Khmel’nitskii, Phase transition in uniaxial
ferroelectrics, Sov. Phys. JETP 29, 1123 (1969).

032101-9

http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1103/PhysRevLett.56.1964
http://dx.doi.org/10.1103/PhysRevLett.68.3615
http://dx.doi.org/10.1103/PhysRevLett.68.3615
http://dx.doi.org/10.1103/PhysRevLett.68.3615
http://dx.doi.org/10.1103/PhysRevLett.68.3615
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.46.11520
http://dx.doi.org/10.1103/PhysRevB.48.3969
http://dx.doi.org/10.1103/PhysRevB.48.3969
http://dx.doi.org/10.1103/PhysRevB.48.3969
http://dx.doi.org/10.1103/PhysRevB.48.3969
http://dx.doi.org/10.1103/PhysRevB.63.174501
http://dx.doi.org/10.1103/PhysRevB.63.174501
http://dx.doi.org/10.1103/PhysRevB.63.174501
http://dx.doi.org/10.1103/PhysRevB.63.174501
http://dx.doi.org/10.1103/PhysRevB.62.6241
http://dx.doi.org/10.1103/PhysRevB.62.6241
http://dx.doi.org/10.1103/PhysRevB.62.6241
http://dx.doi.org/10.1103/PhysRevB.62.6241



