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Meso: intermediate between micro and macro

‘Disordered conductors in d=3,2,1 and 0 dimensions
*Anderson localization

‘Weak localization

Sample to sample fluctuations

*Quantum chaos & spectral statistics

Systems of interacting quantum particles

‘Fermi liquid theory without translation invariance
‘Decoherence

‘Many body localization



E.P. Wigner, Conference on Neutron Physics by
Time of Flight, November 1956

P.W. Anderson, “Absence of Diffusion in Certain
Random Lattices”; Phys.Rev., 1958, v.109, p.1492

L.D. Landau, ” Fermi-Liquid Theory” Zh. Exp. Teor.
Fiz.,1956, v.30, p.1058

J. Bardeen, L.N. Cooper & J. Schriffer, “Theory of
Superconductivity”; Phys.Rev., 1957, v.108, p.1175.



Introduction




Einstein’s Miraculous Year - 1905

Six papers:

1. The light-quantum and the photoelectric effect.
Completed March 17.

2. A new determination of molecular dimensions.
Completed April 30. Published in1906
Ph.D. thesis.

3. Brownian Motion.
Received by Annalen der Physik May 11.

4,5.The two papers on special relativity.
Received June 30 and September 27

6. Second paper on Brownian motion.
Received December 19.
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Einstein’s Miraculous Year - 1905

Diffusion and Brownian Motion:

2. A new determination of molecular dimensions.
Completed April 30. Published in1906
Ph.D. thesis.

3. Brownian Motion.
Received by Annalen der Physik May 11.

6. Second paper on Brownian motion.
Received December 19.

o in the same line with the relativity and photons.

Q Are these papers indeed important enough to stay
Why



Einstein’s Miraculous Year - 1905

Six papers:

1. The light-quantum and the photoelectric effect.
Completed March 17.

2. A new determination of molecular dimensions. BY far the
Completed April 30. Published in1906 largest number
Ph.D. thesis. of citations

3. Brownian Motion.
Received by Annalen der Physik May 11.

4,5.The two papers on special relativity.
Received June 30 and September 27

6. Second paper on Brownian motion.
Received December 19.



Brownian Motion - history

The instrument with which Robert
Brown studied Brownian Motion
and which he used in his work on
identifying the nucleus of the living
Robert Brown cell. This instrument is preserved
(1773-1858) at the Linnean Society in London.



Robert Brown, Phil. Mag. 4,161(1828); 6,161(1829)

Random motion of particles suspended in
water (“dust or soot deposited on all bodies

Brownian

Motion -
history In such quantities, especially in London”)

Action of water molecules pushing agams? the suspended’

object
(]

b ,.i
"": _-‘T

Giovanni Cantoni (Pavia). N.Cimento, 27,156(1867).




The Nobel Prize ' measurements on the
in Physics 1926 -

Brownian movement
"for his work on the discontinuous Showed that E i I‘IStEi n ' S
structure of matter, and especially -
for his discovery of sedimentation I_h_e_Q_I‘LALa_S_I_n_p_e_I‘_f_egt_
equilibrium" - -
R agreement with reality.
Through these
measurements a new
determination of
Avogadro's number was

obtained.
Jean Baptiste
Perrin The Nobel Prize in Physics 1926
France From the Presentation Speech by Professor
C.W. Oseen, member of the Nobel Committee
b. 1870 for Physics of The Royal Swedish Academy of

d. 1942 Sciences on December 10, 1926



Robert Brown, Phil. Mag. 4,161(1828); 6,161(1829)

Random motion of particles suspended in
water (“dust or soot deposited on all bodies

Brownian

Motion -
history In such quantities, especially in London”)

Action of water molecules pushing against the suspend object

Problems:

1. Each molecules is too light to change the momentum of the suspended particle.

2. Does Brownian motion violate the second law of thermodynamics ?

"We see under our eyes now motion
transformed into heat by friction, now
heat changes inversely into motion.
This is contrary to Carnot's principle.”

o H. Poincare, “The fundamentals of Science”,
Jules Henri Poincaré P-309, Scientific Press, NY, 1913
(1854-1912)



Problems:

1. Each molecules is too light to change the momentum of the suspended particle.
2. Does Brownian motion violate the second law of thermodynamics ?

3. Do molecules exist as real objects and are the laws of mechanics applicable to them?



S =klogW + const

entropy probability

k is Boltzmann constant b
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From Micro
to Macro
mli

S =klogW + const
10 ==

From Macro
to Micro




"It is of great importance since it permits
exact computation of Avogadro number ... .
The great significance as a matter of principle
is, however ... that one sees directly under the
microscope part of the heat energy in the
form of mechanical energy.”

Einstein, 1915



Brownian Motion - history

Einstein was not the first to:

1. Attribute the Brownian motion to the action of water molecules pushing
against the suspended object

2. Write down the diffusion equation
3. Saved Second law of Thermodynamics

L. Szilard, Z. Phys, 53, 840(1929)




Brownian Motion - history

Einstein was not the first to:

1. Attribute the Brownian motion to the action of water molecules
pushing against the suspended object

2. Write down the diffusion equation
3. Saved Carnot’s principle [L. Szilard, Z. Phys, 53, 840(1929)]

Einstein was the first to:
1. Apply the diffusion equation to the probability

2. Derive the diffusion equation from the assumption that the process is
markovian (before Markov) and take into account nonmarkovian effects

3. Derived the relation between diffusion const and viscosity
(conductivity), i.e., connected fluctuations with dissipation

By studying large molecules in solutions sugar in water
or suspended particles Einstein made molecules visible



Diffusion RIS e R,

Eq uation ﬂt Diffusion
constant

Einstein-Sutherland Relation for electric conductivity s

If electrons would be degenerate
and form a classical ideal gas

William Sutherland
(1859-1911) In,,



Einstein-Sutherland Relation for electric conductivity S

4”” dn dn dm dn

n = l’l(m) — =—ef —
*‘ i‘ dx d m dx dm
metal /
No current [ Density ij
electrons

Electric
field

Chemical
potential

E Conductivity I: Density of states




Diffusion I SRer =0
Equation [

Lessons from the Einstein’s work:

= Universality: the equation is valid as long as the
process Is marcovian

= Can be applied to the probability and thus
describes both fluctuations and dissipation

= There is a universal relation between the diffusion
constant and the viscosity

= Studies of the diffusion processes brings
information about micro scales.



What is a Mesoscopic System?

= Statistical description

= Can be effected by a microscopic system and the effect can
be macroscopically detected

Meso can serve as a microscope to study micro

Brownian particle was the first mesoscopic device in use



Brownian particle was the first
mesoscopic device in use

First paper on Quantum Theory of
Solid State (Specific heat)
Annalen der Physik, 22, 180, 800 (1907)

First paper on Mesoscopic Physics
Annalen der Physik, 17, 549 (1905)



Finite size quantum physical systems

Atoms
Nuclel
Molecules

Quantum
Dots



Quantum Dot

1. Disorder (" - impurities)

2. Complex geometry

3. e-e interactions



1. Disorder (" - impurities)

2. Complex geometry

How to deal with disorder?

_-Solve the Shredingerequation exactly

» Start with plane waves, introduce the mean
free path, and derive Boltzmann equation ?
How to take quantum interference into account o




Electrons in nanostructures

Clean systems without boundaries:

‘Electrons are characterized by their momenta or quasimomenta
I’ electronic wave functions are plane waves

‘Physics is essentially local

Interaction between electrons is often apparently not important

In mesoscopic systems:

‘Due to the scattering of the electrons off disorder (impurities)
and/or boundaries the momentum is not a good quantum number

‘Response to external perturbation is usually nonlocal

-Interaction between electrons is often crucial



Lesson 1.

Beyond Markov chains:

Anderson Localization
and
Magnetoresistance




I, 18 AKypuaa oxcnepusmenrassuod u veoperuseckol dwsuks.  Byg,
1948

05 H3MEHEHHH IEKTPHYECKOIO COMNPOTHBJIEHWH TEJUIYPA
B MAHHTHOM NOJAE MPH HH3KHX TEMHEFATYPAX

P A YHengons

R.A. Chentsov “On the variation of electrical conductivity of tellurium
in magnetic field at low temperatures”, Zh. Exp. Theor. Fiz. v.18, 375-385, (1948).
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Quantum particle in random quenched potential

PFUYEICATL REVITW VEOLUMDT jne, NUMBPUHEEA 3 MARKCH i, 1%30

Absence of Diffusion in Certain Random Lattices

1. W, Astmmnis
Bell Ve hone Faborsiorim, Murray fTill, New Sermy
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P.W. Anderson, “Absence of Diffusion in Certain
Random Lattices”; Phys.Rev., 1958, v.109, p.1492

L.D. Landau, ” Fermi-Liquid Theory” Zh. Exp. Teor.
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Localization of single-particle wave-functions:

V2
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VoLuME 85, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SermeMair 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Sridhar

Depirtment of Plivsics, Northeastern University, Boston, Massechosetis 02115
(Received 28 February 2000)

f=3.04 GHz f=7.33 GHz

Anderson Insulator Anderson Metal



# Scattering centers,
e.g., impurities

Models of disorder:

Randomly located impurities
White noise potential

Lattice models
Anderson model
Lifshits model



Anderson » Lattice - tight binding model
M Odel * Onsite energies el. - random

 Hopping matrix elements I ii

I l and ! are nearest
neighbors

uniformly distributed 0 otherwise

Anderson Transition

I<L I>L
Insulator Metal

All eigenstates are localized There appear states extended

Localization length X all over the whole system



Classical particle in a random potential J§ Diffusion

1 particle - random walk
Density of the particles r

Density fluctuations r (7,¢) at a
given point in space r and time ¢.

Ir pR2r =g Diffusion

Mt Equation

D - Diffusion constant

|/  mean free path

D= { mean free time

d # of dimensions



Einstein - Sutherland Relation for electric conductivity S

(nLd)
e

G=sL"? > \ J

for a cubic sample . L)
of the size L

hD/ L’ Thouless energy Dimensionless
L) = = .
s(L) L’ mean level spacing I::;Jiiz e




Energy scales (Thouless, 1972)

4 % g
l d L is the system size;
3 1
d is the number of
dimensions

Ihouless energy ET = hD/L’ D is the diffusion const

dimensionless
Thouless
conductance



_ Thouless energy
mean level spacing

Corrections to the diffusion
come from the large distances
(infrared corrections)

Thouless conductance
is Dimensionless

%/—/

Universal description!



Dimensionless Thouless

conductance

L=2L=4L =8L....
without quantum corrections
E.pnL” dpL”




Is universal, i.e.,
material independent

But
b — function It depends on the global

symmetries, e.g., it is
different with and

without T-invariance

Limits:
. 1>0 d>2
g>>1 gpu [? b(g):(d-2)+088l2 7? d=2
8gﬁ <0 d<?2

g<<l gue™ b(g)»logg<0









the scaling theory is correct?
Wh ‘the corrections of the diffusion

constant and conductance are
negative?

Why diffusion description fails at large scales ?



Diffusion description fails at large scales
Why?

Einstein: there is no diffusion at too short
scales - there is memory, i.e.,
the process is not marcovian.

r(t) =~ Dt Does velocity diverge at t ® (0 ?
No because at times shorter

dr _ |D than mean free time

. T Al AL process is not marcovian and

dt 2t there is no diffusion



Diffusion description fails at large scales
Why?

Einstein: there is no diffusion at too short
scales - there is memory, i.e.,
the process is not marcovian.

Why there is memory at large distances
in quantum case ?

Quantum corrections at large Thouless
conductance - weak localization
Universal description



Quantum
corrections

Suggested homework:

1. Derive the equation for g(L) from this limit of the b-function

2. Suppose you know D(g) for some number of dimensions d.
Let g at some size of the system L, be close to the critical
value: g(LO) = g +dg;dg <<1 Estimate the
localization length X (for dg<<0) and the conductivity S in the

limit L® ¥  (fordg>0)



WEAK LOCALIZATION

' The particle
J can go around
the loop in
Phase accumulated two directions
when traveling
along the loop

J 1 =1
Constructive interference — probability to return

to the origin gets enhanced — diffusion constant
gets reduced. Tendency towards localization

Memory'

b - function is negative for d=2



Random walk

Density fluctuations r (7,¢) at a
given point in space r and time .

I* _ pRep = Diffusion

Mt Equation

D - Diffusion constant

Mean squared Probability to come back
distance from (to the element of the
the original volume dV centered at
point at time ¢ the original point)

, 2

& (1) =D P(r(r)=0)ar=—2"_

(D)



Whatisthe  Probability to come
probability =~ back (to the element of
* * P(1) the the volume dV around
¥ ' particle the original point)
23 »* comes back AV
* ' inatimez? P(r(t) :())dV: T
O (D)
° — o — d' 1




Q: f =7

AC
Diﬁiggﬁgggge conductivity

S|

Dephasing time
(inelastic processes)









Q: What does it mean d=2 ?

A' Transverse dimension is much less than

2

\/D tmax

d g=- —log— for a film with a thickness &

[

much smaller than L,Lj
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R.A. Chentsov “On the variation of electrical conductivity of tellurium
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Magnetoresistance




Length Scales

Magnetic length LH = (hc/eH) 1/2
Dephasing length Lj = (D | )1/2

Universal
functions

Magnetoresistance measurements allow to study inelastic
collisions of electrons with phonons and other electrons



Negative Chentsov
MagnetoreS|stance (1949)

Aharonov-Bohm effect

Theory Experiment
B.A., Aronov & Spivak (1981) ___ Sharvin & Sharvin (1981)
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Aharonov-Bohm effect

Theory Experiment
B.A., Aronov & Spivak (1981) Sharvin & Sharvin (1981)

»
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Resistance is a periodic function of
the magnetic flux with the period

F./2




L_esson 2.

Brownian Particle

as a mesoscopic system




PFHYSICAL REVIEW B VOLLUME 30, NLUMBER 7 1 DCTORER 1984

Magnetoresistance of small, quasi-one-dimensional, normal-metsl rings and lines

C, P. Umbach, 5. Washburn, R, B, Lobownz, nnd R. A, Webb
M Thorurs £, Wasan Research Comer, By Q) Bax 2K,
Furitewn Meighen, Kew 'I"n'.!.r# TRV G
(Mocelved & July 1904
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would be evidence of Mux quantization in norma
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. . FIGh, 4. Temperuture dependence of the magnetosesisiance from
Mesoscopic fluctuations 0-8 T of & &b-nm.diam by TH-nm-long AugPie ine. The xeso-
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VOLUME 54, NUMBER 25 PHYSICAL REVIEW LETTERS 24 JUNE 1985

Observation of #/e Aharonov-Bohm Oscillations in Normal-Metal Rings

R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz
[IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 27 March 1985)
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Mesoscopic Fluctuations.

g g

Properties of systems with set
of macroscopic parameters but
realizations of disorder are different!

Magnetoresistance

o(H)
()

glH)

is sample
-dependent

(-7 - ensemble averaging (2)>>1



Before Einstein:

Correct question would be: describe 7 (t

)
OK, maybe you can restrict yourself by <17’ (t)>

2

GO whet s (7 (0)- 7 (1))
(€(0)- 7()F )=

Not only (g (H))
But also <@g(H)- g(H+h)[§|2>




Brownian Conductance

motion fluctuations

ensemble Set of brownian Set of small
particles conductors

observables

Position of each

Conductance of

particle » each sample &

evolves as Time ¢ Magnetic field /£ or
function of any other external
tunable parameter

Interested in | Statistics of ¥ (t ) Statistics of & (H )

Example

CHCARFICAL:

>




g-g @ Gl'Gz@z/h

Magnetoresistance

g(H ) & » 1 Statistics of the
................... functions
(2 YAV of g(H) are
universal

B.A.(1985);
Lee & Stone (1985)



Statistics of random function(s) () are universal l

In particular, < (dg)2> 1

(02)

g

|

Fluctuations are large and nonlocal

g“ Ld-Z ® IJ. L4-2d >>L—d



interference . o
term: 2RC(A1Az ): NWW, COS(I 17 2)



2Re(4,4, )= 24 W, cos(j - | ,)

. The interference
1. Al,2 :-‘/ VVl,z eXp(lJ 1,2) term disappears

after averaging
2. Phases] |, are random

3-“1'12‘»2[3 {cos ,-j,)=0
() =(m) +{,)



Classical result for average probability:






CONCLUSIONS:

1. There are fluctuations!

2. Effect is nonlocal.



Now let us try to
understand the
effect of magnetic
field. Consider the
correlation function

(W (HYWw (H+h))=(w (1)) (H +))
+2I, W, (cos(dj (H))cos(dj (H +h)))

dj Oj 1 J 2
o (m))es(d s+ il EI<E

F (h) =h- (area of the loop)



Magnetoresistance

o(H) Y1
@1\ s

HF

Flux through the
whole system
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2DRa fluctuations




Quantum Chaos




20+

Marcus et. al,

P(g)

15 2.0

0
2
g(e/h).
Huibers, et al. PRL, 81 1917(1998). |




1. Disorder (" - impurities)

2. Complex geometry

How to deal with disorder?

Solve the Shrodinger-equation exacf@

“-Make statistical analysis

What if there in no disorder?



