Theory of Mesoscopic Systems

Boris Altshuler
Princeton University,
Columbia University \& NEC Laboratories America

CURO

CONFÉRENCE UNIVERSITAIRE DE SUISSE OCCIDENTALE

Lecture 101 June 2006

Meso: intermediate between micro and macro

Main Topics:

-Disordered conductors in d=3,2,1 and 0 dimensions
-Anderson localization
-Weak localization
-Sample to sample fluctuations
-Quantum chaos \& spectral statistics

- Systems of interacting quantum particles
-Fermi liquid theory without translation invariance
-Decoherence
-Many body localization

ORIGINS

E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956
P.W. Anderson, "Absence of Diffusion in Certain Random Lattices"; Phys.Rev., 1958, v.109, p. 1492
L.D. Landau, "Fermi-Liquid Theory" Zh. Exp. Teor. Fiz.,1956, v.30, p. 1058
J. Bardeen, L.N. Cooper \& J. Schriffer, "Theory of

Superconductivity"; Phys.Rev., 1957, v.108, p.1175.
Introauction

Einstein's Miraculous Year - 1905

Six papers:

1. The light-quantum and the photoelectric effect. Completed March 17.
2. A new determination of molecular dimensions.

Completed April 30. Published in1906 Ph.D. thesis.
3. Brownian Motion.

Received by Annalen der Physik May 11.
4,5.The two papers on special relativity.
Received June 30 and September 27
6. Second paper on Brownian motion. Received December 19.

Einstein's Miraculous Year - 1905

Six papers:

1. The light-quantum and the photoelectric effect. Completed March 17.
2. A new determination of molecular dimensions. Completed April 30. Published in1906 Ph.D. thesis.
3. Brownian Motion.

Received by Annalen der Physik May 11.
4,5.The two papers on special relativity.
Received June 30 and September 27
6. Second paper on Brownian motion. Received December 19.

Einstein's Miraculous Year - 1905

Diffusion and Brownian Motion:

2. A new determination of molecular dimensions. Completed April 30. Published in1906 Ph.D. thesis.
3. Brownian Motion. Received by Annalen der Physik May 11.
4. Second paper on Brownian motion. Received December 19.

Are these papers indeed important enough to stay in the same line with the relativity and photons. Why

Einstein's Miraculous Year - 1905

Six papers:

1. The light-quantum and the photoelectric effect. Completed March 17.
2. A new determination of molecular dimensions. Completed April 30. Published in1906 Ph.D. thesis.
3. Brownian Motion. Received by Annalen der Physik May 11.

4,5.The two papers on special relativity. Received June 30 and September 27
6. Second paper on Brownian motion. Received December 19.

Brownian Motion - history

Robert Brown
(1773-1858)

The instrument with which Robert Brown studied Brownian Motion and which he used in his work on identifying the nucleus of the living cell. This instrument is preserved at the Linnean Society in London.

Brownian Motion -
 history

Robert Brown, Phil.Mag. 4,161(1828); 6,161(1829)
Random motion of particles suspended in water ("dust or soot deposited on all bodies in sucf quantities, especially in London")

Action of water molecules pushing against the suspended object

Giovanni Cantoni (Pavia). N.Cimento, 27,156(1867).

The Nobel Prize in Physics 1926
"for his work on the discontinuous structure of matter, and especially for his discovery of sedimentation equilibrium"

Jean Baptiste Perrin
France
b. 1870
d. 1942
... measurements on the Brownian movement showed that Einstein's theory was in perfect agreement with reality. Through these measurements a new determination of Avogadro's number was obtained.

The Nobel Prize in Physics 1926
From the Presentation Speech by Professor C.W. Oseen, member of the Nobel Committee for Physics of The Royal Swedish Academy of Sciences on December 10, 1926

Brownian Motion history

Random motion of particles suspended in water ("dust or soot deposited on all bodies in sucf quantities, especially in London")

Action of water molecules pushing against the suspend object

Problems:

1. Each molecules is too light to change the momentum of the suspended particle.
2. Does Brownian motion violate the second law of thermodynamics ?

Jules Henri Poincaré (1854-1912)
"We see under our eyes now motion transformed into heat by friction, now heat changes inversely into motion. This is contrary to Carnot's principle."
H. Poincare, "The fundamentals of Science", p.305, Scientific Press, NY, 1913

Problems:

1. Each molecules is too light to change the momentum of the suspended particle.
2. Does Brownian motion violate the second law of thermodynamics?
3. Do molecules exist as real objects and are the laws of mechanics applicable to them?

Kinetic theory

$$
S=k \log W+\text { const }
$$

entropy

probability
k is Boltzmann constant

Ludwig Boltzmann 1844-1906

$$
\rho(v, T)=\frac{8 \pi / v^{3}}{c^{3}\left[\exp \left(\frac{/ v}{k T}\right)-1\right]}
$$

Max Planck
1858-1947

"It is of great importance since it permits exact computation of Avogadro number The great significance as a matter of principle is, however ... that one sees directly under the microscope part of the heat energy in the form of mechanical energy."

Einstein, 1915

Brownian Motion - history

Einstein was not the first to:

1. Attribute the Brownian motion to the action of water molecules pushing against the suspended object
2. Write down the diffusion equation
3. Saved Second law of Thermodynamics
L. Szilard, Z. Phys, 53, 840(1929)

Brownian Motion - history

Einstein was not the first to:

1. Attribute the Brownian motion to the action of water molecules pushing against the suspended object
2. Write down the diffusion equation
3. Saved Carnot's principle [L. Szilard, Z. Phys, 53, 840(1929)]

Einstein was the first to:

1. Apply the diffusion equation to the probability
2. Derive the diffusion equation from the assumption that the process is markovian (before Markov) and take into account nonmarkovian effects
3. Derived the relation between diffusion const and viscosity (conductivity), i.e., connected fluctuations with dissipation

By studying large molecules in solutions sugar in water or suspended particles Einstein made molecules visible

Diffusion

Einstein-Sutherland Relation for electric conductivity σ

William Sutherland (1859-1911)

$$
\sigma=e^{2} D v \quad v \equiv \frac{d n}{d \mu}
$$

If electrons would be degenerate and form a classical ideal gas

$$
v=\frac{1}{T n_{t o t}}
$$

Einstein-Sutherland Relation for electric conductivity σ

Diffusion Equation
 $$
\frac{\partial \rho}{\partial t}-D \nabla^{2} \rho=0
$$

Lessons from the Einstein's work:

- Universality: the equation is valid as long as the process is marcovian
- Can be applied to the probability and thus describes both fluctuations and dissipation
- There is a universal relation between the diffusion constant and the viscosity
- Studies of the diffusion processes brings information about micro scales.

What is a Mesoscopic System?

- Statistical description
- Can be effected by a microscopic system and the effect can be macroscopically detected

Meso can serve as a microscope to study micro
Brownian particle was the first mesoscopic device in use

Brownian particle was the first mesoscopic device in use

First paper on Quantum Theory of Solid State (Specific heat)
Annalen der Physik, 22, 180, 800 (1907)
First paper on Mesoscopic Physics Annalen der Physik, 17, 549 (1905)

Finite size quantum physical systems

Atoms
 Nuclei
 Molecules
 -
 Quantum
 Dots

How to deal with disorder?

- Solve the shredinger equation exactly
- Start with plane waves, introduce the mean free path, and derive Boltzmann equation How to take quantum interference into account

Electrons in nanostructures

Clean systems without boundaries:

- Electrons are characterized by their momenta or quasimomenta [electronic wave functions are plane waves
-Physics is essentially local
-Interaction between electrons is often apparently not important
In mesoscopic systems:
-Due to the scattering of the electrons off disorder (impurities) and/or boundaries the momentum is not a good quantum number
-Response to external perturbation is usually nonlocal
-Interaction between electrons is often crucial

Leison 15

Beyond Markov chains:

Anderson Localization and

Magnetoresistance

ОБ ИЗМЕНЕНИИ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ТЕЛЛУРА В МАГНИТНОМ ПОЛЕ ПРИ НИЗКИХ ТЕМІЕРАТУРАХ

P. A. Чепцоб
R.A. Chentsov "On the variation of electrical conductivity of tellurium in magnetic field at low temperatures", Zh. Exp. Theor. Fiz. v.18, 375-385, (1948).

Ta6aniss 2
Уменьшение сопротниненин телдура 8 магинтном поле

оораги	$\begin{gathered} \text { Tewneparpa } \\ \text { ith } \left.^{2}\right) \end{gathered}$	Makermatione умонитшино сопру тниаетиі
Te-1	2,13	$0.7+10-1$
Te-2	2,15	$1,0 \cdot 10^{-1}$
Te-4	1,96	$1.1 \cdot 10^{-1}$
Tes	1,96	$0,5 \cdot 10^{-4}$

Quantum particle in random quenched potential

Absence of Diffusion in Certain Random Lattices

P. W, Altatma

theriven Octalier 10, 1957

 randommen is introfoced hy tequifis the mergy to vary randonly from aite to tile. It in ulamen that at low

ORIGINS

E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956
> P.W. Anderson, "Absence of Diffusion in Certain Random Lattices"; Phys.Rev., 1958, v.109, p. 1492
L.D. Landau, "Fermi-Liquid Theory" Zh. Exp. Teor. Fiz.,1956, v.30, p. 1058
J. Bardeen, L.N. Cooper \& J. Schriffer, "Theory of Superconductivity"; Phys.Rev., 1957, v.108, p.1175.

Localization of single-particle wave-functions:

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

> Scattering centers, e.g., impurities

Models of disorder:

Randomly located impurities

White noise potential
Lattice models
Anderson model
Lifshits model

Anderson Model

- Lattice - tight binding model
(<) $\otimes \otimes \otimes \cdot$ Onsite energies ε_{i} - random

- Hopping matrix elements $I_{i j}$
$-W<\varepsilon_{i}<W$ uniformly distributed

Anderson Trensition

$$
\begin{aligned}
& I<I_{c} \\
& \text { Insulator }
\end{aligned}
$$

All eigenstates are localized Localization length ξ

$I>I_{c}$
 Metal

There appear states extended all over the whole system

Classical particle in a random potential

1 particle - random walk
Density of the particles ρ
Density fluctuations $\rho(r, t)$ at a given point in space r and time t.

$$
\frac{\partial \rho}{\partial t}-D \nabla^{2} \rho=0 \quad \begin{aligned}
& \text { Diffusion } \\
& \text { Equation }
\end{aligned}
$$

D-Diffusion constant

$$
D=\frac{l^{2}}{d \tau} \begin{array}{cc}
l & \text { mean free path } \\
\tau & \text { mean free time } \\
d & \text { \# of dimensions }
\end{array}
$$

Einstein - Sutherland Relation for electric conductivity σ

$$
\sigma=e^{2} D V \quad v \equiv \frac{d n}{d \mu}
$$

Conductance

$$
G=\sigma L^{d-2}
$$

for a cubic sample of the size L

$$
G=\underbrace{\left(v L^{d}\right) \frac{D h}{L^{2}}}_{g(L)}
$$

$$
g(L)=\frac{h D / L^{2}}{1 / v L^{d}}
$$

$=\frac{\text { Thouless energy }}{\text { mean level spacing }}$
Dimensionless Thouless conductance

Energy scales (Thouless, 1972)

1. Mean level spacing $\quad \delta_{1}=1 / \nu \times L^{d}$

L is the system size;
\boldsymbol{d} is the number of dimensions

2. Thouless energy
 $$
E_{T}=h D / L^{2}
$$
 D is the diffusion const

E_{T} has a meaning of the inverse diffusion time of the traveling through the system or the escape rate (for open systems)

dimensionless
Thouless
conductance

$$
g(L)=\frac{h D / L^{2}}{1 / v L^{d}}=\frac{\text { Thouless energy }}{\text { mean level spacing }}
$$

Thouless conductance is Dimensionless

Corrections to the diffusion come from the large distances (infrared corrections)
(Abrahams, Anderson, Licciardello and Ramakrishnan, 1979)

Universal description!

Abrahams, Anderson, Licciardello and Ramakrishnan

 1979
$g=E_{T} / \delta_{1}$

Dimensionless Thouless conductance

$g=\boldsymbol{G} \boldsymbol{h} / \boldsymbol{e}^{2}$

$$
L=2 L=4 L=8 L \ldots
$$

without quantum corrections

$$
\boldsymbol{E}_{\boldsymbol{T}} \propto \boldsymbol{L}^{-2} \quad \delta_{1} \propto \boldsymbol{L}^{-d}
$$

$$
\frac{d(\log g)}{d(\log L)}=\beta(g)
$$

$\frac{d(\log g)}{d(\log L)}=\beta(g)$

Is universal, i.e. material independent

But

It depends on the global symmetries, e.g., it is different with and without T-invariance

Jinnits•

$$
\begin{aligned}
& g \gg 1 \quad g \propto L^{d-2} \quad \beta(g)=(d-2)+O\left(\frac{1}{g}\right) \begin{array}{ll}
>0 & d>2 \\
? ? & d=2 \\
<0 & d<2
\end{array} \\
& g \ll 1 \quad g \propto e^{-L / \xi} \quad \beta(g) \approx \log g<0
\end{aligned}
$$

-the scaling theory is correct?
-the corrections of the diffusion constant and conductance are negative?

Why diffusion description fails at large scales?

Diffusion description fails at large scales

Why?

Einstein: there is no diffusion at too short scales - there is memory, i.e., the process is not marcovian.

$$
\begin{aligned}
& r(t)=\sqrt{D t} \\
& \frac{d r}{d t}=\sqrt{\frac{D}{2 t}}
\end{aligned}
$$

Does velocity diverge at $t \rightarrow 0$?
No because at times shorter
than mean free time
process is not marcovian and
there is no diffusion

Diffusion description fails at large scales Why?

Einstein: there is no diffusion at too short scales - there is memory, i.e., the process is not marcovian.

Why there is memory at large distances in quantum case?

Quantum corrections at large Thouless conductance - weak localization Universal description

Quantum corrections

$\beta(g)=d-2+\frac{c_{d}}{g}$
$c_{d}=? \pm$?

$$
g(L)=\sigma_{c l} L^{d-2}-\frac{c_{d}}{d-2} \quad d \neq 2
$$

Suggested homework:

1. Derive the equation for $g(L)$ from this limit of the β-function
2. Suppose you know $\beta(g)$ for some number of dimensions d. Let g at some size of the system L_{0} be close to the critical value: $\quad g\left(L_{0}\right)=g_{c}+\delta g ; \delta g \ll 1 \quad$ Estimate the localization length ξ (for $\delta g<0$) and the conductivity σ in the limit $\quad L \rightarrow \infty \quad($ for $\delta g>0$)

WEAK LOCALIZATION

$\varphi=\oint \bar{p} d \bar{r}$
Phase accumulated when traveling along the loop

$$
\varphi_{1}=\varphi_{2}
$$

The particle can go around the loop in two directions

Memory!

Constructive interference \longrightarrow probability to return to the origin gets enhanced \longrightarrow diffusion constant gets reduced. Tendency towards localization
β - function is negative for $\boldsymbol{d}=\mathbf{2}$

Diffusion

Random walk

Density fluctuations $\rho(r, t)$ at a given point in space r and time t.

$$
\frac{\partial \rho}{\partial t}-D \nabla^{2} \rho=0 \quad \begin{aligned}
& \text { Diffusion } \\
& \text { Equation }
\end{aligned}
$$

D-Diffusion constant

Mean squared distance from the original point at time t

$$
\left\langle r(t)^{2}\right\rangle=D t
$$

Probability to come back (to the element of the volume $d V$ centered at the original point)

$$
P(r(t)=0) d V=\frac{d V}{(D t)^{d / 2}}
$$

What is the probability $P(t)$ the particle comes back in a time t ?

Probability to come back (to the element of the volume $d V$ around the original point)

$$
P(r(t)=0) d V=\frac{d V}{(D t)^{d / 2}}
$$

$\mathbf{Q}: d V=? \quad \mathbf{A}: d V=\lambda^{d-1} v_{F} d t$

$$
P(t)=-\lambda^{d-1} \int_{\tau}^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}}
$$

$$
\frac{\delta g}{\sigma} \approx P\left(t_{\max }\right)
$$

$$
g
$$

$$
P(t)=-\lambda^{d-1} \int_{\tau}^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}} \frac{\delta g}{g} \approx P\left(t_{\max }\right)
$$

$$
\mathrm{Q}: t_{\text {max }}=\text { ? }
$$

$$
\mathbf{A}: t_{\max } \approx \min \left\{\frac{L^{2}}{D}, \frac{1}{\omega}, \tau_{\varphi}\right\}
$$

$$
\begin{aligned}
& P(t)=-\lambda^{d-1} \int_{\tau}^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}} \frac{\delta g}{g} \approx P\left(t_{\max }\right) \\
& t_{\max } \propto \frac{L^{2}}{D}=\frac{h}{E_{T}}, \frac{\delta g}{g} \approx-\frac{\lambda v_{F}}{D} \log \frac{L^{2}}{D \tau} \\
& d=2
\end{aligned}
$$

$$
P(t)=\lambda^{d-1} \int_{\tau}^{t} \frac{v_{F} d t^{\prime}}{\left(D t^{\prime}\right)^{d / 2}} \quad \frac{\delta g}{g} \approx P\left(t_{\max }\right)
$$

$$
\frac{\delta g}{g} \approx-\frac{\lambda v_{F}}{D} \log \frac{L^{2}}{D \tau}=-\frac{2 \lambda v_{F}}{D} \log \frac{L}{l}
$$

$$
\lambda v_{F}=\frac{1}{\pi \nu}
$$

$$
\delta g=-\frac{2}{\pi} \log \frac{L}{l}
$$

$$
\beta(g)=-\frac{2}{\pi g} \quad \text { Universal !!! }
$$

Q: What does it mean $d=2$?

Transverse dimension is much less than

$$
\sqrt{D t_{\max }}
$$

$$
\begin{aligned}
& \delta g=-\frac{2}{\pi} \log \frac{L}{l} \\
& \beta(g)=-\frac{2}{\pi g}
\end{aligned}
$$

$$
\text { for a film with a thickness } a
$$

$$
\text { much smaller than } L, L_{\varphi}
$$

T. 18 Журнал эксперинентальной и теоретической физики. Вии.

ОБ ИЗМЕНЕНИИ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ТЕЛЛУРА

 В МАГНИТНОМ ПОЛЕ ПРИ НИЗКИХ ТЕМПЕРАТУРАХP. A. Чемцоб
R.A. Chentsov "On the variation of electrical conductivity of tellurium in magnetic field at low temperatures", Zh. Exp. Theor. Fiz. v.18, 375-385, (1948).

Ta63 14182
Уменьшение сопротниненни толяура 8 магинтном поле

оораег	Tewnepatpa (Th)	Makenmathat тниaertili
Te-1	2,13	$0.7-10^{-1}$
Te-2	2,15	$1,0 \cdot 10^{-1}$
Te-4	1,96	$1.1 \cdot 10^{-1}$
Tes	1.96	$0.5 \cdot 10^{-4}$

Magnetoresistance

With magnetic field H

$$
-\varphi_{2}=2 * 2 \pi \Phi / \Phi_{0}
$$

Length Scales

Magnetic length $\quad L_{H}=(h c / e H)^{1 / 2}$

Magnetoresistance measurements allow to study inelastic collisions of electrons with phonons and other electrons

Weak Localization

Negative Magnetoresistance

Chentsov (1949)

Aharonov-Bohm effect

Theory
B.A., Aronov \& Spivak (1981)

Experiment
Sharvin \& Sharvin (1981)

Aharonov-Bohm effect

Theory

B.A., Aronov \& Spivak (1981)

Experiment
Sharvin \& Sharvin (1981)

With magnetic field H

$$
-\varphi_{2}=2 * 2 \pi \Phi / \Phi_{0}
$$

Resistance is a periodic function of the magnetic flux with the period

$$
\Phi_{\mathrm{o}} / 2
$$

Le:on2

Brownian Particle

as a mesoscopic system

Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines

C. Pr Umbach, S. Washburn, R. B Laibowitz, and R. A. Webb
Yachtown ficighta, New Yoik 1059
(Heceived 6 July 1984)

 would be evidence of thix quartization in pormi very complex strurture developed io the mugnelo duth did not reveul cominures sydenee for flax Thit observed in tho ringe was nets, found in ith linef. Thie structure appoars to be nstioclited with

FIG, 4. Temperumure dependence of the magnetoretiance from $0-8 \mathrm{~T}$ of a 60 -andium by 794 -nm-lone $\mathrm{AH}_{0} \mathrm{Pd}_{6}$ line. The zerotheld resistange of the line, \boldsymbol{R}_{0} was 101,7 日

Observation of h / e Aharonov-Bohm Oscillations in Normal-Metal Rings
R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 27 March 1985)

Mesoscopic Fluctuations.

Properties of systems with identical set of macroscopic parameters but different realizations of disorder are different!

Before Einstein:

Correct question would be: describe $\vec{r}(t)$
OK, maybe you can restrict yourself by $\langle\vec{r}(t)\rangle$
Enstein: What is $\left\langle[\vec{r}(0)-\vec{r}(t)]^{2}\right\rangle$?

$$
\left\langle[\vec{r}(0)-\vec{r}(t)]^{n}\right\rangle=?
$$

Mesoscopic physics: Not only $\langle g(H)\rangle$
But also $\left\langle[g(H)-g(H+h)]^{2}\right\rangle$

Brownian motion	Conductance fluctuations	
ensemble	Set of brownian particles	Set of small conductors
observables	Position of each particle \vec{r}	Conductance of each sample g
evolves as function of	Time t	Magnetic field H or any other external tunable parameter
Interested in	Statistics of $\vec{r}(t)$	Statistics of $g(H)$
Example	$\left\langle\left[\vec{r}\left(t_{1}\right)-\vec{r}\left(t_{2}\right)\right]^{2}\right\rangle$	$\left\langle\left[g\left(H_{1}\right)-g\left(H_{2}\right)\right]^{2}\right\rangle$

$$
g_{1}-g_{2} \cong 1 \quad G_{1}-G_{2} \cong e^{2} / \hbar
$$

Magnetoresistance

Statistics of the functions
of $g(H)$ are \xrightarrow{H} universal

Statistics of random function(s) $g(H)$ are universal !

In particular,

$$
\left\langle(\delta g)^{2}\right\rangle \approx 1
$$

$$
g \propto L^{d-2} \rightarrow \frac{\left\langle(\delta g)^{2}\right\rangle}{g^{2}} \propto L^{4-2 d} \gg L^{-d}
$$

!

Fluctuations are large and nonlocal

Waves in Random Media

$$
\begin{aligned}
& W_{1}, W_{2} \quad A_{1}, A_{2} \\
& \text { probabilities probability } \\
& W_{1,2}=\left|A_{1,2}\right|^{2} \\
& A_{1,2}=\left|A_{1,2}\right| e^{i i_{1,2}}
\end{aligned}
$$

$$
W=\left|A_{1}+A_{2}\right|^{2}=W_{1}+W_{2}+2 \operatorname{Re}\left(A_{1} A_{2}^{*}\right)
$$

interference term:

$$
2 \operatorname{Re}\left(A_{1} A_{2}{ }^{*}\right)=2 \sqrt{W_{1} W_{2}} \cos \left(\varphi_{1}-\varphi_{2}\right)
$$

$$
W=\left|A_{1}+A_{2}\right|^{2}=W_{1}+W_{2}+2 \operatorname{Re}\left(A_{1} A_{2}{ }^{*}\right)
$$

$$
2 \operatorname{Re}\left(A_{1} A_{2}^{*}\right)=2 \sqrt{W_{1} W_{2}} \cos \left(\varphi_{1}-\varphi_{2}\right)
$$

$$
\text { 1. } A_{1,2}=\sqrt{W_{1,2}} \exp \left(i \varphi_{1,2}\right)
$$

The interference term disappears after averaging
2. Phases $\varphi_{1,2}$ are random
3. $\left|\varphi_{1}-\varphi_{2}\right| \gg 2 \pi \quad\left\langle\cos \left(\varphi_{1}-\varphi_{2}\right)\right\rangle=0$

$$
\langle W\rangle=\left\langle W_{1}\right\rangle+\left\langle W_{2}\right\rangle
$$

$$
W=\left|A_{1}+A_{2}\right|^{2}=W_{1}+W_{2}+2 \operatorname{Re}\left(A_{1} A_{2}{ }^{*}\right)
$$

Classical result for average probability:

$$
\langle W\rangle=W_{1}+W_{2}
$$

Consider now square of the probability

$$
\left\langle W^{2}\right\rangle=\left(W_{1}+W_{2}\right)^{2}+2 W_{1} W_{2}
$$

Reason: $\left\langle\cos \left(\varphi_{1}-\varphi_{2}\right)\right\rangle=0$

$$
\left\langle\cos ^{2}\left(\varphi_{1}-\varphi_{2}\right)\right\rangle=1 / 2
$$

$$
\left\langle W^{2}\right\rangle \neq\langle W\rangle^{2}
$$

CONCLUSIONS:

1. There are fluctuations!
2. Effect is nonlocal.

Now let us try to understand the effect of magnetic field. Consider the correlation function

$$
\begin{aligned}
& \langle W(H) W(H+h)\rangle=\langle W(H)\rangle\langle W(H+h)\rangle \\
& +2 W_{1} W_{2}\langle\cos (\delta \varphi(H)) \cos (\delta \varphi(H+h))\rangle
\end{aligned}
$$

$$
\delta \varphi \equiv \varphi_{1}-\varphi_{2}
$$

$$
\langle\cos (\delta \varphi(H)) \cos (\delta \varphi(H+h))\rangle \Rightarrow \begin{aligned}
& \frac{1}{2} \text { for } h \rightarrow 0 \quad\left(\Phi(h) \ll \Phi_{0}\right) \\
& 0 \text { for } \Phi(h) \gg \Phi_{0}
\end{aligned}
$$

$$
\Phi(h)=h \bullet(\text { area of the loop })
$$

$\frac{\Phi_{0}}{2 \pi R a} \begin{aligned} & \text { scale of aperiodic } \\ & \text { fluctuations }\end{aligned}$

Quantum Chaos

Marcus et al

How to deal with disorder?

- Solve the Shrodingen equation exactly
- Make statistical analysis

What if there in no disorder?

