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Main Topics:Main Topics:
•Disordered conductors in d=3,2,1 and 0 dimensions
•Anderson localization
•Weak localization
•Sample to sample fluctuations
•Quantum chaos & spectral statistics

•Systems of interacting quantum particles
•Fermi liquid theory without translation invariance
•Decoherence 
•Many body localization

MesoMeso: intermediate between micro and macro: intermediate between micro and macro
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Six papers:
1. The light-quantum and the photoelectric effect. 

Completed March 17.

2. A new determination of molecular dimensions. 
Completed April 30. Published in1906
Ph.D. thesis.

3. Brownian Motion.
Received by Annalen der Physik May 11.

4,5.The two papers on special relativity. 
Received June 30 and September 27

6. Second paper on Brownian motion.
Received December 19.
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Einstein’s Miraculous Year - 1905
Diffusion and Brownian Motion:
2. A new determination of molecular dimensions. 
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Are these papers indeed important enough to stay 
in the same line with the relativity and photons.
Why

Q: ?
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Nobel 
Prize

By far the 
largest number 
of citations



Robert Brown 
(1773-1858)

The instrument with which Robert 
Brown studied Brownian Motion 
and which he used in his work on 
identifying the nucleus of the living 
cell. This instrument is preserved 
at the Linnean Society in London.

Brownian Motion - history



Action of water molecules pushing against the suspended 
object ?

Giovanni Cantoni (Pavia). N.Cimento, 27,156(1867). 

Brownian 
Motion -
history

Robert Brown, Phil.Mag. 4,161(1828); 6,161(1829)

Random motion of particles suspended in 
water (“dust or soot deposited on all bodies 
in such quantities, especially in London”)



The Nobel Prize 
in Physics 1926

"for his work on the discontinuous 
structure of matter, and especially 
for his discovery of sedimentation 
equilibrium"

Jean Baptiste 
Perrin
France 

b. 1870
d. 1942

… measurements on the 
Brownian movement 
showed that Einstein's 
theory was in perfect 
agreement with reality. 
Through these 
measurements a new 
determination of 
Avogadro's number was 
obtained.

The Nobel Prize in Physics 1926
From the Presentation Speech by Professor 
C.W. Oseen, member of the Nobel Committee 
for Physics of The Royal Swedish Academy of 
Sciences on December 10, 1926



1. Each molecules is too light to change the momentum of the suspended particle.

2. Does Brownian motion violate the second law of thermodynamics ?

Brownian 
Motion -
history

Robert Brown, Phil.Mag. 4,161(1828); 6,161(1829)

Random motion of particles suspended in 
water (“dust or soot deposited on all bodies 
in such quantities, especially in London”)

Action of water molecules pushing against the suspend object

Jules Henri Poincaré
(1854-1912)

“We see under our eyes now motion 
transformed into heat by friction, now 
heat changes inversely into motion.
This is contrary to Carnot’s principle.”

H. Poincare, “The fundamentals of Science”, 
p.305, Scientific Press, NY, 1913

Problems:



Problems:
1. Each molecules is too light to change the momentum of the suspended particle.

2. Does Brownian motion violate the second law of thermodynamics ?

3. Do molecules exist as real objects and are the laws of mechanics applicable to them?



logS Wk const= +

probabilityentropy

k is Boltzmann constant
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Kinetic theory

Ludwig Boltzmann
1844 - 1906

Max Planck
1858 - 1947



logS Wk const= +

From Macro 
to Micro

From Micro 
to Macro



“It is of great importance since it permits 
exact computation of Avogadro number … . 
The great significance as a matter of principle 
is, however … that one sees directly under the 
microscope part of the heat energy in the 
form of mechanical energy.”

Einstein, 1915 



Brownian Motion - history
Einstein was not the first to:
1. Attribute the Brownian motion to the action of water molecules pushing 

against the suspended object
2. Write down the diffusion equation
3. Saved Second law of Thermodynamics 
L. Szilard, Z. Phys, 53, 840(1929)



Brownian Motion - history
Einstein was not the first to:
1. Attribute the Brownian motion to the action of water molecules 

pushing against the suspended object
2. Write down the diffusion equation
3. Saved Carnot’s principle [L. Szilard, Z. Phys, 53, 840(1929)]

By studying large molecules in solutions sugar in water 
or suspended particles Einstein made molecules visible

1. Apply the diffusion equation to the probability
2. Derive the diffusion equation from the assumption that the process is 

markovian (before Markov) and take into account nonmarkovian effects
3. Derived the relation between diffusion const and viscosity 

(conductivity), i.e., connected fluctuations with dissipation

Einstein was the first to:



Diffusion 
Equation 

2 0D
t
ρ

ρ
∂

− ∇ =
∂ Diffusion

constant

Einstein-Sutherland Relation

William Sutherland
(1859-1911)
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If electrons would be degenerate 
and form a classical ideal gas
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for electric conductivity σ
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metal

( )n n µ=

Electric 
field

Density of 
electrons

Chemical 
potential

dneD E
dx

σ=

Conductivity Density of states

Einstein-Sutherland Relation for electric conductivity σ

No current



Diffusion 
Equation 

2 0D
t
ρ

ρ
∂

− ∇ =
∂

Lessons from the Einstein’s work:
§ Universality: the equation is valid as long as the 
process is marcovian
§ Can be applied to the probability and thus 
describes both fluctuations and dissipation 
§ There is a universal relation between the diffusion 
constant and the viscosity
§ Studies of the diffusion processes brings 
information about micro scales. 



What is a Mesoscopic System?
§ Statistical description
§ Can be effected by a microscopic system and the effect can 

be  macroscopically detected

Meso can serve as a microscope to study micro

Brownian particle was the first mesoscopic device in use



First paper on Quantum Theory of 
Solid State (Specific heat)
Annalen der Physik, 22, 180, 800 (1907)

First paper on Mesoscopic Physics
Annalen der Physik, 17, 549 (1905)

Brownian particle was the first 
mesoscopic device in use



Finite size quantum physical systems

Atoms
Nuclei
Molecules
.
.
.

Quantum 
Dots



Quantum  Dot
e

×

×
×

×

1. Disorder  (× − impurities)
2. Complex  geometry

e
e

e

e

×

×
3. e-e interactions
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1. Disorder  (× − impurities)
2. Complex  geometry

e
e
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How to deal with disorder?
•Solve the Shrodinger equation exactly
•Start with plane waves, introduce the mean 
free path, and derive Boltzmann equation

How to take quantum interference into account



Electrons in nanostructuresElectrons in nanostructures

Clean systems without boundaries:
•Electrons are characterized by  their momenta or quasimomenta
[ electronic wave functions are plane waves

•Physics is essentially local

•Interaction between electrons is often apparently not important

•Due to the scattering of the electrons off disorder (impurities)
and/or boundaries the momentum is not a good quantum number

•Response to external perturbation is usually nonlocal

•Interaction between electrons is often crucial

In mesoscopic systems:



Lesson  1:Lesson  1:

Beyond Markov chains:

Anderson Localization
and

Magnetoresistance



R.A. Chentsov “On the variation of electrical conductivity of  tellurium 
in magnetic field at low temperatures”, Zh. Exp. Theor. Fiz. v.18, 375-385, (1948).



Quantum particle in random quenched potential

e



E.P. Wigner, Conference on Neutron Physics by 
Time of Flight, November 1956

P.W. Anderson, “Absence of Diffusion in Certain 
Random Lattices”; Phys.Rev., 1958, v.109, p.1492

L.D. Landau, ”Fermi-Liquid Theory” Zh. Exp. Teor. 
Fiz.,1956, v.30, p.1058

J. Bardeen, L.N. Cooper & J. Schriffer, “Theory of 
Superconductivity”; Phys.Rev., 1957, v.108, p.1175.

ORIGINSORIGINS



Localization of single-particle wave-functions:

extended

localized

Disorder 



Anderson Insulator Anderson Metal 

f = 3.04 GHz f = 7.33 GHz



e
Scattering centers, 
e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities
White noise potentialWhite noise potential
Lattice modelsLattice models

Anderson modelAnderson model
Lifshits modelLifshits model



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

I   i and j are nearest 
neighbors

0 otherwise



Classical particle in a random potential Diffusion
1 particle  - random walk
Density of the particles ρ
Density fluctuations ρ(r,t) at a 
given point in space r and time t. 

Diffusion 
Equation

D - Diffusion constant

2lD
dτ

=
l

d
τ

mean free path

mean free time

# of dimensions

2 0D
t
ρ

ρ
∂

− ∇ =
∂
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for a cubic sample 
of the size L

Einstein - Sutherland Relation for electric conductivity σ
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1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
er

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Energy scales ((Thouless, 1972))



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan, 1979)

( )
2

1 d
hD Lg L

Lν
=

Thouless energy
mean level spacing

=

Thouless conductance 
is Dimensionless

Corrections to the diffusion 
come from the large distances 
(infrared corrections)

....
Universal description!



Scaling theory of Localization
Abrahams, Anderson, Licciardello and Ramakrishnan

1979

L = 2L = 4L = 8L ....

ET ∝ L-2 δ1 ∝ L-d 

without quantum corrections

ET ET ET ET

δ1  δ1  δ1  δ1

g g g g

d log g( )
d log L( )=β g( )

g = Gh/e2g = ET / δ1
Dimensionless Thouless 

conductance



d log g( )
d log L( )=β g( )

β – function

Is universal, i.e., 
material independent
But
It depends on the global 
symmetries, e.g., it is 
different with and 
without T-invariance

Limits:
( ) ( )2 11 2dg g L g d O

g
β−  

>> ∝ = − +  
 

( )1 log 0Lg g e g gξ β−<< ∝ ≈ <

0 2
?? 2

0 2
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β - function ( )g
Ld
gd

β=
log
log

β(g)

g

3D

2D

1D-1

1

1≈cg

unstable
fixed point

Metal – insulator transition in 3D
All states are localized for d=1,2
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Questions:

Why
•the scaling theory is correct?
•the corrections of the diffusion 
constant and conductance are 
negative?

Why diffusion description fails at large scales ?



Does velocity diverge at
No because at times shorter 
than mean free time         
process is not marcovian and 
there is no diffusion

Diffusion description fails at large scales
Why?

Einstein: there is no diffusion at too short
scales – there is memory, i.e., 
the process is not marcovian.

t
D

dt
dr

Dttr

2

)(

=

= ?0→t 



Diffusion description fails at large scales
Why?

Einstein: there is no diffusion at too short
scales – there is memory, i.e., 
the process is not marcovian.

Why there is memory at large distances 
in quantum case ?

Quantum corrections at large Thouless 
conductance – weak localization
Universal description
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( ) 2

? ?

d
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Quantum 
corrections

Suggested homework:

1. Derive the equation for g(L) from this limit of the β-function

2. Suppose you know β(g) for some number of dimensions d.   
Let g at some size of the system L0 be close to the critical 
value: Estimate the 
localization length ξ (for δg<0) and the conductivity σ in the  
limit (for δg>0) L → ∞

( ) 1;0 <<+= gggLg c δδ



O

   ϕ1 = ϕ2

WEAK  LOCALIZATION

Constructive interference         probability to return 
to the origin gets enhanced        diffusion constant 
gets reduced. Tendency towards localization

β - function is negative for d=2

Phase accumulated 
when traveling 
along the loop

The particle 
can go around 
the loop in 
two directions

Memory!

∫= rdp rr
ϕ



( )2r t tD〈 〉 =

Diffusion
Random walk
Density fluctuations ρ(r,t) at a 
given point in space r and time t. 

Diffusion 
Equation

D - Diffusion constant

2 0D
t
ρ

ρ
∂

− ∇ =
∂

( )( )
( ) 20 d

dVP r t dV
Dt

= =

Probability to come back 
(to the element of the 
volume dV centered at 
the original point)

Mean squared 
distance from 
the original 
point at time t
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O
( )( )

( ) 20 d
dVP r t dV

Dt
= =

Probability to come 
back (to the element of 
the volume dV around 
the original point)

Q: A:?dV = 1d
FdV v dt−= D

What is the 
probability  
P(t) the 
particle 
comes back 
in a time t ?
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≈ ϕτ
ω

,1,min
2

max D
Lt

Decoherence
in the leads

Dephasing time
(inelastic processes) 

AC 
conductivity
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2 log Lg
l

δ
π

−=

2( )g
g

β
π

= −

What does it mean d=2Q: ?

A: Transverse dimension is much less than

maxDt

for a film with a thickness a
much smaller than L,Lϕ



R.A. Chentsov “On the variation of electrical conductivity of  tellurium 
in magnetic field at low temperatures”, Zh. Exp. Theor. Fiz. v.18, 375-385, (1948).



Φ

Magnetoresistance

No magnetic field 
   ϕ1 = ϕ2

With magnetic field H
     ϕ1− ϕ2= 2∗2π Φ/Φ0

O O



Length Scales

Magnetoresistance measurements allow to study inelastic
collisions of electrons with phonons and other electrons

Magnetic length LH = (hc/eH)1/2

Dephasing length Lϕ = (D τϕ)1/2

( ) H
d

Lg H f
Lϕ

δ
 

=   
 

Universal
functions



Negative 
Magnetoresistance 

Weak LocalizationWeak Localization

Aharonov-Bohm effect
Theory 
B.A., Aronov & Spivak (1981)

Experiment 
Sharvin & Sharvin  (1981)

Chentsov
(1949)



Aharonov-Bohm effect
Theory 
B.A., Aronov & Spivak (1981)

Experiment 
Sharvin & Sharvin  (1981)

Φ

With magnetic field H
ϕ

1
− ϕ

2
= 2∗2π Φ/Φ

0

O

Resistance is a periodic function of 
the magnetic flux with the period

Φο/2



Lesson 2:Lesson 2:

Brownian Particle 
as a mesoscopic system



Mesoscopic fluctuations



Resistance is a periodic 
function of the magnetic flux 
with the period Φο



Mesoscopic   Fluctuations.Mesoscopic   Fluctuations.

×

×
×

×
×

×

××

××

Properties of systems with identical set 
of macroscopic parameters but different
realizations of disorder are different!

g1 ≠ g2

Magnetoresistance
g H( )

H

g

... g >>1- ensemble  averaging

g H( )
is sample
-dependent



What is ?

Before Einstein:
Correct question would be: describe ( )r tr

OK, maybe you can restrict yourself by ( )r tr

Einstein: ( ) ( ) 2
0r r t − 

r r

( ) ( )0 ?
n

r r t − = 
r r

Mesoscopic physics: Not only 

But also

( )g H

( ) ( ) 2
g H g H h − + 



Example

Statistics ofStatistics ofInterested in

Magnetic field     or 
any other external 
tunable parameter

Time…..evolves as 
function of

Conductance of 
each sample…..

Position of each 
particle……

observables

Set of small 
conductors

Set of brownian
particles

ensemble

rr g
Ht

( )r tr ( )g H

( ) ( ) 2

1 2r t r tr r −  ( ) ( ) 2

1 2g H g H − 

Brownian 
motion

Conductance 
fluctuations



22

g1 ≠ g2

g1 − g2 ≅1 G1 −G2 ≅ e2 h

×

×
×

×
×

×

××

××

Magnetoresistance
g H( )

H

g

≈1 Statistics of the 
functions 
of g(H) are 
universal

B.A.(1985); 
Lee & Stone (1985)



Statistics of random function(s) g(H) are universal !

In particular,

( )2

2 4 2
2

d d d
g

g L L L
g

δ
− − −∝ → ∝ >>

Fluctuations are large and nonlocal

( ) 12 ≈gδ



W1,2 = A1,2
2

W = A1 + A2
2

=W1 + W2 + 2Re A1A2
∗( )

Waves in Random MediaWaves in Random Media

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2

W1, W2
probabilities

A1, A2
probability 
amplitudes

Total 
probability

2Re A1A2
∗( )= 2 W1W2 cos ϕ1 −ϕ2( )

interference 
term:

1,2
1,2 1,2

iA A e ϕ=



Phases    are random

A1,2 = W1,2 exp iϕ1,2( )1.
ϕ1,22.

ϕ1 −ϕ2 >> 2π3. cos ϕ1 −ϕ2( ) = 0

W = W1 + W2

The interference 
term disappears 
after averaging

W = A1 + A2
2

=W1 + W2 + 2Re A1A2
∗( )

2Re A1A2
∗( )= 2 W1W2 cos ϕ1 −ϕ2( )



W = A1 + A2
2

=W1 + W2 + 2Re A1A2
∗( )

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2

Classical result for average probability:

W = W1 + W2



Reason:Reason:
cos ϕ1 −ϕ2( ) = 0

cos 2 ϕ1 −ϕ2( ) =1 2

Consider now square of the probability

W 2 = W1 +W2( )2 + 2W1 W2

W 2 ≠ W
2

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2



×

×

×
×

×
××

×

×

×
×

× D

S

1

2

W 2 ≠ W
2

CONCLUSIONS:

1. There are fluctuations!

2. Effect is nonlocal.

×

×



( )( ) ( )( )cos cosH H hδϕ δϕ + ⇒

Now let us try to 
understand the 
effect of magnetic 
field. Consider the 
correlation function 

( ) ( ) ( ) ( )
( )( ) ( )( )1 22 cos cos

W H W H h W H W H h
W W H H hδϕ δϕ

+ = +
+ +

×
×

×

×
×

×

×
××

×

×

×
×

× D

S

1

2

1 2δϕ ϕ ϕ≡ −

( ) ( )area of the looph hΦ = •

( )( )
( ) 0

02
1

0
0

Φ>>Φ

Φ<<Φ→

h
hh

for
for



Magnetoresistance
g H( )

g

≈1

H Φ

Φ0

Flux through the 
whole system



Ra

2
0

Rπ
Φ

Raπ2
0Φ

period of oscillations

scale of aperiodic
fluctuations



Quantum Chaos
co

nd
uc

ta
nc

e 
(e

2 /h
)

Vg (mV)-500 0
-0.3

0.3

-0B
(T

)

Marcus et al



Huibers, et al. PRL, 81 1917(1998).Huibers, et al. PRL, 81 1917(1998).

Marcus et. al, 
1998



e

×

×
×

×

1. Disorder  (× − impurities)
2. Complex  geometry

e
e

e

e

×

×

How to deal with disorder?
•Solve the Shrodinger equation exactly

•Make statistical analysis 

What if there in no disorder?


