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Brownian Motion - Diffusion




Einstein-Sutherland Relation for electric conductivity S
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Energy scales (Thouless, 1972)
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Weak localization
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1. Disorder (" - impurities)

2. Complex geometry

How to deal with disorder?

Solve the Shrodinger-equation exacf@

“-Make statistical analysis

What if there in no disorder?



Beforehand

Random Matrices, Anderson
TOday Localization, and Quantum Chaos

Interaction between electrons in
Later




E.P. Wigner, Conference on Neutron Physics by
Time of Flight, November 1956

P.W. Anderson, “Absence of Diffusion in Certain
Random Lattices”; Phys.Rev., 1958, v.109, p.1492

L.D. Landau, ” Fermi-Liquid Theory” Zh. Exp. Teor.
Fiz.,1956, v.30, p.1058

J. Bardeen, L.N. Cooper & J. Schriffer, “Theory of
Superconductivity”; Phys.Rev., 1957, v.108, p.1175.



Random Matrices

Quantum Chaos

Localization




RANDOM MATRIX THEORY

ensemble of Hermitian matrices

N N with random matrix element N®
E, - spectrum (set of eigenvalues)
d, ° <Ea+1 - Ea> - mean level spacing
< ...... > - ensemble averaging
g O E.. - E, - spacing between nearest
d, neighbors
P(S) - distribution function of nearest
neighbors spacing between

=0

P(s<<1)u s® b=1,2,4



Noncrossing rule (theorem) EdGEIUEL

Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)

Usually textbooks present a simplified version of the justification
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. ., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989



In general, a multiple spectrum in
typical families of quadratic forms
is observed only for two or more
parameters, while in one-
parameter families of general
form the spectrum is simple for
all values of the parameter. Under
a change of parameter in the
typical one-parameter family the
eigenvalues can approach
closely, but when they are
sufficiently close, it is as if they
begin to repel one another. The
eigenvalues again diverge,
disappointing the person who
hoped, by changing the
parameter to achieve a multiple
spectrum.




1 : : : :
Wigner-Dyson; GOE Gaussian
Poisson Orthogonal
0.8 F 1 Ensemble
! Orthogonal
0.6 o)
Unita
04 F . bI:Zry
Simplectic
0.2 | ) =4

O L L L L
0 0.5 1 1.5 2

P(s)

wn
(@] (=] (@] (@]

Poisson — completel
uncorrelated -
Ievels 0 0.5 1 1.5 2 2.5 3

o N i Jop o - ) IS
L] L] L] | L] L]




RANDOM MATRICES

N~ N matrices with random matrix elements. N ® o0

Dyson Ensembles

Matrix elements Ensemble b realization

real orthogonal 1  T-inv potential

2 2 matrices simplectic 4 T-inv, but with spin-
orbital coupling



Reason for P(S)® O when s® O:

1. The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

2. If H, is real (orthogonal ensemble), then for § to be small

two statistically independent variables ((H,,- H{{) and H,)
should be small and thus P(s)U s b =1

3. Complex I, (unitary ensemble) == both Re(H,,) and

Im(H,) are statistically independent ==> three mdependen'r
random variables should be small ==> P(S) LI g2 b=2



Finite size quantum physical systems

Atoms
Nuclel
Molecules

Quantum
Dots



L R G e

Nveeed

Spectra: {£_}

Random Matrices Atomic Nuclei
» Ensemble * Particular quantum system
 Ensemble averaging e Spectral averaging (over Q)




N. Bohr, Nature
137 (1936) 344.
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Why the random matrix

Q ® theory (RMT) works so well $)

® for nuclear spectra °
Original
answer:

Later it
became
clear that




Classical ( ) Dynamical Systems with degrees of freedom

Integrable .=>
Systems - -

Examples




Classical Dynamical Systems with degrees of freedom

Integrable
Systems
R et teresony e
Systems

Examples




Classical Dynamical Systems with degrees of freedom

Integrable
Systems

Syetam —
Systems

Examples

in magnetic field

Sinai billiard Stadium




Classical Chaos

with a finite number of the degrees
of freedom is a linear problem -
Shrodinger equation

Q: What does it mean Quantum Chaos ?




Bohigas — Giannoni — Schmit conjecture

Vorume 52 2 JANUARY 1984 NUmsrR 1 .
Chaotic

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws c I ass i ca I a n a I Og

O. Bohigas, M. J. Giannoni, and C. Schmit
Division de Physigue Théoriaue, Institut de Physique Necléaive, F-91406 Orsay Cedex, France
(Received 2 August 1983)

1t is found that the level fluctuations of the quantum Sinail’s billlard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces

the belief that level Muctuation laws are universal.

In

summary, the question at issue is to prove or dis- -
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Q: What does it mean Quantum Chaos ?

Two possible definitions

Chaotic Wigner -
classical Dyson-like
analog spectrum



Classical Quantum

?
Integrable <— Poisson
? Wigner-

Chaotic <
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Important example: quantum
particle subject to a random
potential - disordered conductor

# Scattering centers, e.g., impurities

+As well as in the case of Random Matrices
(RM) there is a luxury of ensemble averaging.

*The problem is much richer than RM theory
*There is still a lot of universality.

At strong enough
disorder all eigenstates
are localized in space




Anderson » Lattice - tight binding model
M Odel * Onsite energies el. - random

 Hopping matrix elements I ii

I l and ! are nearest
neighbors

uniformly distributed 0 otherwise

Anderson Transition

I<L I>L
Insulator Metal

All eigenstates are localized There appear states extended

Localization length X all over the whole system



Anderson Transition

Weak disorder

Strong disorder
I1<I
c

Insulator
All eigenstates are localized

Localization length X

The eigenstates, which are

localized at different places
will not repel each other

J

Poisson spectral statistics

I>1
Metal

There appear states extended
all over the whole system

Any two extended
eigenstates repel each other

d

Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20
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Energy scales (Thouless, 1972)

L 4 1
Eﬁ l d L is the system size;
@ — 1
= —
w d is the number of
- dimensions

Ihouless energy ET = hD/L’ D is the diffusion const

dimensionless
Thouless
conductance




Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
) Insulator Metal ﬁ
- . : \
Poisson spectral Wigner-Dyson
statistics spectral statistics

Transition at g~1.
Is it sharp?
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Anderson transition in terms of

pure level statistics

metal, W=5
critical, 16.5
insulator, 100

Wigner

&
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Suggested problem;

~ dV
Consider b (V' )©°
V)° dlogs)

where V' ° Vars?® <S2>- <S>2

Is E(V) universal function?

Sketch this function



Thouless Conductance and
One-particle Spectral Statistics

Localized states Extended states
) Insulator Metal ﬁ
- . : \
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots

with Thouless
conductance g

N "~ N
Random Matrices

The same statistics of the

random spectra and one-

particle wave functions
(eigenvectors)




VoLuMmE 835, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 2000

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Sridhar

Depirtment of Phvsics, Northeastern University, Boston, Massachiesetis 02115
(Received 28 February 2000)

Integrable Chaotic
4 All chaotic LTSRN

systems

' W) resemble

billiard each other.

billiard

All integrable
systems are
integrable in

Disordered

their own way extended

Disordered
localized



Anderson metal;
Wigner-Dyson spectral statistics

Disordered

Systems: Anderson insulator;
Poisson spectral statistics

® Wigner-Dyson to Poisson crossover ®

Q o IS it a generic scenario for the ‘)

Speculations

Consider an integrable system. Each state is characterized by a set of
quantum numbers.

It can be viewed as a point in the space of quantum numbers. The
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements
of the hopping between different sites (Anderson model !?)



. Does Anderson localization provide 9
Q e a generic scenario for the Wigner- e
Dyson to Poisson crossover




The very definition of the localization is
not invariant - one should specify in which
space the eigenstates are localized.

Level statistics is invariant:
Poissonian basis where the |
statistics eigenfunctions are localized

Wianer -Dvson basis the eigenfunctions
stagt’is?ics ¥50 \v/ are extended




Exampled Jgl - SWEH

Low concentration Electrons are localized on

of donors == donors = Poisson
Higher donor Electronic states are
concentration extended = Wigner-Dyson

Example 2 ISRV

integrals p, ;

IRECERGNERG v -

Lattice in the
momentum space

Ideal billiard - localization in the
) 2 S momeptumspace
cossses. 00 ale = Poisson
O000O0D0O0D0O0D0O0D0OD0OL "0000O0
eescocsceceRR*” Deformation or - delocalization in the
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.............\‘.p
X

smooth random  momentum space
potential = Wigner-Dyson




VorLuMme 77, NUMBER 23 PHYSICAL REVIEW LETTERS 2 DECEMBER 1996

Diffusion and Localization in Chaotic Billiards

Fausto Borgonovi,'## Giulio Casati>3? and Baowen 1Li%7
| Dipartimento di Matematica, Universita Cattolica, via Trieste 17, 25121 Brescia, lialy
TUniversita di Milano, sede di Coma, Via Lucini 3, Coma, Italy
*stituto Nazionale di Fisice delle Materia, Unita di Milano, vie Celoria 16, 22100, Milano, Italy
AInpstituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
3 Instinuta Nazionale di Fisica Nucleare, Sezione di Milano, Milena, Italy
S Department of Physics and Cenire for Nanlinear and Complex Systems, Hong Kong Baptist University, Hong Kong
4T Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 2000 Maribar, Slovenia
{Received 29 July 1996)

Chaotic & N .
€>0 gadium > k Poisson

e ® 0 Integrable circular billiard 2=0.012

Angular momentumis | N
the integral of motion -
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Diffusion in the
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Vorume 77, NUMBER 23 PHYSICAL REVIEW LETTERS 2 DECEMBER 1906

Diffusion and Localization in Chaotic Billiards

Fausto Borgonovi.!'3* Giulie Casati 2 and Baowen 1i%7
V Dipartimento di Muatematioa, Universita Cattodicy, vig Trieste 17, 25121 Broscia, Haly
TUsiversita di Mifano, sede i Com, Vie Lucini 3, Come, Holy
Ystituteo Nazionale di Fisice delle Materia, Unitd df Mitano, vie Celoria 16, 22100, Milano, faly
tustituto Naziongle di Fisica Nucleare, Sezione i Pavia, Pavia, Haly
SInstitwte Nazionale di Fisica Nucleare, Sezione df Milano, Mileno, Ttaly

B Depaertment OF Physies and Centre for Noplinear and Complex Svsiems, Hong Kong Baptist University, Hong Kong
T Center for Applicd Mathematics and Theoretical Physics, University of Marthor, Krekove 2, 2000 Maribor, Slovenia
(Received 29 July 1906)

Chaotic

e>0 stadium

e ® 0 Integrable circular billiard

Angular momentum is
the integral of motion

P(s)

h=0;, e<<l

Angular momentum
is not conserved




1D Hubbard Model on a periodic chain

Hubbard
model

extended :
P80 Hubbard nonintegrabl

model

12 sites
3 particles
Zero total spin

Total momentum p/6 |

integrable

1 e

111111111111

_ Onsite
intferaction

intferaction

11111111111111




N/ AL % \"{J \"{exchange
Y71D t-J model on X1 \_rt \“‘ﬂopping

a periodic chain

e a
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N=16; one hole




Why the random matrix

Q ® theory (RMT) works so well $)

® for nuclear spectra °

Spectra of Many-Body excitations !



Chaos In Nuclel Delocalization?

1 2 3 4 5 6>
® generations

Delocalization
in Fock space

Fermi Sea




Zero-dimensional

Fermi Liquid




E.P. Wigner, Conference on Neutron Physics by
Time of Flight, November 1956

P.W. Anderson, “Absence of Diffusion in Certain
Random Lattices”; Phys.Rev., 1958, v.109, p.1492

L.D. Landau, ” Fermi-Liquid Theory” Zh. Exp. Teor.
Fiz.,1956, v.30, p.1058

J. Bardeen, L.N. Cooper & J. Schriffer, “Theory of
Superconductivity”; Phys.Rev., 1957, v.108, p.1175.



What does it

Q ¥ What is the difference between ?
|

Fermi-liquid and non-Fermi liquid

on-Fermi liquid ?

A B The difference is the same as between
g bananas and non-bananas.

Py

What does it mean Fermi liquid -



1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers — momentum, spin Z3 charge €

b) decay rate is small as compared with the excitation energy

2. Substantial renormalizations. For example, in a Fermi gas

are all equal to the one-particle density of states N .
These quantities are different in a Fermi liquid




Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T?
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very

low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

..The increase of the resistance caused by the interaction between
the electrons is proportional to 77 and at low temperatures exceeds
the usual resistance, which is proportional to 7°.

.. the sum of the momenta of the interaction electrons can change
by an integer number of the periods of the reciprocal lattice.
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by
the thermal oscillations of the lattice.



Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T?
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very

low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649
Umklapp electron — electron scattering dominates the
charge transport (?!) n(p)

2. Jump in the momentum distribution
function at T=0.

2a.  Pole in the one-particle Green function p;

Fermi liquid = 0<Z<I (?!)



Landau Fermi - Liquid theory

Momentum

Momentum distribution
Total energy
Quasiparticle energy
Landau f-function

Can Fermi — liquid survive without the momenta ?
[ ...
Q Does it make sense to speak about the Fermi — liquid
R

state in the presence of a quenched disorder [




Does it make sense to speak about the Fermi -
liquid state in the presence of a quenched disorder

1. Momentum is not a good quantum number - the n ( 13)
momentum uncertainty is inverse proportional to the
elastic mean free path, I. The step in the momentum ~ 54_
distribution function is broadened by this uncertainty / p
Pr

2. Neither resistivity nor its temperature dependence is determined by the umklapp
processes and thus does not behave as T?

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a

function of the energy, €. The residue , Z, makes no sense.

NeverthelessieVeninthe presence ol tie disoraer:




Quantum Dot

1. Disorder ( impurities)

2. Complex geometry

3. e-e interactions

Realizations:

* Metallic clusters
* Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)

« Carbon nanotubes



Zero Dimensional Eermi Liquid

| e

At the same time, we want the typical energies, €, to
exceed the mean level spacing, d, :




*Try to describe the e-e interaction effects in
Quantum Dots in the limit & ® ¥

-Calculate/estimate corrections when ] << g < ¥

Interaction is not supposed to be weak !



Thouless Conductance and
One-particle Quantum Mechanics

Localized states Extended states
Insulator Metal
Poisson spectral Wigner-Dyson
statistics spectral statistics

Quantum Dots with
dimensionless

The same statistics of the random
spectra and one-particle wave

functions (eigenvectors)




