Laser cooling and trapping of atoms: beyond the limits

1. A breakthrough in the quest of
low temperatures4. Dipolar force
1. Properties

2. Radiative forces

- 1. Semi classical approach
- 2. Atomic motion
- 3. Radiative forces
- 4. Resonance transition
- 3. Resonant radiation pressure
 - 1. Properties
 - 2. Stopping a laser beam with radiation pressure
 - 3. Photon momentum interpretation

- 1. Properties; interpretations
- 2. Applications: optical tweezer optical lattice, atomic mirror
- 3. Photon momentum interpretation?
- 5. Laser cooling: optical molasses
 - Doppler cooling
 Magneto Optical Trapp (MOT)
 Doppler Limit temperature
 Below Doppler limit: Sisyphus
- 6. Below the one photon recoil limit: dark resonance cooling and Lévy flights

Laser cooling of atoms: a breakthrough

L'échelle logarithmique montre l'ampleur du refroidissement, caractérisée par une division de la température absolue, pas par une soustraction.

Cooling and trapping: increase of phase space density

Cooling:

- Increase of density in velocity space
- ≠ filtering

Trapping :

• Confinement in real space

Cooling and Trapping :

• Increase of phase space density

Laser cooling and trapping of atoms: beyond the limits

1. A breakthrough in the quest of
low temperatures4. Dipolar force
1. Properties

2. Radiative forces

- 1. Semi classical approach
- 2. Atomic motion
- 3. Radiative forces
- 4. Resonance transition
- 3. Resonant radiation pressure
 - 1. Properties
 - 2. Stopping a laser beam with radiation pressure
 - 3. Photon momentum interpretation

- 1. Properties; interpretations
- 2. Applications: optical tweezer optical lattice, atomic mirror
- 3. Photon momentum interpretation?
- 5. Laser cooling: optical molasses
 1. Doppler cooling
 2. Magneto Optical Trapp (MOT)
 3. Doppler Limit temperature
 4. Below Doppler limit: Sisyphus
- 6. Below the one photon recoil limit: dark resonance cooling and Lévy flights

Semi classical model of atom-light interaction

Matter (atoms) is quantized	Light described by classical electromagnetic field
-----------------------------	--

Successful to describe all matter-light interaction phenomenon known until 1970 (except spontaneous emission)

- Absorption, stimulated emission: lasers
- Photoelectric effect!!!

Modern quantum optics is about radiation that demand quantization of light

- Single photon wave packets
- Entangled photons

Semi-classical model is very useful, provided one knows its limits

Two level atom in motion: quantum description

Etat interne

$$|\psi\rangle \in \mathcal{E}_{int} \text{ (dimension 2)} \quad \begin{array}{c} E_b \\ \uparrow \\ h \omega_0 \\ \psi \rangle \leftrightarrow \begin{bmatrix} \gamma_a(t) \\ \gamma_b(t) \end{bmatrix} \\ E_a \\ \end{array} \quad \begin{array}{c} h \omega_0 \\ E_a \\ \end{array} \quad \begin{array}{c} \hat{H}_0 = \begin{bmatrix} 0 & 0 \\ 0 & \hbar \omega_0 \end{bmatrix} \\ \end{array}$$

Mouvement du centre de masse (observables \mathbf{r} , P)

$$|\psi\rangle \in \mathcal{E}_{\mathbf{r}}$$
 $|\psi\rangle \leftrightarrow \psi(\mathbf{r},t)$ $\hat{H}_{\text{ext}} = \frac{\hat{\mathbf{P}}^2}{2M} \leftrightarrow \hat{H}_{\text{ext}} = -\frac{\hbar^2}{2M}\Delta$

Description globale

$$|\psi\rangle \in \mathcal{E}_{int} \otimes \mathcal{E}_{\mathbf{r}} \qquad |\psi\rangle \leftrightarrow \begin{bmatrix} \psi_a(\mathbf{r},t) \\ \psi_b(\mathbf{r},t) \end{bmatrix} \quad \leftrightarrow \quad \text{spineur} \qquad \hat{H} = \hat{H}_0 + \hat{H}_{ext}$$

Description quantique de la dynamique interne et du mouvement

Interaction avec une onde électromagnétique classique Interaction dipolaire électrique avec $\mathbf{E}(\mathbf{r},t) = \vec{\epsilon} E_0(\mathbf{r}) \cos(\omega t - \varphi(\mathbf{r}))$ $\hat{H}_1 = -\hat{\mathbf{D}} \cdot \mathbf{E} = -\hat{D}_0 E_0(\mathbf{r},t) = -\begin{bmatrix} 0 & d \\ E_0(\mathbf{r},t) \end{bmatrix}$ avec $\hat{D}_r = \hat{\mathbf{D}} \cdot \vec{\epsilon}$

$$\hat{H} = \hat{H}_{0} + \hat{H}_{ext} + \hat{H}_{I} = \begin{bmatrix} 0 & 0 \\ 0 & \hbar \omega_{0} \end{bmatrix} + \frac{\hat{\mathbf{P}}^{2}}{2M} \Delta - \begin{bmatrix} 0 & d_{\varepsilon} \\ d_{\varepsilon} & 0 \end{bmatrix} E_{\varepsilon}(\mathbf{r}, t)$$

$$\text{Agit sur } [\psi] = \begin{bmatrix} \psi_{a}(\mathbf{r}, t) \\ \gamma_{b}(\mathbf{r}, t) \end{bmatrix}$$

L'hamiltonien dipolaire électrique est valable dans le cadre de l'approximation des grandes longueurs d'onde: distance électronnoyau $<< \lambda$

Cela ne met aucune contrainte sur $\psi_a(\mathbf{r},t)$ et $\psi_b(\mathbf{r},t)$ qui pourraient être étalés sur une distance >> λ

Paquet d'onde localisé: limite classique

Atome localisé

Paquet d'onde étroit, identique pour les deux états

$$\begin{bmatrix} \boldsymbol{\psi} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\psi}_a(\mathbf{r}, t) \\ \boldsymbol{\gamma}_b(\mathbf{r}, t) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}_a(t) \\ \boldsymbol{\gamma}_b(t) \end{bmatrix} \boldsymbol{\psi}(\mathbf{r}, t)$$

 $\psi(\mathbf{r},t) \ll \text{piqué} \gg \text{autour de } \mathbf{r}_{\text{at}} \qquad \text{largeur} << \lambda$

Position classique

$$\langle \hat{\mathbf{r}} \rangle(t) = \langle \psi | \hat{\mathbf{r}} | \psi \rangle = \int \psi^*(\mathbf{r}, t) \mathbf{r} \psi(\mathbf{r}, t) d^3 r \simeq \mathbf{r}_{at}(t)$$

Vitesse classique définie par $\mathbf{V}_{at} = \frac{d}{dt} \mathbf{r}_{at}(t) = \frac{d}{dt} \langle \hat{\mathbf{r}} \rangle(t)$ Th. d'Ehrenfest: $\mathbf{V}_{at} = \frac{d}{dt} \langle \hat{\mathbf{r}} \rangle = \frac{1}{i\hbar} \langle \left[\hat{\mathbf{r}}, \hat{H} \right] \rangle = \langle \frac{\hat{\mathbf{P}}}{M} \rangle$ $\operatorname{car} \langle \left[\hat{\mathbf{r}}, \frac{\hat{\mathbf{P}}^2}{2M} \right] \rangle = 2 \frac{\hat{\mathbf{P}}}{2M} \langle \left[\hat{\mathbf{r}}, \hat{\mathbf{P}} \right] \rangle = \frac{\hat{\mathbf{P}}}{M} i\hbar$

Dynamique de la position classique On applique le th. d'Ehrenfest à la vitesse classique $\frac{d\mathbf{r}_{at}}{dt} = \mathbf{V}_{at} = \left\langle \frac{\hat{\mathbf{P}}}{M} \right\rangle$ $M \frac{d}{dt} \mathbf{V}_{at} = \frac{1}{i\hbar} \left\langle \left[\hat{\mathbf{P}}, \hat{H} \right] \right\rangle = \frac{1}{i\hbar} \left\langle \left[\hat{\mathbf{P}}, \hat{H}_{I} \right] \right\rangle$ $\left[\hat{\mathbf{P}}, \hat{H}_{\mathrm{I}}\right] = -\hat{D}_{\varepsilon}\left[\hat{\mathbf{P}}, E(\mathbf{r}, t)\right] = -\frac{\hbar}{i}\hat{D}_{\varepsilon}\vec{\nabla}\left\{E(\mathbf{r}, t)\right\}$ $M \frac{d^2}{dt^2} \mathbf{r}_{at} = M \frac{d}{dt} \mathbf{V}_{at} = \left\langle \hat{D}_{\varepsilon} \vec{\nabla} \left\{ E(\mathbf{r}, t) \right\} \right\rangle = \left\langle \hat{D}_{\varepsilon} \right\rangle \left[\vec{\nabla} \left\{ E_{\varepsilon}(\mathbf{r}, t) \right\} \right]_{\mathbf{r}_{at}}$

L'atome suit une trajectoire classique moyenne déterminée par la force

$$\mathbf{F} = \left\langle \hat{D}_{\varepsilon} \right\rangle \left[\vec{\nabla} \left\{ E_{\varepsilon}(\mathbf{r}, t) \right\} \right]_{\mathbf{r}_{at}}$$

cf. électrodynamique classique, pour un dipôle d_{ε} dans $\mathbf{E} = \vec{\varepsilon} E_{\varepsilon}(\mathbf{r}, t)$ $\mathbf{F} = d_{\varepsilon} \vec{\nabla} E_{\varepsilon}$ (et pas $\vec{\nabla} (d_{\varepsilon} E_{\varepsilon})$: important quand d_{ε} dépend de E_{ε})

Forces radiatives

Oscillation forcée du dipôle atomique, sous l'effet du champ $\mathbf{E}(\mathbf{r},t) = \vec{\epsilon} E_0(\mathbf{r}) \cos(\omega t - \varphi(\mathbf{r})) = \vec{\epsilon} \mathcal{E}(\mathbf{r},t) + \text{c.c.}$

avec
$$\mathcal{E}(\mathbf{r},t) = \frac{E_0(\mathbf{r})}{2} \exp\{i\varphi(\mathbf{r})\}\exp\{-i\omega t\}$$

 $\left\langle \hat{D}_{\epsilon} \right\rangle = \varepsilon_0 \alpha \mathcal{E}(\mathbf{r}, t) + \varepsilon_0 \alpha^* \mathcal{E}^*(\mathbf{r}, t)$ après amortissement du transitoire

Polarisabilité complexe $\alpha = \alpha' + i\alpha''$ (cf. chap II)

Force due à l'interaction entre le champ et le dipôle atomique induit

$$\mathbf{F} = \left\langle \hat{D}_{\varepsilon} \right\rangle \left[\vec{\nabla} \left\{ E(\mathbf{r}, t) \right\} \right]_{\mathbf{r}_{at}} = \varepsilon_0 \left(\alpha \mathcal{E} + \alpha^* \mathcal{E}^* \right) \vec{\nabla} \left\{ \mathcal{E} + \mathcal{E}^* \right\}$$

En ne gardant que les termes qui n'oscillent pas (moyenne temporelle)

$$\mathbf{F} = \varepsilon_0 \alpha \, \mathcal{E} \Big[\vec{\nabla} \mathcal{E}^* \Big]_{\mathbf{r}_{at}} + \text{ c.c.}$$

Radiation pressure vs Dipole force

$$\mathbf{F} = \varepsilon_0 \alpha \mathcal{E} \left[\vec{\nabla} \mathcal{E}^* \right]_{\mathbf{r}_{at}} + \text{ c.c.} \qquad \text{avec} \quad \mathcal{E}(\mathbf{r}, t) = \frac{E_0(\mathbf{r})}{2} \exp\{i\varphi(\mathbf{r})\} \exp\{-i\omega t\}$$

$$\mathbf{F} = \frac{\varepsilon_0 \alpha}{4} E_0(\mathbf{r}) \Big(\vec{\nabla} \Big[E_0(\mathbf{r}) \Big] - i \vec{\nabla} \Big[\varphi(\mathbf{r}) \Big] E_0(\mathbf{r}) \Big) + \text{ c.c.}$$
$$= \frac{\varepsilon_0 \alpha'}{2} E_0(\mathbf{r}) \vec{\nabla} \Big[E_0(\mathbf{r}) \Big] + \frac{\varepsilon_0 \alpha''}{2} \Big(E_0(\mathbf{r}) \Big)^2 \vec{\nabla} \Big[\varphi(\mathbf{r}) \Big]$$

l'expression étant évaluée en $\mathbf{r} = \mathbf{r}_{at}$

$$\mathbf{F}_{\rm dip} = \frac{\mathcal{E}_0 \boldsymbol{\alpha}'}{2} E_0(\mathbf{r}) \vec{\nabla} \left[E_0(\mathbf{r}) \right]$$

 $\alpha = \alpha$

Force dipolaire

$$\mathbf{F}_{\text{res}} = \frac{\mathcal{E}_0 \boldsymbol{\alpha}''}{2} \left(E_0(\mathbf{r}) \right)^2 \vec{\nabla} \left[\boldsymbol{\varphi}(\mathbf{r}) \right]$$

Pression de radiation résonnante

- Partie réactive (réelle) de la polarisabilité
- Gradient de l'amplitude
- Partie dissipative (imaginaire) de la polarisabilité
- Gradient de la phase

Closed two level transition (resonance line)

Raie « de résonance »: niveau du bas fondamental

- > Durée de vie infinie $\Gamma_a = 0$
- \succ Largeur de raie $\Gamma = \Gamma_{\rm b}$
- Transition fermée

Dipôle forcé sous l'effet de

$$\mathbf{E} = \vec{\mathbf{\varepsilon}} E_0 \cos(\omega t - \varphi) = \vec{\mathbf{\varepsilon}} \left(\mathcal{E} + \mathcal{E}^* \right)$$

Utilisation du formalisme de la matrice densité et des équations de Bloch optiques (dissipation, *cf.* Maj. 2)

Laser cooling and trapping of atoms: beyond the limits

- 1. A breakthrough in the quest of
low temperatures4. Dipolar force
1. Properties
- 2. Radiative forces
 - 1. Semi classical approach
 - 2. Atomic motion
 - 3. Radiative forces
 - 4. Resonance transition
- 3. Resonant radiation pressure
 - 1. Properties
 - 2. Stopping a laser beam with radiation pressure
 - 3. Photon momentum interpretation

- 1. Properties; interpretations
- 2. Applications: optical tweezer optical lattice, atomic mirror
- 3. Photon momentum interpretation?
- 5. Laser cooling: optical molasses
 1. Doppler cooling
 2. Magneto Optical Trapp (MOT)
 3. Doppler Limit temperature
 4. Below Doppler limit: Sisyphus
- 6. Below the one photon recoil limit: dark resonance cooling and Lévy flights

Pression de radiation résonnante

Onde plane progressive
$$\mathcal{E}(\mathbf{r},t) = \frac{E_0}{2} \exp\{i\mathbf{k}\cdot\mathbf{r}\}\exp\{-i\omega t\}$$

amplitude E_0 constante $\Rightarrow \mathbf{F}_{dip} = \frac{\varepsilon_0 \alpha'}{2} E_0(\mathbf{r}) \vec{\nabla} [E_0(\mathbf{r})] = 0$

$$\mathbf{F}_{\rm res} = \frac{\varepsilon_0 \alpha''}{2} \left(E_0(\mathbf{r}) \right)^2 \vec{\nabla} \left[\boldsymbol{\varphi}(\mathbf{r}) \right] = \mathbf{k} \frac{d^2 E_0^2}{2\hbar} \frac{\Gamma/2}{(\omega_0 - \omega)^2 + \Gamma^2/4} \frac{1}{1 + s}$$
$$\mathbf{F}_{\rm res} = \hbar \mathbf{k} \frac{\Omega_1^2}{2} \frac{\Gamma/2}{(\omega_0 - \omega)^2 + \Gamma^2/4} \frac{1}{1 + s} = \hbar \mathbf{k} \frac{\Gamma}{2} \frac{s}{1 + s}$$

$$s = \frac{\Omega_1^2 / 2}{(\omega_0 - \omega)^2 + \Gamma^2 / 4} = \frac{I}{I_{\text{sat}}} \frac{1}{1 + 4(\omega_0 - \omega)^2 / \Gamma^2} \text{ paramètre de saturation}$$

Resonant radiation pressure: properties

• Dirigée suivant le vecteur d'onde du laser

$$\mathbf{F}_{\rm res} = \hbar \mathbf{k} \frac{\Gamma}{2} \frac{\Omega_1^2 / 2}{(\omega_0 - \omega)^2 + \Omega_1^2 / 2 + \Gamma^2 / 4}$$

• Lorentzian resonance (power broadening)

S

• Saturation $s_0 = \frac{{\Omega_1}^2/2}{{\Gamma^2}/4} = \frac{I}{I_{\text{res}}}$

$$\mathbf{F}_{\max} = \hbar \mathbf{k} \frac{\Gamma}{2} \frac{s_0}{1 + s_0}$$

$$\hbar k \frac{\Gamma}{2}$$

F'res

Decelerating atoms with radiation pressure

Jet thermique de sodium

$$V \approx \sqrt{\frac{2k_{\rm B}T}{M}} \approx 600 \text{ m/s}$$

distance d'arret
$$=$$
 $\frac{V^2}{2\gamma} \approx \frac{36 \times 10^4}{2 \times 10^5} = 1.8 \text{ m}$

Challenges (Phillips, 2002): keep atoms on resonance during deceleration (Doppler effect changes); avoid optical pumping into other levels

Stopping metastable Helium atoms

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Radiation pressure and fluorescence rate

Pression de radiation résonnante

$$= \frac{3 z_1 / 2}{(\omega_0 - \omega)^2 + \Gamma^2 / 4}$$
$$\mathbf{F}_{\text{res}} = \hbar \mathbf{k} \mathbf{R}_{\text{fluo}}$$

 $O^{2}/2$

Taux de fluorescence (nombre de cycles par seconde, calcul par EBO)

Cycle de fluorescence: Un photon du faisceau incident est diffusé dans une direction différente, avec une énergie égale (diffusion élastique) ou un peu différente (diffusion inélastique) $\mathbf{k}, \boldsymbol{\omega}$

 \mathbf{k}_{sp} : direction aléatoire

Réinterprétation de la pression de radiation résonnante ?

Radiation pressure and photon momentum

Bilan d'impulsion dans un cycle de fluorescence (diffusion d'un photon)

$$\left\langle \mathbf{k}_{sp} \right\rangle = 0 \quad \Rightarrow \quad \left\langle \Delta \mathbf{P}_{at} \right\rangle_{1 \text{ cycle}} = \hbar \mathbf{k}$$

Force moyenne
$$\mathbf{F}_{res} = \mathbf{R}_{fluo} \left\langle \Delta \mathbf{P}_{at} \right\rangle_{1 \text{ cycle}} = \mathbf{R}_{fluo} \hbar \mathbf{k} = \hbar \mathbf{k} \frac{\Gamma}{2} \frac{s}{1+s}$$

Modèle tout quantique (photons): calcul plus simple, image plus simple, même résultat ! De plus, suggère l'existence de fluctuations de la force liées aux fluctuations de la direction d'émission. The problem of many ground state levels: avoiding optical depumping

Alkali atoms have an hyperfine structure

Ground state is split in many components

Optical pumping into non interacting levels leads to deceleration stopping.

Take advantage of selection rules (choice of polarization)

Use repumping lasers

Laser cooling and trapping of atoms: beyond the limits

- 1. A breakthrough in the quest of
low temperatures4. Dipolar force
1. Properties
- 2. Radiative forces
 - 1. Semi classical approach
 - 2. Atomic motion
 - 3. Radiative forces
 - 4. Resonance transition
- 3. Resonant radiation pressure
 - 1. Properties
 - 2. Stopping a laser beam with radiation pressure
 - 3. Photon momentum interpretation

- 1. Properties; interpretations
- 2. Applications: optical tweezer optical lattice, atomic mirror
- 3. Photon momentum interpretation?
- 5. Laser cooling: optical molasses
 1. Doppler cooling
 2. Magneto Optical Trapp (MOT)
 3. Doppler Limit temperature
 4. Below Doppler limit: Sisyphus
- 6. Below the one photon recoil limit: dark resonance cooling and Lévy flights

Force dipolaire

$$\mathbf{F}_{dip} = \frac{\mathcal{E}_{0}\boldsymbol{\alpha}'}{2} E_{0}(\mathbf{r}) \vec{\nabla} [E_{0}(\mathbf{r})] \qquad \text{avec} \quad \mathcal{E}(\mathbf{r},t) = \frac{E_{0}(\mathbf{r})}{2} \exp\{i\varphi(\mathbf{r})\} \exp\{-i\omega t\}$$
$$\mathbf{F}_{dip} \neq 0 \quad \text{pour une onde inhomogène} : \quad \vec{\nabla} E_{0} \neq 0$$
$$\mathbf{F}_{dip} = \frac{d^{2}}{\hbar} \frac{\omega_{0} - \omega}{(\omega_{0} - \omega)^{2} + \frac{\Gamma^{2}}{4}} \frac{\vec{\nabla} [E_{0}(\mathbf{r})]^{2}}{1 + s(\mathbf{r})} = \frac{\hbar(\omega_{0} - \omega)}{2} \frac{\vec{\nabla} [s(\mathbf{r})]}{1 + s(\mathbf{r})}$$
$$\mathbf{F}_{dip} = -\vec{\nabla} [U(\mathbf{r})] \quad \text{avec} \quad U(\mathbf{r}) = \frac{\hbar(\omega - \omega_{0})}{2} \log[1 + s(\mathbf{r})]$$

Dérive d'un potentiel (partie réactive de la $s(\mathbf{r}) = \frac{I(\mathbf{r})}{I_{sat}} \frac{1}{1 + 4(\omega_0 - \omega)^2 / \Gamma^2}$

Applications

atome $\begin{cases} \text{attiré vers haute intensité si } & \omega < \omega_0 \\ \text{repoussé par haute intensité si } & \omega > \omega_0 \end{cases}$

An optical trap: optical tweezer

$$U_{\rm dip}(\mathbf{r}) = \frac{\hbar(\omega - \omega_0)}{2} \log[1 + s(\mathbf{r})] \qquad \text{avec } s(\mathbf{r}) = \frac{I(\mathbf{r})}{I_{\rm sat}} \frac{1}{1 + 4(\omega_0 - \omega)^2 / \Gamma^2}$$

Trapping by a focused laser beam with $\omega < \omega_0$: optical tweezer

Shallow trap: demands very cold atoms (T < 1 mK)

Classical interpretation: coupling of the field with the induced dipole

Interpretation by light shifts of the atomic levels (Cohen-Tannoudji, Dalibard): Atom spends more time in ground state. Case of large detuning: atom in g: no fluctuation, but very shallow, ultra cold atoms

Manipulation d'atomes individuels (P. Grangier)

Piège dipolaire: réseau optique

Piégeage aux ventres ($\omega < \omega_0$) ou aux nœuds ($\omega > \omega_0$) d'une onde stationnaire 3 dimensions:

cf. G. Grynberg et coll.

Miroir atomique à ondes évanescentes

Dipole force and photon momentum

Onde inhomogène = plusieurs ondes planes

- Absorption de $\hbar \mathbf{k}_1$
- Emission stimulée de $\hbar k_2$

 $\Delta \mathbf{P}_{\mathrm{at}} = \hbar \mathbf{k}_1 - \hbar \mathbf{k}_2$

Mais on doit aussi considérer:

- Absorption de $\hbar k_2$
- Emission stimulée de $\hbar k_1$

La phase relative des ondes 1 et 2 détermine quel processus domine.

- Délicat dans le modèle tout quantique (photons)
- Automatiquement pris en compte dans le modèle classique du champ (la phase relative détermine le gradient d'intensité)

Laser cooling and trapping of atoms: beyond the limits

- 1. A breakthrough in the quest of
low temperatures4. Dipolar force
1. Properties
- 2. Radiative forces
 - 1. Semi classical approach
 - 2. Atomic motion
 - 3. Radiative forces
 - 4. Resonance transition
- 3. Resonant radiation pressure
 - 1. Properties
 - 2. Stopping a laser beam with radiation pressure
 - 3. Photon momentum interpretation

- 1. Properties; interpretations
- 2. Applications: optical tweezer optical lattice, atomic mirror
- 3. Photon momentum interpretation?
- 5. Laser cooling: optical molasses
 - Doppler cooling
 Magneto Optical Trapp (MOT)
 Limit temperature of Doppler c.
 Below Doppler limit: Sisyphus
- 6. Below the one photon recoil limit: dark resonance cooling and Lévy flights

Refroidissement Doppler

Pression de radiation par deux ondes opposées

Lasers non saturants, désaccordés sous la résonance

Vitesse atomique: effet Doppler différent pour les deux ondes

Mélasse Doppler

Magneto Optical Trap: molasses with a restoring force

Zeeman differential detuning and polarized lasers

Atom pushed towards z = 0: trapping. Doppler molasses also at work. \Rightarrow Overdamped trap. Works in 3D . "The work horse of cold atoms" What is the limit temperature in doppler molasses of Magneto Optical trap?

We have a cooling process that never stops.

Is there a heating process?

Heating: fluctuations of radiative forces Semi-classical approach $\mathbf{F} = \langle \hat{D}_{\varepsilon} \rangle [\vec{\nabla} \{ E(\mathbf{r}, t) \}]_{\mathbf{r}_{at}}$

 $\langle D \rangle$: quantum average, over an ensemble of atoms, submitted to the same radiation. Many atoms: a genuine ensemble!

Each atom is submitted to a different force ${\cal F}$, whose average is **F**.

Heating due to the quantum character of atomic dipole.

There is another point of view, based on momentum exchanges with photons

Fluctuations of radiation pressure: a photon point of view

At each fluorescence cycle, there is a spontaneous emission random recoil which is not taken into account in the average force

Random walk in the atom momentum space: step $\hbar k$, rate $R_{\rm fluo}$

 $2D_{\rm P} = \left(\hbar k\right)^2 R_{\rm fluo}$

Diffusion coefficient (Einstein)

$$\frac{d}{dt}\langle \mathbf{P}^2 \rangle = 2D$$
 He

Heating

Limit of Doppler cooling

Cooling

$$\frac{d}{dt} \langle \mathbf{P}^2 \rangle = -2\alpha \langle \mathbf{P}^2 \rangle$$

Heating

Steady state

$$\left< \mathbf{P}_{\mathrm{at}}^{2} \right> = \frac{D}{\alpha}$$

 $\frac{d}{dt}\langle \mathbf{P}^2 \rangle = 2D$

Can be described with a Langevin equation

$$\frac{d}{dt}\mathbf{P}_{\rm at} = -\alpha\mathbf{P}_{\rm at} + \vec{\mathcal{F}}_{\rm chauff}$$

Température finale

$$\frac{3}{2}k_{\rm B}T = \frac{\left< \mathbf{P}_{\rm at}^{2} \right>}{2M} = \frac{3}{4}\hbar\Gamma$$

Ordre de grandeur : 100 µK

Demonstrated in 1985 (S. Chu)

Below the Doppler limit: Sisyphus cooling

Doppler limit: 100 µK range (observed in 1985, S. Chu)

1988: limit temperature found in the 10 μ K range, well below the "theroretical" limit of Doppler cooling (WD Phillips)

Interprétation (C. Cohen-Tannoudji, J. Dalibard): "Sisyphus effect". Must take into account ground state degeneracy, and light polarization gradients that one cannot avoid in a 3D standing wave.

Because of delay to reach internal steady state (motion) the atom tends to spends more time climbing hills than descending: looses kinetic energy.

Residual velocity: a few recoil velocity $V_{\rm R} = \frac{\hbar k}{M}$ Ultimate limit?

Laser cooling and trapping of atoms: beyond the limits

- 1. A breakthrough in the quest of
low temperatures4. Dipolar force
1. Properties
- 2. Radiative forces
 - 1. Semi classical approach
 - 2. Atomic motion
 - 3. Radiative forces
 - 4. Resonance transition
- 3. Resonant radiation pressure
 - 1. Properties
 - 2. Stopping a laser beam with radiation pressure
 - 3. Photon momentum interpretation

- 1. Properties; interpretations
- 2. Applications: optical tweezer optical lattice, atomic mirror
- 3. Photon momentum interpretation?
- 5. Laser cooling: optical molasses
 1. Doppler cooling
 2. Magneto Optical Trapp (MOT)
 3. Doppler Limit temperature
 4. Below Doppler limit: Sisyphus
- 6. Below the one photon recoil limit: dark resonance cooling and Lévy flights

The one photon recoil: an ultimate limit? 1 cm/s1 m/s300 *m/s* $10^{-9} K$ $10^{-6} K$ $10^{-3} K$ $10^{3} K$ 1K - subrecoil liquid He room Doppler **Sisyphus** molasses

Experiments show that ultimate limit of Sisyphus corresponds to a few single photon recoil

$$\frac{3}{2}k_{\rm B}T \approx 10\frac{\left(\hbar k\right)^2}{2M}$$

In agreement with the concept that spontaneous emission is necessary (dissipation, non hamiltonian), and cannot be controlled.

Below the recoil limit: velocity selective coherent population trapping ("dark resonance cooling")

1988 (ENS Paris; CCT, AA): demonstration of a method allowing one to obtain a gas with velocity distribution narrower than the recoil velocity associated with the emission or absorption of a single photon $V_{\rm R} = \frac{\hbar k}{M}$

Necessary to use a quantum description of the atomic motion

New theoretical approaches:

- Quantum Monte-Carlo; delay function
- Lévy flights statistics

See "special" (vintage) seminar

Laser cooling and trapping of atoms: a fantastic new tool

In less than one decade (1980's), it has been possible to reach goals that were thought to be very far ahead:

- Cooling atoms in the μK range
- Trapping atoms and keeping them for seconds

Experimental surprises as well as ingenuity has allowed physicits to break several so called "limits", and prompted them to revisit atomlight interaction.

This new tool for atomic physics has paved the way to gaseous Bose Einstein Condensates and the many recent developments at the frontier between Condensed Matter Physics and Atomic Molecular and Optical Physics