
APPENDIX E

SINE-GORDON

E.1 Renormalization

Let me give an alternative way to renormalize the sine-Gordon Hamiltonian.
This method is more Wilson-like than the one using the correlation functions.
We start from the action deriving from (4.17) (see also (3.26) for the quadratic
part)

S =
1

2πK

∫
dx dτ [

1
u

(∂τφ)2 + u(∂xφ)2]

+
2g

(2πα)2

∫
dx dτ cos(

√
8φ(x, τ)) (E.1)

The field φ(x, τ) can be written in terms of the Fourier modes

φ(x, τ) =
1
βΩ

∑
k,ωn

ei(kx−ωnτ)φ(k, ωn) (E.2)

For simplicity, I assume here β = ∞. Let me impose a sharp momentum cutoff
Λ to start with. If one varies the cutoff between Λ and Λ′ one can decompose φ
in fast and slow Fourier modes (r = (x, uτ) and q = (k, ωn/u)):

φ(r) = φ>(r) + φ<(r) (E.3)

where

φ>(r) =
1
βΩ

∑
Λ′<||q||<Λ

eiq·rφ(q)

φ<(r) =
1
βΩ

∑
||q||<Λ′

eiq·rφ(q)
(E.4)

with the notation (A.5). The quadratic part of the action

S0 =
1

2πK
1
βΩ

∑
q

[ω2
n/u+ uk2]φ(q)∗φ(q) (E.5)

can obviously be written as
S0 = S>

0 + S<
0 (E.6)
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The partition function can be expanded in powers of the cosine term, which gives
up to second order (Z0 is the partition function for g = 0)

Z

Z0
=

1
Z0

∫
Dφe−S>

0 −S<
0

[
1 − 2g

(2πα)2u

∫
d2r cos(

√
8(φ>(r) + φ<(r)))

+
2g2

(2πα)4u2

∫
d2r1

∫
d2r2 cos(

√
8(φ>(r1)+φ<(r1))) cos(

√
8(φ>(r2)+φ<(r2)))

]
(E.7)

One can make the average over the fast modes in order to get an effective action
for the slow modes. This gives

Z

Z0
=

1
Z<

0

∫
Dφ e−S<

[
1 − 2g

(2πα)2u

∫
d2r cos(

√
8φ<(r))e−4〈(φ>(r))2〉> ]

+
g2

(2πα)4u2

∑
ε=±

∫
d2r1

∫
d2r2 cos(

√
8(φ<(r1)+εφ<(r2)))e−4〈(φ>(r1)+εφ>(r2))

2〉>

]
(E.8)

In order to get an effective action one can reexponentiate this expression. This
is equivalent to the standard cumulant expansion. One obtains

Z

Z0
=

1
Z<

0

∫
Dφ e−S<− 2g

(2πα)2u

∫
d2r cos(

√
8φ<(r))e−4〈φ>(r)〉>

e
g2

(2πα)4u2

∫
d2r1

∫
d2r2[

∑
ε=± cos(

√
8(φ<(r1)+εφ<(r2)))e

−4〈(φ>(r1)+εφ>(r2))2〉> ]

e
− 2g2

(2πα)4u2

∫
d2r1

∫
d2r2 cos(

√
8φ<(r1))e

−4〈φ>(r1)〉> cos(
√

8φ<(r2))e
−4〈φ>(r2)〉>

(E.9)

The first term is like the original cosine but for the slow fields only, that is, with
a smaller cutoff Λ′. To get back to an action identical to the original one has to
rescale distance and time to bring back the cutoff to its original value. This can
be done by defining

dk =
Λ′

Λ
dk′ (E.10)

and the same transformation for ω. This ensures that the new variables have the
old cutoff Λ. In real space this means that one should rescale space and time
according to

dx =
Λ
Λ′ dx

′, dτ =
Λ
Λ′ dτ

′ (E.11)

After this rescaling one recovers a theory that is exactly identical to the original
one but with a new coupling constant

g(Λ′) =
(

Λ
Λ′

)2

g(Λ)e−4〈(φ>(r))2〉> =
(

Λ
Λ′

)2

g(Λ)e
− 4

βΩ

∑
Λ′<||q||<Λ

πKu
ω2

n+u2k2

(E.12)
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For β → ∞ and L→ ∞ the sum can be converted to a two-dimensional integral

g(Λ′) =
(

Λ
Λ′

)2

g(Λ)e−2
∫
Λ′<||q||<Λ dq K

q

=
(

Λ
Λ′

)2

g(Λ)e−2K
∫ Λ
Λ′

dq
q =

(
Λ
Λ′

)2

g(Λ)e−2K log(Λ/Λ′) (E.13)

If one parametrizes the cutoff as usual by Λ(l) = Λ0e
−l where Λ0 is the bare

cutoff, and one makes the infinitesimal change Λ′ = Λ0e
−l−dl, one gets

g(l + dl) = g(l)e(2−2K)dl (E.14)

which gives the renormalization equation

dg(l)
dl

= g(l)(2 − 2K(l)) (E.15)

This is identical to (2.134) obtained by a direct renormalization of the correlation
functions.

In the term of order g2 in (E.9) the last term is there to cancel the dis-
connected parts (that is, the parts for which the points r1 and r2 are very far
from each other). The main contribution thus comes from the region where the
two points r1 and r2 are close. There are thus two main contributions depend-
ing on the sign of ε. If ε = +1 the term cos(

√
8(φ1 + φ2)) is essentially a term

cos(2
√

8φ(r)) since we want the two points to be close r1 ∼ r2 ∼ r. This term
is a new cosine term with an argument that is twice that of the original cosine.
We can thus expect this new term to be less relevant than the original cosine
since its coupling constant will renormalize with an equation similar to (E.15)
but with 8K instead of 2K. Close to the point where the original cosine becomes
relevant, K ∼ 1, one can throw away this contribution. We can thus only retain
the contribution with ε = −1. One can rewrite this part as

δI =
g2

(2πα)4u2

∫
d2r1

∫
d2r2 cos(

√
8(φ<(r1) − φ<(r2)))

[e−4〈(φ>(r1)−φ>(r2))
2〉> − e−8〈(φ>)2〉> ] (E.16)

This can be rewritten

δI =
g2

(2πα)4u2

∫
d2r1

∫
d2r2 cos(

√
8(φ<(r1) − φ<(r2)))[

e
− 4

βΩ

∑
Λ′<||q||<Λ[2−2 cos(qr)] πKu

ω2
n+u2k2 − e

− 4
βΩ

∑
Λ′<||q||<Λ[2] πKu

ω2
n+u2k2

]

=
g2

(2πα)4u2

∫
d2r1

∫
d2r2 cos(

√
8(φ<(r1) − φ<(r2)))

e
− 4

βΩ

∑
Λ′<||q||<Λ[2−2 cos(qr)] πKu

ω2
n+u2k2

(
1 − e

− 4
βΩ

∑
Λ′<||q||<Λ[2 cos(qr)] πKu

ω2
n+u2k2

)
(E.17)
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where r = r1 − r2. Since the integral over q is only for values of the order of
the cutoff this constrains r to be of the order of 1/Λ. One can thus: (i) make
an expansion of the cosine in powers of r were we introduce the center of mass
R = (r1 + r2)/2 and relative coordinates r = r1 − r2; (ii) expand the exponential
in the last term. Because the last term in (E.17) is proportional to dl all rescaling
terms and terms that depend on Λ/Λ′ can be replaced by 1. There is one problem
however: the fluctuations of the field φ are unbounded (〈φ2〉 = ∞) thus one
cannot expand the cosine directly (Nozieres and Gallet, 1987). To do it safely
one needs to normal order the cosine. This can be done using

cos(φ) =: cos(φ) : e−
1
2 〈φ2〉 (E.18)

The normal ordered cosine can be expanded safely. Thus,

cos(
√

8(φ<(r1) − φ<(r2))) � 4(r · ∇Rφ(R))2e
− 4

βΩ

∑
||q||<Λ′ [2−2 cos(qr)] πKu

ω2
n+u2k2

(E.19)
The exponential term in (E.19) exactly combines with the corresponding expo-
nential term in (E.17). Using

4
βΩ

∑
Λ′<||q||<Λ

[2 cos(qr)]
πKu

ω2
n + u2k2

= 4K
∫ Λ

Λ′

dq

q
J0(qr) (E.20)

one thus has

δI =
g216Kdl
(2πα)4u2

∫
d2R

∫
d2r(r · ∇Rφ(R))2e−4KF1,Λ(r)J0(Λr)

=dl
g28K

(2πα)4u2

∫
d2R

[
(∂Xφ)2 + (∂Y φ)2

] [∫
d2rr2e−4KF1,Λ(r)J0(Λr)

]
(E.21)

where we have expanded the last term in (E.17) and

F1,Λ(r) =
1
βΩ

∑
||q||<Λ

[2 − 2 cos(qr)]
πu

ω2
n + u2k2

=
∫ Λ

0

dq

q
[1 − J0(qr)] (E.22)

The term δI is thus a correction to the coefficient 1/(2πK) in the quadratic
action. The velocity u is not renormalized, which is a consequence of the Lorentz
invariance of the action. This leads to the renormalization equation

dK−1(l)
dl

=
g28K(l)

(2π)2(Λα)4u2
Λ4

∫ ∞

0

dr r3e−4KF1,Λ(r)J0(Λr) (E.23)

one can simply rescale the integral in (E.23) to make the Λ dependence disappear.
The RG equation thus becomes
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dK−1(l)
dl

=
g22K(l)

(πu)2(Λα)4
C (E.24)

where
C =

∫ ∞

0

dz z3e−4KF1(z)J0(z) (E.25)

Equation (E.24) is essentially identical to (2.134). The difference between (E.24)
and (2.134) in the precise determination of the dimensionless coupling constant
for the renormalization equation of K comes from the fact that different cutoff
procedures have been used in the two cases. Here we have used a hard cutoff in
momentum space, whereas a hard cutoff in real space was imposed in (2.134).
Clearly, C and hence the RG equations depend on the precise cutoff procedure
used. Of course, the physical quantities are independent of this cutoff procedure.
With a generalization of the procedure exposed in this appendix it is possible to
derive the RG equations for an arbitrary cutoff (Nozieres and Gallet, 1987).

E.2 Variational calculation

Let us now examine another method, which can be useful even in the absence of
a small parameter in the Hamiltonian. It is less powerful than the RG to give the
critical properties of the system,41 but is extremely useful to have the physics
of the massive phases, for which the RG would stupidly flow to strong coupling.
This is the standard variational method (Feynman, 1972).

Quite generally one can write

Z =
∫

Dφe−S =
∫

Dφe−S0e−(S−S0) = Z0〈e−(S−S0)〉0 (E.26)

where the index 0 denoted the partition function and the averages with respect
of an action S0. Here, S0 can be any action. Thus, the free energy satisfies

F = F0 − T log[〈e−(S−S0)〉0] (E.27)

Given the convexity of the exponential (see, e.g. Feynman 1972) it is easy to
check that one has always

〈e−(S−S0)〉 > e−〈(S−S0)〉 (E.28)

and thus
F ≤ Fvar = F0 + T 〈S − S0〉0 (E.29)

The ‘best’ S0 is obviously S, that is, the one for which the variational free energy
Fvar is the exact one, that is, minimum. The idea is to take a simple enough S0

so that one can compute (e.g. a quadratic one), and to optimize it to try to get
as close as possible of the physics of the original system.

41Nothing can beat the RG for that.
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Let us take an example. We start from our favorite sine-Gordon action (see
Section 2.3.2).

S =
1

2πK

∫
dx dτ [

1
u

(∂τφ)2 + u(∂xφ)2] − 2g
(2πα)2

∫
dx dτ cos(

√
8φ) (E.30)

Given the cosine term, the optimal classical configuration (that is, the one giving
the minimum of the action) would correspond to φ = 0. One can thus reasonably
expect that an approximation where one takes into account harmonic oscillations
around this equilibrium position is a good one. Let us thus take for S0

S0 =
1

2βΩ

∑
q

G−1(q)φ∗(q)φ(q) (E.31)

and try to optimize by finding the best Green’s function G(q). Here, we have a
priori an infinite number of variational parameters (one for each q). The varia-
tional energy is

Fvar = −T
∑
q>0

log[G(q)] +
T

2πK

∑
q

[
1
u
ω2

n + uk2]G(q) − T
2g

(2πα)2
βΩe−

4
βΩ

∑
q G(q)

(E.32)
I did not write the term 〈S0〉S0 , which gives a simple constant and does not
contribute to the variational equations. The optimal G(q) obeys

∂Fvar

∂G(q)
= 0 (E.33)

This leads to

G−1(q) =
1
πK

[
1
u
ω2

n + uk2] +
16g

(2πα)2
e−

4
βΩ

∑
q G(q) (E.34)

which is a self-consistent equation for G(q). Obviously, one can write

G−1(q) =
1
πK

[
1
u
ω2

n + uk2 +
∆2

u
] (E.35)

where the gap ∆ satisfies

∆2

πKu
=

16g
(2πα)2

e
− 4

βΩ

∑
q

πKu
ω2

n+u2k2+∆2 (E.36)

Let us look at the zero temperature limit β → ∞ and the thermodynamic limit.
We transform as usual the sum into a two-dimensional integral. To avoid an
unphysical ultraviolet divergence one has again to put a large momentum cutoff
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Λ. In the absence of the gap ∆ the integral would be divergent at small q (infrared
divergence).

4
(2π)2

∫
dq

πKu

ω2 + u2k2 + ∆2
= 2K

∫ Λ

0

q dq
1

q2 + (∆/u)2

� 2K log[uΛ/∆] (E.37)

assuming that ∆ � uΛ. One has thus the selfconsistent equation

∆2 =
4Ku2y

α2

(
∆
uΛ

)2K

(E.38)

It is easy to see that for K > 1 this equation has only ∆ = 0 for solution.
The sine-Gordon system behaves as a free theory and the cosine potential is
irrelevant. If, on the other hand, K < 1 a non-zero solution appears for ∆

∆ = uΛ
(

4Ky
(αΛ)2

) 1
2−2K

(E.39)

One essentially recovers the value of the gap (2.158) that we had obtained deep in
the massive phase. The physics of the massive phase as given by the variational
approach is essentially the one we had discussed from physical arguments. The
field φ is trapped in one of the minima and makes small oscillations around this
minima. Such a method is thus very useful to compute physical properties in the
massive phases.

Two warnings in using this variational method. First, it obviously missed the
correct critical properties. The way the gap goes to zero at the transition is not
correct. It is as if the variational method was replacing the correct RG flow by a
purely vertical flow. This is not a very serious drawback since any approximate
method is not expected to capture critical behaviors. A more serious caveat is
that the variational approach can only capture the small oscillations around the
minima. It misses other excitations such as solitons where the field φ goes from
one of the minima to the other. These excitations can be very important so
caution should be exerted to check that the variational approach did not miss
the essential physics for the problem at hand. Despite these two caveats this is
a very useful approach.

E.3 Semiclassical approximations

I just briefly recall some results obtained for the sine-Gordon model. A complete
description of these results is given in Rajaraman (1982). I take the model

H =
1
2π

∫
dx uK(πΠ(x))2 +

u

K
(∇φ(x))2 + g

∫
dx[1 − cos(

√
8φ(x))] (E.40)

so that the minimum of energy corresponds to φ = 0.


