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INTRODUCTION TO SUPERCONDUCTING QUBITS

A. J. Leggett

Department of Physics, University of Illinois

at Urbana-Champaign

Lecture 1 (Thurs. 3 April): Quantum Computation( p ) Q p

a) The idea of quantum computation

b) How to build a quantum computer (in principle!)

Lecture 2 (Thurs 10 April): SuperconductivityLecture 2 (Thurs. 10 April): Superconductivity

a) Qualitative aspects and phenomenology

b) Microscopic theory

L t 3 (Th 17 A il) Th J h ff tLecture 3 (Thurs. 17 April): The Josephson effect

a) “Classical” theory

b) QM of macroscopic systems

Lecture 4 (?): Superconducting qubits

a) Types of qubit and their characteristics

b) Recent experiments and current issues

Color code: blue = main
red = emphasis
green = definitions, comments

= caution!



3C1  2

CLASSICAL COMPUTATION (bare bones)

Computer can be viewed as circuit composed of wires and gates
which process bitswhich process bits.

bits 
out

bits 
in

gates wires

A (classical) bit is an elementary “unit of information”: 
physically it is a system which must be in one or other of 
two states, conventionally “0” or “1.”

g

A wire simply carries a single bit from gate to gate.

A gate is a “black box” which transforms bits into other bits. 
In classical computation the number of input and output bitsIn classical computation, the number of input and output bits 
of a gate need not be the same.

In general, classical computation is irreversible, though it is 
always possible to make it reversible.y p

In classical computation, readout is trivial.
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EXAMPLES OF CLASSICAL GATES

Single-bit gates (reversible):
0               I 0,

“identity” gate (I)

0               ~ 1,
(x→x○1)+

,

1                I 1
(x→x)

(but)

“not” gate (~)
1                ~ 0

(x→x○1)
(but)

0               0,

1 0
(x→0)

(and)

g ( )

(An irreversible 
single-bit gate):

1                                 0(and)

Two-bit gates:

(a) Irreversible: e.g. +

“and” gate (+)

operation:

(0,0) → 0
(0,1) → 1
(1,0) → 1
(1,1) → 0

((x,y)→x○y)+

(b) Reversible, e.g.

“CNOT” gate (⊄)
⊄

“control” bit

“target” bit

operation:
(0,0) → (0,0)
(0,1) → (0,1)
(1,0) → (1,1)
(1,1) → (1,0)

target
unchanged

target
flipped
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NOTE: Any classical gate, reversible or not, can be made 
reversible by adding an “ancilla” bit:

x f(x)

+
x
y

x
y○f(x)+y y○f(x)

Ex: the “1” gate                       (f(0)=f(1)=1)  

0               1 1 

1                1 1
(irreversible)and

x
y

x
y○1 ≡ ~ y+

operation:
(0,0) → (0,1)
(0,1) → (0,0)
(1,0) → (1,1)
(1,1) → (1,0)

reversible!
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COMPLEXITY IN (CLASSICAL) COMPUTATION
How do the “resources” needed to solve a given type of problem 
scale with the number of “elements” involved?

Examples:
(1) (trivial) search: If one and only one object among N is “tagged,” 

it takes (classically) ~N trials to find it.( y)

(2) List ordering: If N numbers are to be put in order, requires 
N(N–1)/2 ~N2 pairwise comparisons.

(3) “Traveling salesman” problem:
if we simply exhaust all possible
trajectories, there are N! of these,
so number of steps ~N! ~ exp Nso number of steps N!  exp N

(4) Factorization of large number: N~2n where n is number of digits 
in binary representation. “Brute-force” approach requires us to 
examine possible factors up to , so number of steps/ 2~ ~ 2nNexamine possible factors up to               , so number of steps
~ exp (αn) (Actually, “number sieve” method reduces this to 
~ exp (α n1/3 ln2/3 n), but still exponential in n).

Digression: Why is this interesting?

~ ~ 2N

Digression: Why is this interesting?
Answer: Cryptographic protocols!



3C1  6

BASIC PRINCIPLES OF QM
A. Single system

In QM, associated with a single QM system is a Hilbert space, Q , g Q y p ,
whose dimension corresponds in an intuitive sense to the “number 
of different possible states” of the system. We shall mostly be 
interested in systems corresponding to classical “bits,” so that the 
Hilbert space is 2-dimensional. In this case the system is p y
isomorphic to a spin-1/2 particle, and in the context of quantum 
computation is called a qubit (“quantum bit”). A standard basis 
(“computational basis” (CB)) for the specification of the state of a 
qubit is the states |0〉 and |1〉 which correspond respectively to the q | 〉 | 〉 p p y
states 0 and 1 of the classical bit. For any given physical system, 
usually ∃ a “natural” computational basis.

The most complete possible (“pure-state”) description of the 
state of a qubit is given by specifying its state vector |Ψ〉 in thestate of a qubit is given by specifying its state vector |Ψ〉 in the 

Hilbert space: quite generally we can write

| ( ) ( ) | 0 ( ) |1t t tα βΨ〉 = 〉 + 〉

2 2(| ( ) | | ( ) | 1 for normalization)t tα β+ =

The qubit basis states are eigenstates of the Pauli matrix
in the quantum computation literature):

ˆ zσ ˆ( Z≡

ˆ | 0 | 0
ˆ |1 |1

Z

Z

〉 = + 〉

〉 = − 〉
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Single qubit, cont.
In general, 

| ( ) ( ) | 0 ( ) |1t t tα βΨ〉 = 〉 + 〉

In special case β(t)=0 (i.e. |Ψ 〉(t)=eiφ(t)|0 〉)
a measurement of                 at time t gives +1.
Similarly, if a measurement of 

gives –1.

ˆ ˆ( )zZ σ≡
( )(i.e. | ( ) |) 1( 0 )i tt ct χα Ψ 〉 = 〉=

Ẑ g
In the general case, measurement of       at time t yields the 

result

Z
Ẑ

2

2

1 with probability | ( ) |
1 with probability | ( ) |

t
t

α

β

+

−

and following a measurement yielding +1(–1) the state vector 
becomes |0〉(|1〉) (“projection postulate”).

Any Hermitian operator on the qubit can be expressed in the 
form

ˆ ˆ ˆ 1̂1 ˆˆ ˆ0 (X Y Zα β λ δ α= + + + ≡ + )iΩ σ

To find the result of measurement of Ô, we transform |Ψ〉(t) into the 
basis of its eigenstates and apply prescription (*). E.g. if             , 

110 (X Y Zα β λ δ α= + + + ≡ + )iΩ σ

unit op. ˆ ˆx yσ σ≡ ≡

ˆ ˆ0 x=g pp y p p ( ) g ,
eigenstates are

so (inverting) 

0 x

1 1| (| 0 |1 ), | – (| 0 |1 )
2 2x x+〉 = 〉+ 〉 〉 = 〉− 〉

( ) ( )1| ( ) ( ) ( ) | ( ) ( ) |
2 x xt t t t tα β α βΨ〉 = + +〉 + − −〉⎡ ⎤⎣ ⎦

1 2

2

11 with prob | ( ) ( ) |
2
11 with prob | ( ) ( ) |
2

x t t

x t t

α β

α β

= + +

= − −

However, usually convenient to measure only in computational basis.
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Single qubit, cont.
Time evolution: from time-dependent Schrödinger equation, 

ˆ| ( , ) | ( )t U t t t′ ′Ψ〉 = Ψ〉

In QC usually assume for “resting” periods( )( )ˆˆ ˆ( ) 0 ' 1H t U t t

'
'ˆ ˆ( , )  exp ( )

t

t
U t t i H dτ τ≡ − ∫

evolution
operator
unitary

Hamiltonian
(Hermitian)

In QC, usually assume for resting  periods 
(“wires”),                  for “active” periods (“gates”). So for a single 
qubit

( )( )( ) 0 , ' 1H t U t t= =
ˆ ( ) 0H t ≠

|Ψ〉 | 'Ψ 〉

t→

'ˆ ˆ ˆt

Û( )
|
( )f t
Ψ〉

≠ ( )
| '

( )f t
Ψ 〉

≠

' ˆ| |UΨ 〉 = Ψ〉
“quantum gate”

Note: since quantum gates are 

intrinsically reversible .  Also note that Û is linear.

(Note: More general description of quantum system is by density

( ) ( ) ( )1ˆ ˆ ˆ, ' ', exp 
t

U t t U t t i H dτ τ− ≡ ≡ + ∫
1ˆ(| | ' )U −Ψ〉 = Ψ 〉

(Note: More general description of quantum system is by density 

matrix : crudely speaking.ρ̂

“system behaves as if it were in a definite

state             with probability         ”| ( ) ( )i it tρΨ 〉

We will mostly not need this generalization).
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BASIC PRINCIPLES OF QM, cont.
B. Coupled systems

Much more interesting! Consider 2 systems that may be g y y
mutually interacting. Associated with them is a tensor product 
Hilbert space of the Hilbert spaces H1 and H2

associated with each qubit separately. The dimensionality d of H12

is the product of that of H1 and H2, so for 2 qubits d = 4. In this 

12 ≡ ⊗1 2H H H

p 1 2, q
case, computational basis is given by the 4 states

A general pure state of the 2-qubit system is specified by an 

1 2 1 2 1 2 1 2| 0 | 0 , | 0 |1 , |1 | 0 , |1 |1〉 〉 〉 〉 〉 〉 〉 〉

g p q y p y
arbitrary (normalized) linear combination of these 4 states: 
(omitting t-dependence of coefficients)

with
00 1 2 01 1 2 10 1 2 11 1 2| | 0 | 0 | 0 |1 |1 | 0 | 2 |1α α α αΨ〉 = 〉 〉 + 〉 〉 + 〉 〉 + 〉 〉

with

If we can write

2 2 2 2
00 01 10 11| | | | | | | 1 (normalization| )α α α α+ + + =

1 1 1

2 2 2

| | 0 |1

| | 0 |1

χ α β

ϕ γ δ

〉 = 〉 + 〉 ⎫⎪
⎬

〉 = 〉 + 〉 ⎪⎭1 2| | | ,χ ϕΨ〉 = 〉 〉 (≠)

then the state |Ψ〉 is said to be “separable” or unentangled.” But this 
is the exception: the vast majority of states in H12 are entangled
(cannot be written in the form (≠))
Simple example of entangled state: (“EPR singlet”)Simple example of entangled state: ( EPR singlet )

= state of 2 spin -1/2 particles with total S=0.

( ) ( )1 2 1 2
1| | 0 |1 |1 | 0
2

1
2

Ψ〉 = 〉 〉 − 〉 ≡〉 1 2 1 2↑↓ –↓↑
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Coupled systems, cont.
Time evolution: just as in single-qubit case

ˆ| ( ') ( , ') | ( )t U t t tΨ〉 = Ψ〉

but |Ψ〉, |Ψ΄〉 are now state vectors (in general entangled) in the 
tensor product Hilbert space H12. Thus,

|Ψ〉 |Ψ′〉

Û 2-qubit
quantum gate

Special (not very interesting)p ( y g)
case: 1 2

1 2 nonentangl

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ gˆ in

H t H t H t

U U U

= +

⇒ =

⇒( )
More interesting: 

Example: 

1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) entanglingH t H t H t U U U≠ + ⇒ ≠

then if 

1 2
ˆ ˆ ˆ( ) ( )H t J t= ⋅σ σ

{ }
1 2| |

1| ' ( )

unentangled

entangled| |t i

Ψ〉 =↑ ↓ 〉

Ψ 〉 = ↑ ↓ 〉 + ↓ ↑ 〉{ }0 1 2 1 2| ( ) entangled| |
2

t iΨ 〉 = ↑ ↓ 〉 + ↓ ↑ 〉

0
0

0
( s.t. ( ) / / 4)tt J t dt π=∫ =
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Coupled systems, cont.
Generalization: for N qubits, pure state of total system 

described by vector in tensor product Hilbert space HN= H1 ⊗
H ⊗H which has 2N dimensions Thus 2N independent basisH2… ⊗HN, which has 2N dimensions. Thus, 2N independent basis 
states, of which only 2N are separable.

In general, for QC with N qubits, could consider all possible n-
qubit gates, n≤N. But it turns out that an arbitrary state in HN can 
be generated by application only of 1- and 2-qubit gates.g y pp y q g

Thus, possible design for a QC [quantum computer]

|Ψ〉 |Ψ′〉

Benefit of QC: massively parallel processing in principle of 2NBenefit of QC: massively parallel processing, in principle of 2N

states!
Generic problem: Even if |Ψ〉 is an eigenstate of the 

computational basis (e.g. |Ψ〉 = |0〉1 |1〉2 |0〉3…. |1〉N), |Ψ′〉 will in 
general be a linear superposition of various basis states:g p p

... 1 2 3
, , ... 0,1

| | | | ... |ijk N N
i j k

i j k sα
=

′Ψ 〉 = 〉 〉 〉 〉∑

Then on any one run, on measurement in the C. B., we will get just 
one of the C.B. states, with the appropriate probability, and lose all pp p p y
information on the rest.

Solution (Deutsch, Jozsa, Shor…): design clever algorithm 
such that, depending on answers to question, we always end up 
in a unique C.B. state!
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SOME POSSIBLE USES OF A QUANTUM COMPUTER

(if one can be built!)
Note: First 3 applications depend only on possibility ofNote: First 3 applications depend only on possibility of 
manipulating arbitrary quantum states, not on specific circuit model 
described above.
1. Direct simulation of real-life QM systems (e.g. complicated 

i H ilt i )spin Hamiltonians)
2. “Quantum annealing” for “classically hard” problems. Many 
“classically hard” (NP) problems can be cast in form of minimizing 
a certain function of the variables, which may then be treated as a 
“Hamiltonian”. E.g. some problems are isomorphic to the problem 
of finding the groundstate of the “Ising spin glass” defined by the 
(classical) Hamiltonian

(  “random”)z z
SG ij i j ijJH J σ σ= −∑

Classically, we may have to exhaust the 2N possibilities!
Quantum annealing technique:
Start with some quite different 

d d t t f kĤ ˆ

j j
ij

j

ˆ ˆ ˆsuch that , 0,SGH H H⎡ ⎤ ≠⎣ ⎦

ˆ ˆ ˆz z
SG SG ij i j

ij
H H J σ σ→ = −∑

and groundstate of      known, e.g 
and initialize N-qubit system in groundstate of      .
Now let 

0H 0 ˆ x
i

i
H K σ≡ − ∑

0Ĥ

0
ˆ ˆ ˆ

(0

( ) ( ) (1 ( ))

) 1, ( ) 0

SGH t t H t Hα

α α

α= +

∞ =

−

=

If α(t) varies sufficiently slowly, system should follow adiabatically 
and, in absence of level crossing ( ) end up in 

groundstate of         ! ˆ
SGH
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Applications of a quantum computer (cont.)
4. Speeded-up algorithms for “classically hard” problems
(Toy) example: Deutsch’s problem.

Consider: f : x → x x = {0 1} (only 4 mappings!)Consider: f : x → x,     x = {0,1}       (only 4 mappings!)
Question: Is f(0) = f(1)?

Classically:

′ f( )

classical “black box”
implementing f

x = 0 or 1 x′ = f(x)

Need to input first x = 0, then x = 1 (2 shots).

With a quantum computer, can we do it in one shot?

If (by linea| 0 | (0) rity)and |1 | (1) thenf f〉 → 〉 → 〉If

So, tempting to try single-qubit quantum gate with input

(by linea| 0 | (0) rity) and |1 | (1) , then 

| 0 |1 | (0) | (1)

f f

f fα β α β

〉 → 〉 → 〉

〉 + 〉 → 〉 + 〉

1 (| 0 |1 )〉+ 〉

Alas, if f(0)=f(1) then classical gate is irreversible  ⇒ no 
quantum gate can be constructed!

So start from reversible classical black box (gate):

(| 0 |1 )
2

〉+ 〉

So, start from reversible classical black box (gate):

Classically, still need 2 shots (fix y, input first x = 0, then x =1).

classical “black box”
x
y

x
y + f(x)

y, ( y, p , )

But, can now implement quantum version:
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|x〉 |x〉

Quantum black box (gate for Deutsch’s problem):

|y〉 |y + f(x)〉

i.e.

Digression: Is this gate entangling?
( )1 2 1 1 2

ˆ | , | , ( )U x y x y f x〉 = + 〉

In general, yes! E.g. suppose f(0)=0, f(1)=1, and input

then by linearity

( )1 1 2
1| | 0 |1 | 0
2

Ψ〉 = 〉 + 〉 〉 unentangled

( )1 2 1 2
1| | 0 | 0 |1 |1
2

′Ψ 〉 = 〉 〉 + 〉 〉 entangled

However, try

i.e.

2

( ) ( )1 1| | 0 |1 ,| | 0 |1
2 2

x y〉 = 〉+ 〉 〉 = 〉− 〉 unentangled

( )1 2 1 2 1 2 1 2
1| | 0 | 0 |1 | 0 | 0 |1 |1 |1
2

Ψ〉 = 〉 〉+ 〉 〉 − 〉 〉 − 〉 〉

Then by linearity,

where
This can be rewritten

( )1 2 1 2 1 2 1 2
1| | 0 | (0) |1 | (1) | 0 | (0) |1 | (1)
2

f f f f′Ψ 〉 = 〉 〉 + 〉 〉 − 〉 〉 − 〉 〉� �

(0)  “not (0)” (i.e. if (0) 0 then (0) 1,  etc.)f f f f= = =� �
This can be rewritten

If

( )1 2 1 2
1| | 0 (| (0) | (0) ) |1 (| (1) | (1) )
2

f f f f′Ψ 〉 = 〉 〉− 〉 + 〉 〉− 〉� �

( )
( ) ( )1

(1) (0) so (1) (0)  then
1| | 0 |1 | (0) | (0)

f f f f

f f

= =

′Ψ 〉 = 〉+ 〉 〉− 〉

� �

�i

while if   

( ) ( )1 2
| | 0 |1 | (0) | (0)

2
f fΨ 〉 〉+ 〉 〉 〉

( )
( ) ( )1 2

(0) (1)  (1)  
1| | 0 |1 (0) (0)
2

so thenf f f

f f

≠ ≡

′Ψ 〉 = 〉− 〉 − 〉

�

�
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Deutsch’s problem (recap):

1 2
1if (0) (1),  then | (| 0 |1 ) |
2

f f x′= Ψ 〉 = 〉+ 〉 〉

1 2

2
1if (0) (:),  then | (| 0 |1 ) |
2

f f x′≠ Ψ 〉 = 〉− 〉 〉

( )1where | | (0) | (0)x f f〉 ≡ 〉− 〉�

So the output state of 2 (y′) is irrelevant, and we can measure X1

( )2 2
where | | (0) | (0)

2
x f f〉 ≡ 〉− 〉

[or perform a single-qubit rotation and measure Z1]. If X1 = +1, 

then f(0)=f(1): if X1 = –1, then f(0) ≠f(1). Need only one shot!

Much more spectacular application (Shor, 1994):

recall that factorization of n-digit binary number on 

classical computer takes                            steps. 

In principle, on a quantum computer, takes ~n3 steps.

i l d !

1/3 2/3~ exp ( )n n nA

⇒ exponential speed-up!
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RSA CRYPTOGRAPHY* (“public-key”)

Two theorems:

(1) ( b th ) [ ll b iti i t ](1) (number theory): [all numbers are positive integers]
Let p,q be primes, c any number which has no factors in 

common with (p-1)(q-1), and a any number. Then if
 (mod pq)

(mod pq), where 

c

d
b a

a b=
=

(2)  (classical computer science):
a) If N=pq is a product of two primes, factoring N is hard

where n is number of binary digits of N)

1
( pq),

(i.e.  mod ( 1 ( 1)1)( 1 )) 1cd s pd c p q q− = + −−= −−

1/3 2 /3(~ exp( )n n n′ A y g )
b) However, if N is any (possibly large) number, finding 

the inverse of c mod N is easy (~n3).

So:

( p( )

So:
A wishes to send B a string (key) 01001. . . . .⇒ equivalent 

to a (large) number a.
B selects 2 large primes p and q, and a large number c with 

no common factor with (p–1)(q–1). He sends publicly to A:
( ) th b(a) the number c
(b) the number N = pq (but not p and q individually)

A then performs the encryption: a → b ≡ ac, and sends the result 
publicly to B.

B alone knows p and q individually, and can therefore calculate 
d=c–1 mod (p–1)(q–1) and decrypt: b →bd ≡ a

*based on Mermin, QCS, sections 3.2–3
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QUANTUM SEARCH ALGORITHM
(Grover: Farhi and Gutmann)

Problem: Identify one “tagged” item among N.ob e : de y o e gged e o g .
Classically, time taken (number of trials) ~N.
Quantum-mechanically: represent “items” by orthonormal vectors in 
an N-dimentional Hilbert space, and “tag” by a term in the 
Hamiltonian: i.e.

How to find |t〉?
Solution: Create state

ˆ | |H t t= 〉〈H
1

. . .

#

Ĥ=

Isomorphic to state of spin ½ in 2D Hilbert space with 
↑ ↓

1 1| (1,1,1,1....1) | | , | |
1

Nt s s t
NN N

Ψ〉 = ≡ 〉 + 〉 〉 〉
−

⊥

Ampl. of  |↑〉 (|t〉)=

Now apply field || (known vector!)
of just such a magnitude (1)

|t〉→|↑〉, |S〉→|↓〉
|t〉

|δ〉θ
n̂
�

1(no1sin !)
2

t 
N N

θ
=

n̂
�

that resultant field (red arrow)
bisects ∠ between      and . Then n̂

�
t
�

2| | 2cos 2sin
2 2res N

π θ θ−⎛ ⎞= = =⎜ ⎟
⎝ ⎠

HH
�
H

ΔH∼

and        rotates       into the target (tagged)
state |t〉 in a time                    , i.e. 

⇒ speedup over
classical search

res�
H n̂

� | resT π= H

2
T Nπ
=

n̂
�

Hres


