
3C3.1

SUPERCONDUCTIVITY.

1. History:
v

Hg Cu

4/9/2008

Kamerlingh Onnes 
(1911, Hg):

zero voltage drop

~
I

?

V/I ≡ R(T)

superconductivity ≡ absence
of resistance?

theoretical attempts 1911 1933

?R(T)

1K
Tc

T

theoretical attempts 1911–1933

Meissner and
Ochsenfeld (1933):
t t l l i f fl

B~
total expulsion of flux
(equilibrium effect)

Londons 1935
isotope effect 1950

⇒ B=0

Ginzburg-Landau 1950

BCS theory (microscopic) 1957
Josephson effect 1962

T > Tc

T < Tcp
[“exotic” superconductivity 1975, high-temperature (cuprate) 
superconductivity 1986]
In these lectures, “superconductivity” always “classic” (BCS)
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SUPERCONDUCTIVITY (cont.)

2. Phenomenology (classic, type-I)
Superconductivity sets in abruptly at temperature T (typicallySuperconductivity sets in abruptly at temperature Tc (typically 
1–20 K). Below Tc, superconducting state differs qualitatively 
from normal (T>Tc) state in 3 respects:

1. dc conductivity →∞ (e.g. persistent currents in ring)
2. magnetic flux completely expelled (Meissner effect)g p y p ( )
3. Peltier coefficient → 0
Occurrence:

metals, alloys, semiconductors
in metals, more towards middle of periodic table
Δ: “best” metals (Cu, Ag, Au) not superconductors
not sensitive to nonmagnetic impurities (e.g. many very “dirty” 
alloys good superconductors with Tc ~ 20K),very sensitive to 
magnetic impurities.

Normal state (T>T ) of superconducting metal essentially aNormal state (T>Tc) of superconducting metal essentially a 
“textbook” metal described by Sommerfeld-Bloch-Landau 
theory

Isotope effect: for a given (elemental) metal
1/2 i t iT M

⇒ Dynamics of nuclei (i.e. phonons) must play a role

Microscopic properties in superconducting state:
specific heat Cv

1/2 isotopic masscT M −∝

Relative to extrapolated 
N state valuesp v

spin susceptibility χ
ultrasound attenuation α
thermal conductivity K
nuclear relaxation rate T-1

N-state values

⇒ 0 for T→ 0
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CORRESPONDENCE BETWEEN SUPERFLUIDITY AND 
SUPERCONDUCTIVITY

4a) Persistent currents in 4He in annular geometry ⇔ persistent 
currents in superconducting ring.

b) What is superconducting analog of Hess-Fairbank effect?

i. Behavior of superconductor under rotation (“London p (
moment”)

ii. less obviously: behavior in magnetic field

Neutral system observed 
from rotating frame

Charged system in magnetic 
field, observed from lab frame
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So:

t l t b d i charged system in magnetic 
field B, viewed from lab
frame

neutral system observed in 
container rotating with 
velocity     viewed from
rotating frame

2(with "scaling" B )e
mωR

� �

⇔

⇓

ω
�

HF effect: (part of) system at 
rest in lab. frame ⇒ moving 
in rotating frame

(part of) system moving in 
lab frame (diamagnetism)

⇓

⇔
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SUPERFLUID-SUPERCONDUCTOR CORRESPONDENCE (cont.)
Quantitative correspondence (T=0): consider
in each case “thin” ring (d«R) then

and (prima ←dˆv ( )r R R n f rωω ω ≡≡ × ≠≅ ×× and (prima
facie!)
Neutral case (T=0): as viewed from rotating
frame, 

R

v ( )r R R n f rωω ω ≡≡ × ≠≅ ××
� �� �� � � 1 1

2 2 ˆ( ) ( )A r B r B f rR n≡ × = × ≠
� � � � � �

mass
current vJ n m=−→current
density

vJ n m=−→
� �

↑
particle density

So in charged case 2nemelJ A=−
��

electric current vectorelectric current
density

vector
potential

On a “sufficiently coarse-grained” scale, can interpret this as a local
relation between

But in a bulk geometry must be determined self consistently

 and :elJ A
�� 2 (London equati( ) )( ) onnemelJ r A r=−

� � �� ( )A rBut, in a bulk geometry, must be determined self-consistently 
from Maxwell’s equations, which in time-independent case ⇒

( )A r
� �

2 2

2 2
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( ) ( )

and B(r) fa (London penetratlls ion depthoff )
LB r B rλ ⎪

⎭
⇒∇ =

� � � �

� �

/ pc ω≡

exponentially in bulk superconductor over distance ~λL
⇒ Meissner effect.

1) In multiply connected superconductor London equation mustΔ: 1) In multiply connected superconductor, London equation must 
be generalized (but          still falls off exponentially)

2) London equation not quantitatively valid in type-I 
superconductors (∵ not “sufficiently coarse-grained”)

( )B r
� �

Δ:
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HOW TO ADAPT (QUALITATIVE) IDEAS RE BEC TO 
SUPERCONDUCTIVITY?  (    non-historical!)
Obvious problem in taking over idea of BEC directly: electrons

Δ:

Obvious problem in taking over idea of BEC directly: electrons 
in superconductor are fermions! So,

*
1( , ) ( ) ( ) 1 (Pauli prin i le), c pii i ii

r r n r nrρ χ χ= ≤′ ′∑� �
⇒ no BEC in literal sense. However:

consider  hypothetical dilute gas of ↑↓
↑↓

~ n–1/3yp g
diatomic molecules composed of 2
fermions (for simplicity with ℓ=S=0),
with 3

0 1nr �

density     molecular
↑↓

↑↓

↑↓

 n

7~ r0

y
radius

(Ex: hypothetical gaseous D2)
It is highly plausible that in the limit            ,  this system 

will behave just like a dilute gas of bosons (with spin 0).
Moreover while the details of the molecule-molecule

3
0 0nr →

Moreover, while the details of the molecule-molecule 
interactions depend on the short-range part of the potential, at 
least in the limit of “large” molecules there are strong 
arguments* that it should be repulsive. Thus the model is 
exactly that discussed above, and in the limit T→0 we expect

BEC D F M

1 1 2 2 1 2 1 2 3 4 3 4 11, , ,N N N N NNr r r r r r r r rσ σ σ σ σ σ σ σ σϕϕ ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ −Ψ = −… …

� � � � � � � � �
A

BEC OF DI-FERMIONIC MOLECULES
What does the many-body wave function of such a system look 

like? Answer:              antisymmetrizer
BEC!

1
1 2 1 2 1 2 1 2 1 22 | |r r r rϕ σ σ ϕ

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

= ↑ ↓ −↓ ↑ −
� � � �

spin singlet          s-wave
*Petrov et al., PRL 93, 090404(2004): aBB=0.6aFF(>0).

molecular 
state
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HOW TO ADAPT BEC IDEAS. . .? (cont.)
2-body problem

Consider the behavior of two isolated fermions with some 
( )interatomic potential                    whose strength (and/or 

“shape”) can be varied, in a K = 0, S = ℓ = 0 state
( )1 2| |V r r−
� �

total
momentum

spin relative orbital
angular momentum

As the potential is varied, its effects on the low-energy behavior are 
uniquely parametized by the quantity as (s-wave scattering length),
or more conveniently by

For a strongly attractive potential,                    fermions form 
tightly bound molecule (radius ~ range of potential (w)).

1 :sa−

1 :sa− → +∞
g y ( g p ( ))

As potential is weakened,         decreases and eventually 
becomes negative.

For                                  fermions form weakly bound 
molecule (radius = as » w–1), with binding energy                      .

For (“unitarity”) the energy of the molecular bound

1
sa−

1 10 but ,sa w− −> �
2 2/ smaε = −=

1 0a− →For               ( unitarity ) the energy of the molecular bound 
state → 0, and for               no molecular state is possible. 

Now, back to the many-body problem: What happens if starting 
from a dilute BEC of di-fermionic molecules, we gradually weaken 

0sa →
1 0sa− >

g y
the inter-fermion attraction (while keeping n = const.)?

When the (2-body) s-wave scattering 
length as becomes ~n–1/3, “molecules ¨start 
to overlap ⇒ cannot neglect effects of Pauli 
principle. Equivalently,

as

principle. Equivalently,

When                , do “molecules” unbind?

2/3 2 2
2" " ~ ~| | .~
sF

n
m ma Eε = =

1/3
sa n−>
�
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DO MOLECULES UNBIND? (cont.)
BCS (1957): (A sort of) “molecules” persist for arbitrarily 

weak attraction, i.e. even for as -ve  when no 2-body state is bound. 
Unifying formalism (Yang 1962):Unifying formalism (Yang, 1962):

General many-body pure state wave function:
( )1 1 2 2( ) , :S

N S N Nt r r r tσ σ σΨ ≡ Ψ …
� � �

2-body density matrix ρ2 defined by

( ) ( 1)N N d d d′′ ′ ′ ∑ ∑ ∫

prob. of status

( ) ( )1 1 2 2 1 1 23 3 32
*

3,, ,: , :S N N S N Nr r r rr r t r r tσ σ σ σσ σ σ σ′Ψ ′Ψ ′ ′… i …
� ��� � �� �

( )
3 4 11

2 1 1 2 2 1 1 2 2 3 4, : , ( 1) S N
S

r r r r N N p dr dr dr
σ σ σ

ρ σ σ σ σ′ ′ ′ ≡ − ∑ ∑ ∫
…

…
� � �

summed/integrated
over

( ) ( ) ( ) ( )1 2 2 1

† †
1 2 2 1r t r t r t r tσ σ σ σψ ψ ψ ψ′ ′′ ′≡
� � � �

is Hermitian ⇒ can be diagonalized:2ρ̂

( ) ( ) ( )*
2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2, : , : ( ) , : , :i i i

i
r r r r t n t r r t r r tρ σ σ σ σ χ σ σ χ σ σ′ ′′ ′ ′ ′ ′= ∑
� � � � � � � �

eigenvalue                     eigenfunction
Theorem (Yang): All ni ≤ N.

Ansatz: (In thermal equilibrium at T< some Tc): For arbitrarily 
weak attraction, ∃ one and only one eigenvalue ~ N, all others y g
~1.  (“ODLRO”). Call it N0, and corresponding χ χ0

BEC limit

BCS limit

1
0 0

1
0 0

1/3

( ) : ,  molecular wave function

( ) :  (but ~ N),  “molecular-like” 
but radius

S

S

a N N

a N N
n

χ

χ

−

−

−

→ +∞ = =

→ −∞ �
�

intermediate case  (“unitarity”)   ?? (“BEC-BCS crossover” in 
Fermi alkali gases)       

but radius  .n�
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QUALITATIVE ARGUMENT FOR MAIN PHENOMENA OF 
SUPERCONDUCTIVITY FROM YANG HYPOTHESIS

Bose case (recap):Bose case (recap):

in thermal equilibrium, ∃, one eigenvalue (N0) ~N (“BEC”), with 
associated eigenfunction χ0(r). Define order parameter 

( ) ( )*
1 1, : ( ) , ( )i i i

i
r r t n t r t r tρ χ χ′ ′= ∑
� � � �

0 0( ) ( ) ( ) | ( ) | exp ( )r N r i rr rχ ϕΨ ≡ Ψ ≡ Ψ

Then: a) Hess-Fairbank effect follows from BEC alone.
b) stability of supercurrents follows from BEC plus repulsive 

interactions, i.e. term in energy 

0 0( ) ( ) ( ) | ( ) | exp ( )r N r i rr rχ ϕΨ Ψ Ψ
� � � �

4~ | ( ) | , 0.b r bΨ >

Fermi case:Fermi case:

( ) ( ) ( )*
2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2, : , : ( ) , : , :i i i

i
r r r r t n t r r t r r tρ σ σ σ σ χ σ σ χ σ σ′ ′′ ′ ′ ′ ′= ∑

� �
Assumption: in thermal equilibrium ∃ one eigenvalue (N0)~N, with 
associated eigenfunction

i
( )0 1 1 2 2, .r rχ σ σ
� �Write
( )

( ) ( )0 1 1 2 2 0 1 2 1 2, , :r r r r rχ σ σ χ σ σ≡ −
� � � � �

and fix                        at some “standard” values (e.g. for s-wave,

relative
coordinate

COM
coordinate

( )1 2 1 2,r r σ σ−
� �

( g ,
Then χ0 ≡ χ 0(r), and can define similarly 

to Bose case an order parameter  

( )1 2 1 2,
� �( )1 2 1 20, .r r σ σ− = = − =↑

� �

0 0( ) ( ) ( ) | ( ) | exp ( )r N r i rr rχ ϕΨ ≡ Ψ ≡ Ψ
� � � �

So, arguments go through similarly to Bose case, provided ∃ a term 
in energy of form 4~ | ( ) | , 0.b r bΨ >

( )rΨ
�

(Note:           is essentially the order parameter introduced in the 
phenomenological theory of Ginzburg and Landau, without an 
appreciation of its microscopic meaning.) 


