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LECTURE 2B: BCS THEORY OF SUPERCONDUCTIVITY

1. Normal state of a “textbook” metal.
A Sommerfeld model

4/4/2008

A. Sommerfeld model
Free independent electrons obeying Fermi statistics.
Single-particle states:
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spin component σ = ± 1/2
In equilibrium at T, Fermi-Dirac distribution:
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~kBT/vF
Sommerfeld model (cont.)
Near the surface
(“Fermi surface”), we have 

| | ( ) in -spaceF k Fk k kε ε= =

( ) (| | )v k kε ε ε μ≅ ≅
Fermi 
surface

( ) (| | )k F k F Fv k kε ε ε μ− ≅ − ≅ −

Fermi velocity

and the single-particle density of states (DOS) is given (including a 
factor of 2 for σ = ↑,↓)* by
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Several basic properties of the system are determined entirely by 
dn/dε, e.g.
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Transport in Sommerfeld model:
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introduce phenomenological scattering (relaxation) time τ, then 
dc conductivity given by Drude formula 

However, note that we can equally well write (since 
2 /ne mσ τ=

2/ 3 / 2 3 / ( )F Fdn d n n mvε ε= =

so conductivity (and other transport properties) defined entirely by 
quantities (vF, dn/dε) characterizing states close to Fermi surface. 
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(essentially true for all low-energy (low-temperature) properties).

*    In the superconductivity literature it is conventional to use the 
DOS for (e.g.) states only, 1(0)

2
dnN
dε

⎛ ⎞≡ ⎜ ⎟
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Δ:



3C4.3

Normal state (cont.)

B. Bloch model
Electrons still independent, but not “free”: feel periodic p , p
potential of crystal lattice.

Single-particle states now Bloch waves

band index                                           has lattice periodicity

( ) ( )expkn knr u r ik rΨ = i

Within each band n, energy spectrum is           : in general depends 
on direction as well as magnitude of    . In most   “classic 
superconductors only one band (“conduction band”) is relevant 
at T Tmelt , so drop index n. Thermal equilibrium single-
particle distribution is still

( )n kε
k

particle distribution is still

( )
1( , )

exp ( ) / 1B

n k
k k T

σ
ε μ

=
− +

so define Fermi surface in   -space as locus of states     such that
In general this is no longer a sphere:

k k
( ) (0) ( ).n Fkε μ ε= ≡ g g p

Just as in Sommerfeld case, “elementary” 
excitations are quasiparticles (•) in states 
outside Fermi surface and quasiholes (○) 
inside. We can still define the single-particle 

(d /d ) ( d d h d il f

( ) ( ) ( )n Fμ

~ / vB Fk T

DOS (dn/dε) (now depends on the details of 
spectrum         ) and still have

but (e.g.) dc conductivity now involves 
average over F.S.

Most low-energy properties are qualitatively similar in 

( )kε 2 ( / ),B dn dχ μ ε=
2 2

v 3 ( / ),BC k T dn dπ ε=

Fermi surface 
(“F.S.”)

Sommerfeld and Bloch models ( ! : Hall effect, thermoelectric 
coefficients . . .). In particular (almost) all low-energy properties are 
determined by states close to Fermi surface.
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Normal state (cont.)

C. Landau-Silin (Fermi-liquid) model
Takes into account (much of) electron-electron interactions 

b th C l b d h i d d Lboth Coulomb and phonon-induced. Low-energy
“elementary” excitations are still quasiparticles
(•) outside FS and quasiholes (○) inside, but
these are now not single electrons (holes) but
(e.g.) “electron plus dressing cloud.”

Upshot: general picture unchanged, but (a) single-quasiparticle 
energy spectrum        modified, and (b) any macroscopic 
polarization (e.g. of spin) generates a corresponding molecular 
field.

Generally, Landau-Silin picture modifies results of Bloch

( )kε

Generally, Landau Silin picture modifies results of Bloch 
model quantitatively but not qualitatively.

For a qualitative understanding of the superconducting state, it 
is adequate to start (with BCS) from the simple Sommerfeld pictureis adequate to start (with BCS) from the simple Sommerfeld picture 
of the normal state, augmented by a “weak” electron-electron 
interaction. The “Bloch” and “Landau-Silin” complications change 
some details of temperature-dependences etc., but rarely affect the 
properties of the superconducting state qualitatively.

Crucial observation (for “classic” superconductors): always have

Reasonable intuitive hypothesis: only states with                  (a few | |kε μ− <
( / )FF BcT kT ε≡

times) Tc involved in formation of superconducting state ⇒
mechanism of superconductivity involves only states near Fermi 
surface.
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Digression: What do the eigenfunctions and eigenvalues of        
look like in the original Sommerfeld model at T=0 (free Fermi gas 
without interactions)?

A l h i 1 i l i 2 i

2ρ̂

kA natural choice: 1 in plane-wave state      , spin state σ, 2 in 
plane-wave state      spin state  e.g.

k
,k′ ' ,σ

( ) {1
1 1 2 2 2 1 2

occupied if | |,  | |exp , exp unoccupied otherwise
Fk k kr r ik r ik rχ σ σ − ′ <′= Ω ⋅ ⋅ ↑ ↓

but this is not correctly antisymmetrized, so correct form is
relative

( ) 1 1 1
singlet 1 2 1 22 2

1 2
( ) 1 1 1
triplet 1 2 1 22 2

(exp )(cos ) ( )

(exp )(sin ) ( )

i

i

iK R q

iK R q

χ ρ

χ ρ

Ω

Ω

= ⋅ ⋅ ⋅ ⋅ ↑ ↓ − ↓ ↑

⎧↑ ↑
⎪= ⋅ ⋅ ↑ ↓ + ↓ ↑⎨
⎪↓ ↓⎩

i

COM

relative

in each case,

hence a total of ~N2 eigenvalues = 1, all others zero.

1 2
⎪↓ ↓⎩

1  if | / 2 |, | / 2 |
0 otherwise.

i F

i

n K q K q k
n
= + − <
=

Electron-electron interaction:
Bardeen-Pines interaction:
screened Coulomb + exchange of 
virtual phonons.
Exact form:

exchange of 
virtual phonon q

screened 
Coulomb

, kk ε , kk q ε ω− −

Exact form:

, kk q ε ω′′′′ + +2

1 2
2 2 2

( / )
1 / ( )( , )

phTF
BP

dn d
q q qV q ε ω

ω ωω
−

+ −
=

2 1/ 2
0( / )                              freq. of phonon with wave vector qdn

dεε ε

, kk ε ′′′′

note attractive for ( ). (~ ,  Debye frequency)Dph qω ω ω<
k k ′

k ′′ k ′′′

BCS replace by model interaction 
0( ) ( )V r V rδ= −

with restriction
'| |, | |,k Dkε μ ε μ ω− − <…
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k
k′

THE COOPER PROBLEM
2 electrons interacting with one another

while excluded from the Fermi sea, in spin

filled 
Fermi 

sea

singlet state with COM momentum K=0.
So orbital wave function is

1 2

1 2 1 2

( )

( , ) ( )orb orb

ik r r
k
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r r r r

e

ψ ψ

ψ⋅ −

= −

≡ ∑

k−
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2, | | 1
k

k k k
k

ψ ψ ψ−= =∑

antisymmetrization        normalization

Define                        and measure energy from         (min. energy 2 2

2
k

k Fmε ε≡ − 2 Fε
of 2 free particles excluded from Fermi sea)

Then Schrödinger equation is in Fourier-transformed form

or
'2 k k kk k kk V Eε ψ ψ ψ′ ′+ =∑

1
2 kk kk kE

k
Vεψ ψ′ ′−

′
= − ∑

k k ′

0 , if | |, | |

0,  otherwise
k k
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V
V

ε ε ε′
′

− <⎧⎪= ⎨
⎪⎩

For BCS form of potential

take Ψk independent of ˆ,  i.e. ( ) :kk Cψ ε≡

( ) ( ) ( )
c

cVC d C
ε

′ ′ ′∫2( ) ( ) ( )cV
E

c
C d Cεε ε ρ ε ε− ′ ′ ′= ∫

single-spin DOS
approximate ρ(ε′) by N(0);then can take C=const.and integrate over 

ε:
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c
EN VdN V ln

ε
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⇒ ∃ bound state for arbitrarily small attraction.
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BCS ANSATZ
In real life, most natural to minimize not                          so 

most natural to measure single-particle energies
ˆ ˆ ˆ but H H Nμ−

 from .kε μ
Thus from now on  

k

2 2

2
k

k mε μ≡ −

So kinetic energy (KE) is (with            subtracted)N̂μ−
ˆ ˆk k

k
T n σ

σ
ε≡ ∑

For the moment, keep potential energy general:
1 ˆ ˆ( )
2 i j

ij
V V r r≡ −∑

Problem: Minimize expectation value of
Generalized BCS state:

ˆ ˆ ˆ ˆ.H N T Vμ− ≡ +

“BEC”

i.e. a sort of “BEC of di-electronic molecules.”
In second quantization notation:

Generalized BCS state:  
1 2 1 2 3 4 3 4 1 1( ) ( : ) ( : ) ( : )N N N N Nt r r t r r t r r tσ σ σ σ σ σϕ ϕ ϕ − −Ψ = ⋅ ⋅ …A “BEC”

normalization antisymmetrizer

In second-quantization notation:

{ } /2
† †( ) ( : ) ( ) ( ) |

N

N t dr dr rr t r r vacα β
αβ

ϕ αβ ψ ψ′ ′ ′Ψ = 〉∑ ∫ ∫

Our task: Find (t-independent) form of                     which 
minimizes

( : )rrϕ αβ′
ˆ ˆT V〈 + 〉minimizes

For case of interest (superconducting metal) assume
(a) COM at rest
(b) singlet pairing

Then:  

.T V〈 + 〉

1
1 2 1 2 1 2 1 2 1 22

( ) ( ) ( )r r r rϕ σ σ ϕ⇒ = ↑ ↓ − ↓ ↑ × −

If we set

/
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N k k k
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−
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1 | |
2 , then '' 1.  So k
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c
ck

N
+

= =∑ …
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BCS ANSATZ FOR GROUNDSTATE (in “particle-conserving” 
form):

with normalization

/2( ) |N
N k k k

k
c a a vac+ +

↑ − ↓Ψ = 〉∑

with normalization

Alternative (conventional, particle-nonconserving) form of ΨN

with

2

2
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1 | |
2 k

k
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N
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k(u +v ) |N k k kk
a a vac+ +

↑ − ↓Ψ = Π 〉

( )2| |22 2| | | | 1 / | | kc⇒+with

Some properties of the BCS groundstate (most easily proved using 
conventional (particle-nonconserving) form): 
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e
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σ σ σ +
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3. The 2-particle density matrix has, besides 0(N2) 
eigenvalues of 0(1), a single eigenvalue ~0(N), with 
associated eigenfunction (up to normalization)

| | |k

1( ) ( ) ( )r r F rχ σ σ = ↑ ↓ − ↓ ↑ ×

i.e. COM momentum zero and relative wave function 
. The associated eigenvalue is

0 1 1 2 2 1 2 2 2

1 2
( ) e

( ) ( ) (

xp

)
2

k
k

F r F i

r r F r

r r
k r

χ σ σ = ↑ ↓ ↓ ↑ ×

−
≡ ⋅∑

( )F r g

Thus,           is the closest analog of the relative w.f.
in the 2-particle problem, and is often called the 

“wave function of the Cooper pairs.”  

2
0 | | ~ 0( )k

k
N F N= ∑

( )

( )F r
( )rΨ



3C4.9

Determination of the optimum form of the pair wave function
(or equivalently of its Fourier transform        ) : 

( )F r
kF

We need to minimize                    In terms of  ,kFˆ ˆ .T V+

( )( )2ˆ ( . ) | | 1 1 4 | (  = 0 for 0)| kk k
k

nT const otF e Fε= + − =−∑

Evaluation of           For the BCS-ansatz form of Ψ, only 3 types of 
term contribute:

ˆ :V

21ˆ(1) Hartree: (0) (ind of ) ignoreV V N const F= = ⇒(1) Hartree: (0) .(ind. of )  ignore
2

1ˆ(2) Fock: ( ) .
2

kH

k kF k

V V N const F

V V k k n nσ σ
σ

′

= = ⇒

′= −∑

In the most general case this is not ignorable. However, we will see 
| | k Tthat 〈nkσ〉 differs from its N-state value appreciably only for

so if scale of variation of                                          the Fock term is 
approximately unaffected by the onset of pairing ⇒ can ignore.

| | ,k ck Tεε <
0( ) is  /c FV k k k T V′−

*
(3) Pairing:

V V V F F+ +∑ ∑

{ } ( )2

*

*ˆ ˆ | | 1 1 4 |

V

Thus
|

:
kk kk k kk k k kpair k

k k k kk k k
k kk

k kk

H N F F V F

V a a a a V F F

Fμ ε

+ +
′ ′ ′′ ′↑ − ↓ − ↓ ↑

′

′ ′
′

′
= =∑ ∑

− = − − +∑ ∑

note in limit of 2-particle problem (μ → 0, Fk → 0) this justnote in limit of 2 particle problem (μ → 0, Fk → 0) this just 
reduces to 

{ } 2 2 2 *
2

ˆ ˆ | |
r

k
k k kk k km

k kk
H N F F V F Fμ ′ ′

′
− = +∑ ∑

i.e. 2-particle energy with Ψk→Fk. So, correction to Cooper 
problem (Fk →0 but μ still = εF≠0) is nonlinear term of the 
form

whose effect is to limit magnitude of Fk.

4| || | 0( )k k k
k

F F εε +∑
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( )2 *ˆ ˆ 1 1 4 | |k k kk k k
k kk

H N F V F Fμ ε ′ ′
′

− = − − +∑ ∑

BCS GAP EQUATION:

Vary with respect to * :kF

2

2 | | 0 (*)
1 4 | |

k k
kk k

k
k

F V F
F

ε
′ ′

′
+ =∑

−
This is just the BCS gap equation in disguise! To see this, introduce 

( )1/22 2| | , sok k k
k k k k k

FE E Fε ε
⎛ ⎞Δ

Δ ≡ − =⎜ ⎟( )
2

, so 
| | 21 4 | |

k k k k k
k kk

E E F
F EF

ε≡ Δ ⎜ ⎟
− ⎝ ⎠

then (*) is written

For BCS model potential

( )2
2

1/22, | |k

kk kk E
k

k k kV E ε′

′

Δ
′

′
≡ += −∑ ΔΔ

standard form of For BCS model potential BCS gap equation.
0 (~,| |,| |

0,  otherwi

)

se
k k

k
Dc

k

V
V

ε ωε ε′
′

− <⎧⎪≡ ⎨
⎪⎩

const. .kΔ = ≡ Δ The overall phase of Δ is physically meaningless, 
so set Δ real. Then for Δ « εc the self-consistent solution isso set ea . e o « εc t e se co s ste t so ut o s

0

1
2

DOS for 1 
2 exp 1/ (

spin
   
          

          
                    

                    
   

   
   

0)
       
        

  
 ( )

c

dn
d

N V

ε

εΔ =

≡

−

Note that the usual case N(0)V0 « 1,

so approximation of taking into account only states close to the Fermi
~c D Fε ω εΔ

so approximation of taking into account only states close to the Fermi 
surface is well justified.

Digression: Why does BCS model potential give such 
quantitatively good results? (e.g. for T-dependence of various 
properties)properties)

Answer: Provided range of variation of “true” potential is »Tc, 
can always carry out renormalization and obtain BCS model form, 
with only unknown V(0) fixed (for given εc) by experimental value of 
Δ (or Tc).
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Fk↑

1/2

1

Behavior of Fk and 〈nk〉 in BCS 
groundstate:

/ 2 ~ / | |  for | |
1

k k k k kF E ε ε
ε

= Δ Δ Δ
⎛ ⎞ 1

–Δ 0    Δ εk→

( )
( )

2

2

1 1
2

~ 0 /  for 
~ 1 0 / for 

k
k

k

k k

k k

n
E
ε

ε ε
ε ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
Δ Δ
− Δ −Δ

Form of “pair wave function”:

exp /

( )

sin(0)
2

ik r
k

k

ik r F

k k F

F r F e

k re N
k r

r
ε

ξ

⋅

⋅

= ∑

Δ
= −≅ Δ∑

3 4
F~ v /  typically ~ 10 10

k F

ξ − ∧←Δ

⋅ ⋅ ⋅

The “number of Cooper pairs” is the eigenvalue 0 2ˆ of .N ρ
( ) i

⋅ ⋅ ~
ξ1~ Fk −

This is given by the normalization of  ( ),  i.e.F r

3

0

4

2

0

2 = dr | ( ) | | | (0)
4

or since (0) ~ / , ~ 1
~

0 0
( /

1
)

k
k

F

F

N F r F N

N N
N n ε

ε

π

− −

Ω = Ω = Δ Ω∫

Δ

∑

−

0 ( / )FN N ε

so “condensate fraction” N0/N is very small!
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DEFINITION OF AN ORDER PARAMETER IN BCS THEORY

(0) k
k

F FΨ = = ∑
The most natural definition of an order parameter would probably be

k

2 2 1/ 2
(0) ln 2 / | | .

( | | ) c
k k

N ε
ε

Δ
Ψ = = Δ Δ∑

+ Δ

However, it is actually more convenient to use the fact that for a 
constant (i.e. k-independent) (possibly nonequilibrium) value Δ of 
Δk there is a simple relation between Δ and Ψ:

2 2 11 (0)
2

2

k c
k

k k
c

ET N n
E

E
E

εε
⎫⎛ ⎞ ⎛ ⎞⎛ ⎞= − = Δ −∑ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠⎪⎝ ⎠ Δ⎬
⎪⎛ ⎞

( | | )k

So it is equally possible to treat  Δ as the order parameter. Then

2 2 2 2
0 0

2(0) cEV V V N n ⎪⎛ ⎞= − Ψ = − Δ ⎜ ⎟ ⎪Δ⎝ ⎠ ⎭
These expressions are valid for arbitrary Δ. Minimization of 〈H–

μN〉〈T〉+〈V〉 leads back to the BCS expression for the 
equilibrium value Δ0 of Δ:

0 02 exp 1/ (0)c N VεΔ = −

2

0

1 0
/

) 1(0
2 cn

H N N nμ
ε

⎧ ⎫⎛ ⎞Δ⎪ ⎪〈 − 〉 = Δ −⎨ ⎬⎜ ⎟
⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟Δ⎝ ⎠Δ⎪ ⎪⎝⎩ ⎭ ⎝ ⎠⎠

and substitution of this into 〈T〉 and 〈V〉 leads to

0 c⎝ ⎠⎪ ⎪⎝⎩ ⎭ ⎝ ⎠⎠

21
02 (0)caseE N= − Δ

Note that the leading dependence on εc has fallen out. This 
expression has (of course!) a minimum at Δ=Δ0, with a value (the 
“condensation energy” relative to the N state) of

and a second derivative

which stabilizes the equilibrium value similarly to a Ψ4 term.
(Note: Near so analogy to 
Bose case is more exact.) 

2 41
2, ( ) ( ) | | ( ) | | ,cT F T Tα βΔ = − Δ + Δ

2

2 2 (0)caseE N∂

∂Δ
= +

and a second derivative
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ELEMENTARY EXCITATIONS FROM THE BCS GROUNDSTATE

Recall that in the particle-nonconserving formulation the 
groundstate can be written

k( v ) | vacN k k kk
u a a+ +

↑ − ↓Ψ = Π + 〉

i.e. the occupation state of the pair of plane-wave states
(4D Hilbert space!) is

| 00 |11 (“ground pair”)GI k ku vΨ = 〉 + 〉

,k k↓ ↑ − ↓〉

The 4D Hilbert space is spanned by |00〉, |01〉, |10〉 and |11〉. So we 
can construct two types of excited state in this space

* *

(“broken pair”)

(“excited pair” orthogonal to 

| 01 , |10

| 00 |11 )
BP

EP k k EPu u

Ψ = 〉 〉

Ψ Ψ= 〉 − 〉
The energy of the GP state is

( ) ( )2
2 *| | 1 1 4 | | 2 k

kGP k k k kk k
k

k EE F F FV Fε ′
′

Δ
′= − − + =∑

The BP states have
while the EP states have Fk→–Fk in the potential term, and their KE 

0 . . 0,  and ,  so | |k k BP kF i e V T Eε ε= 〈 〉 = = =
k k p ,

is given by Hence ( )2 2 2(| | | | ) | | 1 1 4 | | .k k k kv u Fε→ + −

2 22
2

2 *

2 1/2| | | |

, 2 , where
| | 1 4 | | 2

| | 1 4 | | (1 )k k

BP GP k EP GP k

k k k k kk k
k

k k kE E

E E E E
F F V F

F

ε

ε ε

′ ′
′

Δ ΔΔ

− =ℜ − = ℜ

ℜ ≡ − + ∑

= − + = − +2

2 2| |

| | 1 4 | | (1 )
k kk

k k
k k

k k k

k

E EE

E E

F

Eε

ε ε
Δ

+ +

= ≡

⇒

+

EXCITATION ENERGY OF BP STATES IS Ek, OF EP 2Ek
⇒ in BCS model (Δk = const. ≡ Δ), minimum excitation ( k ),

energy of system is  |Δ|     (hence, Δ is “energy gap”)
⇒ at low T, no. of excitations ~N exp –Δ/kB T.

for e.g. N~1027, Δ ~ 20 K, T ~ 5 mK, this is «1!


