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The quantum mechanics of a
macroscopic variable*.

In lecture 3A we discussed Josephson systems in a way which treated the flux threading
a SQUID ring,or the phase difference across a Josephson junction,as a classical quantity.
Thus,for example,there was no question of superposing states corresponding to different
values of the flux.It is clear that if we have any hope of using any of these circuits as
qubits,we will have to treat the flux @ ,or the phase difference ag,as quantum-
mechanical operators.

How can we set about doing this? Let’s start with the conceptually simplest case,that
of the SQUID ring,and consider the equation of motion of the trapped flux ®® ,for the
moment neglecting the dissipative term due to the normal current:

Cd*®/dt® + I sin(2z® / @) + (P -, )/ L=0
It is clear that this equation can be derived from a Lagrangian of the standard form T-V,
where the « potential » energy V and « kinetic » energy T are given by
V(@) =-E, cos(2ad / D) + (D -D_,)° /2L (as previously: E; =@l /27 )
and
T(dd/dt)=C(dd/dt)?/2
This is formally exactly analogous to the Lagrangian of a mechanical particle,with « mass »
C,so it is tempting to apply the standard canonical quantization procedure by
defining P, =0L/o(dd / dt) = C(dd/ dt),

H = p, (dd/dt)— L =(p,2/2C)+V (D)
*Parts of this lecture are based on A.J.L.,in Chance and Matter,ed.J.Souletie et al.,1986.



So we have (classically)

H(®, p,) =(p," /2C) +V (D)
and now make the standard replacements

H — —ino/ ot, p, — —iho [ 0D
to obtain a TDSE for a « wave function » ¥(®) of the form

—ihoW (®,t)/ 6t = —(h° | 2C)*W | 6D +V (D)¥
Unfortunately,this may be too good to be true! After all,  is a collective variable,and its

classical equation of motion is itself derived using QM ideas;it is not a priori obvious that the
canonical guantization procedure is legitimate.(« Can you quantize the equations of

mathematical economics? »). The problem is even worse when we come to the phase
difference a4 ,since this cannot even be defined classically.So we need a more first-

principles treatment.Let’s try to do it first for the SQUID case:

Let’s start by asking:for a given value of the trapped flux o,what does the full many-
body wave function look like? It is actually convenient to work in terms of the
« molecular » function *%,r,,6,,0,) rather than the more conventional « pair wave
function » F(,1,,0,,0,);the two functions differ** only in their dependence on the relative
coordinate ,while we shall be interested only in the dependence on the COM coordinate

R;thus we write 0
Y, (hh....ly,0,0,...0, :®)=N-N- y(rr,0,0,:®) y(r,1,0,0, : D)...

X oy 0y 1 D)

where @ is for the moment a parameter.We write x(ino0,:®)=x(p,0.0,:R:®) gnd write the
COM coordinate R in terms of two irrelevant variables and its angle ¢ around the ring.

*We use the notation r for this quantity to avoid confusion with the phase.
**For the singlet s-wave case of interest here.



Thus,the many-body wave function ¥, is schematically given by

¥y =N-X-J[x(¢0:D)

where ¢ is a shorthand for all the irrelevant variables.Now,the phase ¢(r) of the
« molecular » wave function y(r)is the same as that of the pair function F(r),which as we have
seen obeys (on any path deep in the bulk ring)the relation

Vé(r)=2eA(r)/ n
Since the dependence on r comes only through the angle ¢ and A(r) can be taken equal to
@/2zr ,this gives the ¢-dependence

$(0)=(D/ D)0
so that

2(£10:®) = 2(O)expi(® 1 D)0 = 2(C)expi(® B, )(6, +06,)

where 4 ¢ are the angles of the two electrons of the pairand (<) is independent of o.
Thus,

Y, (... Iy :CD)=ﬁi[exp(i/2)(®/®o)¢9i]o‘PN'(§)

where the function v () isindependent of @ . So we reach the fundamental conclusion that
the flux-dependence of the many-body wave function (in the bulk ring)lies entirely in the
factor

[T lexn(i/2)(@/ ®,)6]

So far,the flux @ has been treated entirely as a c-number parameter.Now we need to go



Converting the flux to an operator

Let us introduce for convenience the notation

RN (A 1 @) = (exp(i/2)(®/ ®y)- > 6)¥ =D >

This is a perfectly respectable many-body wave function;it may be regarded as an eigenstate
of the variable @,just as in ordinary single-particle QM one defines an eigenstate |x>of the
coordinate variable x.And just as in that case,one may form a superposition of eigenstates
corresponding to different values of @

| ¥y >=[a(@)|®>do
or explicitly

where a(@ ) is a complex amplitude function.This is a perfectly good many-body wave function
(principle of superposition!);all we need is a shorthand notation for it.In analogy with the
standard notation y(x) in single-particle QM for the amplitude with which the position
eigenstate |x> is represented in the general quantum state |>,it seems natural to adopt the
change of notation a@)— (@) SO that a general state of the many-body system is
represented as

b= [do y/(0)|®>
or more concisely just by the wave function  v(®).From now on we shall treat v (®) just
like any other Schroedinger wave function.



Identification of the « momentum » conjugate to ¢

In order for the Schroedinger equation -7y (®)/dt=Hy(®) to be nontrivial,we have to
find a « kinetic energy » term which depends on the momentum conjugate to o,
and therefore have to identify this quantity.
We first enquire what it looks like when
expressed in terms of the original single-
electron coordinates.For this purpose it is
convenient to choose a definite origin of
the angular coordinate ¢ ,let us say at the
point on the ring opposite the junction.Now,
in ordinary single particle QM the state |>
specified by the wave function sy /ox is
explicitly P=[dx@y/q|x>,i.e. the amplitude 6=0
(but not the ket vector |x>) is differentiated.Similarly in our case,we expect the
wave function v (®)/o® to be given explicitly by the expression

Oy(®)/o® = [ (B 1 0®) | ® > dd
However,we can now integrate this expression by parts:assuming that the
amplitude tends to zero for @®—+x as must be true for any physically reasonable
state,this gives

Oy (@)1 00 = [y D)@/ 8®) | D> dd = (=i 1 20,) Y ,8)[ w(®)|® > dd = (-i/20,)(Y &)y ()

where we used the fact that

| @ >= (expi(@/ ;)Y G)x| £ >

with |¢> independent of @



Identification of the canonical momentum (cont.) AQ
We just demonstrated that ‘1'_ _‘1'
Oy (®)10D = (=i 12D,)(D 6w (®)
It follows that the momentum operator
canonically conjugate to @ , Po =-11(0/0®) |
is to be identified with the expression
P, = €26,/ 27)
This is an interesting result;it shows that the
momentum comjugate to ® is not strictly
speaking the charge imbalance acroos the
junction (which is what one would have 0=0
inferred from the « naive » argumnet based on
canonical guantization) but rather the weighted distribution of charge around the ring.
However,we now use a physical consideration :under the conditions normally found in real-
life SQUIDs,the capacitance of the junction is much greater than the distributed
(« geometrical ») capcitance of the bulk ring (which is whjat we implicitly asumed when
deriving the classical equation of motion).Under these conditions ,any charge imbalance
will pile up on the « plates » of the junction,corresponding to ¢ =+~ in the above formula,so
that P. isindeed the charge imbalance Q and we can write the commutation relation
[Q, ] =—iA
(which is often assumed in the literature without going through the above painstaking
argument).lt is clear that the capacitance energy asociated with this charge build-up is
Q?/2¢ ,so we finally reach the Schroedinger equation deduced earlier by canonically
qguantizing the classical equation of enerrgy conservation:




So,finally,the correct Schroedinger equation governing the behavior of the flux in a
SQUID ring (in the approximation of the neglect of any dissipation due to normal
current in the junction) is
—ihdy (,1) ] 6t = —h? | 2C)0%y | 6D +V (D) (D)

where v(a@)is the « potential energy » derived earlier :

V(®@)(= E(®) = (D) / -D,,)? | 2L — E, cos(22d | d,)

(E, =1.®,/27)
We can now proceed to calculate various properties exactly as we would for a
mechanical particle moving in the potential V. E.g.we can apply the usual formulae
for tunnelling of the flux out of a metastable well:

P =const.exp—2A A V((D)
and for the tunnelling splitting between two nearly degenerate states:

A = const.exp— A

where in each case A is the appropriate
WKB exponent:

A= j (2CV ())2d D / 7

where the integral is taken in each case
between the two classical turning points
determined by E=V(®) (see figure).Note that
both P and A decrease exponentially with
the junction capacitance C,so that to get
appreciable quantum effects one needs C

to be small.(but not so small that it is overwhelmed by the distributed capacitance!)

()
>




Quantum mechanics of a Cooper-pair box (CPB)

The QM of a J.J.sandwiched between two A
isolated bulk superconductors is in some ways v 4 Y
simpler than that of a SQUID,provided one is
happy to treat the phase drop a¢ of the Cooper-
pair wave function across the junction as an
operator,despite the fact that it is itself of QM
origin.

Consider the paired many-body wave
function

Y (hhely 1AQ) =N-R- y(1,,1,,0,,0, :A@)- x (L1, ...)....
where as in the SQUID case (rr0,0,)is the « molecular » wave fucnction.Again we focus on the
COM variable r,and write this time (cf.lecture 3A)
x2(r)=ay (r)+by.(r) =[a|exp(iAg/ 2y (r)+[b|exp(-iAg/ 2)y,(r)
where v (r) are COM wave functions localized on the left (right) of the junction.Thus we
have schematically (ignoring normalization and antisymmetrization)
¥ (rr,.....r ) = (alexp(iAg/ 2w +|b|exp(-iAg ] 2w )V =| Ag >

where N is the total number of electrons in the device.We now consider,as in the SQUID
case,the possibility of a many-body wave function which is a linear superposition of states
of different ag4:

b= [d(Ag)y (A4) | Ag > y(Ag)

There is one tricky point,now,which has no analog in the SQUID case:because the topology is
no longer « multiply connected »,values of A¢ which differ by 2nz must be identified.



QM of a Cooper-pair box (cont.)

We now consider the question of the « momentum » canonically conjugate to the phase drop
A¢ across the junction We recall that we had (with v.r real and ,.v:)=0)

W (0. AQ) =(a]exp(iAg/ 2y +|b|exp(-iAg/ 2y )" = Ag >
Now consider the quantity ow(ag)/a(a¢).We assume that as in the SQUID case we can integrate
by parts,so we neeed to work out the effect of this operator on the ket|as > .We see that this is
to multiply by iN/2 and by a factor = /= ,where @.=laly exp(iA¢/2)x|bly,[exp(-iAg/2) If the pair
wave function is normalized ,then since (y_y.)=o0 this factor is just lal v,"~1bl v;* Thus,

oy (Ag)10(Ag) =—i(N/2)(al’ v "~ b v" )y (Ag) =—IAN -y (Ag)

where aN is the number of particles displaced across the junction (relative to the
expectation value in the groundstate).Hence,the variable conjugate to agis aN :
[AN,Ag]=—i
Note that we would also get this relation in the SQUID case,since a4 is uniquely related to the
flux and AN to the displaced charge Q.
Finally,since the capacitance (« kinetic ») energy is (2e)*(AN)*/2C ,the Schroedinger eqn.for

a Cooper-pair box is

~inoy (Ap,1) 1 0t = (-E )0y 1 9(Ag)" +V (Ad)y (Ag)
where E_=(2¢)?/2c is the « capacitance energy per pair »,and where we must recall that ag is
defined only modulo 2z .However,we shall often find it more convenient when discussing
Cooper-pair box qubits to use the conjugate representation,and so write out explicitly the
(rather simple) form of the Hamiltonian in terms of AN and 4¢ :

H = E.(AN)? —E, cos(Ag)

As we shall see,the general nature of the eigenstates is very sensitive to the ratio E./E,



External bias on a CPB

One further point which is of great practical

importance int he context of the use of the

CPB as a qubit is the possibility of applying

a (dc or ac) external bias v, by means of a

« gate ».The effect of this is to add to the

AN -dependent term a contribution

~(2¢)v, AN ,s0 that the full Hamiltonian is now
H = E; (AN)® —2eV, (t)AN — E, cos(Ag)

In other words,the « origin » (reference level) g

with respect to whichaN is measured is now

shifted.As we shall see when we come to the use of the CPB as a qubit,the crucial point is that

the new « reference level » ev,/E.=Cv,/2¢,does not have to be integral.(This result is sometimes

presented,somwhat misleadingly,as equivalent to a fractional « external charge » on the box).




QM of a current-biassed junction (CBJ):

This system differs from the Cooper-pair box (CPB) I |
only in that it is not isolated but receives an

externally input current 1. (t)\We can thus take over

much of the lore from the CPB,including |

the fundamental commutation relation ~J
[AN ,Ag]=—i

ext

provided that an is interpreted as the time integral of the pairs actually crossing the junction.
However,there is a slight problem with the Hamiltonian:at the classical level we need to be
able to recover the continuity equation of the current,namely
C(dV /dt)+ 1 sinAg=1_,(t)

It may be verified that this is achieved by including in the Lagrangian,and thus in the Hamil-
tonian,an extra « potentail » term -1_ t)@,/27)A¢ .When combined with the periodic Josephson
term this gives the famous « washboard potential »
shown in the figure.However,there is a conceptual
problem,in that evidently values of A4 differing by 'T‘ V (AD)
onz are no longer identified.We shall take the view
that this should cause no problems provided that

one is never interested in quantum motion between $
such points,as we shall see is the case in the qubit
application.Then the Schroedinger equation fora

CBJ is the same as that for a CPB with the extra term: AD
—inoy (Ap,t) ] 0t = —(-E.)0°w | 0(Ag)” +V (Ag, 1)y (Ag),
\ (A¢) = _EJ COSA¢_ Iext (t)A¢

Py



The QM of a macrovariable:effects of dissipation

All the considerations we have mentioned so far concerning the QM of a macroscopic variable
such as the flux in a SQUID or the phase difference in a CPB ignore a fundamental difficulty:

In all these case,the « true » classical equation of motion is not of conservative form but
contains a dissipative term,e.g.in the SQUID case the term (d@/dt)/R.In the presence of such a
term the « naive » quantization procedure fails,and it is alos not clear how to incorporate

its effects into the more first-principles treatment.

A point which is not at first sight related is one which for long inhibited the serious
contemplation of macroscopic superconducting systems as qubits,namely the suspicion that
once one is dealing (as one must in such a case) with quantum superpositions of states which are
by some reasonable common-sense criterion « macroscopically distinct »,then the phenomenon
of decoherence (entanglement with the environment) will automatically turn the reduced
density matrix of the system into a mixture,which would be useless for quantum computing.

Very fortunately,it turns out that one can kill both of these birds with one stone:once one
finds a consistent way of modifying the QM description of the dynamics of a macrovariable so

dissipative term,this will automatically allow us to compute the magnitude of the decoherence
which we may expect in the quatum dynamics;moreover,crudely speaking, the smaller the
classical dissipation the smaller the quantum decoherence. ).In
fact,a possible procedure may be stated as follows:
1.Set up a model which allows calculation of both the classical dissipation and the
quantum decoherence.
2.Use experimental knowledge of the classical dissipation to determine the parameters of
the model.
3.Now use themodel to calculate the auantum decoherence.



The oscillator-bath model
A general principle which is by now almost universally accepted is that the dissipation in the

classical equation of motion does not come out of thin air but is the result of the interaction
of the system (S) with its environement (E).Note that « enviroment » means just about
anything other than S which may interact with S.In some cases the environment may be
approximately described classically but its state may be unknown in detail (this is the case,
for example,with the electromagnetic 60 Hz background);such a situation can lead to
decoherence,since in calculating the physically meaningful density matrix of S one has to
average over the unknown state of E.If one has a good statistical description of the state of E,
it is reasonably clear how to do so,so this case (« classical » environment) does not need
further discussion at this point;l return to it in lecture 4A.

A more common case is where the environment has to be itself described by QM,and thus
can become entangled with the system.This is particularly likely to happen when (part of) E
consists of internal degrees of freedom of the physical system itself,which are not included in
our definiton of « S ».(For example,if S is the macroscopic DOF represented by the flux in a
SQUID ring,then part of E would be constituted by the nuclear spins of the solid metal in
qguestion.In the rest of this lecture | will concentrate on this case (« quantum environment »).

A « model »which has been found particularly fruitful in the discussion of the dissipation
and decoherence due to a quantum environment is the « oscillator-bath model »,which treats
E as equivalent to set of simple linear harmonic oscillators with a coupling to S which is linear
in the oscillator coordinates.However,despite its name, it is important to realize that this
description is more than an arbitrary « model »;it can in fact be given a very convincing
justification as a quite general description of an arbitrary quantum environment E ,provided
(and this is crucial!) that any one degree of freedom of E is only « weakly » perturbed by the
the S-E interaction.(Cf.19th-century « oscillator » model of atoms (pre-laser!)




Details of the oscillator-bath model

For the purposes of this discussion let’s consider a general macroscopic variable g of the
system S with associated canonical momentum p.In the absence of any coupling to E
we can write the Hamiltonian of the system as

H=H;=H(p,q)
We now add to this expression three terms:
(a)The Hamiltonian of the isolated environment,written in terms of the oscillator
coordinates X ,canonical momenta pr.and masses m, (actually it is possible to set all
the m, equal to unity,but it may help one’s intuition to keep them)

He = z J(p,212m ) +(m w,’x ?)

It will be implicitly assumed that the oscillator frequencies «. are sufficiently closely spaced
that they may be regarded as forming a continuum.
(b)The system-environment coupling:the most general form which is linear in the coordinates
and momenta is (apart from a constant)

Hy e =2 . (F,(p.9)x, +G,(p.A)P,)
but one can argue that under « reasonable » conditions (time-reversal invariance of the S-E
interaction ,etc.) we can always choose our oscillator « ccoordinates » so that the term in G
vanishes and that in F depends only on q,so

Ho e =Y F.(Q)x, (*)

(However,it may sometimes be convenient to keep the more general form).
(c)A « counter-term » to prevent the « dissipative » mechanism from also shifting the
effective potential in which the system moves :for the form (*) this is

Hcount = Z a Faz (q) / mawaz



Thus we have for the Hamiltonian of the « universe »(S+E) the expression
H=H,(p,q)+Hc+H; c+H_,.(q)

where the second term depends only on the variables of E while the third couples the

coordinates of S and E.This Hamiltonian should be valid for both classical and quantum

purposes.

Let’s start by trying to calculate the classical equation of motion.To do this,we simply write
down the coupled equations for the coordinates of S and E which folow from the above
Hamiltonian and eliminate the coordinetes of E;because of the quadratic (linear) form
of the second (third) terms this can be done anlytically,and results in an equation (in general
of integrodifferential form) for the system coordinate g.Now,in many cases of practical
importance one knows from experiment that the dissipative term in the classical
equation of motion has a « simple ohmic » strucutre ,i.e.it is of the form 5(dq/dt) where
n is a phenomenological friction coefficient (e.g.in the SQUID case it is 1/R where R is the
resistance shunting the junction).A sufficient condition for the equation of motion to take
this form is that the coupling function F,(a) in the S-E interaction term has the simple form

qC, ,with the « coupling spectral density »
J@)=(z12)Y ,(C,2Im,w,)5(0-o,)
given by the simple form
J(w) =naw
(The question of whether this is a necessary condition is a lot more tricky).
(Note:many of the points raised on this and the last slide are discussed in more detail in the
following references:
A.O.Caldeira and A.J.L.,,Ann.Phs.(NY) 149,374 (1983),especially appendix C
A.J.L.,Phys.Rev.B30,1208 (1984)
« ,in Chance and Matter,ed.J.Souletie et al.,1986



Let’s try to summarize the result of the above discussion.For a system S interacting with any
environment E such that any one degree of freedonm of E is only « weakly » perturbed,and
is adequate to take the Hamiltonian of the « universe » to be a sum of

(a) the original system Hamiltonian H=H,(p.q)

(b)an oscillator-bath Hamiltonian  H_(p,.x ) representing E

(c)an interaction term of the general form

Hs e =2 . (F.(p.a)x, +G,(p.a)Pp,)
(d)a « counterterm »

H coun (P2 0)
which depends on th system variables and on the parameters of the bath (but not on the
bath coordinates or momenta),and whose role is to correct for any « unwanted » effects
of the S-E coupling such as unphysical renormalization of the potential felt by S. Note that
for any « universe » Hamiltonian of this type,the environment degrees of freedom can
be integrated out analytically and a closed equation thus obtained for the dynamics of S
(though in the general case its form may be very messy,cf.C.+L.,Ann.Phys.,appendix C) .
In the case where the dissipation in the classical equation of motion of g is of simple
« ohmic » nature,the description simplifies considerably:then H, . takes the simple form
Hee =0, ,C.X,
with the constraint
J@)=(z12)Y (C2Ime,)5(0-0,) =10
and the counterterm given by

Hcount(pv q)= qZZ aCaz /2maa)a2



The point of all this work is that once we have the effective « universe » Hamiltonian,we can go
ahead and integrate out the environmental degrees of freedom not just for the classical
dynamics but also for various quantum problems.For example,it is possible to express the
effects of an ohmically dissipative environment on the quantum tunneling of a macrovariable
out of a metastable well (« MQT ») uniquely in terms of the phenomenological dissipation
coefficient 7.We shall meet some other applications in lecture 4A.

However,one caveat is necessary:as we shall see in lecture 4A,an important contribution to
the decoherence rate in a qubit may be the so-called « phase noise »,which essentially
arises from zero-frequency excitation of the environment.Such noise may not be easy to infer
directly from the (nonzero-frequency) classical dynamics and may have to be treated
separately.However,the scheme described in this lecture provides a firm conceptual basis for
this treatment.



