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Disclaimer

I am not an expert,
but | did queue at

the March Meeting
' Machine Learning sessions
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Not magic

Not friendly robots

Not killer robots




What is machine learning?
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What is machine learning?

WIKIPEDIA

Machine learning

Machine learning is a field of computer science that often uses statistical techniques to give computers the ability to

"learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed.[!

Dataset Model Optimize p(X |w)
not to fit the data,
X ',p(X ‘ 1,0) but to make predictions

Prot;ability of 4 Tunable model
observing X parameters

Problem origins Comes from statistics, computational
neuroscience, and physics

Many connections to statistical physics
(Monte Carlo, simulated annealing, variational methods, etc.)



A brief history

1940
Dark Era
Until 1940
1943
Neural Nets
McCulloch &
Pitt

Shallow

1950
Computing
Machinery
and

Intelligence
Alan Turing

neural networks

Backpropagation
emerges
1974
1960 Backpropaga
ADALINE tion
Widrow & Werbos (and
Hoff more)

1958

Perceptron

Rosenblatt

{

1969 1980

XOR problem Self

Minsky & Organizing

Papert Map
Kohonen

Timeline adapted
from Favio Vazquez



1974-80

First “Al winter”

WIKIPEDIA

Al winter

In the history of artificial intelligence, an AI winter is a period of

reduced funding and interest in artificial intelligence research.[!]




1987-93 2006 — present

Second “Al winter” Modern “deep” learning

2006

1985 1986 m

Boltzmann Restricted 1997 Boltzmann
1980 Machine Boltzmann 1990 LSTMs Machines 2014
Neocogitron Hinton & Machine LeNet Hochreiter & Salakhutdinov GANS
Fukushima Sejnowski Smolensky  Lecun Schmidhuber & Hinton Goodfellow

! ) !

_ 1 ~

1982 1986 1986 1997 2006 2012 2017

Hopfield Multilayer RNNs Bidirectional Deep Belief Dropout Capsule

Network Perceptron Jordan RNN Networks- Hinton  Networks

John Hopfield Rumelhart, Schuster & pretraining Sabour, Frosst,
Hinton & Paliwal Hinton Hinton

Williams



2006 — present
Modern “deep” learning
Google

AMEZON NETFLIX

| think people need to
understand that deep learning
is making a lot of things,

behind-the-scenes, much
better.

Geoffrey Hinton




Google Trends

Interest over time  (2) @ Artificial Intelligence
Search term

® Machine Learning
Search term

© Deep Learning

Search term

I the

Average Jan 1, 2004 Apr 1,2010 Jul 1,2016




Google Trends

Interest over time  (2) ® Artificial Intelligence
Search term

Machine learning
is driven by deep

| learning (and
Deep Learning more data)

Search term

® Machine Learning
Search term



Google Trends

Interest over time  (?) ® Artificial Intelligence
Search term .
Machi - Machine learning
’ Seaargh :Q:nLeammg is driven by deep
- learning (and
oo more data)

Search term

II Note

® Machine Learning
Search term

® Quantum Computing
Search term




Google Trends

Interest over time @

® Artificial Intelligence
Search term

Machine learning
is driven by deep

| learning (and
Deep Learning more data)

Search term

® Machine Learning
Search term

Note

® Machine Learning
Search term

® Quantum Computing
Search term




= [BYouTube o Search Q

Canadian Prime Minister Justin Trudeau Explains Quantum Computing
503,776 views 1= ol -

D) Perimeter Institute for Theoretical Physics
PI Published on Apr 17,2016 SUBSCRIBE 41K

During Prime Minister Justin Trudeau's visit to Perimeter Institute for Theoretical Physics in April
2016, a journalist jokingly asked the Prime Minister to explain quantum computing. He called their
bluff with a spot-on explanation. More: http://perimeterinstitute.ca/node/99616
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Average Jan 1, 2004 Apr1,2010 Jul 1,2016




Entering the zoo of ML algorit

Different types of learning tasks

Data / input from:

Human

Human

Machine

Human

Machine

Human

Machine

Machine

Supervised
learning

Augmented
supervised
learning

Semi-supervised
learning

Reinforcement
learning

Unsupervised
learning

Inspired by Lex Fridman, MIT



Entering the zoo of ML

Different types of learning tasks

Data / input from:

Supervised

Human :
learning
> Current
Human Augmented successes
. supervised
Machine learning J
Human Semi-supervised ~
Machine learning Current / near-
> term future
Human Reinforcement successes
Ee T learning /
Machine Unsuperwsed Longer-term future
learning successes

Inspired by Lex Fridman, MIT



he zoo of ML algorithms
Ny

Classification

Supervised
learning

Logistic regression,
support vector machines (SVMs),
k-nearest neighbors,

decision trees,
random forests,
etc.

Regression

Linear regression,
polynomial regression,
lasso regression,
ridge regression,
etc.

-
-
-
-
-
-
-
-
-
-
-
-
-

Clustering

k-means,  \ === -_C
hierarchical clustering,

etc.

Principal components ————_ = T~ = - - _ _
analysis (PCA),
singular value

decomposition (SVD), Dimensionality

etc. reduction

Semi-supervised
learning

Scikit-learn algorithm cheat-sheet



The zoo of ML algorit,SY \

e e o .
assifiers :
woh:lzING Gl ore
Classifier
data NO

NO

Classification g

= WORKING
~

Naive YES

YES

R0 NOT
Text 1 MOMNS <100K ,
- ﬂa/ - W samples
-
sve Fm:
ves | category
YES ’

G - do you have .
Spectral RIORKING = labeled No
Clustering — m NO da‘ty
. ~ YES
. ~ :

MM
[ predictinga |8
number of quantity
. e = categories
Clustering 4 laomn N
/<aok
samples v
NO I
samples 100k1ng
NO

MiniBatch
KMeans

Semi-supervised
learning

Supervised
learning

Regression

Lasso
SGD .
ElasticNet
Regressor SVR(kernel="rbf")

EnsembleRegressors

YES
few features
should be wo”iﬂu G
important
NO RidgeRegression

SVR(kernel="linear")

|

NO,
<100K

samples

Spectral

bedding
WOR?(ING "
Fak T s Dimensionality
reduction

Scikit-learn algorithm cheat-sheet

NOT
! WORKING

/




More modern techniques:
Deep learning

Deep supervised Deep reinforcement
learning learning



eep learning jungle

Syt

Deep learning

I
a4

Multilayer (deep)
\neural networks)

Many types of neural networks

Convolutional neural networks
(CNN),
Recurrent neural networks
(RNN),
Long short-term memory
(LSTM),
Restricted Boltzmann machines
(RBM),
etc.

A mostly complete chart of

Neural Networks ........

O Backfed Input Cell

Input Cell ©2016 Fjodor van Veen - asimovinstitute.org
isy |
& Noisy Input Cell Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)
Hidden Cell — -
9 X0 X0 Q

© Probablistic Hidden Cell

A Spiking Hidden Cell

@ outputcelt

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
Q Q )

9, 9.
@ votchnput Output el SBRIBRY GARIERS IRV
SXIAREAR SXAREAR SXAREAR

"% e % 98"

. Recurrent Cell
. Memory Cell

. Different Memory Cell —® A— /
Kernel % (@) A %
QO Convolution or Pool (@) A
/4 N
- A

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE)

Sparse AE (SAE)

Deep Belief Network (DBN)

® ©
R g/o\ Va\W/an

O
O
Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
~ - WS -
0 S~ a ~ N~
Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
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Deep learning

Vaguely inspired by the brain

impulses carried
toward cell body

Building blocks: artificial neurons

branches

dendrites

£ c__—> axon

nucleus terminals

\ impulses carried
away from cell body

Weigh ~ Sum/bias Activate



Combine neurons into layers

Feed-forward neural network

Input "Hidden"  Output
layer layer layer

Recurrent neural network

A mostly complete chart of

Neural Networks ...

©2016 Fjodor van Veen - asimovinstitute.org

O Backfed Input Cell

Input Cell .
AYA

\‘

"0‘»'0‘.)3

4 Noisy Input Cell Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)

» et &t

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o) o) o) o) o) [

N

@ Hidden Cell o
\V AV

© rrobablistic Hidden Cell
@ spiking Hidden Cell

@ outputcelt

. Match Input Output Cell

9.9
RSERIERS

N

SN
e

. Recurrent Cell

@ wemoy cet Auto Encoder (AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Different Memory Cell
Kernel

O Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

o Swhww
o 0, O, O
o NWZ\WZa\\

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

% o< e P - <
X 256 e VaYa
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>_< \O/O\ >_< /O\O O/O\
X o X 07" T ed

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

3

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

s et e ke

9.9 .9 9
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Deep learning
Universal approximation theorem

Input  "Hidden"  Output
layer layer layer

Neural networks can
Cybenko (1989)

approximate any function
(given enough neurons)

For any function f(x), there exists
a neural network that closely
approximate f(x) for any input x

One hidden layer is enough!
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INPUT

HIDDEN

OUTPUT



Deep Representation Machine Artificial
learning | (features)learning | learning | intelligence

Input layer: 1t hidden layer:  2"d hidden layer: ~ Output layer:
pixels edges corners, contours faces

Hierarchy pictures from Jones, Nature 505, 148 (2014)



Extract simple, useful, actionable

information from complex data

In a hierarchical way
thanks to layers




Deep learning

Rule-based Hand-designed

model Input features >(Output
Classic m.achlne T Hand-designed Mapping from > [Output

learning features ) |  features

: Learned | [ Mapping from |
Deep learning Input features | | features —>| Output
A
Deep learning

Provided the

Most learning network has
algorithms  enough neurons

machine learning

Performance

Amount of data
Inspired by Lex Fridman, MIT



Type: ML Perceptron
Data Set: MNIST
Hidden Layers: 3
Hidden Neurons: 10000
Synapses: 24864180
Synapses shown: 2%
Learning: BP
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"ou take the red pill,
you stay in
Wonderland®

: ‘Applications



Machine learning

The devil isin the

Find a model that best ]

® Dataset X Model predicts new (unseen) data

parameters

® Model fM( )
@ Cost function fo(X; fM( )) Need something to quantify

the model performance!
Generic learning procedure

Divide the dataset into training and test sets, -
Xtraln and Xtest

Train the model, i.e., minimize the cost function "Cross-
on X, 4inalone > validation"

- Evaluate the generalization (prediction)
performance on X Y,




Machine learning is hard

Example: polynomial regression

N =100, ¢ =1 (train) N =10000, o =1 (train)
Dataset X = (z;,y;) 4 4
sampled from: o

y’i — f(ajl) + € > 0 o= — > 0
’ ’ Training *° ®  Training
/ / ,  o® .
> . > 9 === Linear *» © 9 === [inear
Unknown Noise (e.g, Poly 3 Poly 3
function Gaussian) —4 — Poly 10 —4 — Poly 10
_ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
<€7;> T O X X
—_— 2 . .
(€5 €j> = 070 N =100, o =1 (pred.) N =10000, o =1 (pred.)
20 , 20 ]
. ¢ Test ¢ Test \
COSt fu nCtlon' 15 linear ] 18 linear i
) 10 3rd order 10 3rd order
fC (X7 fM (w)) — === 10th order ? === 10th order
9 7 ° ~0 O
E (yz’ — fM(%';’w)) 0 4 ! (K . Ldaes 04
)
Mean squared -5 5
error (MSE) g 10
0.00 0.25 0.50 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25
X X

Mehta et al., arXiv:1803.08823 (2018)



Due to noise and finite data sampling,
best fit # best generalization (pre

dictions)

Best fits fit the noise!

They "overfit"

N =100, o =1 (pred.)
Test

linear
3rd order
10th order

0.00

N =10000, o =1 (pred.)

Test

linear

3rd order
10th order

0.25 0.50 0.75 1.00

1.2



Machine learning is hard

i difficulties in 3 plots
Generic difficultie P Model with optimized

, parameters from training
/

Training dataset _
\ )

v v
In-sample error: i — .
P Ein = fo(Xuain; fu (wOpt ) Quantifies the generalizing
Out-of-sample error:  E,; = fo(Xtest; far(Wopt)) « - - (predicting) performance
4 of the trained model

Test dataset -’

High-variance,
low-bias model  True

Variance

Errors
]
]
|
[}
]
]
]
]
]
|
[}
Errors
/
/

3
-~
-~
-
-
-
-,
™ -
-

Bias

Y >
Number of data points Model complexity

Low-variance,

Inspired by Mehta et al,, arXiv:1803.08823 (2018) high-bias model



Combine neurons into layers

Feed-forward neural networks

"Hidden"
layer

Output
layer

Input
layer

Recurrent neural networks

A mostly complete chart of

Neural Networks ...

©2016 Fjodor van Veen - asimovinstitute.org

O Backfed Input Cell

Input Cell .
AYA

\‘

"0‘»'0‘.)3

4 Noisy Input Cell Perceptron (P) Feed Forward (FF)  Radial Basis Network (RBF)

» et &t

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o) o) o) o) o) [

N

@ Hidden Cell o
\V AV

© rrobablistic Hidden Cell
@ spiking Hidden Cell

@ outputcelt

. Match Input Output Cell

9,9,
SRRIRX

N

SN
e

. Recurrent Cell

. Memory Cell

Sparse AE (SAE)

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE)

. Different Memory Cell

Kernel

O Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

. o o/ o
0 s 05w
S N\V/a\v/Zaa\

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

3

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)
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Feed-forward neural networks

Input "Hidden"  Output
layer layer layer



Feed-forward neural nets 0

ao(z)
X1
they learn?
How do y ai (213)
. - e m T2
"Learning" or "training
= minimizing the chosen Model parameters  Expected Actual output
cost function - . _ (weights and biases) output _ (Neuron activations)
X ~ — '
E.g., mean squared N 1 ) v 2
w) = x) —alx
mean squ: [fc( )= o 3 I~
Learning algorithm X
Number of training data
. int t
Batch gradient descent Gradient estimated points (vectors) 2

from the whole

Aw = —’vac training data (batch)

Learning rate -*

Stochastic gradient descent  Gradient estimated
(typically better) from one data point

Mini-batch gradient descent Gradient estimated

(typically even better) from subsets of data
points (mini-batches)




Feed-forward neural nets Feedforward ﬁ

Backpropagation

Or how to compute the

gradient of the cost
function efficiently

m ﬁ Backpropagate

Compute the input activations: a'!) = f4 ()

Feedforward: Compute z() = wWal!=Y 4 p) and oV = f4 (=)
for successive layers [ =2,3,..., L
Comes from the

Compute the output error: 5% = V, fo © fA(Z(L)) -~ " usual chain rule
¥

Backpropagate the error: Compute §() = [(w!!T)T s+ @ £/ (2(D)
forsuccessivelayers [ = L —1,L —2,...,2

m [ Ofc _ U1 5 % _ 5(_5)] Gradient computed from only two
k ' j

3w(lk) N J (%g.l) passes (forward and backward)
J




Machine learning is hard

i difficulties in 3 plots
Generic difficultie P Model with optimized

, parameters from training
/

Training dataset _
\ )

v v
In-sample error: i — .
P Ein = fo(Xuain; fu (wOpt ) Quantifies the generalizing
Out-of-sample error:  E,; = fo(Xtest; far(Wopt)) « - - (predicting) performance
4 of the trained model

Test dataset -’

High-variance,
low-bias model  True

Variance

Errors
]
]
|
[}
]
]
]
]
]
|
[}
Errors
/
/

3
-~
-~
-
-
-
-,
™ -
-

Bias

Y >
Number of data points Model complexity

Low-variance,

Inspired by Mehta et al,, arXiv:1803.08823 (2018) high-bias model



Modern deep learning models
are very complex. They s
massively overfit!

hould

Errors
/
/

3
-~
-~
-~
-
-
~~
-
™ -

Model complexity
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Some
Net magic

Not friendly robots

Not killer robots




Deep learning

How to reduce overfitting effects

Several options
A

Variance
Overfitting

Recall: Overfitting is the fitting of random
noise due to too large model complexity
and/or too small amount of data

9] Early
stopping

Training set

-
=
E
a
O

Overfitting

Accuracy

Test set

>

Number of data points

Regularization (L1, L2, etc.)

Add a term to the cost function
to penalize large weights

Epoch (# of training cycles)

Dropout h

Remove a (random)
subset of neurons
before each gradient
computation

Effectively reduces
> the number of model
parameters (ability
to fit the noise)

J/



Deep |earning Sigmoid output layer fa(z) = 1
and cross-entropy I +e*
Something of an art cost function .
1
fo=- Y ylna+ (1-y)n(l —a)
Many other tricks of the trade Nirain &
4
® Choice of activation and cost functions --~
To avoid learning slowdowns One good
reference - _
® Choice of hyperparameters v
(learning rate, mini-batch size, etc.)

Grégoire Montavon
Genevieve B. Orr
Klaus-Robert Miiller (Eds.)

Grid search, Bayesian optimization, etc.

State-of-the-Art

@ Parameters initialization (weights and biases)

i ks:
® Improved gradient descents Neural Networ

Tricks of the Trade
Hessian methods (computationally expensive), econd Edition
momentum-based gradient descent (better), etc. ——
® And on and on... = W i L

(=)
o
~
~
(V5]
(&)
ez
=




Machine learning is partly
empirical ...like physics!

What matters is the predictive
power of models... like physics too!




THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT:




at can machine learning do?

Google NETFLIX

Top Picks for Charles-Edouard

NS

Will quantum computers|

will quantum computers break blockchain

will quantum computers threaten modern cryptography
will quantum computers kill bitcoin

will quantum computers replace

will quantum computers break bitcoin

will quantum computers break encryption

will quantum computers ever work

will quantum computers work a m a zo n
will quantum computers cure cancer

We Have Recommendations for You

‘ Sign in to see personalized recommendations ‘

Sebast
Vahid

Python
Machine Pro Deep

Interactive Data Learning with

N %fﬁ?éiﬁ[eign ‘, ' A Learning TensorFlow

p—— ' PR e L Packt>



Computer vision

Classification
+ Localization

Classification

With super-or near-human
performances

Handwriting recognition,
face recognition (Facebook, etc.),
human pose estimation,
motion recognition (Xbox Kinect, etc.),
human action recognition,
etc.

Object Detection

Instance
Segmentation

Cat

Dense Captioning

Orange spotted cat

A cat
riding a

Skateboard with
red wheels

Johnson et al., arXiv:1511.07571

Cat riding a
skateboard

Brown hardwood
flooring

(2015)



Computer vision

Emotion / gender classification

Object / people detection

e

Detectron, Facebook Al Research (FAIR) (2018) : l
Arriaga et al., arXiv:1710.07557 (2017)



Gender / age
classification

lig 2 i

A group of people standing in fro

nt of a tree posing for the camera

Made with Microsoft Computer Vision and Face APIs



ural language processing

.0 O

Google Assistant

Apple Siri Microsoft Cortana Amazon Alexa

Google's robot assistant now makes eerily lifelike W

phone calls for you

Google Duplex contacts hair salon and restaurant in demo, adding ‘er’ and ‘mmm- S peec h recogn itio n,
hmm’ so listeners think it’s human text-to-s peec h convers i on
Olivia Solon in San Francisco Iangu age trans lation,

Tue 8 May 2018 21.13 BST etc

Google’s virtual assistant can now make phone calls on your behalf to schedule
appointments, make reservations in restaurants and get holiday hours.

The robotic assistant uses a very natural speech pattern that includes hesitations and
affirmations such as “er” and “mmm-hmm” sO that it is extremely difficult to distinguish
from an actual human phone call.

The nsettling feature, which will be available to the public later this year, is enabled by a
- 4 4 wranl warld” tasks on the phone,



Machine learning can
also create / generate

from examples

Neural Style Transfer

Using generative
adversarial networks
(GANS), in particular




Inpainting

Image generation

Can also generate
likely missing parts
from learned pictures

Using generative
adversarial networks
(GANSs) too

Ulyanov et al., arXiv:1711.10925 (2017) Corrupted Deep image prior



The BachBot

Challenge

Canyou tell the difference between Bach and a

computer?

Challenge description

We will present you with some short samples of music which are either extracted from Bach's own
work or generated by BachBot. Your task is to listen to both and identify the Bach originals.

To ensure fair comparison, all scores are transposed to C-major or A-minor and set to 120 BPM.

Want to Listen?

BachBot
o Sample-1

I+
G

[ BachBot - Happy Birthday Liang's thesis (2016),
C BachBot - Twinkle Twinkle Little Star @ U n|Ve I’Slty Of Cam br|dge



Video Pinball ]
Boxing ]
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull |

Assault |

Road Runner |
Kangaroo |
James Bond |
Tennis |

Pong |

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |

Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. ]
Asterix |

Battle Zone |
Wizard of Wor |

Chopper Command |

Powered by deep

Atari Games reinforcement learning

o =E
: Chess

chess24.com
-

@chess24com

( Follow )

Now the era of computer chess engine
programming also seems to be over:
AlphaZero, developed by @DeepMindAl &
s @demishassabis, took just 4 hours playing
22 against itself to learn to play better than
e Stockfish (it won 64:36)! Replay 10 example

. games: chess24.com/en/watch/live- ...
#c24live

4 AlphaZero - Stockfish & $é » [ & | 3 -
B R
8% ‘ :
76% | At human-level or above :§: P\\Q\\'&C:Q \Lee S\ o + AphaZero ; s
69% | — Below human-level =\ B GEEEEE—
— A
57F 11:52 PM - 5 Dec 2017
Deepmind, Deepmind’s AlphaGo, Deepmind’'s AlphaZero (2017)

Nature 518, 529 (2015) Nature 550, 354 (2017)

v



50007
4000 -
3000 -
2
£ 2000
3 3 days
2 1000 - AlphaGo Zero surpasses the abilities of AlphaGo
Lee, the version that beat world champion Lee Sedol
0 - . :
in 4 out of 5 games in 2016.
-1000 -
-2000 -
Deepmind 0 5 10 15 20 25 30 35 40
AI phaGO Zero === AlphaGo Zero 40 blocks  eeee AlphaGo Lee seee AlphaGo Master
(2017)

50000 -
& 40000 -
)
e
S
& 30000 -
£
=
(7]
5
8 20000 -
)
3
[*]
. -

0 - I

Pictures from
AlphaGo Fan AlphaGo Lee AlphaGo Master AlphaGo Zero .
(176 GPUs) (48 TPUs) (4TPUs) (4 TPUs) Deepmind’s blog



Deepmind

AlphaGo Zero

(2017)

Elo Rating

Power Consumption (TDP)

5000 7

4000 -

3000 -

2000 -

1000 -

-1000 -

-2000 -

50000 -

40000 -

30000 -

20000 -

10000 -

AlphaGo Zero reaches the level of AlphaGo Master, the
version that defeated 60 top professionals online and
world champion Ke Jie in 3 out of 3 games in 2017.

10 15 20 25 30 35 40

=== AlphaGo Zero 40 blocks eeee AlphaGolLee  sese AlphaGo Master

AlphaGo Fan

Pictures from
AlphaGo Lee AlphaGo Master AlphaGo Zero .
(48 TPUs) (4TPUs) (4 TPUs) Deepmind’s blog
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AlphaGo Zero surpasses all other versions of AlphaGo
and, arguably, becomes the best Go player in the world.
It does this entirely from self-play, with no human
intervention and using no historical data.
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Already moved on to more complex games

e

StarCraft IT: A New Challenge for
Reinforcement Learning

Oriol Vinyals ~ Timo Ewalds  Sergey Bartunov Petko Georgiev
Alexander Sasha Vezhnevets ~ Michelle Yeo  Alireza Makhzani  Heinrich Kiittler
John Agapiou Julian Schrittwieser John Quan Stephen Gaffney Stig Petersen
Karen Simonyan  Tom Schaul ~ Hado van Hasselt ~ David Silver Timothy Lillicrap
DeepMind

Kevin Calderone Paul Keet ~ Anthony Brunasso  David Lawrence
Anders Ekermo  J acob Repp  Rodney Tsing
Blizzard

Abstract

This paper introduces SC2LE (StarCraft II Learning Environment), a reinforce-
ment learning environment based on the game StarCraft 11. This domain poses
a new grand challenge for reinforcement learning, representing a more difficult
class of problems than considered in most prior work. It is a multi-agent problem
with multiple players interacting; there is imperfect information due to 2 partially
observed map; it has a large action space involving the selection and control of
hundreds of units; it has a large state space that must be observed solely from
raw input feature planes; and it has delayed credit assignment requiring long-term
strategies over thousands of steps. We describe the observation, action, and reward

ottt on for the StarCraft 11 domain and provide an open source Python-based
L L Idition to the main game

182v1 [cs. LG] 16 Aug 2017




Self-driving cars

Waymo (Google) self-driving cars, February 28, 2018

"Only Waymo has tested Level 4 vehicles on passengers who aren't its employees.
No one has yet demonstrated at Level 5, where the car is so independent that
there's no steering wheel or pedals to operate."

LA Times, May 11, 2018
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"Atlas" robot from Boston Dynamics (2018)
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Total recall

Deep learning: multi-layer networks

Feed-forward neural networks

"Hidden"
layer

Output
layer

Input
layer

Recurrent neural networks

A mostly complete chart of
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©2016 Fjodor van Veen - asimovinstitute.org
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ap(x)

learn? T1
o deep neural nets
How d P al(a:)

1,

"Learning" or "training"
= minimizing the chosen

Model parameters  Expected Actual output

cost function - . _ (weights and biases) ~output _ (Neuron activations)
X ~ — '
E.g., mean squared o1 ) o 2
mean squ: [fc(w) Sl - &)l

R T
Learning algorithm X
Number of training data

points (vectors) x

Batch gradient descent Gradient estimated

from the whole
Aw = —’anc training data (batch)

Learning rate -~

Stochastic gradient descent  Gradient estimated
(typically better) from one data point

Mini-batch gradient descent Gradient estimated

(typically even better) from subsets of data
points (mini-batches)




Total recall Feedforward ﬁ

Backpropagation

Or how to compute the

gradient of the cost
function efficiently

m ﬁ Backpropagate

Compute the input activations: a'!) = f4 ()

Feedforward: Compute z() = wWal!=Y 4 p) and oV = f4 (=)
for successive layers [ =2,3,..., L
Comes from the

Compute the output error: 5% = V, fo © fA(Z(L)) -~ " usual chain rule
¥

Backpropagate the error: Compute §() = [(w!!T)T s+ @ £/ (2(D)
forsuccessivelayers [ = L —1,L —2,...,2

m [ Ofc _ U1 5 % _ 5(_5)] Gradient computed from only two
k ' j

3w(ll€) N J (%;.l) passes (forward and backward)
J




Machine learning
In physics
S it worth queuing?




Science applications e .
Machine learning mostly

comes from science!

— What goes around comes
Already applied in L back around )

( . 1 Inneuroscience, evolution,
Biology : :
immunology, genetics, etc.
\, )
Libbrecht and Noble (2015)
( 1 In epidemiology, disease
Medicine P &Y.
\ ) development, etc.

Cleophas and Zwinderman (2015)

Chemist In optimization of reactions,
ry search for new molecules, etc. And more recently

Cartwright (2007)

astronomy, etc. and general quantum physics

[ Physics ] In high-energy physics, [ In condensed matter physics ]
Castelvecchi (2015)




Already (at least) two reviews

1

A high-bias, low-variance introduction to Mac

Pankaj Mehta, Ching-Hao Wang,

Department of Physics,
Boston University,
Boston, MA 02215,
USA*

Marin Bukov

Department of Physics,
University of California,
Berkeley, CA 94720,
USA

Charles K. Fisher

Unlearn.Al, San Francisco,
CA 94108

David J. Schwab

Initiative for the Theoretical Sciences,
The Graduate Center,

City University of New York,

365 Fifth Ave., New York,

NY 10016

(Dated: March 26, 2018)
(ML) is

The purpose of this review is
a manner easily

Machine Learning
and application.

concepts and tools of machine learning in
to physicists. The review
statistics such as the bias-variance tradeoff, overfitting,
before moving on to

to provide an introduction

regularization,

energy-based models (including MaxEnt

and variational methods.

clustering and data visualization,
Restricted Boltzmann Machines),
the many natural connections between ML and statistical physics.
the review is the
to readers using physics—inspired datasets (the Ising

vl [physics.comp—ph] 23 Mar 2013

Model and Monte-Carlo

hine Learning for

Alexandre G. R. Day, and Clint Richardson

one of the most exciting and dynamic areas of modern research

to the core

understood and intuitive
begins by covering fundamental concepts in ML and modern
and generalization
more advanced topics in both supervised and unsupervised learning.
Topics covered in the review include ensemble models, deep learning and neural

networks,
models and

Throughout, we emphasize
A notable aspect of
use of Jupyter not ebooks to introduce modern ML/ statistical packages

simulations

B Lo collisions). We conclude with an extended

Tt andine

physicists




Already (at least) two reviews
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Department of Physics,
Ractan llniversity,

21 Machine learning & artificial intelligence in the quantum domain

Vedran Dunjko

Institute for Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria
Max Planck Institute of Quantum Optics, Garching 85748, Germany
Email: vedran.dunjko@mpq.mpg.de

Hans J. Briegel

Institute for Theoretical Physics, University of Innsbruck Innsbruck 6020, Austria
Department of Philosophy, University of Konstanz, Konstanz 78457, Germany
Email: hans.briegel@uibk.ac.at

Abstract. Quantum information technologies, on the one side, and intelligent learning
systems, on the other, are both emergent technologies that will likely have a transforming
impact on our society in the future. The respective underlying fields of basic research —
quantum information (QI) versus machine learning and artificial intelligence (AI) — have
their own specific questions and challenges, which have hitherto been investigated largely
independently. However, in a growing body of recent work, researchers have been prob-
ing the question to what extent these fields can indeed learn and benefit from each other.
QML explores the interaction between quantum computing and machine learning, inves-
tigating how results and techniques from one field can be used to solve the problems of
the other. In recent time, we have witnessed significant breakthroughs in both directions
of influence. For instance, quantum computing is finding a vital application in providing
speed-ups for machine learning problems, critical in our “big data” world. Conversely,
machine learning already permeates many cutting-edge technologies, and may become
instrumental in advanced quantum technologies. Aside from quantum speed-up in data
analysis, or classical machine learning optimization used in quantum experiments, quan-
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densed matter physics applications

Identifying phase transitions 1

e T N

/ | \
4 v \l
With local order Without local order Many-body
parameters parameters (topological) localized
Carrasquilla, Melko, Zhang, Kim, Schindler, Regnault, Neupert,
Nature Physics 13, 431 (2017) Phys. Rev. Lett. 118, 216401 (2017) Phys. Rev. B 95, 245134 (2017)
Broecker, Carrasquilla, Melko, Trebst Zhang, Melko, Kim, Etc.
Sci. Rep. 7, 8823 (2017) Phys. Rev. B 96, 245119 (2017)
Etc. Etc.

More general
methods

Van Nieuwenburg, Liu, Huber, Broecker, Assaad, Trebst, ~ Van Nieuwenburg, Bairey, Refael,
Nature Physics 13, 435 (2017) arXiv:1707.00663 (2017) arXiv:1712.00450 (2018)
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Machine learning phases of matter

Juan Carrasquilla™ and Roger G. Melko'?

Condensed-matter physics is the study of the collective
behaviour of infinitely complex assemblies of electrons, nuclei,
magnetic moments, atoms or qubits'. This complexity is
reflected in the size of the state space, which grows expo-
nentially with the number of particles, reminiscent of the
‘curse of dimensionality’ commonly encountered in machine
learning?. Despite this curse, the machine learning community
has developed techniques with remarkable abilities to recog-
nize, classify, and characterize complex sets of data. Here, we
show that modern machine learning architectures, such as fully
connected and convolutional neural networks®, can identify
phases and phase transitions in a variety of condensed-matter
Hamiltonians. Readily programmable through modern soft-
warelibraries*®, neural networks can be trained to detect multi-
ple types of order parameter, as well as highly non-trivial states
with no conventional order, directly from raw state configura-
tions sampled with Monte Carlo®’.

Conventionally, the study of phases in condensed-matter systems
is performed with the help of tools that have been carefully designed
to elucidate the underlying physical structures of various states.
Among the most powerful are Monte Carlo simulations, which
consgicst of two stens: a <tochactic importance sampline over <tate

is composed of an input layer with values determined by the spin
configurations, a 100-unit hidden layer of sigmoid neurons, and
an analogous output layer. When trained on a broad range of data
at temperatures above and below T, the neural network is able
to correctly classify data in a test set. Finite-size scaling is capable
of systematically narrowing in on the thermodynamic value of T
in a way analogous to measurements of the magnetization: a data
collapse of the output layer (Fig. 1b) leads to an estimate of the
critical exponent v221.040.2, while a size scaling of the crossing
temperature T*/] estimates T./] ~2.266 £ 0.002 (Fig. 1c). One
can understand the training of the network through a simple toy
model involving a hidden layer of only three analytically ‘trained’
perceptrons, representing the possible combinations of high- and
low-temperature magnetic states exclusively on the basis of their
magnetization. Similarly, our 100-unit neural network relies on the
magnetization of the configurations in the classification task. Details
about the toy model, the 100-unit neural network, as well as a low-
dimensional visualization of the training data, which may be used
as a preprocessing step to generate the labels if they are not available
a priori, are discussed in the Supplementary Figs 1, 2, and 4. We
note that in a recent development, a closely related neural-network-
Bbaced annroach allowe for the determination of critical noints 11ino
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Machine learning quantum phases
of matter beyond the fermion sign
problem

Received: 15 May 2017 Peter Broecker?, Juan Carrasquilla?, Roger G. Melko?3 & Simon Trebst ()
Accepted: 21 July 2017

Published online: 18 August 2017 State-of-the-art machine learning techniques promise to become a powerful tool in statistical

mechanics via their capacity to distinguish different phases of matter in an automated way. Here we
demonstrate that convolutional neural networks (CNN) can be optimized for quantum many-fermion
systems such that they correctly identify and locate quantum phase transitions in such systems. Using
auxiliary-field quantum Monte Carlo (QMC) simulations to sample the many-fermion system, we show
that the Green’s function holds sufficient information to allow for the distinction of different fermionic
phases via a CNN. We demonstrate that this QMC + machine learning approach works even for systems
exhibiting a severe fermion sign problem where conventional approaches to extract information from
the Green's function, e.qg. in the form of equal-time correlation functions, fail.

In quantum statistical physics, the sign problem refers to the generic inability of quantum Monte Carlo (QMC)
annraoachec tao fackle fermionic cveteme with the came 1innaralleled effciencv it exhibite far 11nfriictrated haconic
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Quantum Loop Topography for Machine Learning

Yi Zhang and Eun-Ah Kim'
Department of Physics, Cornell University, Ithaca, New York 14853, USA
and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
(Received 15 November 2016; revised manuscript received 13 February 2017; published 22 May 2017)

Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body
systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is
in efficiently extracting essential information from the many-body Hamiltonian or wave function and
turning the information into an image that can be fed into a neural network. When targeting topological
phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal
properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a
multidimensional image from the “sample” Hamiltonian or wave function by evaluating two-point
operators that form loops at independent Monte Carlo steps. The loop conf-iguration is guided by the
characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding
QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture
can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial
insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a
topological quantum phase transition with machine learning, the perspective of bridging traditional
condensed matter theory with machine learning will be broadly valuable.

DOI: 10.1103/PhysRevLett.118.216401

Introduction.—Machine learning techniques have been = presence of translational symmetry, targeting a single
enabling neural networks to recognize and interpret big  topological phase at a time [7,10]. Another approach
data sets of images and speeches [1]. Throueh supervised = was to detect the topological edee states [13]. In addition.
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PHYSICAL REVIEW B 96, 245119 (2017)

Machine learning Z, quantum spin liquids with quasiparticle statistics

Yi Zhang,""" Roger G. Melko,>* and Eun-Ah Kim!"!
'Department of Physics, Cornell University, Ithaca, New York 14853, USA
2 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
3Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
(Received 20 May 2017; revised manuscript received 30 October 2017; published 13 December 2017,
corrected 12 February 2018)

After decades of progress and effort, obtaining a phase diagram for a strongly correlated topological system still
remains a challenge. Although in principle one could turn to Wilson loops and long-range entanglement, evaluating
these nonlocal observables at many points in phase space can be prohibitively costly. With growing excitement
over topological quantum computation comes the need for an efficient approach for obtaining topological phase
diagrams. Here we turn to machine learning using quantum loop topography (QLT), a notion we have recently

introduced. Specifically, we propose a construction of QLT that is sensitive to quasiparticle statistics. We then use

mutual statistics between the spinons and visons to detect a Z, quantum spin liquid in a multiparameter phase
space. We successfully obtain the quantum phase boundary between the topological and trivial phases using a
simple feed-forward neural network. Furthermore, we demonstrate advantages of our approach for the evaluation
of phase diagrams relating to speed and storage. Such statistics-based machine learning of topological phases
opens new efficient routes to studying topological phase diagrams in strongly correlated systems.

DOI: 10.1103/PhysRevB.96.245119

I. INTRODUCTION

Despite much interest in topological phases of matter, the
search for and detection of the finite regions of phase space that
support topological order has been a longstanding challenge.
This is a nontrivial challenge because microscopic models of

specific heat is an effective indicator of a phase transition, it has
the drawback that it does not reveal any information regarding
the topological aspects of the associated phases. Hence, in ad-
dition to these standard techniques, developing a cost-effective
approach that can map out a phase diagram with topologlcal

DS T D S Y A Y AR T 1
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Probing many-body localization with neural networks

Frank Schindler,' Nicolas Regnault,” and Titus Neupert'
'Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2Laboratoire Pierre Aigrain, Département de physique de I’ENS, Ecole normale supérieure, PSL Research University, Université Paris
Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
(Received 11 April 2017; published 26 June 2017)

We show that a simple artificial neural network trained on entanglement spectra of individual states of a
many-body quantum system can be used to determine the transition between a many-body localized and a
thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ
a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining
to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to
states in the transition region. For training, we use a cost function that contains, in addition to the usual error
and regularization parts, a term that favors a confident classification of the transition region states. The resulting
phase diagram is in good agreement with the one obtained by more conventional methods and can be computed
for small systems. In particular, the neural network outperforms conventional methods in classifying individual
eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates
across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming
technique to show that the neural network correctly learns by itself the power-law structure of the entanglement
spectra in the many-body localized regime.

DOI: 10.1103/PhysRevB.95.245134

I. INTRODUCTION robust quantum memories [29]. Here, we study the Heisenberg
chain in a random field as a simple model for MBL. At
strong disorder, the model is in the MBL regime, whereas
it satisfies the ETH if disorder is weak. Several measures or
quantities allow a well-controlled quantitative distinction of

Artificial neural networks are routinely employed for data
classification. They are useful when features distinguishing
one class of data from another are unknown or unwieldy. A
nenural network can learn <uich features from exambples 1 e
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Learning phase transitions by confusion

Evert P. L. van Nieuwenburg*, Ye-Hua Liu and Sebastian D. Huber

Classifying phases of matter is key to our understanding of
many problems in physics. For quantum-mechanical systems
in particular, the task can be daunting due to the exponentially
large Hilbert space. With modern computing power and access
to ever-larger data sets, classification problems are now
routinely solved using machine-learning techniques'. Here,
we propose a neural-network approach to finding phase
transitions, based on the performance of a neural network
after it is trained with data that are deliberately labelled
incorrectly. We demonstrate the success of this method on
the topological phase transition in the Kitaev chain?, the
thermal phase transition in the classical Ising model’, and
the many-body-localization transition in a disordered quantum
spin chain®. Our method does not depend on order parameters,
knowledge of the topological content of the %hases, or anE other
specifics of the transition at hand. It therefore paves the way
to the development of a generic tool for identifying unexplored
phase transitions.

Machine learning as a tool for analysing data is becoming more
and more prevalent in an increasing number of fields. This is due
to a combination of availability of large amounts of data and the

of the machine learner. We will base our method on NNs, which are
capable of fitting arbitrary nonlinear functions''. Indeed, if a linear
feature extraction method worked, there would have been no need
to explicitly find labels in the first place.

We emphasize the main result in this work is that with the pro-
posed method we are able to find a consistent labelling for data that
have distinct patterns. A change in the pattern of some observable
is not necessarily correlated with a physical phase transition. Our
method is capable of recognizing the change of pattern, after which
it is up to the user to investigate whether the change corresponds to
a crossover or a phase transition. We remark that we do not exclude
the possibility that linear methods would be able to perform some of
the tasks we describe below. Nor do we exclude the possibility that
other methods such as latent-variable models or other maximum
likelihood algorithms would be able to perform the same task.
Finding the correct method or transformation of the data may be
a prohibitive task however, and so using a (possibly overpowered)
method such as NNs provides a useful starting point. Our method
boils down to bootstrapping a supervised learning method to an
unsupervised one, at the expense of computational time.

Additionally, but not less important, we propose the use of the
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Quantum phase recognition via unsupervised machine learning

Peter Broecker,! Fakher F. Assaad,> and Simon Trebst!

nstitute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
2Institut fiir Theoretische Physik und Astrophysik, Universitiit Wiirzburg, 97074 Wiirzburg, Germany
(Dated: July 4, 2017)

The application of state-of-the-art machine learning techniques to statistical physic problems has seen a surge
of interest for their ability to discriminate phases of matter by extracting essential features in the many-body
wavefunction or the ensemble of correlators sampled in Monte Carlo simulations. Here we introduce a gener-
alization of supervised machine learning approaches that allows to accurately map out phase diagrams of inter-

acting many-body systems without any prior knowledge, e.g. of their general topology or the number of distinct

phases. To substantiate the versatility of this approach, which combines convolutional neural networks with
quantum Monte Carlo sampling, we map out the phase diagrams of interacting boson and fermion models both
at zero and finite temperatures and show that first-order, second-order, and Kosterlitz-Thouless phase transitions
can all be identified. We explicitly demonstrate that our approach is capable of identifying the phase transition
to non-trivial many-body phases such as superfluids or topologically ordered phases without supervision.

In statistical physics, a continuous stream of computational
and conceptual advances has been directed towards attacking
the quantum many-body problem — the identification of the
ground state of a macroscopic number of interacting bosons,
spins or fermions. Pivotal steps forward have included the de-
velopment of numerical many-body techniques such as quan-
tum Monte Carlo simulations [1] and the density matrix renor-
malization group [2, 3] along with conceptual advances such
as the formulation of an entanglement perspective [4, 5] on
the quantum many-body problem arising from the interplay of
quantum information theory and quantum statistical physics.
Currently, machine learning (ML) approaches are entering
this field as new players. Their core functions, dimensional re-
duction and feature extraction, are a perfect match to the goal
of identifvine essential characteristics of a quantum manv-

any prior knowledge, e.g. regarding the overall topology or
number of distinct phases present in a phase diagram. The
essential ingredient of our approach are convolutional neural
networks (CNN) [15] that combine a preprocessing step using
convolutional filters with a conventional neural network (typ-
ically involving multiple layers itself). In previous work [10-
14] such CNNs have been used in a supervised learning set-
ting where a (quantum) many-body Hamiltonian is considered
that, as a function of some parameter A, exhibits a phase tran-
sition between two phases — such as the thermal phase transi-
tion in the classical Ising model [11] or the zero-temperature
quantum phase transition as a function of some coupling pa-
rameter [10]. In such a setting where one has prior knowledge
about the existence of two distinct phases in some parameter
ranoce. one can train the CNN with labeled confiesurations or
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Learning phase transitions from dynamics

Evert van Nieuwenburg,!* Eyal Bairey,?: *

and Gil Refaell

! Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA
2 Physics Department, Technion, 3200003, Haifa, Israel

We propose the use of recurrent neural networks for classifying phases of matter based on the

dynamics of experimentally accessible observables. We demonstrate this approach by training re-

current networks on the magnetization traces of two distinct models of one-dimensional disordered
and interacting spin chains. The obtained phase diagram for a well-studied model of the many-body

localization transition shows excellent agreement with previously known results obtained from time-

independent entanglement spectra. For a periodically-driven model featuring an inherently dynam-
ical time-crystalline phase, the phase diagram that our network traces in a previously-unexplored
regime coincides with an order parameter for its expected phases.

Introduction - Machine learning is emerging as a novel
tool for identifying phases of matter [1-15]. At its core,
this problem can be cast as a classification problem in
which data obtained from physical systems are assigned a
class (i.e. a phase) using machine learning methods. This
approach has enabled autonomous detection of order pa-
rameters [2, 5, 6], phase transitions [1, 3] and entire phase
diagrams [4, 7, 16, 17]. Simultaneous reserach effort at
the interface between machine learning and many-body
physics has focussed on the use of neural networks for
efficient representations of quantum wavefunctions [18—
26], drawing a parallel between deep networks and the
renormalization group [27-29]. Overall, these studies ex-
emplify the power of machine learning for extracting in-
formation from physical data without detailed physical
input. In particular, it shows potential for identifying

novel phases through automatic processing of large-scale
AdAata:- naceihly identiftrine featiiree that mav have heen

of the same model [11], as well as on a slightly different
model featuring two distinct MBL phases [17]. Here, we
insist on using only experimentally relevant (i.e. mea-
sureable) quantities such as the magnetization of indi-
vidual spins. We find that the network succeeds at dis-
tinguishing between the ergodic and localized phases of
this model, recovering phase boundaries similar to those
obtained by previous methods.

We then apply our method to a periodically driven
model, featuring among its three phases one which is
unique to the time-dependent setting, namely a time
crystal [44-50]. Indeed the method distinguishes between
the time-crystalline, Floquet-ergodic and Floquet-MBL
[51-53] phases of this model.

In the following section, we first introduce the essen-
tials of recurrent neural networks. We refer the reader
to Ref. [54] for an extensive introduction to the non-
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the interface between machine learning and many-body
physics has focussed on the use of neural networks for
efficient representations of quantum wavefunctions [18—
26], drawing a parallel between deep networks and the
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Science 355, 602-606 (2017)

RESEARCH ARTICLE

MANY-BODY PHYSICS

Solving the quantum many-body
problem with artificial

neural networks

Giuseppe Carleo* and Matthias Troyer"->

The challenge posed by the many-body problem in quantum physics originates from the
difficulty of describing the nontrivial correlations encoded in the exponential complexity

of the many-body wave function. Here we demonstrate that systematic machine learning of
the wave function can reduce this complexity to a tractable computational form for some
notable cases of physical interest. We introduce a variational representation of quantum

states based on artificial neural networks with a variable number of hidden neurons.

A reinforcement-learning scheme we demonstrate is capable of both f-inding the ground
state and describing the unitary time evolution of complex interacting quantum systems.

Our approach achieves high accuracy in describing prototypical interacting spins models in

one and two dimensions.

he wave function ¥ is a fundamental ob-
ject in quantum physics and possibly the
hardest to grasp in the classical world. ¥
is a monolithic mathematical quantity that
contains all of the information on a quan-
tum state, be it a single particle or a complex

a large number of unexplored regimes exist, in-
cluding many open problems. These encompass
fundamental questions ranging from the dyna-
mical properties of high-dimensional systems
(11, 12) to the exact ground-state properties of
strongly interacting fermions (13, 14). At the heart

techniques to attack these problems, artificial
neural networks play a prominent role (I6). They
can perform exceedingly well in a variety of con-
texts ranging from image and speech recognition
(17) to game playing (I8). Very recently, appli-
cations of neural networks to the study of phy-
sical phenomena have been introduced (19-23).
These have so far focused on the classification
of complex phases of matter, when exact sampling
of configurations from these phases is possible.
The challenging goal of solving a many-body
problem without prior knowledge of exact sam-
ples is nonetheless still unexplored, and the po-
tential benefits of artificial intelligences in this
task are, at present, substantially unknown.
Therefore, it is of fundamental and practical in-
terest to understand whether an artificial neural
network can modify and adapt itself to describe
and analyze such a quantum system. This abil-
ity could then be used to solve the quantum
many-body problem in regimes that have tra-
ditionally been inaccessible to existing exact nu-
merical approaches.

Here we introduce a representation of the wave
function in terms of artificial neural networks
specified by a set of internal parameters V. We
present a stochastic framework for reinforce-
ment learning of the parameters »V, allowing for
the best possible representation of both ground-
state and time-dependent physical states of a
given quantum Hamiltonian H. The parame-
ters of the neural network are then optimized
(trained, in the language of neural networks),
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ARTICLE

Efficient representation of quantum many-body
states with deep neural networks

Xun Gao' & Lu-Ming Duan'?2

Part of the challenge for quantum many-body problems comes from the difficulty of
representing large-scale quantum states, which in general requires an exponentially
large number of parameters. Neural networks provide a powerful tool to represent quantum
many-body states. An important open question is what characterizes the representational
power of deep and shallow neural networks, which is of fundamental interest due to the
popularity of deep learning methods. Here, we give a proof that, assuming a widely believed

computational complexity conjecture, a deep neural network can efficiently represent most

physical states, including the ground states of many-body Hamiltonians and states generated
by quantum dynamics, while a shallow network representation with a restricted Boltzmann

machine cannot efficiently represent some of those states.
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Condensed matter physics applications

Constructing exact representations of quantum
many-body systems with deep neural networks

Giuseppe Carleo
Center for Computational Quantum Physics, Flatiron Institute,
162 5th Avenue, New York, NY 10010, USA and
Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland

Yusuke Nomura and Masatoshi Imada
Department of Applied Physics, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

We develop a constructive approach to generate artificial neural networks representing the exact
ground states of a large class of many-body lattice Hamiltonians. It is based on the deep Boltzmann
machine architecture, in which two layers of hidden neurons mediate quantum correlations among
physical degrees of freedom in the visible layer. The approach reproduces the exact imaginary-
time Hamiltonian evolution, and is completely deterministic. In turn, compact and exact network
representations for the ground states are obtained without stochastic optimization of the network
parameters. The number of neurons grows linearly with the system size and total imaginary time,
respectively. Physical quantities can be measured by sampling configurations of both physical and
neuron degrees of freedom. We provide specific examples for the transverse-field Ising and Heisenberg
models by implementing efficient sampling. As a compact, classical representation for many-body
quantum systems, our approach is an alternative to the standard path integral, and it is potentially
useful also to systematically improve on numerical approaches based on the restricted Boltzmann
machine architecture.

INTRODUCTION metric representations of quantum states, where the ef-
fective parameters are determined by means of the vari-
ational principle [16-19]. In matrix-product and tensor-

A tremendous amount of successful developments in network-states the ground-state is expressed as a classical
quantum physics builds upon the mapping between network [20, 21]. In general, finding alternative, efficient
many-body quantum systems and effective classical the- classical representations of quantum states can help es-
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Condensed matter physics applications

What else?

Identifying the relevant degrees of freedom
(in a RG sense)

Koch-Janusz, Ringel,
Nat Phys. 14, 578 (2018)

P Quantum state tomography ]

Rocchetto et al., Torlai et al.,
arXiv:1712.00127 (2017) Nature Physics 14, 447 (2018)

Using tensor networks, DMRG, MERA, etc.
for traditional (classical) machine-learning tasks

Stoudenmire, Schwab, + Follow-up
Adv. Neural Inf. Proc. Sys. 29, 4799 (2016) papers

More efficient Monte-Carlo samplings (Huang and Wang, Liu et al., 2017),
+ Electronic structure calculations (Grisafi et al., 2017),
Design of materials by ML combined with DMFT (Arsenault et al., 2014),
Etc.
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nature

physics

Mutual information, neural networks and the

renormalization group

Maciej Koch-Janusz®™ and Zohar Ringel?

Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic
scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormal-
ization group (RG) procedure, which systematically retains ‘slow’ degrees of freedom and integrates out the rest. However,
the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of
identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system.

We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space
RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimen-
sions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning tech-
niques can extract abstract physical concepts and consequently become an mtegral part of theory- and model- bmldmg

due to groundbreaking advances in automated translation,
image and speech recognition', game-playing” and achiev-
ing super-human performance in tasks in which humans excelled
while more traditional algorithmic approaches struggled®’. The
applications of those techniques in physics are very recent, initially

I\/\ achine learning has been captivating public attention lately

a Boltzmann distribution; no further knowledge about the micro-
scopic details of the system is provided. The internal parameters
of the network, which ultimately encode the degrees of freedom
of interest at each step, are optimized (‘learned, in neural network
parlance) by a training algorithm based on evaluating real-space
mutual information (RSMI) between spatially separated regions.
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llustrative examples
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Fig. 2 | The weights of the RSMI network trained on the Ising model.
Visualization of the weights of the RSMI network trained on the Ising model
for a visibile area V of 2 X 2 spins. The ANN couples strongly to areas with
large absolute value of the weights. a, The weights for N, =1 hidden neuron:
the ANN discovers Kadanoff blocking. b, The weights for N, =4 hidden
neurons: each neuron tracks one original spin.
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Fig. 3 | The dimer model. a, Two sample dimer configurations (blue links), 012345867 01234567
corresponding to the E, and E, electrical fields, respectively. The coupled
pairs of additional spin degrees of freedom on vertices and faces of the
lattice (wiggly lines) are decoupled from the dimers and from each other.
Their fluctuations constitute irrelevant noise. b, An example of mapping the
dimer model to local electric fields. The so-called staggered configuration
on the left maps to uniform non-vanishing field in the vertical direction:

(E,) # 0. The ‘columnar’ configuration on the right produces both E, and E,
that are zero on average (see ref. ¢ for details of the mapping).
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Take-home messages

2

4

Machine learning
is awesome

It really is

WIKIPEDIA

A physical theory is a model of physical events. It is judged by the extent to

which its predictions agree with empirical observations. The quality of a

physical theory is also judged on its ability to make new predictions which can

be verified by new observations. A physical theory differs from a mathematical
theorem in that while both are based on some form of axioms, judgment of
mathematical applicability is not based on agreement with any experimental
results.[2l(3]

It is a set of tools for learning It is a lot like physics

useful representations from

complex data

Representations of a cat,
of a quantum phase,
of a wavefunction, etc.

It comes from (statistical) physics
(and statistical learning)

It is partly empirical, aimed at
making new predictions

Deep learning drives the 53 Physicists are both
recent advances (and hype) ahead and behind

Exciting

stuff ahead!

State-of-the-art techniques from
physics can be useful in machine
learning, and vice versa



To machine-learn like a boss

Yaser S. Abu-Mostafa
Malik Magdon-Ismail
Hsuan-Tien Lin

LEARNING
FroM
DATA

Learning From
Data
Abu-Mostafa et al. (2012)

Basic concepts of
statistical learning theory

Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Data Mining, Inference, and Prediction

The Elements of Statistical
Learning

Hastie et al. (2001)

More advanced, more
mathematical

David J.C. MacKay

Information Theory, Inference,

and Learning Algorithms

M.1 & "'l 13

Information Theory, Inference,
and Learning Algorithms

MacKay (2003)

A classic for Bayesian inference
and information theory



chine-learn like a boss

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy

Pattern Recognition and Machine Learning: A Probabilistic
Machine Learning, Perspective,
Bishop (2006) Murphy (2012)
Comprehensive book on modern More recent comprehensive book

machine-learning techniques (seems good but | don't know)



Neural Networks and Deep Learning is a free online book. The

book will teach you about:

o Neural networks, a beautiful biologically-inspired
programming paradigm which enables a computer to learn
from observational data

¢ Deep learning, a powerful set of techniques for learning in

neural networks

Neural networks and deep learning currently provide the best
solutions to many problems in image recognition, speech
recognition, and natural language processing. This book will teach
you many of the core concepts behind neural networks and deep

learning.

For more details about the approach taken in the book, see here. Or

you can jump directly to Chapter 1 and get started.

Neural Networks and Deep
Learning,

Nielsen (2015)

Great introduction to neural nets
and deep learning, easy read

Deep Learning,
Goodfellow et al. (2016)

THE textbook for deep
learning
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21 Machine learning & artificial intelligence in the quantum domain

Vedran Dunjko

Institute for Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria
Max Planck Institute of Quantum Optics, Garching 85748, Germany
Email: vedran.dunjko@mpq.mpg.de

Hans J. Briegel

Institute for Theoretical Physics, University of Innsbruck Innsbruck 6020, Austria
Department of Philosophy, University of Konstanz, Konstanz 78457, Germany
Email: hans.briegel@uibk.ac.at

Abstract. Quantum information technologies, on the one side, and intelligent learning
systems, on the other, are both emergent technologies that will likely have a transforming
impact on our society in the future. The respective underlying fields of basic research —
quantum information (QI) versus machine learning and artificial intelligence (AI) — have
their own specific questions and challenges, which have hitherto been investigated largely
independently. However, in a growing body of recent work, researchers have been prob-
ing the question to what extent these fields can indeed learn and benefit from each other.
QML explores the interaction between quantum computing and machine learning, inves-
tigating how results and techniques from one field can be used to solve the problems of
the other. In recent time, we have witnessed significant breakthroughs in both directions
of influence. For instance, quantum computing is finding a vital application in providing
speed-ups for machine learning problems, critical in our “big data” world. Conversely,
machine learning already permeates many cutting-edge technologies, and may become
instrumental in advanced quantum technologies. Aside from quantum speed-up in data
analysis, or classical machine learning optimization used in quantum experiments, quan-
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Deep learning librar

Stack Google

Library Rank Overall Github Overflow Results

tensorflow 1 10.87 4.25 4.37 2.24
keras 2 1.93 0.61 0.83 0.48
caffe 3 1.86 1.00 0.30 0.55
theano 4 0.76 -0.16 0.36 0.55
pytorch 5 0.48 -0.20 -0.30 0.98
sonnet 6 0.43 -0.33 -0.36 1.12
mxnet 7 0.10 0.12 -0.31 0.28
torch 8 0.01 -0.15 -0.01 0.17
cntk 9 -0.02 0.10 -0.28 0.17
dlib 10 -0.60 -0.40 -0.22 0.02
caffe2 11 -0.67 -0.27 -0.36 -0.04
chainer 12 -0.70 -0.40 -0.23 -0.07
paddlepaddle K] -0.83 -0.27 -0.37 -0.20
deeplearning4; IR} -0.06 -0.32 -0.51
lasagne 15 -1.11 -0.38 -0.29 -0.44
bigdl 16 -1.13 -0.46 -0.37 -0.30
dynet 17 -1.25 -0.47 -0.37 -0.42
apache singa [k -1.34 -0.50 -0.37 -0.47
nvidia digits 19 -1.39 -0.41 -0.35 -0.64
matconvnet 20 -1.41 -0.49 -0.35 -0.58
tflearn 21 -1.45 -0.23 -0.28 -0.94
nervana neon [ -1.65 -0.39 -0.37 -0.89
opennn 23 -1.97 -0.53 -0.37 -1.07

Source: The Data Incubator



Deep learning libraries

Stack Google

Library Rank Overall  Github Overflow  Results
1 10.87 4.25 4.37 2.24
2 1.93 0.61 0.83 0.48
. Architecture:
L Tutorl_al‘s CNN RNN easy-to-use and Multiple GPU Keras
anguages and training modeling modeling Speed .
d 7 = modular support compatible
materials capability capability front end
Theano O™ ++ ++ ++ + ++ + +
T‘E’,‘;:f Python 4+ 44 ++ ++4 ++ ++ +
Lua, Python
Torch (new) + L o ++ +¥ T -
Caffe C++ + ++ + + +
R, Python,
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Abstract

Pathologists and radiologists spend years acquiring and refining their medically essential
visual skills, so it is of considerable interest to understand how this process actually unfolds
and what image features and properties are critical for accurate diagnostic performance.
Key insights into human behavioral tasks can often be obtained by using appropriate animal
models. We report here that pigeons (Columba livia)—which share many visual system
properties with humans—can serve as promising surrogate observers of medical images, a
capability not previously documented. The birds proved to have a remarkable ability to dis-
tinguish benign from malignant human breast histopathology after training with differential
food reinforcement; even more importantly, the pigeons were able to generalize what they
had learned when confronted with novel image sets. The birds’ histological accuracy, like
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Fig 1. The pigeons’ training environment. The operant conditioning chamber was equipped with a food
pellet dispenser, and a touch-sensitive screen upon which the medical image (center) and choice buttons
(blue and yellow rectangles) were presented.
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