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«What I can calculate, I can understand.»

After a quote attributed to Richard Feynman:
“What I cannot create, I do not understand.”

Foreword

These lecture notes emerged from a course given in the framework of the MaNEP
doctoral program in Geneva. The course is targeted to first and second-year PhD
students, mainly experimentalists, who need some training in many-body theory.

Depending whom you ask the question, the physics endeavor can be described alterna-
tively as an effort to explain experiments or an effort to ‘measure’ theories. In preparing
this course, the frame of mind has been the former. The general approach has been to
establish the link between the mathematical tools of many-body theory and some of
the prominent experimental methods used nowadays, especially for the spectroscopic
investigation of condensed-matter systems. This approach dictated the organization
of the course: a first part where correlation functions are introduced and methods to
compute them are presented, and a second part where experimental techniques are
linked with correlation functions, providing the route to interpreting measurements. In
the spirit of the citation ornamenting this page, and whenever this was within the reach
of the author’ knowledge, a special effort has been made to pursue the calculations all
the way from the basic principles down to numbers that can be put on a graph and
compared with experiment, sometimes with the help of a simple computer program.
Students are invited to reproduce this journey by themselves, in order to turn the
abstract mathematical symbols into something easier to grasp.

The lecture notes are in principle self-contained and all technical developments are
presented explicitly. There are few exceptions, though, for instance theorems like
Wick’s theorem whose lengthy proof is not essential for the understanding of the
matter; in such cases, an appropriate reference is provided where the proof can be
found. Explicit developments could easily burden the main text: in these notes, the
purely mathematical evaluations which do not require physical input are therefore
moved out of the main text in so-called ‘DOC’ pages. The readers who don’t want to
look into the motor can easily stick to the main text and consider the DOCs as mere
mathematical black boxes. It is also possible to envision the DOCs as solved exercises.

I would like to thank all of the students who had enough bravery to follow the course
regularly, and especially those who tracked the mistakes in these notes. Teaching them
has been a real pleasure, which, I hope, was not entirely useless.

Geneva, September 22, 2011
CB
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Conventions and notations vii

Conventions and notations

Grand Hamiltonian Throughout these notes, we will consider many-particle systems
at finite temperature in the grand-canonical ensemble. The relevant operator in this
case is the grand Hamiltonian, denoted K and defined as

K = H −µN . (1)

H is the Hamiltonian, µ the chemical potential, and N the particle-number operator.
The thermal average of operator A will be denoted 〈A〉 and is defined in Eq. (2.2).

Fourier transforms For the space-time Fourier transforms, we use the convention:

f (r , t) =
1
V
∑

k

∫ ∞

−∞

dω
2π

f (k,ω)ei(k·r−ωt) (2a)

f (k,ω) =

∫
dr

∫ ∞

−∞
d t f (r , t)e−i(k·r−ωt). (2b)

The real space is continuous and confined to a normalization volume V . The notation∫
dr represents integration over the volume V . The reciprocal space is discrete with k

points defined such that the plane waves satisfy periodic boundary conditions on the
volume V . This convention translates into the following closure relations:

∫
dr ei(k−k ′)·r = V δkk ′ ,

1
V
∑

k

eik·(r−r ′) = δ(r − r ′) (3a)

∫ ∞

−∞
d t ei(ω−ω′)t = 2πδ(ω−ω′),

∫ ∞

−∞

dω
2π

eiω(t−t ′) = δ(t − t ′). (3b)

In cases where the real space is discrete, such as lattice models, the space integration∫
dr is replaced by

∑
Rn

with Rn the lattice sites, and in reciprocal space V −1
∑

k is
replaced by N −1

∑
k with N the number of elementary cells. The unit-cell volume

V /N is denoted Vcell.

Bosons and fermions Whenever possible, the formulas are written in a form valid for
bosons and fermions. We use the symbol η to distinguish the two cases: η= +1 for
bosons and η= −1 for fermions. For instance, the commutator and anti-commutator
are written at once as

[A, B]−η = AB −ηBA (4)

(when we write [A, B], we mean [A, B]−) and the time-ordering operators are

Tη{A(t)B(t ′)}= θ (t − t ′)A(t)B(t ′) +ηθ (t ′ − t)B(t ′)A(t). (5)

A generic creation operator for a boson or a fermion in state α is denoted a†
α. When

we refer specifically to bosons, we use instead the notation b†
α and for fermions we use
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c†
α. Likewise, the Bose-Einstein and Fermi-Dirac distributions are generically written as

d−η(ε)≡
1

eβε −η , (6)

while the notations b(ε)≡ d−1(ε) and f (ε)≡ d+1(ε) are used when appropriate.

Scalars and operators Ideally, a notation should be light and exact, which are an-
tithetical requirements. In order to lighten the notation by avoiding redundancy, in
these notes we generally rely on function’s arguments to help identifying the function.
The example of the particle density is eloquent:

• n without argument is the average particle-number density, n= N/V ;

• nα is the occupation number for the one-particle state α;

• n(r ) is the local particle number density;

• n(q) is the Fourier transform of n(r ).

Furthermore, n, nα, n(r ), and n(q) can be scalars or operators depending upon the
context. In this way, we avoid fat notations like 〈〈ˆ̃n(q)〉〉 for the thermodynamic average
of the Fourier transform of the density operator.

Units We use international units and, errors excepted, write all ħh’s explicitly. This
is a little cumbersome in a few places but, on the other hand, a global and coherent
“ħh= 1” convention also has drawbacks.

For convenience, we use energy rather than frequency variables in the definition of
certain functions. In general, the Fourier transform of the time-dependent correlation
function CAB(t) is the frequency-dependent CAB(ω). This convention is followed in
particular for the dielectric function ε(q ,ω) and the conductivity tensor σµν(q ,ω).
The quantities defined as functions of the energy ε = ħhω include the single-particle
Green’s function Gαβ (ε), all susceptibilities χAB(ε) and all spectral functions ρAB(ε), as
well as the Matsubara function CAB(z) where z ∈ C has the unit of energy.
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Useful mathematical formula

Mathematical identities

• Residue theorem
∮

�
dz F(z) =

∑
z0

2πi
(n− 1)!

lim
z→z0

dn−1

dzn−1
[(z − z0)

nF(z)] . (7)

z0 are the poles of F(z) and n is the order of each pole. As such, the formula
applies only if the orientation of the closed contour is counter-clockwise. If the
contour is followed in the clockwise direction, a minus sign must be inserted
after the “=” sign.

• Fourier transform of the Heaviside function
∫ ∞

−∞
d t eiωtθ (±t) =

±i
ω± i0+

. (8)

For the proof, see doc–1.

• Cauchy principal value and Dirac delta function

1
x ± i0+

=P 1
x
∓ iπδ(x). (9)

The principal valueP (1/x) is defined asP (1/x) = 1/x for x 6= 0 andP (1/x) =
0 for x = 0. Equation (9) is best visualized as the limit of the function 1/(x±iε) =
(x ∓ iε)/(x2 + ε2) as ε→ 0+.

A very useful variant

− 1
π

Im
�

1
x ± i0+

�
= ±δ(x). (10)

• Composition of the Dirac delta function

δ[ f (x)] =
∑
x0

δ(x − x0)
| f ′(x0)|

, f (x0) = 0. (11)

The sum extends over all solutions x0 of the equation f (x) = 0.

• Laplacian and Dirac delta function in three dimensions

∇2 1
|x | = −4πδ(x ). (12)

This relation is just the Poisson equation for a point-charge at the origin.
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• Plane waves and Bessel functions

ei x cosϑ =
+∞∑

n=−∞
inJn(x)e

inϑ. (13)

x ∈ R and Jn(x) is the Bessel function of the first kind.

• Fourier transform of the Yukawa potential in three dimensions

∫
d3q
(2π)3

eiq ·r

q2 + k2
0

=
e−k0 r

4πr
. (14)

Fourier transform of the square of the Yukawa potential

∫
d3q
(2π)3

eiq ·r

(q2 + k2
0)2
=

e−k0 r

8πk0
. (15)

For the proof, see doc–2.

• Sums over Matsubara frequencies

1
β

∑
iνn

F(iνn) = sum of the residues of −ηd−η(z)F(z) at the poles of F(z).

(16)
This formula applies provided that F(z) is analytic and that the function d−η(z)F(z)
vanishes for |z| →∞. The proof is presented in doc–3.

1
β

∑
iνn

e−iνnτ

iνn − ε
= −[θ (τ) +ηd−η(ε)]e

−ετ. (17)

This is the analogous of Eq. (8) for imaginary time. It seems to contradict Eq. (16),
but does not. For the proof see doc–4.

• Three useful integrals (a ∈ R)

∫ π

0

sinϑ dϑ
a− cosϑ± i0+

= ln

����
1+ a
1− a

����∓ iπθ (1− |a|) (18)

∫ 1

0

duu ln
���u+ a
u− a

���= a+ 1
2 (1− a2) ln

����
1+ a
1− a

���� (19)

lim
a→∞

∫ a

−a

du
tanh(u/2)

2u
= ln

�
2eγ

π
a
�
≈ ln (1.134 a) (20)

γ≈ 0.577 is the Euler constant.
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Quantum mechanics

• Closure relation ∑
a

|a〉〈a|= 11. (21)

The set of states |a〉 must be complete, like for instance the set of the eigenstates
of some Hamiltonian.

• Pauli matrices

τx =
�

0 1
1 0

�
, τy =

�
0 −i
i 0

�
, τz =

�
1 0
0 −1

�
. (22)

Together with the identity, these three matrices form a “basis” on which any 2×2
complex matrix can be expanded.

• Traces of Pauli matrices and their products

Trτµ = 0, Trτµ1τµ2 = 2δµ1µ2
, Trτµ1τµ2τµ3 = 2iεµ1µ2µ3

. (23)

εµ1µ2µ3
is the Levi-Civita symbol, which is (−1)σ{µ1,µ2,µ3} if µ1 6= µ2 6= µ3 and 0

otherwise, σ{µ1,µ2,µ3} being the signature of the permutation.

• Other relations involving Pauli matrices
∑
µ1µ2

τµ1τµ2δµ1µ2
= 3× 11,

∑
µ1µ2µ3

τµ1τµ2τµ3εµ1µ2µ3
= 6i × 11. (24)

Here, 11 is the 2× 2 identity matrix, sometimes denoted τ0.

Second quantization

• Commutators of creation and annihilation operators with the Hamiltonian

[aα, K] =
∑
β

ξαβa
β
+
∑
βγδ

Vαβγδa†
β

a
δ
aγ (25)

[a†
α, K] = −[aα, K]† = −

∑
β

ξ∗αβa†
β
−
∑
βγδ

V ∗αβγδa†
γa

†
δ
a
β

(26)

[a†
αa
β
, K] = a†

α[aβ , K] + [a†
α, K]a

β
. (27)

K is defined in Eq. (2.45). For the proof, see doc–5.

• Commutators of creation and annihilation operators with the number operator

[N , a†
α] = a†

α, [N , aα] = −aα. (28)

A variant:
ezN a†

α = a†
αez(N+1), ezN aα = aαez(N−1), (29)

for any complex number z. For the proof, see doc–5.
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Introduction

Why correlation functions?

The concept of correlation function is at the heart of the modern quantum theory
of matter. It is also central in our understanding of the techniques that we use to
scrutinize this matter. In most—if not all—instances, the measurements performed
in condensed-matter physics are more or less directly probing one of the system’s
correlation functions. Understanding this connection for each type of experiment is
an indispensable first step before we can start thinking about what the experimental
results actually tell us. This whole course is about correlation functions and how they
are revealed by various experiments. The focus is on spectroscopic techniques, which
either use particles to probe samples in a scattering geometry or fields for measuring
their response to a stimulation. This introductory chapter picks one example of each
kind, neutron scattering and linear-response, and briefly explains the key role played
by correlation functions in each case. The thermodynamic techniques are another
source of information that is not considered in these notes. The third section of this
introduction highlights a remarkable result—which, admittedly, has more academic
than practical interest—showing that the thermodynamic functions too are tightly
bound to correlation functions.

1.1 Nuclear scattering and density-density correlation func-
tion

Consider a neutron with momentum ħhk and energy Ek falling on a sample cut from an
elementary material (composed of identical atoms). Let’s ignore that the neutron owns
a magnetic moment and assume that it only “feels” the target when hitting a nucleus.
We can model this interaction with the contact potential

V (r ) =
∑
`

V0 δ(r − r`) = V0 n(r ), (1.1)

1
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where n(r ) is the operator giving the density of nuclei in the target. The neutron is
scattered to a new state with momentum ħhk ′ and energy Ek ′ . Let’s call ħhq and ħhω the
momentum and energy transferred from the neutron to the target:

q ≡ k − k ′, ħhω≡ Ek − Ek ′ . (1.2)

In the process, the target has evolved from an initial state |a〉 with energy Ea to a
final state |b〉 with energy Eb. We do not know the initial state of the target, but we
may describe it as a mixed thermal state characterized by the Boltzmann probability
distribution ρa = e−βEa/(

∑
a e−βEa ). For the neutron, the transition rate from the state

|k〉 to the state |k ′〉 is therefore given at lowest order, according to the Fermi golden
rule, by

Γ|k〉→|k ′〉 =
2π
ħh
∑
ab

ρa|〈k, a|V |k ′, b〉|2δ(Ek + Ea − Ek ′ − Eb). (1.3)

The a sum accounts for the thermodynamic average over the possible initial states of the
target, while the b sum, together with the delta function, selects all possible final states
of the target such that the energy gain Eb − Ea is equal to the energy ħhω = Ek − Ek ′

provided by the neutron. We may assume that the states |k, a〉 and |k ′, b〉 are actually
product states |k〉|a〉 and |k ′〉|b〉, since the probing particle and the target are well
separated before and after the scattering event. We can therefore rewrite the transition
rate as [see doc–6]:

Γ|k〉→|k ′〉 =
V 2

0

ħh2

∫ ∞

−∞
d t eiωt〈n(q , t)n(−q , 0)〉. (1.4)

Hence the measured scattering cross section, which is proportional to the transition
rate, is just the time Fourier transform of the density-density correlation function
〈n(q , t)n(−q , 0)〉. This function involves two kinds of terms: the “diagonal” ones giving
the temporal correlations in the motion of a given atom, 〈e−iq ·[r`(t)−r`(0)]〉, and the “off-
diagonal” ones representing the correlated motion of a pair of atoms, 〈e−iq ·[r`(t)−r`′ (0)]〉.
If the atomic motion is periodic in time, as occurs when a phonon is excited, these
correlation functions are also periodic functions of time and their Fourier transform
has peaks at the corresponding frequencies. The neutron enters in resonance with
these oscillations and the scattering is strong. This is how nuclear neutron scattering
can measure the dispersion relation of phonons.

Of course, the simple result Eq. (1.4) echoes the simple form of the scattering potential
Eq. (1.1). We will see in the next section that this kind of correspondence is not limited
to nuclear scattering, but is the rule rather than the exception.

1.2 Linear response and retarded correlation functions

As a second example showing the importance of correlation functions, we consider the
linear response of a quantum system to an applied external field. Imagine that a space-
and time-dependent field F(r , t) is switched on at time t = 0. Most often, this field is
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coupled to some observable A(r ) of the system through a term

V =

∫
dr A(r ) · F(r , t) (1.5)

in the Hamiltonian. As a result, the average value of the observable A will change at
times t > 0. This change can be expanded in powers of the applied field: the zeroth
order term is just 〈A(r , t)〉(0), i.e., the value of the observable in the absence of external
field, and the first-order term can be written in the form

〈Aµ(r , t)〉(1) =
∑
ν

∫
dr ′

∫ ∞

−∞
d t ′χµν(r , t; r ′, t ′)Fν(r

′, t ′). (1.6)

This is nothing but the most general linear relationship between the two vector fields
〈A(r , t)〉 and F(r , t). The tensor field χ is called a susceptibility—some authors call
it generalized susceptibility—since it tells how “susceptible” the observable A is to the
external field. The linear-response theory ought to derive an explicit expression for
the susceptibility. We shall give this derivation in Chapter 6 when we have all relevant
tools at hand, but for the time being we just quote the result:

χµν(r , t; r ′, t ′) = − i
ħhθ (t − t ′)〈[Aµ(r , t), Aν(r

′, t ′)]〉. (1.7)

This is called the retarded correlation function of the operators Aµ(r ) and Aν(r ′), which
will be introduced in Chapter 3. Hence the linear response of a condensed-matter
system to external perturbations can be entirely described in terms of correlation
functions. The most important examples are the spin-spin correlation function—i.e.,
the magnetic susceptibility—which gives the linear response to an external magnetic
field and the density-density correlation function—or charge susceptibility—for the
linear response to an electric field.

1.3 Thermodynamic properties and Green’s function

A large body of experiments in condensed-matter physics address thermodynamic
quantities, such as entropy, specific heat, compressibility, magnetization, etc. We have
already seen how some of these quantities can be computed, to linear order, using
the theory of linear response. Here, we show how these quantities can in principle be
obtained exactly from a particular correlation function.

Since we will always be considering the grand-canonical ensemble at finite temperature
in these notes, the appropriate thermodynamic potential for us is the grand potential
Ω. All thermodynamic quantities can be deduced from Ω: entropy, pressure, specific
heat, compressibility, density, can all be obtained from particular derivatives of Ω, as
will be recalled in Sec. 2.1.2. Now, assume that the system’s Hamiltonian is

H = H0 +λV, (1.8)

where H0 is something we can solve and V is some difficult two-body interaction.
In this case, as we will see in Sec. 5.2.2.2, the grand potential can be related to the
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correlation function of the creation and annihilation operators according to

Ω= Ω0 −
η

2

∫ 1

0

dλ
λ

∑
α

�∑
β

�− ∂τδαβ − ξαβ
�Ca

β
a†
α

λ (τ)−δ(τ)
�
τ=0−

. (1.9)

Here Ω0 is the grand potential for λ = 0 and ξαβ are matrix elements of H0. The
meaning of this expression will become clear later, but the point here is that, if we know
the correlation function Ca

β
a†
α

λ (τ)—which is in fact the imaginary-time one-particle
Green’s function—for all values of the coupling constant λ, then we can in principle
deduce from it all thermodynamic properties.



Part I
Digest of many-body theory
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Elements of quantum mechanics

The theoretical tools pervading this whole course are the equilibrium time-dependent
correlation functions at finite temperature. The formalism describing these objects rests
on four pillars: quantum statistical mechanics, time-dependent quantum mechanics,
second quantization, and complex analysis. In this chapter, we give a brief overview
of the first three subjects. This is not meant to be comprehensive: we introduce all
the ingredients that are used later in the notes, but refrain from presenting elements
that are not. We first describe the thermodynamics of quantum systems and recall
the basic concepts and relations. We then discuss the question of time dependence,
especially the interaction picture and the time-dependent perturbation theory; as an
illustration we obtain the famous Fermi golden rule. Finally, we review the second
quantization formalism as well as the basic properties of independent electrons and
phonons, including the electron-phonon coupling. The fourth pillar, complex analysis,
is assumed known and will be copiously illustrated in the subsequent chapters.

2.1 Thermodynamics of quantum systems

2.1.1 Thermodynamic average

The fundamental postulate of quantum thermodynamics is that, for a quantum system
in equilibrium with a bath at a given temperature T , the average value 〈A〉 of a property
A is a weighted average of the expectation values 〈a|A|a〉 of this property in each of
the system’s eigenstates |a〉. The weight of each eigenstate in this average is given by
the Boltzmann factor

ρa =
e−β(Ea−µNa)∑
a e−β(Ea−µNa)

(2.1)

with β = (kBT )−1. The average value of an observable is therefore defined as

y 〈A〉=
∑

a

ρa〈a|A|a〉= TrρA. (2.2)

7
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We have introduced the so-called statistical density matrix

y ρ =
1
Z

e−βK =
∑

a

ρa|a〉〈a|, (2.3)

with K = H −µN , and the partition function

y Z = Tr e−βK . (2.4)

Eq. (2.2) shows that a quantum system is entirely characterized by its density matrix ρ:
knowing ρ, we can compute the expectation value of any observable. For a quantum
system in a pure state |Ψ〉—any state in the Hilbert space, not necessarily an eigenstate
of H—the expectation value is 〈A〉= 〈Ψ|A|Ψ〉 and the wave function contains all the
relevant information. In thermal equilibrium, however, the system is not in a pure
state but in a so-called mixed state specified by the density matrix ρ, which replaces the
wave function |Ψ〉. We also see in Eq. (2.2) that the end result for 〈A〉 is a trace. This is
very satisfactory because the trace of an operator does not depend upon the choice of
the basis. Therefore, although we have formulated the problem using the eigenstates
|a〉 of H as a basis, the result is nevertheless general. It is also seen that 〈A〉 naturally
reduces to the conventional ground-state average 〈Ψ0|A|Ψ0〉 at zero temperature, since
all weights e−β(Ea−µNa)/Z become negligible relative to the weight of the ground state
which approaches unity in the limit β →∞.

2.1.2 Grand potential and thermodynamic properties

The thermodynamic potential—the grand potential Ω in our case—can be deduced
from the partition function using

y Ω= −kBT ln Z . (2.5)

Ω is a natural function of the variables V , T , and µ: dΩ= −pdV − SdT − Ndµ. We
use the symbol V for the volume in order to avoid confusion with the interaction or
perturbation V . Ωmoreover is, in the thermodynamic limit, an extensive homogeneous
function which can be written as

Ω(V , T,µ) = V$(T,µ). (2.6)

For future reference, we provide here the expression of the main thermodynamic
quantities in terms of Ω or $. The entropy is given by

S = − dΩ
dT

�
V ,µ
= −V ∂$

∂ T
(2.7)

while the pressure is just

p = − dΩ
dV

�
T,µ
= −$. (2.8)

Note that Eqs (2.8) and (2.5) lead to the equation of state: p/(kBT ) = ∂
∂ V ln Z . From

the entropy, we deduce the specific heat

CV = T
dS
dT

�
V
= −V T

�
∂ 2$

∂ T 2
+
∂ 2$

∂ T∂ µ
dµ
dT

�
(2.9)
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and, with the particle number density

n= − 1
V

dΩ
dµ

�

V , T
= −∂$

∂ µ
, (2.10)

we also obtain the isothermal compressibility [see doc–7]:

κT = −
1
V

dV
dp

�

T
=

1
n2

dn
dµ

�

T
= − 1

n2

∂ 2$

∂µ2
. (2.11)

An illustration of these various relations is provided in doc–61, where the cases of free
fermions and free bosons in dimensions d = 1, 2, and 3 are treated.

2.1.3 Independent particles

For independent particles (bosons or fermions), the partition function takes the form
Z =

∏
α zα, where the index α numbers the excitation energies ξα = εα − µ of the

system and [see doc–8]

zα =
�
1−ηe−βξα

�−η
=





1
1−e−βξα Bosons

1+ e−βξα Fermions.
(2.12)

Inserting Eq. (2.12) into Eq. (2.5) and performing the derivatives in Eq. (2.9), we
obtain the specific heat

CV =
kB

2

∑
α

(βξα)2 − βξα 1
kB

dξα
dT

cosh(βξα)−η
. (2.13)

This expression assumes that the energies εα are independent of T ; the term involving
dξα/dT accounts for the temperature dependence of the chemical potential. Using
Eq. (2.10), we also easily recover the well-known expression of the density in terms of
the Bose-Einstein and Fermi-Dirac distribution functions:

n=
1
V
∑
α

1
eβξα −η =

1
V
∑
α

d−η(ξα). (2.14)

We will use these expressions later, when reviewing the properties of independent
electrons and phonons. In practical calculations, the variable n is often used instead of
µ: Eq. (2.14) must then be inverted to yield µ as a function of n. The thermodynamic
properties of free fermions and bosons are discussed in doc–61.

2.2 Time dependence

2.2.1 Schrödinger, Heisenberg, and interaction pictures

In the Schrödinger picture, the time dependence in a quantum system is carried by
the wave function according to iħh∂tΨ(t) = KΨ(t). It is customary to introduce the
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evolution operator U(t) defined in such a way that Ψ(t)≡ U(t)Ψ(0). Substituting in
the Schrödinger equation, we see that the evolution operator satisfies the equation of
motion iħh∂t U(t) = KU(t). If the Hamiltonian is time-independent, the solution with
initial value U(0) = 11 is obvious: U(t) = e−iK t/ħh. In the Heisenberg picture, on the
contrary, the wave function is time-independent and the time dependence is carried by
the observables according to

A(t) = U†(t)AU(t) = eiK t/ħhAe−iK t/ħh, (2.15)

with the last equality holding only for a time-independent K . The equivalence of both
pictures is apparent if one considers the average values of observables: 〈Ψ(t)|A|Ψ(t)〉 =
〈Ψ(0)U†(t)|A|U(t)Ψ(0)〉= 〈Ψ(0)|A(t)|Ψ(0)〉. These descriptions are convenient when
the Hamiltonian is time-independent, but are advantageously replaced by the interaction
picture in the opposite case, where the evolution operator cannot be solved as e−iK t/ħh.
In the interaction picture, we write K = K0 + Vt where Vt is some time-dependent
contribution,1 and we define U = U0Û where, by assumption, iħh∂t U0(t) = K0U0(t)
with the solution U0(t) = e−iK0 t/ħh. Then, the equation of motion of the evolution
operator gives

KU(t) = iħh∂t U0(t)Û(t) = K0U(t) + U0(t)iħh∂t Û(t) (2.16)

which implies that

U0(t)iħh∂t Û(t) = (K − K0)U(t) = Vt U(t). (2.17)

Multiplying on the left by U−1
0 (t), we find

iħh∂t Û(t) = U−1
0 (t)Vt U0(t)Û(t)≡ V̂t(t)Û(t). (2.18)

We will use the notation Â(t) to denote the time evolution of A in the interaction picture,
while A(t) means the Heisenberg picture. The main relations are collected below:

Â(t) = eiK0 t/ħhAe−iK0 t/ħh, K0 = H0 −µN (2.19a)

y U(t) = e−iK0 t/ħhÛ(t) (2.19b)

iħh∂t Û(t) = V̂ (t)Û(t). (2.19c)

In summary, in the interaction picture the time evolution of the operators is governed
by K0, Eq. (2.19a), while the equation of motion of the evolution operator only depends
on the interaction V , Eq. (2.19c). One additional useful equation is the one relating
the operators in the Heisenberg and interaction pictures:

A(t) = U†(t)AU(t) = Û†(t)eiK0 t/ħhAe−iK0 t/ħhÛ(t) = Û†(t)Â(t)Û(t). (2.20)

1 It is necessary to distinguish the “external” time dependence—due, e.g., to the fantasy of the experimenter—
from the “internal” time dependence governed by the quantum dynamics of the system. In these notes, the
external time dependence is denoted by the index t (often omitted) while the internal time dependence is
indicated in parentheses. Most textbooks refer to “explicit” and “implicit” time dependencies, but we find
this terminology confusing.
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2.2.2 Feynman-Dyson expansion of the evolution operator

Let us assume that the time-dependent term Vt is switched on adiabatically starting
from t = −∞, i.e., V−∞ = 0. In the interaction picture, the evolution operator obeys
the equation of motion Eq. (2.19c) with the boundary condition Û(−∞) = 11. This
differential equation can be solved formally by writing

Û(t) = 11− i
ħh

∫ t

−∞
d t1 V̂ (t1)Û(t1). (2.21)

The same expression can then be used to substitute Û(t1) and the process iterated in
order to generate an infinite series of terms with increasing powers of V . This is the
Feynman-Dyson expansion. The series reads

Û(t) = 11+
∞∑
n=1

�
− i
ħh

�n
∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn V̂ (t1) · · · V̂ (tn). (2.22)

Each term in the series can be rewritten in a more symmetric and convenient way by
means of the time-ordering operator T+ [see doc–9]:

y Û(t) =
∞∑
n=0

(−i/ħh)n
n!

∫ t

−∞
d t1 · · · d tn T+{V̂ (t1) · · · V̂ (tn)}. (2.23)

This is one of the most beautiful formula in the quantum theory of many-particle
systems. It can be expressed symbolically by the elegant and suggestive notation

Û(t) = T+ exp

�
− i
ħh

∫ t

−∞
d t ′ V̂ (t ′)

�
. (2.24)

The Feynman-Dyson expansion lays the foundations of time-dependent perturbation
theory, including the Fermi golden rule, all diagrammatic techniques as well as the
theory of the response. We will therefore heavily rely on Eq. (2.23).

2.2.3 Generalized Fermi golden rule

As an illustration of how to use Eq. (2.22), we calculate the rate of transition between
an initial state and a final state induced by a perturbation V at all orders in V . The
first-order result is the well-known Fermi golden rule.

Consider a system characterized by the Hamiltonian K . This can be a fully interacting
many-particle system just as well as a single particle. The system is initially in the
stationary state |a〉, an eigenstate of K with energy Ka = Ea −µNa. A perturbation V is
adiabatically switched on at time t = −∞ and the state of the system starts to evolve
in time according to |Ψ(t)〉 = U(t)|a〉. The probability that the system is found in
another eigenstate |b〉 of K after some time t is Pa→b(t) = |〈b|Ψ(t)〉|2. Therefore, the
rate of transition from state |a〉 to state |b〉 is Γa→b(t) = dPa→b(t)/d t. Using Eqs (2.22)
and (2.19) and performing all time integrations, we find [see doc–10]

〈b|Ψ(t)〉= 〈b|T (Ka)|a〉
e−i(Ka+i0+)t/ħh

Ka − Kb + i0+
, (2.25)
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where the matrix T is the so-called t-matrix:

T (ε) = V + V (ε + i0+ − K)−1T (ε)

=
�
V−1 − (ε + i0+ − K)−1

�−1
. (2.26)

The infinitesimal shift i0+ reflects the adiabatic switching of the interaction. Finally,
taking the time derivative we find [see doc–10]

y Γa→b =
2π
ħh |〈b|T (Ka)|a〉|2δ(Ka − Kb). (2.27)

At lowest order in V , we have T(ε) = V and the Fermi golden rule is recovered. We
have considered a perturbation V that, apart from the adiabatic switching, does not
depend on time. Another important case is when the perturbation oscillates in time
like 2 cos(ωt). One can perform the calculation of doc–10 in that case as well but it is
significantly more complicated because we have two terms eiωtk + e−iωtk associated
with each intermediate time tk. Instead of just one term at each order, there are now
2n terms that correspond physically to the absorption or emission of one or several
quanta of energy ħhω. The calculation is simple at first order, where instead of a single
delta function like in Eq. (2.27) we get the sum δ(Ka − Kb −ħhω)+δ(Ka − Kb +ħhω) as
well as time-dependent terms that oscillate with the frequency 2ω and vanish upon
averaging over a period.

2.3 Second quantization

2.3.1 Occupation-number representation

The second quantization is a convenient way of dealing with quantum systems contain-
ing many particles. An N -particle wave function in the real-space representation is a
complex function of the N coordinates of the particles:

Ψ(r1σ1, . . . , rNσN )≡ Ψ(1, . . . , N) (2.28)

where “1” is a short-hand notation for “(r1σ1)”. More generally, if the number of
particles is not fixed (like, for example, in a metal connected to electrical contacts),
the state of the system is a linear superposition of many-particle states with different
numbers of particles.

In order to construct a basis on which we can expand such a many-particle state, we
start by choosing a complete basis for the one-particle problem: ϕα(1). The greek
indices can represent any relevant quantum number(s), such as momentum, spin,
position in real space, etc. In a solid, for instance, a convenient basis is formed by the
plane waves

y ϕkσ(1)≡
δσσ1pV eik·r1 , (2.29)

which satisfy the relations 〈kσ|k ′σ′〉= δσσ′δkk ′ and
∑

kσ |kσ〉〈kσ|= 11 as required
for a complete basis [see doc–11]. Dual to this momentum-space basis, there is the
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real-space basis
ϕrσ(1)≡ δσσ1

δ(r − r1). (2.30)

Other basis sets are of course also possible: the general second-quantization formalism
does not depend upon this arbitrary choice.

The second step is to construct basis functions for systems with N particles. These
are the so-called Slater determinants for fermions and sign-less determinants (or
“permanents”) for bosons. For two particles they read

ϕα,β (1, 2) = 〈1,2|α,β〉= 1p
2

�
ϕα(1)ϕβ (2) +ηϕα(2)ϕβ (1)

�
. (2.31)

Throughout these notes, we shall use η to distinguish bosons (η= +1) from fermions
(η= −1). The two-particle wave function in Eq. (2.31) is either invariant (if η= +1),
or changes sign (if η = −1) under the exchange of the coordinates 1 and 2, as required
for indistinguishable bosons and fermions, respectively. In particular, it is immediately
seen that ϕα,α ≡ 0 for fermions, which encodes the Pauli exclusion principle. The
ensemble of wave functions obtained by taking all possible pairs (α,β) of one-particle
states in Eq. (2.31) constitutes a complete orthonormal basis for the two-particle
problem.1 The procedure is readily generalized to N particles:

ϕα1,...,αN
(1, . . . , N) =

1p
N !

∑
P
ησ(P )ϕα1

(P1) · · ·ϕαN
(PN ). (2.32)

Here P represents a permutation of the set {1, . . . , N}, Pi is the ith element of that
permutation, and σ(P ) is the number of transpositions in P . Fortunately, it is the first
and last time that we write a wave function in this form! One can indeed formulate
the many-body problem in this “conventional” representation, but the cost is a deluge
of indices and tricky combinatorics.

The solution is to adopt a more compact (and abstract) representation called the
occupation-number representation. In order to specify a Slater determinant (or a per-
manent), rather than giving the list of one-particle wave functions ϕα from which it
is constructed, one tells how many times each of the ϕα’s is used, by means of the
following notation:

|n1, n2, . . . , nα, . . .〉. (2.33)

For example, the one-particle state |α〉 is denoted |0, . . . , 0, nα = 1,0, . . .〉. Figure 2.1
illustrates the procedure with more examples. Obviously, for fermions the occupation
numbers nα are either 0 or 1, while for bosons they can be any non-negative integer.
In this collection of states, we find one that is of particular importance, namely the
vacuum state for which all occupation numbers are zero:

|0, 0, . . .〉 ≡ |∅〉. (2.34)

Let’s define a creation operator a†
α for the state |α〉, in such a way that

1 The indices α, β in the pair (α,β) must be ordered in some way such that only one of the pairs (α,β) and
(β ,α), which represent the same two-particle state, appears in the basis.
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Slater determinants

Usual representation Occupation-number representation

1-particle |1〉, |2〉, |3〉, . . . ←→ |1,0, 0,0, · · · 〉, |0, 1, 0, 0, · · · 〉, |0,0, 1,0, · · · 〉, . . .

2-particles |1,2〉, |1,3〉, |2,3〉, . . . ←→ |1,1, 0,0, · · · 〉, |1, 0, 1, 0, · · · 〉, |0,1, 1,0, · · · 〉, . . .

3-particles |1,2,3〉, |1,2,4〉, |2,3,4〉, . . . ←→ |1, 1, 1, 0, · · · 〉, |1, 1,0, 1, · · · 〉, |0,1, 1,1, · · · 〉, . . .

N -particles |α1, · · · ,αN 〉 ←→ |n1, n2, · · · , nα, · · · 〉, ∑
α nα = N

Figure 2.1: Correspondence between Slater determinants in the usual and occupation-number
representations for fermions. The one-particle basis states ϕα are denoted here with bold
letters which can take the values α ∈ {1,2,3, · · · }. For bosons we would have additional states,
like for example |1,1,3〉, which would be denoted |2,0,1,0, · · · 〉 in the occupation-number
representation.

〈1|a†
α|∅〉= ϕα(1). (2.35)

This is not enough to completely specify a†
α. For this, we must indicate how a†

α acts on
an arbitrary state |n1, n2, . . . , nα, . . .〉. We therefore move one step forward and require
that

〈1,2|a†
β

a†
α|∅〉= ϕα,β (1, 2). (2.36)

Exchanging α and β we obtain, using Eq. (2.31),

〈1, 2|a†
αa†
β
|∅〉= ϕβ ,α(1,2) = ϕα,β (2,1). (2.37)

In order to fullfil the requirement that ϕα,β (2, 1) = ηϕα,β (1, 2), we must require that
a†
αa†
β
= ηa†

β
a†
α, in other words that [a†

α, a†
β
]−η = 0. Therefore the creation operators

must commute for bosons and anti-commute for fermions. Likewise, the hermitian
conjugated operators aα = (a†

α)
† (anti-)commute. From the definition, it is clear that

the only nonzero matrix elements of the creation operator a†
α are between states with

all occupation numbers identical except for the one-particle state α, for which the
occupation numbers must differ by one:

〈. . . , nα + 1, . . . |a†
α| . . . , nα, . . .〉 6= 0. (2.38)

Taking the complex conjugate, we see that the nonzero matrix elements of aα are of
the form

〈. . . , nα − 1, . . . |aα| . . . , nα, . . .〉 6= 0. (2.39)

This shows that aα removes a particle in state α, and is therefore called a annihi-
lation operator. If α 6= β , the creation and annihilation operators aα and a†

β
also

(anti-)commute, reflecting the (anti-)symmetry of the wave functions. However, for
α= β we must verify the two properties

aαa†
α|∅〉= |∅〉 and a†

αaα|∅〉= 0. (2.40)

The first has an obvious meaning while the second holds because it is not possible to
remove a particle from the vacuum. These relations imply that the creation and annihi-
lation operators for the same state do not (anti)-commute but satisfy the commutation
rules [aα, a†

α]−η = 1.
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In summary, if the creation and annihilation operators are to be consistent with the
symmetry properties of the bosonic and fermionic wave functions, they must obey the
following commutation rules:

y [aα, a†
β
]−η = δαβ , [a†

α, a†
β
]−η = [aα, a

β
]−η = 0. (2.41)

These relations are central and must be remembered: they fully take care of the problem
of symmetrizing or anti-symmetrizing the wave functions of bosons and fermions. We
are now in the position to specify the action of aα and a†

α on an arbitrary state in the
occupation-number representation:

a†
α| . . . , nα, . . .〉= η(

∑
i<α ni)

p
1+ηnα | . . . , nα + 1, . . .〉 (2.42a)

aα| . . . , nα, . . .〉= η(
∑

i<α ni)pnα | . . . , nα − 1, . . .〉. (2.42b)

These definitions fulfill the required commutation rules, as well as all needed properties
[see doc–12]. Note that the states Eq. (2.33) are eigenstates of the operator nα = a†

αaα
and that the corresponding eigenvalue is the number nα. Therefore, a†

αaα is the operator
measuring the occupation number for the one-particle state ϕα.

2.3.2 Operators in second-quantized form

At this point, the benefit of introducing creation and annihilation operators does not
appear clearly. But the benefit becomes obvious when we realize that all other operators
can be expressed in terms of aα and a†

α through simple and intuitive formulas. For any
one-body operator T , like for instance the kinetic energy, this formula is

y T =
∑
αβ

Tαβ a†
αa
β
, Tαβ =

∫
d1ϕ∗α(1)T (1)ϕβ (1). (2.43)

The proof is given in many textbooks and will not be reproduced here; see for example
Bruus & Flensberg (2004, p. 14). Hence, the operator is represented by a matrix
whose matrix elements Tαβ are the conventional matrix elements evaluated in the
one-particle basis ϕα. If the basis ϕα diagonalizes the operator T , like the plane waves
Eq. (2.29) do for the kinetic energy, then the matrix representing T is also diagonal
and the expression of the operator simplifies accordingly to T =

∑
α Tαnα. For any

two-body operator V , like the Coulomb interaction, we have

y V =
1
2

∑
αβγδ

Vαβγδ a†
αa†
β

a
δ
aγ, Vαβγδ =

∫
d1d2ϕ∗α(1)ϕ

∗
β (2)V (1,2)ϕγ(1)ϕδ(2).

(2.44)
Note the interchange in the order of indices for the two annihilation operators. This
time, the operator V is represented by a rank-4 tensor, whose matrix elements are
again standard matrix elements in the basis ϕα.

One sees at this stage that a considerable simplification has been achieved. Not only
do we have a compact formalism to treat quantum systems with an arbitrary number
of particles—the symmetry properties related to the particle statistics being encoded in
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the commutation rules of the creation and annihilation operators—but, in addition,
this whole formalism rests on one single set of operators, aα. It must be kept in mind
that these operators are not defined once and for all, but relative to a choice of the
one-particle basis. We shall assume that the index is sufficient in order to identify
the basis to which the operators refer: for instance akσ refers to the plane-wave basis
Eq. (2.29) while arσ refers to the real-space basis Eq. (2.30).1 For future reference,
we reproduce here the expression of some frequently used operators.

Hamiltonian In these notes, we will be interested in interacting many-particle systems.
The generic Hamiltonian for such systems involves one-body terms (like the kinetic
energy and the Hartree and exchange potentials) as well as two-body terms (like the
part of the Coulomb interaction that is not contained in the Hartree and exchange
potentials). Hence the generic (grand-)Hamiltonian K contains a one-body part, which
we denote K0, and a two-body part, which we denote V :

y K =
∑
αβ

ξαβa†
αa
β
+

1
2

∑
αβγδ

Vαβγδa†
αa†
β

a
δ
aγ ≡ K0 + V. (2.45)

We have chosen to write ξαβ rather than [K0]αβ for the matrix elements of K0, because
it is customary to denote as ξα ≡ εα −µ the excitation energies, i.e., the one-particle
energies measured relative to the chemical potential. In the basis where K0 is diagonal,
we recover the usual form K0 =

∑
α ξαa†

αaα.

Particle density The particle-number operator nα = a†
αaα allows one to define the

particle density operator in real space, n(r ) =
∑
σ a†

rσarσ. Here σ is most often meant
as a spin, but more generally it could be any quantum number needed in order to
specify the state of the particle, in addition to its position. It is seen that the operator
n(r ) is diagonal in the real-space representation. In order to perform the Fourier
transform and obtain n(q) in terms of the plane-wave operators akσ, we need the
relation between arσ and akσ. This relation is not� what one would guess by looking at
our convention for the Fourier transforms, Eq. (2). The correct relation is derived in
doc–13. We then obtain in the plane-wave basis

y n(q) =
∑
kσ

a†
kσak+qσ. (2.46)

This is the Fourier transform of the density—which, in a translation-invariant system,
is proportional to δq ,0—and should not be confused� with the occupation number of

1 The creation operator in the real-space representation is sometimes denoted ψ†(r ) in the literature. In
terms of the operators ψ†(r ) and ψ(r ), the kinetic energy operator has the form

T = − ħh
2

2m

∫
dr ψ†(r )∇2ψ(r ),

as can be shown from Eq. (2.43). This expression looks like the average value of the one-particle kinetic
energy −ħh2/(2m)∇2 for the one-particle wave function ψ(r ). The terminology of “second quantization”
finds an illustration here: it seems that we obtain the second-quantized formulas by replacing the wave
functions by operators, like in the “first quantization” we replace the dynamical variables by operators.
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the state |kσ〉, nkσ ≡ 〈a†
kσakσ〉, also known as the momentum distribution function.

Equation (2.46) has this very simple form because the Fourier transform is defined
over plane waves. In a generic basis, n(q) depends on the functions ϕα.

Spin density A spin 1/2 is represented by the three operators Sµ = (ħh/2)τµ, where
τµ are the Pauli matrices given in Eq. (22). This is consistent with Eq. (2.43) if we
define creation operators that act only in the 2×2 spin space and if the matrix elements
are 〈σ|Sµ|σ′〉 = (ħh/2)τµσσ′ . For a distribution of spins-1/2 electrons, we must consider
the operators crσ and we can define the local spin density and its Fourier transform as

S(r ) =
ħh
2

∑
σσ′
τσσ′ c

†
rσcrσ′ , S(q) =

ħh
2

∑
kσσ′
τσσ′ c

†
kσck+qσ′ . (2.47)

This gives for Sz and S± ≡ S x ± iS y :

Sz(r ) =
ħh
2

�
c†

r↑cr↑ − c†
r↓cr↓

�
, S+(r ) = ħhc†

r↑cr↓, S−(r ) = ħhc†
r↓cr↑. (2.48)

S+ and S− are called spin raising and spin lowering operators, respectively, since they
increase and decrease the value of the spin at point r by one unit of ħh.

Current density The expression of the current operator for particles of charge e and
mass m is derived in doc–14. The current has two components, called the paramagnetic
current j p and the diamagnetic current j d :

j(r ) = j p(r ) + j d(r ) (2.49a)

y j p(r ) =
iħh
2m

∑
σ

��
∇r a†

rσ

�
arσ − a†

rσ

�
∇r arσ

��
(2.49b)

j d(r ) = − e
m

∑
σ

A(r )a†
rσarσ. (2.49c)

This is a particle current, not an electric current. More precisely, it is a particle-current
density which has the units of velocity per volume. The paramagnetic current assumes
a simpler form in the plane-wave basis because the gradients of the field operators can
be evaluated explicitly [see doc–14]:

j p(q) =
ħh
m

∑
kσ

�
k + q

2

�
a†

kσak+qσ. (2.50)

For q = 0, we recover that the total current is proportional to the total momentum,
J = (ħh/m)

∑
kσ knkσ.

It is important to realize that, although Eqs (2.46) and (2.50) express the density and
the current in the plane-wave basis, they do not assume translation invariance of the
physical system under study: these definitions are completely general and apply to
gases, liquids, and solids, as long as their one-particle wave functions can be normalized
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in the volume V and therefore represented in the plane-wave basis. When the plane
waves are not the best choice, a change of basis like in doc–13 allows one to obtain
the most appropriate representation of the operators. This representation depends on
the wave functions ϕα, leading to expressions more complicated than Eqs (2.46) and
(2.50). We will stick to the plane waves for the general considerations and move to
other basis sets when appropriate, like for instance in doc–22 for the density operator
and in doc–76 for the current operator.

2.4 Independent electrons

2.4.1 Electrons in a periodic potential

A seminal problem in condensed-matter physics is that of independent electrons living
in a periodic atomic lattice. The lattice acts on the electrons via a periodic potential

V (r ) = V (r +Rn) =
∑

G

V (G)eiG·r , (2.51)

where Rn are the lattice sites and G are the vectors of the reciprocal lattice defined
by the condition eiG·Rn = 1. The electrons are not independent in Nature, because
the Coulomb interaction is not a small interaction compared with typical electron
energies. Nevertheless, in many circumstances, it turns out that replacing the Coulomb
interaction by an effective one-body potential is not a bad approximation. Depending
upon the level of sophistication, this one-body potential can take into account only the
classical part of the Coulomb interaction (Hartree approximation), add to this the effect
of the exchange interaction (Hartree-Fock approximation), or build in approximate
correlation effects (density-functional theory and Kohn-Sham approximation). But, in
the end, the structure of the problem remains that of independent electrons moving in
a periodic potential like the one in Eq. (2.51).

In this problem, it is a good idea to use the plane-wave basis set Eq. (2.29) and
decompose the wave vector k as k +G, where in the latter expression k lies in the first
Brillouin zone. This decomposition is unique such that, if k +G = k ′ +G′, then k = k ′

and G = G′. Using this property, we can write the Hamiltonian of the system as [see
doc–15]

H0 =
∑

k

∑
GG′

�
ħh2

2m
(k +G)2δGG′ + V (G −G′)

�
c†

k+Gck+G′ . (2.52)

We have omitted the spin indices for simplicity. This is just another way of stating the
Bloch theorem: in the plane-wave representation, the Hamiltonian of electrons in a
periodic potential is diagonal in the index k. Therefore, solving the problem reduces
to diagonalizing the matrix hGG′(k) =

ħh2

2m (k +G)2δGG′ + V (G −G′) independently for
each k in the first Brillouin zone. One thus obtains series of energy levels εkn known
as electron bands. Working in the basis which makes the matrix hGG′(k) diagonal, we
can express the grand-Hamiltonian in the simple form

K0 =
∑

k∈1stBZ

∑
n

ξknc†
knckn (2.53)
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with the excitation energies ξkn ≡ εkn − µ. Note that c†
kn in this expression is the

operator creating an electron in the Bloch state with quantum numbers (k, n) and
energy εkn, not to be confused with c†

k in Eq. (2.52), which creates an electron in a
plane-wave state.

The document doc–62 provides a nice practical implementation of Eq. (2.52) for
calculating the band structure of fourteen semiconductors with just a few lines of
code. To calculate energy bands in solids is a discipline per se and a great deal of
ingeniousness has been put into finding efficient and accurate methods for this task.
We will not touch this vast subject, which has gained a new impetus recently with
the burgeoning research on topological materials;1 however, we shall often refer to
one-particle excitation energies ξα, as we did already in Sec. 2.1.3. In doing so, we
generally have in mind the energy levels which would result from some independent-
electron treatment of the problem at hand. This serves as a basis for including the
effect of additional interactions not taken into account in the independent-electron
approximation.

2.4.2 Specific heat of independent electrons

We close this section by a problem of great historical importance, namely calculating
the temperature dependence of the electronic specific heat in a system of independent
electrons. In general, one has to inject the one-electron excitation energies ξα into
Eq. (2.13) and perform the summation numerically. An approximate analytical result
is obtained by recognizing that the temperature dependence stems mostly from the
occupation numbers while contributions due to the energy dependence of the spec-
trum and temperature dependence of the chemical potential are comparatively much
smaller.2 Neglecting the latter, we write

Cel
V =

kB

2

∑
α

(βξα)2

cosh(βξα) + 1
=

kB

2β

∫ ∞

−∞
d x

x2N el(x/β)
cosh x + 1

. (2.54)

We have introduced the density of states,

N el(ε) =
∑
α

δ(ε − ξα), (2.55)

and changed the integration variable from ε to x = βε. The function x2/(cosh x + 1)
is of order one near |x | = 2 and becomes negligible for |x | ¦ 10, in other words

1 See, e.g., A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004 (2016).
2 The chemical potential generally depends on temperature such as to keep the density fixed as the tem-

perature changes. From the condition dn/dT = 0 and the expression Eq. (2.14) giving the density of
independent fermions, we find

dµ
dT
= − 1

T

∑
α ξα f (ξα) f (−ξα)∑
α f (ξα) f (−ξα)

.

The product f (ξα) f (−ξα) is sensibly different from zero in an energy range of the order ±10kBT around
the Fermi energy. The DOS can often be considered constant in this energy range, such that the numerator
vanishes because the integrand is odd. This explains why the temperature variation of the chemical
potential can often be neglected at low temperature. For a particle-hole symmetric system, the chemical
potential is exactly temperature independent.

https://doi.org/10.1103/RevModPhys.88.021004
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|ξ| ¦ 10kBT . Therefore, if the density of states can be considered constant in the
interval −10kBT < ξ < 10kBT we can take it out of the integral and arrive at the
well-known result

Cel
V =

π2

3
k2

BN el(0)T. (2.56)

This formula provides a route to the experimental determination of the Fermi-level
density of states—a quantity of primary importance for solids—by measuring the slope
of the linear term in the specific heat at very low temperatures. An exact calculation
of the specific heat for free electrons, including the temperature dependence of the
chemical potential, is presented in doc–61.

2.5 Phonons

Phonons are the quanta of lattice vibrations in solids. In order to obtain a quantum
description of the phonons, one first writes the Hamiltonian of classical lattice vibrations.
At second order in the atomic displacements, this Hamiltonian describes a superposition
of independent harmonic oscillators. The classical oscillators are then quantized in the
usual way and their quanta are the phonons.

2.5.1 Classical lattice vibrations

Let’s consider a lattice with unit cells at positions Rn and let’s denote by uνi(Rn) the
displacement in the cartesian direction i of the atom ν in the cell located at Rn. If these
displacements are measured relative to the equilibrium positions, the whole lattice is
stationary with respect to these displacements, which means that ∂ U/∂ uνi(Rn) = 0,
where U is the elastic energy. Hence the expansion of U starts at second order in the
displacements:

U = U0 +
1
2

∑
nm

∑
νiµ j

∂ 2U
∂ uνi(Rn)∂ uµ j(Rm)

����
0

uνi(Rn)uµ j(Rm) + . . . (2.57)

In the harmonic approximation, one neglects higher-order terms (anharmonic terms)
and one searches the eigenmodes of the harmonic Hamiltonian. In a perfect crystal,
the matrix of force constants

Wνiµ j(Rn,Rm)≡
1p

MνMµ

∂ 2U
∂ uνi(Rn)∂ uµ j(Rm)

����
0

, (2.58)

where Mν is the mass of atom ν, is invariant upon translation by a lattice vector, i.e.,
Wνiµ j(Rn,Rm) =Wνiµ j(Rn −Rm). Its Fourier transform is called the dynamical matrix:

D(k)≡
∑

n

W (Rn)e
−ik·Rn . (2.59)

Diagonalizing this matrix (which has dimension s−2), we obtain a set of eigenvalues
and eigenvectors:

D(k)εkλ =ω
2
kλεkλ. (2.60)
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As the matrix W is real and positive-definite, the eigenvalues of D are real and positive
such that we could write them as ω2

kλ without loss of generality. The size of the
dynamical matrix is Nad × Nad, where Na is the number of atoms per cell and d is the
spatial dimension. Hence there are Nad eigenvalues for each wave vector k. d of those
are acoustic modes such that ωkλ∝ k as k → 0. The others are optical modes with a
finite frequency at k = 0. We introduce the normal coordinates qkλ, which represent
the displacements uνi(Rn) in the basis formed by the eigenvectors εkλ of the dynamical
matrix:

uνi(Rn) =
1p
Mν

1pN
∑
kλ

qkλ[εkλ]νi eik·Rn . (2.61)

N is the number of elementary cells in the system. In terms of these new variables,
the harmonic potential becomes simply [see doc–16]

U = U0 +
1
2

∑
kλ

|qkλ|2ω2
kλ. (2.62)

Adding to this harmonic potential the kinetic energy [see doc–16]

1
2

∑
nνi

Mνu̇
2
νi(Rn) =

1
2

∑
kλ

|q̇kλ|2 ≡
1
2

∑
kλ

|pkλ|2, (2.63)

we obtain the Hamiltonian describing classical lattice vibrations:

Hlattice =
∑
kλ

1
2

�|pkλ|2 +ω2
kλ|qkλ|2

�
. (2.64)

This is a collection of independent classical harmonic oscillators.1 Like for the one-
electron bands εkn, to calculate the phonon frequenciesωkλ is a whole field of research
that we will not touch here. For a qualitative understanding of the various vibrational
modes, one can use spring models as described in doc–63.

2.5.2 Hamiltonian of the phonons

The classical oscillators of Eq. (2.64) are quantized in the usual way by introducing
the boson creation and annihilation operators b†

kλ and bkλ for the oscillator’s quanta.
The quantized Hamiltonian takes the well-known form

y Hph =
∑
kλ

ħhωkλ

�
b†

kλbkλ +
1
2

�
, (2.65)

and the displacement operators in real space read

uνi(Rn) =
1pN

∑
kλ

[ukλ]νi eik·Rn (2.66a)

1 Quick reminder: a classical body of mass M in a harmonic potential centered at x = 0 has an energy
H = 1

2 M ẋ2 + 1
2 K x2. It oscillates with a frequency ω =

p
K/M . In terms of the conjugated variables

q ≡pM x and p ≡pM ẋ , the Hamiltonian is H = 1
2 (p

2 +ω2q2). The canonical equations of motion are
q̇ = ∂ H/∂ p = p, and ṗ = −∂ H/∂ q = −ω2q.
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with

[ukλ]νi =

√√ ħh
2Mνωkλ

[εkλ]νi

�
bkλ + b†

−kλ

�
. (2.66b)

Note that the k sums in Eqs (2.61)–(2.66) span the first Brillouin zone.

2.5.3 Einstein and Debye models for the phonon specific heat

The phonons provide a large contribution to the specific heat of solids, even the
dominant contribution at ambient temperature. In order to estimate this contribution,
we again use the general expression, Eq. (2.13), specialized to the case of bosons with
temperature-independent frequencies ωkλ:

Cph
V =

kB

2

∑
kλ

(βħhωkλ)2

cosh(βħhωkλ)− 1
=

kB

2β

∫ ∞

−∞
d x

x2Nph(x/β)
cosh x − 1

. (2.67)

Nph(ε) =
∑

kλ δ(ε − ħhωkλ) is the phonon density of states. The Einstein and Debye
models for the phonon specific heat result from two different crude models for the
phonon density of states. Einstein’s model simply assumes that all phonons have the
same frequency ωE. This frequency plays the role of an average phonon frequency,
related to a characteristic temperature kBTE = ħhωE. The resulting phonon DOS is
Nph

E (ε) = Nmodesδ(ε − ħhωE). In the Debye model, it is assumed that the dispersion
relation of the phonons is exactly linear and cut at some frequencyωD, which therefore
plays the role of the largest phonon frequency in the system. The resulting phonon
DOS is quadratic up to ωD and reads [see doc–17]

Nph
D (ε) = 3Nmodes

ε2

(ħhωD)3
θ (ħhωD − ε). (2.68)

Both models satisfy the sum rule
∫∞

0 dεNph(ε) = Nmodes, where Nmodes is the total
number of phonon modes in the system. We obtain

Cph
V ,E = kBNmodes

1
2

(TE/T )2

cosh(TE/T )− 1
(2.69)

Cph
V ,D = kBNmodes

3
2

�
T
TD

�3
∫ TD/T

0

x4 d x
cosh x − 1

. (2.70)

Both models agree on giving Cph
V = kBNmodes at high temperature, which is the law

of Dulong and Petit. To see this in the Debye model, replace the integrand by its
expansion near x = 0, namely 2x2, as is justified if T � TD. At low temperature,
Cph
V increases exponentially in the Einstein model as (TE/T)2e−TE/T . In the Debye

model, we may extend the upper bound of the integral to +∞, and get a T 3 behavior:
Cph
V ,D(T � TD) = kBNmodes(4π4/5)(T/TD)3. The two models are compared in Fig. 2.2.
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Figure 2.2: Temperature depen-
dence of the phonon specific heat
in the Einstein and Debye models.
For a meaningful comparison, ωE is
taken as the “center of gravity” of
the Debye density of states: ħhωE =∫∞

0
dε εN ph

D (ε)/
∫∞

0
dεN ph

D (ε) =
3
4ħhωD, so that TE =

3
4 TD.

2.5.4 Electron-phonon coupling

The electrons interact with the ionic lattice through the one-body Hamiltonian

Hel-ion =

∫
dr (−e)n(r )

∑
nν

Vν(r −Rn −τν), (2.71)

where n(r ) is the electron density, Vν(r ) is the potential of atom ν and Rn + τν is
the position of the atom ν in the cell located at Rn. The vector τν is decomposed as
τν = τ0

ν + uν(Rn) with uν(Rn) the displacement from the equilibrium position. For
small displacements, the potential can be expanded:

Vν(r −Rn −τν) = Vν(r −Rn −τ0
ν)−∇Vν(r −Rn −τ0

ν) · uν(Rn) + . . . (2.72)

The first term gives the interaction of the electrons with the static undeformed lattice
in the absence of phonons, while the second terms gives the electron-phonon coupling
in the harmonic approximation. Using the known expressions for the phonons, this
term can be rewritten as [see doc–18]:

y Hel-ph =
∑
kσ

∑
qλ

gqλc†
k+qσckσ

�
bqλ + b†

−qλ

�
, (2.73)

with the electron-phonon coupling vertex given by

gqλ =
ie
Vcell

∑
ν

√√√ ħh
2MνωqλN

�
[εqλ]ν · q

�
Vν(q)e

−iq ·τ0
ν . (2.74)

In an isotropic system, the polarization vectors are either parallel or perpendicular
to the phonon propagation vector q . Only the longitudinal phonons couple to the
electrons in this case. Note that the electron-phonon coupling has the dimension of
energy but contains a factor 1/

pN . This is consistent with the requirement that the
Hamiltonian Eq. (2.73) be extensive, i.e.,∝N : the k sum scales like a density n(q)
[see Eq. (2.46)] which goes like N , while Eq. (2.66) shows that, without gqλ the
q sum scales like

pN . Note also that the coupling vertex gqλ does not depend on
the electron wave vector k because Eq. (2.73) is expressed in the plane-wave basis
using Eq. (2.46); in a different basis, for instance for Bloch states, the coupling vertex
depends on the electronic quantum numbers.
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Correlation functions: definitions and properties

The correlation functions encode the relationship between two observables at different
times. This type of object is typically of the form 〈A(t)B(t ′)〉, where A and B are
two operators and, for a system in thermal equilibrium, 〈· · · 〉 represents a thermal
average. One is usually interested in steady states where these functions are invariant
by translation in time, such that one can fix one of the times to zero without loss
of generality. There are various kinds of correlation functions for each given pair of
operators A and B. In this chapter, we review the diverse definitions that can be found
in the condensed-matter literature. We emphasize the similarities and differences
between them and we fix a notation in order to clear ambiguities. We present the
Lehmann spectral representation and use it to derive a number of analytical properties
and sum rules that the correlation functions must obey based on general principles.

3.1 A zoo of correlation functions

Depending upon the particular physical problem that we are considering, we may
need to introduce different sorts of correlation functions. Although all of them share
similarities and are related one to another, they differ in essential ways and should not
be confused. We refer to the correlation function of the operators A and B in general
with the symbol CAB and we use superscripts to distinguish the various flavors. We
conform to this notation whenever discussing general properties that are independent
of A and B. Other notations will be introduced later for correlation functions of specific
operators. The various types of correlation functions are:

Causal (or “time-ordered”) CAB(t) = −
i
ħh 〈Tη{A(t)B(0)}〉 (3.1)

Retarded first type C+AB(t) = −
i
ħhθ (t)〈A(t)B(0)〉 (3.2)

Advanced first type C−AB(t) = −
i
ħhηθ (−t)〈B(0)A(t)〉 (3.3)

25
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Retarded second type
(or simply “retarded”)

CR
AB(t) = −

i
ħhθ (t)〈[A(t), B(0)]−η〉 (3.4)

Advanced second type
(or simply “advanced”)

CA
AB(t) =

i
ħhθ (−t)〈[A(t), B(0)]−η〉 (3.5)

Greater C>AB(t) = −
i
ħh 〈A(t)B(0)〉 (3.6)

Lesser C<AB(t) = −
i
ħhη〈B(0)A(t)〉 (3.7)

Keldysh CK
AB(t) = −

i
ħh 〈[A(t), B(0)]+η〉 (3.8)

Imaginary-time (or “Matsubara” or
“thermal” or “temperature”)

CAB(τ) = −〈TτA(τ)B(0)〉. (3.9)

The last zoo member—the somewhat eccentric imaginary-time correlation function—is
listed here for completeness but will be described in more detail in Chapter 4. It
is nothing but a convenient tool that helps evaluating the real-time functions. The
imaginary-time function is often easier to calculate than the real-time one and is
especially well suited at finite temperature; furthermore it allows one to recover the
real-time functions by analytic continuation. In spite of its weird appearance, it will
therefore become our favorite animal.

In these various definitions, the time evolution of the operators is meant in the Heisen-
berg picture like in Eq. (2.15), 〈· · · 〉 stands for the thermal average of Eq. (2.2), and Tη
is the time ordering operator defined in Eq. (5), which sorts the operators on which it
acts by order of decreasing times. Beware that the value of η in Eqs (3.1) to (3.9) is not�

determined by the particle statistics but by the type of operators A and B. For instance,
even for fermions we must use η= +1 if we are considering “bosonic” operators that
involve products of two fermion operators, like spin or charge densities.

3.2 Lehmann spectral representation

The spectral representation is a way to express the time-Fourier transform of all correla-
tion functions that we have just defined in term of only two functions of energy called
the spectral-density functions, or simply the spectral functions. This representation
is extremely helpful for studying the analytic properties of the correlation functions,
finding out the mathematical relations between them, and performing various kinds
of calculations. The spectral-density functions can be written down explicitly using a
complete set of eigenstates.

All correlation functions that we have defined (except the imaginary-time function to
be discussed later) can be expressed in terms of the two functions

F±1 (t) = ∓
i
ħhθ (±t)〈A(t)B(0)〉 and F±2 (t) = ±η

i
ħhθ (±t)〈B(0)A(t)〉.

For example, CAB(t) = F+1 (t) + F−2 (t), C+AB(t) = F+1 (t), etc. Consider first

F±1 (t) = ∓
i
ħhθ (±t)

1
Z

Tr e−βK eiK t/ħhAe−iK t/ħhB. (3.10)
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We work as usual in the grand-canonical ensemble with K = H − µN . Introduce a
complete set of states |a〉 such that K |a〉 = Ka|a〉, insert twice the identity and use
Eq. (8) to get [see doc–19]

F±1 (ω) =
∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε ± i0+
(3.11)

with
y ρ>AB(ε) =

1
Z

∑
ab

e−βKa〈a|A|b〉〈b|B|a〉δ(ε + Ka − Kb). (3.12)

In very much the same way, we find [see doc–19]

F±2 (ω) =
∫ ∞

−∞
dε

ρ<AB(ε)

ħhω− ε ± i0+
(3.13)

with
y ρ<AB(ε) = −η

1
Z

∑
ab

e−βKb〈a|A|b〉〈b|B|a〉δ(ε + Ka − Kb). (3.14)

These results are summarized in the following table. It is seen that all correlators
involved in the various real-time correlation functions can be deduced from the two
spectral functions ρ>AB(ε) and ρ<AB(ε).

Function Fourier transform

− i
ħhθ (t)〈A(t)B(0)〉

∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε + i0+

i
ħhθ (−t)〈A(t)B(0)〉

∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε − i0+

η i
ħhθ (t)〈B(0)A(t)〉

∫ ∞

−∞
dε

ρ<AB(ε)

ħhω− ε + i0+

−η i
ħhθ (−t)〈B(0)A(t)〉

∫ ∞

−∞
dε

ρ<AB(ε)

ħhω− ε − i0+

We can now write down, for definiteness and future reference, the spectral representa-
tion for each type of correlation function:

Causal
(F+1 + F−2 )

CAB(t) = −
i
ħhθ (t)〈A(t)B(0)〉 −

i
ħhηθ (−t)〈B(0)A(t)〉

CAB(ω) =

∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε + i0+
+

∫ ∞

−∞
dε

ρ<AB(ε)

ħhω− ε − i0+
(3.15)

Retarded,
first type
(F+1 )

C+AB(t) = −
i
ħhθ (t)〈A(t)B(0)〉

C+AB(ω) =

∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε + i0+
(3.16)
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Advanced,
first type
(F−2 )

C−AB(t) = −η
i
ħhθ (−t)〈B(0)A(t)〉

C−AB(ω) =

∫ ∞

−∞
dε

ρ<AB(ε)

ħhω− ε − i0+
(3.17)

Retarded,
second type
(F+1 + F+2 )

CR
AB(t) = −

i
ħhθ (t)〈A(t)B(0)〉+η

i
ħhθ (t)〈B(0)A(t)〉

CR
AB(ω) =

∫ ∞

−∞
dε
ρ>AB(ε) +ρ

<
AB(ε)

ħhω− ε + i0+
(3.18)

Advanced,
second type
(F−1 + F−2 )

CA
AB(t) =

i
ħhθ (−t)〈A(t)B(0)〉 −η i

ħhθ (−t)〈B(0)A(t)〉

CA
AB(ω) =

∫ ∞

−∞
dε
ρ>AB(ε) +ρ

<
AB(ε)

ħhω− ε − i0+
(3.19)

Greater
(F+1 − F−1 )
[see doc–20]

C>AB(t) = −
i
ħhθ (t)〈A(t)B(0)〉 −

i
ħhθ (−t)〈A(t)B(0)〉

C>AB(ω) = −2πiρ>AB(ħhω) (3.20)

Lesser
(−F+2 + F−2 )
[see doc–20]

C<AB(t) = −η
i
ħhθ (t)〈B(0)A(t)〉 −η

i
ħhθ (−t)〈B(0)A(t)〉

C<AB(ω) = 2πiρ<AB(ħhω) (3.21)

Keldysh CK
AB(t) = C>AB(t) + C<AB(t)

CK
AB(ω) = −2πi[ρ>AB(ħhω)−ρ<AB(ħhω)]. (3.22)

For convenience, we also define the total spectral function

y ρAB(ε) = ρ
>
AB(ε) +ρ

<
AB(ε). (3.23)

When using the definition of the spectral function, Eqs (3.12), (3.14), and (3.23), it
is important� to keep in mind that these formula are valid provided the states |a〉 and
|b〉 are eigenstates of K with the eigenvalues Ka and Kb. If the operators A and B do
not conserve the number of particles—for instance, single creation and annihilation
operators don’t—the states |a〉 and |b〉 have different particle numbers and the delta
functions in Eqs (3.12) and (3.14) contain a term −µ(Na − Nb).

3.3 Independent particles

In Chapter 2, we saw how to describe many-body systems of independent particles
within the second-quantization formalism. In this section, we will see how the spectral
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representation allows one to express the correlation functions of such independent-
particle systems in terms of the single-particle energies and occupation numbers. We
focus on two correlation functions of particular importance for electrons: the one-
particle Green’s function and the density-density correlation function. All correlation
functions for independent particles can be obtained with the same method.

3.3.1 One-particle Green’s function of independent electrons

The one-electron Green’s function is the correlation function of the electron creation
and annihilation operators. As we shall see in Sec. 5.1.3.1, it has a simple physical
interpretation and is the tool of choice to describe the one-electron spectroscopies such
as photoemission and tunneling. For independent electrons, it is best to work with the
one-electron basis formed by the eigenstates of the Hamiltonian, i.e., K =

∑
α ξαc†

αcα.
We obtain the Green’s function in this representation from our previous general formulas
by setting

A≡ cα, B ≡ c†
α, and η= −1.

Since B = A†, the spectral functions are real. Exploiting the properties of creation and
annihilation operators for independent fermions, we find [see doc–21]

ρ>
cαc†

α

(ε) = f (−ξα)δ(ε − ξα) and ρ<
cαc†

α

(ε) = f (ξα)δ(ε − ξα), (3.24)

such that the total spectral function—this is what is usually meant by “spectral function”
when dealing with the one-electron Green’s function—is simply

ρcαc†
α
(ε) = ρ>

cαc†
α

(ε) +ρ<
cαc†

α

(ε)≡ A0(α,ε) = δ(ε − ξα). (3.25)

This is a first very important result expressing the fact that, in a system of independent
particles, the one-particle excitations are eigenstates and therefore have an infinite
life-time. We shall come back to this later. Using the spectral representation, we can
write down the retarded Green’s function for independent electrons in the basis that
diagonalizes the Hamiltonian,

y GR
0 (α,ε)≡ CR

cαc†
α
(ε/ħh) =

∫ ∞

−∞
dε′

A0(α,ε′)
ε − ε′ + i0+

=
1

ε − ξα + i0+
. (3.26)

Here, we regard the Green’s function as a function of the energy ε measured from
the chemical potential rather than a function of the frequency ω: this is often more
convenient and saves plenty of ħh factors. It is customary to use the letter “G” for the
one-particle Green’s function and the letter “A” for its spectral function. The subscript
“0” reminds that we are dealing with independent particles. These expressions satisfy
the properties

A(α,ε) = − 1
π

Im GR(α,ε),

∫ ∞

−∞
dεA(α,ε) = 1, and GR(α, |ε| →∞) = 1

ε
,

which are also satisfied in the general case of interacting electrons, as we shall see
shortly. The very simple form of Eq. (3.26) results because the operators c†

α create
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eigenstates of the Hamiltonian. This is also the reason why C cαc†
β
(ω) = 0 for α 6= β .

Other one-particle Green’s functions may be defined, for instance the momentum-space
Green’s function G(k,ε) = C ck c†

k
(ε/ħh), where c†

k is the creation operator for a plane
wave, or the real-space Green’s function G(r , r ′,ε) = C cr c†

r ′(ε/ħh), where c†
r creates

an electron at position r . Because c†
k and c†

r are related to c†
α by a straightforward

change of basis [see doc–13], G0(k,ε) and G0(r , r ′,ε) are also related to G0(α,ε). For
instance, because c†

r =
∑
αϕ
∗
α(r )c

†
α where ϕα(r ) is the wave function of the eigenstate

created by c†
α, we have

GR
0 (r , r ′,ε) =

∑
α

ϕα(r )ϕ
∗
α(r

′)
ε − ξα + i0+

(3.27)

for the real-space retarded Green’s function of independent electrons. If the eigenstates
are not known and an arbitrary basis has to be used, an inversion of the operator ε11−K
will be necessary in order to obtain the Green’s function, as we will see in Sec. 5.2.2.1.

3.3.2 Density-density correlation function of free electrons

We have seen in Sec. 1.1 that the density-density correlation function, i.e., the correla-
tion of the operators n(q) and n(−q), can be measured experimentally by studying the
scattering cross section for particles interacting with the material through short-range
forces. For free electrons, the calculation of the density-density correlation is easily
done by means of the spectral representation. We set

A≡ n(q) =
∑
kσ

c†
kσck+qσ, B ≡ n(−q) = [n(q)]†, η= +1.

Equation (2.46) for the density is valid provided that c†
kσ is the creation operator for the

plane-wave state Eq. (2.29) of wave vector k. Since we are dealing with free electrons,
these states also diagonalize the Hamiltonian. We find for the spectral functions [see
doc–21]

ρ>n(q)n(−q)(ε) =
∑
kσ

f (ξk) f (−ξk+q )δ(ε + ξk − ξk+q ) (3.28a)

ρ<n(q)n(−q)(ε) = −
∑
kσ

f (−ξk) f (ξk+q )δ(ε + ξk − ξk+q ). (3.28b)

The retarded density-density correlation function, also known as the charge susceptibil-
ity, is therefore simply [see doc–21]

y χ0
nn(q ,ε)≡ CR

n(q)n(−q)(ε/ħh) =
∑
kσ

f (ξk)− f (ξk+q )

ε + ξk − ξk+q + i0+
, (3.29)

where the superscript “0” again reminds that this result applies to free electrons. This
result is also very important, because it is the basis for describing the collective charge
behavior of interacting electrons (screening, plasmon, zero sound, etc.) via the RPA
approximation, as we shall see in Sec. 5.1.4. This result can be painlessly generalized to
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the case of independent—but not free—electrons, like e.g. Bloch electrons in periodic
crystals [see doc–22]. In such situations, the correlation function also depends on the
electronic wave functions, not only on the energies and occupation numbers like in
Eq. (3.29).

3.4 Analytic properties and sum rules

Using the spectral representation, one can prove general analytic properties, symmetries,
as well as several sum rules that the exact correlation functions must obey. These
results are useful both for checking the consistency of approximations and for the
analysis of experimental data.

3.4.1 General symmetry properties of the spectral functions

By exchanging the dummy indices a and b in the definitions of the spectral functions,
Eqs (3.12) and (3.14), one easily finds that

ρ>AB(−ε) = −ηρ<BA(ε), (3.30)

from which we deduce for the total spectral function:

ρAB(−ε) = −ηρBA(ε). (3.31)

As a result, the spectral function is either odd or even when A= B, depending upon
the value of η.

We will study below the perturbation theory which allows one to calculate the retarded
and advanced correlation functions of the second type, i.e., to obtain the total spectral
function ρAB [see Eq. (3.18)]. On the other hand, we have seen that it is the greater
function that is measured in scattering experiments. We therefore need a formula in
order to compute the greater and lesser spectral functions from the total one. These
relations can be deduced from Eqs (3.12), (3.14), and (3.23). They are [see doc–23]

ρ>AB(ε) = −ηd−η(−ε)ρAB(ε), ρ<AB(ε) = −ηd−η(ε)ρAB(ε). (3.32)

Hence the greater and lesser spectral functions are actually not independent, since
they are related by

ρ>AB(ε) = −ηeβερ<AB(ε), ρ<AB(ε) = −ηe−βερ>AB(ε). (3.33)

Lastly, by combining Eqs (3.30) and (3.33), we obtain relations known as the detailed
balance:

ρ>AB(−ε) = e−βερ>BA(ε), ρ<AB(−ε) = eβερ<BA(ε). (3.34)

3.4.2 Sum rule for the spectral function

Integrating the spectral functions over the energy, we obtain [see doc–24]
∫ ∞

−∞
dε ρ>AB(ε) = 〈AB〉 and

∫ ∞

−∞
dε ρ<AB(ε) = −η〈BA〉, (3.35)
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such that the spectral function satisfies what is sometimes called the f-sum rule:

∫ ∞

−∞
dε ρAB(ε) = 〈[A, B]−η〉. (3.36)

In electronic systems, Eq. (3.35) can be for instance used to express the average double
occupancy 〈n↑n↓〉 in terms of the density-density and spin-spin correlation functions
[see doc–64]. In the case of the one-particle Green’s function (A= cα, B = c†

α, η = −1),
the operators anti-commute [Eq. (2.41)] and consequently the sum rule equals one:

∫ ∞

−∞
dεA(α,ε) = 1. (3.37)

This sum rule expresses the conservation of spectral weight. When the particles interact
one with the other, the spectral weight of the one-particle excitations is no longer
concentrated at a single energy like in Eq. (3.25), but it is spread over a certain energy
range. Nothing is lost, though, and the total weight remains one.

3.4.3 Sum rule for the occupation numbers

The average number of particles in the one-particle state ϕα is 〈nα〉= 〈a†
αaα〉. Using

the spectral representation, we can show that [see doc–24]

〈nα〉=
∫ ∞

−∞
dε d−η(ε)ρaαa†

α
(ε). (3.38)

The relation 〈nα〉= d−η(ξα) valid for independent particles is recovered if one substi-
tutes the independent-particle spectral function ρaαa†

α
(ε) = δ(ε − ξα). For fermions,

Eq. (3.38) can be used to relate the momentum distribution function 〈nk〉 to the spectral
function:

〈nk〉=
∫ ∞

−∞
dε f (ε)A(k,ε). (3.39)

The latter sum rule is useful in the analysis of photoemission experiments.

3.4.4 Sum rule for the energy

For a general Hamiltonian of the form Eq. (2.45), it is possible to express the average
energy 〈K〉= 〈K0〉+ 〈V 〉 in terms of the spectral function ρaαa†

α
(ε):

〈K〉= 1
2

�
〈K0〉+

∑
α

∫ ∞

−∞
dε ε d−η(ε)ρaαa†

α
(ε)

�
. (3.40)

The derivation is performed in doc–24. If the kinetic energy is diagonal in the basis of
the a†

α, its average value can also be expressed in terms of the spectral function using
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Eq. (3.38), 〈K0〉 =
∑
α ξα

∫∞
−∞ dε d−η(ε)ρaαa†

α
(ε), such that Eq. (3.40) can be put in

the form

〈K〉=
∑
α

∫ ∞

−∞
dε 1

2 (ξα + ε)d−η(ε)ρaαa†
α
(ε). (3.41)

This is known as the Galitskii-Migdal formula. It is also interesting to check that in the
case V = 0, one recovers from this expression the expected formula for non-interacting
particles [see doc–24]:

〈K0〉=
∑
α

ξαd−η(ξα). (3.42)

While the knowledge of the spectral function ρaαa†
α

is sufficient to deduce the average
energy, it is not sufficient to obtain the grand potential Ω and thus the thermodynamic
properties. As shown by Eq. (1.9), in order to obtain Ω we have to know the spectral
function for all values of the coupling constant [see doc–46].

3.4.5 High-frequency behavior: moment expansion

At sufficiently high frequency, the correlation functions can be expanded in powers of
1/ω. This expansion is easily written down using the spectral representation. Consider
for example the retarded function:

CR
AB(ω) =

∫ ∞

−∞
dε

ρAB(ε)
ħhω+ − ε =

1
ħhω+

∫ ∞

−∞
dε

ρAB(ε)
1− ε/ħhω+

=
∞∑
n=0

1
(ħhω+)n+1

∫ ∞

−∞
dε εnρAB(ε), (3.43)

where we have set ħhω+ = ħhω+ i0+ and used the expansion 1/(1− x) = 1+ x+ x2+ . . .
Hence the (n+1)th-order term in the 1/ω expansion is given by the nth moment of the
spectral function:

Mn =

∫ ∞

−∞
dε εnρAB(ε). (3.44)

At lowest order, we see from Eq. (3.36) that M0 = 〈[A, B]−η〉. Therefore, the asymptotic
high-frequency behavior of the correlation function is

CR
AB(ω) =

〈[A, B]−η〉
ħhω for |ω| →∞. (3.45)

We could replace ħhω+ by ħhω because 1/ω+ = 1/ω for ω 6= 0. This result generalizes
what we have obtained in Sec. 3.3.1 for the Green’s function of independent electrons.
It also shows that if [A, B]−η = 0, the correlation function vanishes at least as fast as
1/ω2 at high frequency. Higher-order moments can also be expressed as average values
of commutators. For instance [see doc–25]

M1 =

∫ ∞

−∞
dε ε ρAB(ε) = −


�
[K , A], B

�
−η
�
. (3.46)
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The generalization to arbitrary order can easily be foreseen. Such commutators are
often easier to calculate than the full correlation function and the high-frequency
behavior can thus be obtained exactly.

3.4.6 Additional relations for adjoint operators

The spectral functions are in general complex: one readily checks from the definitions
that [ρ>,<

AB (ε)]
∗ = ρ>,<

B†A†(ε). In many cases of interest, though, we will deal with
correlation functions of two adjoint operators, i.e., B = A†. Several additional relations
can be proven in this particular case, owing to the fact that the spectral functions are
real. Among these relations, the most useful is perhaps

y ρAA†(ε) = − 1
π

Im CR
AA†(ε/ħh), (3.47)

which follows immediately from Eqs (3.18), (3.23), and (10). This relation is commonly
called fluctuation-dissipation theorem. The spectral function ρAA†(ε) indeed contains
all information about the fluctuations of the observable A, while it can be shown that
the quantity (−1/π)Im CR

AA†(ω) controls the energy dissipated when the observable A
is excited by an external field of frequency ω [see doc–70]. Eq. (3.47) can also be
regarded as a Kramers-Kronig relation expressing the fact that the retarded correlation
functions are causal. Eq. (3.47), together with the spectral representation of CR

AA†(ω)
in Eq. (3.18), indeed imply that the real and imaginary parts are related by the usual
Kramers-Kronig relation:

Re CR
AA†(ω) = − 1

π
P
∫ ∞

−∞
dω′

Im CR
AA†(ω′)

ω−ω′ . (3.48)

The document doc–65 discusses the relationships between analyticity of a function in
the complex plane, causality, and the Kramers-Kronig relations.
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Imaginary-time formalism

The correlation functions that we are interested in are functions of time and tem-
perature. The time dependence arises from the evolution operator, which typically
implies exponentiating the Hamiltonian multiplied by −i t/ħh, while the temperature
dependence stems from the statistical density matrix, which is an exponential of the
Hamiltonian as well, but multiplied by −β . It turns out that the direct calculation of
time-dependent correlation functions for interacting particles at finite temperature is
hard. The very convenient tool of time ordering, which at zero temperature allows one
to order the operators in the expansion of the time evolution, cannot order operators
along both the i t/ħh and β axes. The imaginary-time formalism introduced in this
chapter gets around the difficulty by rotating the real-time axis by ninety degrees into
the complex plane, where the evolution operator becomes identical to the statistical
density matrix.

4.1 Motivation

In order to make progress beyond the independent-particle stage that we saw in Sec. 3.3,
we need a method for calculating correlation functions without completely neglecting
the interactions. We must evaluate quantities of the kind

〈A(t)B(0)〉= TrρA(t)B, (4.1)

where [see Eqs (2.2), (2.15) and Sec. 2.2.1]

ρ =
e−βK

Tr e−βK
, K = H −µN , A(t) = U†(t)AU(t), and iħh∂t U(t) = KU(t).

One approach is perturbation theory, assuming that the Hamiltonian can be split in
a part K0 that can be solved and a part V that contains the difficult terms. We then
seek an expansion in powers of V . Expanding e−βK and e−iK t/ħh directly is not a good
idea because this would mix together powers of K0 and powers of V . There is in fact
no reason to expand in powers of K0. The solution is the interaction picture, in which
the evolution operator is written as a product U = U0Û and the time evolution of

35
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the operators is governed by K0 (see Sec. 2.2.1). In the interaction picture, we have
[Eq. (2.20)]

〈A(t)B(0)〉= Trρ Û†(t)Â(t)Û(t)B (4.2)

and we have seen that the evolution Û(t) has a formal expansion in powers of V ,
Eq. (2.23), which can be made very elegant thanks to the time ordering operator.

The difficulty is that we don’t have an equivalent expansion for ρ. The density matrix
follows the equation of motion −∂βρ = (K − 〈K〉)ρ—known as the Bloch equation—
which is similar to the equation of motion of U(t), however with the time variable
t replaced by −iħhβ . This leads to a simple expansion of ρ in powers of V , but this
expansion involves an “evolution” of the interaction along the imaginary variable −iħhβ
rather than along the time axis. Mixing this expansion with the expansion of Û(t) in
real time leads to an intractable expression, mainly because there is no way to “time
order” mixed operators that evolve along two orthogonal axes.

The solution proposed by Matsubara1 exploits the similarity between the operators
e−βK and e−iK t/ħh and considers an analytic continuation e−iKz of both of them in the
plane of complex times ħhz. One then replaces the real-time evolution that Û carries
along t by an imaginary-time evolution along −iħhτ, τ ∈ R: e−iK t/ħh→ e−iK(−iτ) = e−Kτ.
This is done by introducing new operators that evolve in imaginary rather than real
time. Thanks to this trick, a tractable expansion of the correlation functions of these
new operators evolving in imaginary time can be written down. Due to the analytic
nature of e−iKz , it turns out that the real-time functions in which we are interested can
be recovered by analytic continuation of the imaginary-time ones.

In order to achieve this program, we introduce the new operators

y A(τ)≡ eτKAe−τK , (4.3)

where τ is a real number in the range −β < τ < β .2 Note that the unit of τ is
inverse energy—time divided by ħh— rather than time. Now we ought to study the
imaginary-time correlation functions of the kind

〈A(τ)B(0)〉= TrρA(τ)B (4.4)

instead of their real-time counterparts 〈A(t)B(0)〉. This additional complication is
the price to pay for working at finite temperature, which implies using the statistical
density matrix. At zero temperature, the traces involving ρ are replaced by ground-
state expectation values and the problem does not occur. The imaginary time is avoided
in many textbooks that focus on the zero-temperature perturbation theory. While this
is sufficient for many purposes, it lacks the generality of a finite-temperature formalism.
After all, experiments are never performed at zero temperature.

Before moving on, we point out two reasons not to spend too much time studying
the zero-temperature formalism. First, this formalism can give the wrong answer:
in some instances, the T = 0 results do not coincide with the T → 0 limit of the
finite-temperature ones. This is due to the discontinuity of the distribution functions

1 T. Matsubara, Prog. Theor. Phys. 14, 351 (1955).
2 The imaginary-time evolution is periodic with period 2β .

https://doi.org/10.1143/PTP.14.351
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0
τ

G0(τ)

β−β 2β−2β

η = +1

τ

G0(τ)

0

β−β
2β−2β

η= −1

Figure 4.1: The imaginary-time correlation functions are real if the Hamiltonian is real, periodic
over 2β , and periodic (anti-periodic) over β for bosonic (fermionic) operators. The example
shown is the non-interacting single-particle Green’s function given by Eq. (17) for ε = 2kBT ;
see also Sec. 5.2.2.1. Due to the discontinuity at τ= 0, it is meaningless to refer to correlation
functions at τ= 0 and we shall always refer to τ= 0+ or τ= 0−.

at T = 0, a discontinuity that is absent as long as T remains finite.1 Furthermore,
the perturbation theory at T = 0 delivers the real-time ordered or causal correlation
functions, Eq. (3.1), which are not very useful per se. In contrast, as we shall see, the
imaginary-time ordered correlations functions provided by the Matsubara formalism
give access to the retarded correlation functions, which are directly relevant for making
contact with experiments.

4.2 Correlation functions in imaginary time

We define the imaginary-time correlation function of the operators A and B as

y CAB(τ) = −〈TτA(τ)B(0)〉 (4.5)

where Tτ is the τ-ordering operator, defined in complete analogy with Eq. (5):

TτA(τ)B(0) = θ (τ)A(τ)B(0) +ηθ (−τ)B(0)A(τ). (4.6)

The index τ in Tτ is there to avoid confusion with the temperature T ; it does not mean
that Tτ is a function of τ. Like for the real-time functions, the value of η is set by the
statistics of the operators, not that of the particles (see Sec. 3.1). We use script instead
of roman symbols for imaginary-time objects and greek letters instead or roman letters
for the time argument. The first important property to notice is that the imaginary-time
correlation functions are “η-periodic” as a function of τ [see doc–26]:

CAB(τ− β) = ηCAB(τ) 0< τ < β . (4.7)

Hence CAB(τ) at negative imaginary time is not independent from CAB(τ) at positive
time. An illustration is given in Fig. 4.1. Being periodic functions of τ, the correlation
functions have a representation as a discrete Fourier series:

y CAB(τ) =
1
β

∑
iνn

CAB(iνn)e
−iνnτ. (4.8)

1 W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960).

https://doi.org/10.1103/PhysRev.118.41
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Figure 4.2: The analytic continuation of the Bose-Einstein (left) and Fermi-Dirac (right)
distribution to the complex plane has poles along the imaginary axis at the Matsubara frequencies
iΩn and iωn, respectively.

The η-periodicity requires that e−iνn(τ−β) = ηe−iνnτ, in other words eiνnβ = η, which
means that

y νn =





2nπ/β ≡ Ωn η= +1

(2n+ 1)π/β ≡ωn η= −1.
(4.9)

The discrete quantities Ωn and ωn are called the bosonic and fermionic Matsubara
frequencies, respectively. We use the notation νn when referring indistinctively to
bosonic and fermionic frequencies. Note that the common practice is to call them
frequencies although they are actually energies. Figure 4.2 shows that the analytic
continuation d−η(z) of the distribution functions, Eq. (6), has poles at the Matsubara
frequencies. The inverse Fourier transform reads1

y CAB(iνn) =

∫ β

0

dτCAB(τ)e
iνnτ. (4.10)

4.3 Analytic continuation

The most remarkable property of the imaginary-time ordered correlation functions is
that they have the same spectral representation as the real-time retarded and advanced
functions. To see this, we expand CAB(τ) like in Sec. 3.2 using the complete set of
eigenstates of H and we obtain [see doc–27]:

CAB(iνn) =

∫ ∞

−∞
dε
ρAB(ε)
iνn − ε

, (4.11)

1 The definition of the discrete Fourier transform implies integration over the whole domain as 1
2

∫ β
−β dτ,

which can be recast in the form of Eq. (4.10) with the help of Eq. (4.7).
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Figure 4.3: The imaginary-time correlation functions C (z) are analytic in the complex plane
except on the real axis, where they have a discontinuity proportional to the spectral function. The
example shown is the density-density correlation function of free electrons in three dimensions
at q = 2kF. The spectral function is real, such that the discontinuity is only in the imaginary part
of C (z). The spectral function gives the number of particle-hole excitations, which increases
linearly at small ε and vanishes for ε > 8εF; see Sec. 5.1.4.5.

where ρAB(ε) is given by Eq. (3.23). By comparing with the spectral representation of
the retarded correlation function, Eq. (3.18), we see that

y CR
AB(ω) =CAB(iνn→ ħhω+ i0+). (4.12)

In words, the real-frequency retarded correlation function is obtained by replacing in the
analytical expression of CAB(iνn) the complex frequency (energy) iνn by ħhω+ i0+.

This result immediately suggests to extend the function CAB(iνn) to the whole plane of
complex energies by a straightforward analytic continuation:

y CAB(z) =

∫ ∞

−∞
dε
ρAB(ε)
z − ε . (4.13)

The retarded, advanced, and Matsubara correlation functions then appear as partic-
ular instances of CAB(z). The notation CAB(iνn) that we chose rather than CAB(νn)
emphasizes the fact that these coefficients are values of CAB(z) taken along the imag-
inary axis. From the definition, we see that CAB(z) is analytic everywhere in the
complex plane except on the real axis Im z = 0, where it has a discontinuity propor-
tional to the spectral function: Eq. (4.13) together with Eq. (9) indeed imply that
CAB(ε + i0+)−CAB(ε − i0+) = −2πiρAB(ε). An illustration is given in Fig. 4.3. Be-
cause, on the other hand, CAB(ε + i0+) = CR

AB(ε/ħh) and CAB(ε − i0+) = CA
AB(ε/ħh), we

can express the spectral function in terms of the retarded and advanced correlation
functions and deduce a variant of Eq. (4.13) that is sometimes useful:

CAB(z) =
i

2π

∫ ∞

−∞
dε

CR
AB(ε/ħh)− CA

AB(ε/ħh)
z − ε . (4.14)

One further step allows one to express CAB(z) only in terms of retarded functions.
From the definitions Eqs (3.12) and (3.14), we see that ρAB(ε) = ρ∗B†A†(ε), from where
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it follows that CA
AB(ω) = [C

R
B†A†(ω)]∗ and finally:

CAB(z) =
i

2π

∫ ∞

−∞
dε

CR
AB(ε/ħh)− [CR

B†A†(ε/ħh)]∗

z − ε . (4.15)
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Calculating correlation functions

This chapter presents two methods that allow one to obtain approximate analytical
and numerical results for interacting many-particle systems. These methods are the
perturbation theory and associated Feynman-diagram techniques and the equation
of motion with the usual mean-field decoupling schemes. The perturbation theory
is reviewed in detail and applied to several condensed-matter problems involving
one- and two-particle correlation functions. The equation of motion is derived in
its most general form and decoupled in order to produce the Hartree–Fock–Gor’kov
approximation. From there, the main results for a spin-singlet superconductor with or
without translation invariance are recalled.

5.1 Perturbation theory and Feynman diagrams

5.1.1 Expansion of the correlation functions

Let’s come back to the problem of expanding a correlation function as a power series
in the interaction V , as presented in Sec. 4.1. Working in the interaction picture
and following the procedure used for real time in Sec. 2.2.2, we write the imaginary-
time evolution operator U(τ) = e−τK as U(τ) = U0(τ)Û(τ). The resulting equation
of motion for Û is −∂τÛ(τ) = V̂ (τ)Û(τ), in complete analogy with the real-time
derivation. Hence a similar expansion results, with the difference that the time domain
starts at τ= 0 instead of t = −∞:

Û(τ) =
∞∑
n=0

(−1)n

n!

∫ τ

0

dτ1 · · · dτn TτV̂ (τ1) · · · V̂ (τn) (5.1)

or in symbolic form,

Û(τ) = Tτ exp

�
−
∫ τ

0

dτ′ V̂ (τ′)
�

. (5.2)

41



42 Calculating correlation functions

Inserting this expansion in the expression of the imaginary-time correlation function,
we obtain [see doc–28]

CAB(τ) = −

∞∑
n=0

(−1)n

n!

∫ β

0

dτ1 · · · dτn 〈TτV̂ (τ1) · · · V̂ (τn)Â(τ)B(0)〉0
∞∑
n=0

(−1)n

n!

∫ β

0

dτ1 · · · dτn 〈TτV̂ (τ1) · · · V̂ (τn)〉0
. (5.3)

The index 0 in the average values 〈· · · 〉0 means that they must be evaluated using the
density matrix in the absence of perturbation:

〈A〉0 =
Tr e−βK0A
Tr e−βK0

=

∑
a e−βKa〈a|A|a〉∑

a e−βKa
, (5.4)

where Ka and |a〉 are the eigenvalues and many-body eigenvectors of K0. Since Ka
and |a〉 are known by assumption, these traces can be calculated—at least in principle.
The expression Eq. (5.3) formally solves our problem: it gives a systematic recipe
for evaluating the correlation function by computing an infinite series of terms. Each
term involves operators in the interaction picture. Again, those can be computed
because they evolve in time with K0: Â(τ) = eτK0Ae−τK0 =

∑
ab eτ(Ka−Kb)|a〉〈a|A|b〉〈b|.

Incidentally, since the average values are evaluated in the absence of interaction, the
actual value of Â(τ) is the same as the value A would take in the Heisenberg picture,
but in the absence of interaction. We can therefore remove� the hats in Eq. (5.3) if
we remember that all time evolutions—not only the thermodynamic averages—are
controlled by K0.

It is important to realize that three essential ingredients have been necessary in order
to obtain a workable perturbation expansion of the correlation functions in powers
of V : (i) the imaginary-time formalism allowed us to use the same expansion for the
density matrix ρ and the evolution U; (ii) the time-ordering allowed us to rewrite this
expansion in a simple way; and (iii) the interaction picture allowed us to rewrite traces
over K0 + V as traces over K0 only. The ingredient (i) is crucial if we want to work
at finite temperature; the ingredient (ii) explains why the perturbation expansion is
possible only for the time-ordered correlation functions (and not for the retarded or
advanced ones); finally the ingredient (iii) makes the practical calculations possible.

Although Eq. (5.3) gives a recipe, it does not mean that this recipe is easy to realize in
practice: there are infinitely many terms, each of them looking exceedingly complicated
with many operators, time ordering, and multiple time integrations. Three additional
ingredients will be needed to move forward: (i) Wick’s theorem, once generalized to
finite-temperature thermodynamic averages, will allow us to rewrite an average of a
product of many operators as a sum of products of averages of only two operators; (ii)
the “linked cluster theorem” will allow us to eliminate many of the terms and keep
only the so-called connected ones; finally (iii) the Feynman diagrams will allow us
to interpret and manipulate the remaining terms of the expansion by replacing the
complicated formulas with equivalent but much more insightful drawings.
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5.1.2 Wick’s theorem and cancellation of vacuum diagrams

Wick’s theorem states that, for a quadratic Hamiltonian (recall that the perturbation
expansion of CAB involves average values with respect to the quadratic Hamiltonian
K0), high-order products of creation and annihilation operators can be factorized
into lower-order products, eventually into all possible pairwise products of only two
operators. We refer the reader to Bruus & Flensberg (2004, p. 198) for a proof.

Following Wick’s theorem, the term of order n in the numerator of Eq. (5.3) generates
several kinds of contributions, some of which have the form

〈V (τ1) · · ·V (τ j)A(τ)B(0)〉〈V (τ j+1) · · ·V (τn)〉.
We omit the Tτ operators and the 〈· · · 〉0 index in this qualitative discussion for brevity;
we also removed the hats keeping in mind that the operators evolve in time with K0.
Such terms are called disconnected, because they are the product of a contribution
already present at some order lower than n (order j in this example) and a contribution
appearing in the denominator of Eq. (5.3). The term of order j + 1 in the numerator
will also give rise among others to the disconnected term

〈V (τ1) · · ·V (τ j)A(τ)B(0)〉〈V (τ j+1)〉,
and so on. It turns out that if we collect all the factors appearing in front of the connected
term 〈V (τ1) · · ·V (τ j)A(τ)B(0)〉 in the expansion of the numerator, we obtain exactly
the same terms as those forming the denominator—they are called vacuum diagrams—
with the same prefactors [see Bruus & Flensberg (2004, p. 239)]. The numerator
of Eq. (5.3) can therefore be rewritten as the sum of all connected terms multiplied
by a factor that cancels exactly the denominator. Moreover, each connected term of
order n is generated by Wick’s theorem in n! equivalent versions that differ only by a
permutation of the internal time arguments. Retaining only one of these topologically
equivalent terms, we can remove the n! in the expansion and get

y CAB(τ) = −
∞∑
n=0

(−1)n
∫ β

0

dτ1 · · · dτn 〈TτV (τ1) · · ·V (τn)A(τ)B(0)〉con-diff
0 . (5.5)

Equation (5.5) is the starting point for all further developments presented in this section
and we shall repeatedly return to it. As we have skipped the details that conduct from
Eq. (5.3) to Eq. (5.5), the exact meaning of “con-diff”, which stands for “connected
and topologically different”, remains somewhat obscure at this stage. The practical
applications of Eq. (5.5) will hopefully clarify these notions. In order to proceed, we
have to specify the operators A and B as well as the interaction V .

5.1.3 One-particle Green’s function

The one-particle Green’s function is the simplest of all correlation functions: it gives
the correlation of the operators aα and a†

β
and is commonly denoted by the letter G in

honor of George Green (1793-1841):

y Gαβ (τ)≡Caαa†
β
(τ) = −〈Tτaα(τ)a

†
β
(0)〉. (5.6)
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It goes without saying that the index β in this expression is not the inverse temperature
but a one-particle state index.

5.1.3.1 Physical interpretation

The one-particle Green’s function contains the complete information about the one-
particle excitations in a quantum system. To see this, we consider for simplicity the
case β = α and τ > 0. Gαα(τ > 0) is a thermodynamic average of terms like

〈a|aα(τ)a†
α(0)|a〉= 〈a|eτK aα︸ ︷︷ ︸

〈Ψ2(τ)|

e−τK a†
α|a〉︸ ︷︷ ︸

|Ψ1(τ)〉

.

|Ψ1(τ)〉 is the many-particle wave-function obtained by starting from the many-body
eigenstate |a〉, adding a particle in state α at time 0, and letting this evolve until time τ.
|Ψ2(τ)〉 also starts from |a〉 but lets |a〉 evolve from time 0 to time τ before creating a
particle in state α at time τ. A large overlap between |Ψ1〉 and |Ψ2〉means that creating
the particle α at time 0 or at another time doesn’t make much difference: once this
particle has been created, it remains stable. On the contrary, a small overlap means
that the particle α created at time 0 has almost disappeared at time τ.

Assume that the excitation described by |Ψ1〉 is stable. This happens if a†
α|a〉 is an

eigenstate of K. In other words |Ψ1(τ)〉 = e−(Ka+ξα)τa†
α|a〉. Likewise, this implies

that 〈Ψ2(τ)| = eKaτ〈a|aα. As a result the overlap is 〈Ψ2(τ)|Ψ1(τ)〉 ∼ e−ξατ or, in
the frequency domain, Gαα(iνn)∼ (iνn − ξα)−1. Thus, if the one-particle excitations
produced by a†

α are stable, the Green’s function exhibits poles at energies corresponding
to the one-particle excitations energies ξα. In this case, the spectral function is just
a delta function as we already saw for independent particles in Sec. 3.3.1: A(α,ε)≡
ρaαa†

α
(ε) = (−1/π)ImGαα(iνn→ ε + i0+) = δ(ε − ξα).

Assume now that the excitation described by |Ψ1〉 is damped, for example due to
scattering on impurities, collective excitations, other particles, etc. Then |Ψ1(τ)〉 ∼
e−(Ka+ξα−iΓα)τa†

α|a〉 with Γα > 0.1 As a result, we would have in the frequency domain
Gαα(iνn) ∼ (iνn − ξα + iΓα)−1. The spectral function is no longer a delta function
but gets broadened into a Lorentzian function of width Γα (see Fig. 5.1): A(α,ε) =
(Γα/π)/[(ε − ξα)2 + Γ 2

α]. ħh/Γα clearly represents the life-time of the excitation. This
life-time in general depends on the energy ε. Furthermore, for the Green’s function to
remain causal as it should, the quantity Γα must have both real and imaginary parts.
The generalized inverse life-time, or scattering rate, is denoted Σα(ε) and is called the
self-energy. Our task is to calculate the self-energy.

5.1.3.2 Density of states and local density of states

Beside the self-energy, which gives access to the dynamical properties of the one-
particle excitations, a very useful quantity encoded in the one-particle Green’s function
is the density of states (DOS) and its local counterpart in systems without translational

1 This corresponds, in real time τ→ i t/ħh, to an overlap decreasing exponentially like e−Γα t/ħh.
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A(k,ǫ)

ǫ

ξk

G (k, iωn) =
1

iωn − ξk

A(k,ǫ)

ǫ

∼ ξk +ReΣ(k,ξk)

∼ |ImΣ(k,ξk)|
G (k, iωn) =

1
iωn −ξk −Σ(k, iωn)

k

t = 0

k

t > 0

k

t = 0

k ′

t > 0

Figure 5.1: Physical meaning of the one-particle Green’s function. If a particle injected at time
t = 0 (in this example, an electron with wave vector k) keeps its identity at time t > 0, then the
Green’s function has a pole at the corresponding excitation energy and the spectral function is a
delta function. If the injected electron loses momentum and energy by exciting electron-hole
pairs across the Fermi surface, then the Green’s function acquires a self-energy correction and
the broadened spectral function has a Lorentzian-like shape.

invariance, the local density of states (LDOS). In a system of independent particles, the
DOS counts the number of one-particle eigenstates whose energy is ε (per unit volume),
and is simply given by N(ε) = 1

V
∑
α δ(ε − ξα). In an interacting system, there are no

one-particle eigenstates anymore but we can still calculate the total spectral weight
contributed by the one-particle excitations at energy ε as

N(ε) =
1
V
∑
α

ρaαa†
α
(ε) =

1
V
∑
α

�− 1
π

�
Im GR

αα(ε)

=
1
V
∑
α

�− 1
π

�
ImGαα(iνn→ ε + i0+), (5.7)

where we have made use of Eqs (3.47) and (4.12). The DOS will be discussed more
extensively in Sec. 9.4. The documents doc–67 and doc–68 show how one calculates
the DOS of superconductors using the BCS and strong-coupling Eliashberg theories,
respectively.

In a system where the translation invariance is broken, it is necessary to consider how
the spectral weight of the one-particle excitations is distributed locally. For this purpose
we have to choose the real-space representation and work with the operator a†

rσ, which
creates a particle of spin σ (or any other property needed to characterize the particle)
at point r . The corresponding Green’s function is Gσσ′(r , r ′,τ) = −〈Tτarσ(τ)a

†
r ′σ′(0)〉

and it allows us to define the LDOS as

N(r ,ε) =
∑
σ

�− 1
π

�
ImGσσ(r , r , iνn→ ε + i0+). (5.8)

We will see in Sec. 9.5 that the LDOS can be measured by scanning tunneling microscopy.
doc–66 and doc–79 provide practical implementations of Eq. (5.8).
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5.1.3.3 Diagrams for a one-body operator

The easiest way to get in touch with diagrams is to consider as our interaction V a
one-body operator, like for instance the static potential of an impurity, which has the
general form

V =
∑
αβ

Vαβa†
αa
β
≡�α β

. (5.9)

The in-going and out-going arrows in the picture represent the annihilation and creation
operator, respectively, and the star represents the matrix element. We are interested in
calculating the Green’s function Eq. (5.6). As we just discussed, the Green’s function
describes the propagation of a particle from its creation at time 0 in a state β to its
annihilation at time τ in a state α. We will represent this by a double line with an
arrow going from β to α:

Gαβ (τ) =�α
τ

β

0
. (5.10)

We adopt the convention to orient the arrow from right to left such that the order of the
indices is the same as in the formula for the Green’s function; the rightmost operator
acts first (here: a†

β
). According to Eq. (5.5), the expansion of G reads

Gαβ (τ) = −
∞∑
n=0

(−1)n
∫ β

0

dτ1 · · · dτn

∑
α1β1

Vα1β1
· · ·
∑
αnβn

Vαnβn

× 〈Tτa†
α1
(τ1)aβ1

(τ1) · · · a†
αn
(τn)aβn

(τn)aα(τ)a
†
β
(0)〉con-diff

0 . (5.11)

Let’s start with the zero’th order term:

n= 0 : −〈Tτaα(τ)a
†
β
(0)〉0 = G 0

αβ (τ) =�ατ β

0
. (5.12)

This is no surprise... We represent the Green’s function in the absence of interaction
(often called the free propagator) by a single line. There are more terms to handle at
order one; let’s use a slightly simplified notation by omitting Tτ and the index 〈· · · 〉0.
The term in Eq. (5.11) with n= 1 is

n= 1 : +

∫ β

0

dτ1

∑
α1β1

Vα1β1
〈a†
α1
(τ1)aβ1

(τ1)aα(τ)a
†
β
(0)〉con-diff. (5.13)

The Wick theorem applied to the average generates 〈a†
α1
(τ1)aβ1

(τ1)〉〈aα(τ)a†
β
(0)〉,

η〈a†
α1
(τ1)aα(τ)〉〈aβ1

(τ1)a
†
β
(0)〉, and 〈a†

α1
(τ1)a

†
β
(0)〉〈a

β1
(τ1)aα(τ)〉. The first of these

terms is a disconnected one and the last term is anomalous, i.e., it involves an operator
that does not conserve the number of particles and therefore is zero on average.1 One
single term remains, which can be rewritten as [see doc–29]

∫ β

0

dτ1

∑
α1β1

G 0
αα1
(τ−τ1)Vα1β1

G 0
β1β
(τ1) =�α

τ

β

0τ1

α1 β1 . (5.14)

1 This is not true in general and would be wrong in the BCS model of a superconductor, for example. More
generally, when K0 does not conserve the number of particles ([K0, N] 6= 0), one must reconsider the
present derivation and introduce so-called anomalous propagators. See also Sec. 5.2.2.3 and doc–68.
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The meaning of this term is obvious: it accounts for processes in which, during the trip
from state β at time 0 to state α at time τ, the particle first goes to state β1 from which
it is scattered by the potential at time τ1 into state α1, before continuing towards state
α. These internal variables—β1, τ1, and α1—are summed in order to take into account
all possible processes of that kind. At order n= 2, we have the average

〈a†
α1
(τ1)aβ1

(τ1)a
†
α2
(τ2)aβ2

(τ2)aα(τ)a
†
β
(0)〉,

which generates 15 terms. Among them, 9 vanish because they are anomalous with
average values of the kind 〈a†a†〉. 4 of the remaining 6 terms are disconnected, namely

〈a†
α1
(τ1)aβ1

(τ1)〉〈a†
α2
(τ2)aβ2

(τ2)〉〈aα(τ)a†
β
(0)〉

η〈a†
α1
(τ1)aβ1

(τ1)〉〈a†
α2
(τ2)aα(τ)〉〈aβ2

(τ2)a
†
β
(0)〉

〈a†
α1
(τ1)aβ2

(τ2)〉〈aβ1
(τ1)a

†
α2
(τ2)〉〈aα(τ)a†

β
(0)〉

η〈a†
α1
(τ1)aα(τ)〉〈aβ1

(τ1)a
†
β
(0)〉〈a†

α2
(τ2)aβ2

(τ2)〉,

and the two remaining terms are topologically equivalent, i.e., one becomes the other
upon exchange of the internal variables (α1,β1,τ1) with (α2,β2,τ2):

〈a†
α1
(τ1)aβ2

(τ2)〉〈aβ1
(τ1)a

†
β
(0)〉〈a†

α2
(τ2)aα(τ)〉

η〈a†
α1
(τ1)aα(τ)〉〈aβ1

(τ1)a
†
α2
(τ2)〉〈aβ2

(τ2)a
†
β
(0)〉. (5.15)

Thus we obtain at second order [see doc–29]:

+

∫ β

0

dτ1dτ2

∑
α1β1

∑
α2β2

G 0
αα1
(τ−τ1)Vα1β1

G 0
β1α2
(τ1 −τ2)Vα2β2

G 0
β2β
(τ2) =

�α
τ

β

0τ1 τ2

α1 β1 α2 β2 . (5.16)

The interpretation of this term goes again without problem. Inspecting the diagrams
in Eqs (5.14) and (5.16), one sees that the notions of disconnected, anomalous, and
topologically equivalent terms of the Wick expansion acquire an eloquent graphical
meaning. The diagram representing a disconnected term is composed of disjoint pieces:
for instance, by connecting β with α, α1 with β1, and α2 with β2 one obtains the first of
the disconnected terms listed above and displayed in Fig. 5.2(a). Anomalous diagrams
have conflicting connections in the form of lines carrying opposite arrows, as shown in
Fig. 5.2(b). Finally, topologically-equivalent diagrams can be continuously deformed
to become identical, like the ones in Eq. (5.16) and Fig. 5.2(c).

The generalization to higher-order is now obvious: the n-th order term involves n
scattering events represented by matrix elements Vαiβi

and n+ 1 free propagator lines
connecting the scattering events together, with the external lines starting at (β , 0) and
ending at (α,τ). There is only one diagram at each order, because all the different
ways of connecting together n scattering events are topologically equivalent.

One easily performs the time integrations in each diagram by moving from the imaginary
time to imaginary Matsubara frequencies. Since the expressions at all orders are just
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���
(a) (b) (c)

Figure 5.2: Examples of second-order diagrams that are (a) disconnected, (b) anomalous, and
(c) topologically equivalent to the diagram in Eq. (5.16).

convolutions in the time arguments, they become simple products in frequency space
[see doc–30]. The following expression results for G :

Gαβ (iνn) = G 0
αβ (iνn) +

∑
α1β1

G 0
αα1
(iνn)Vα1β1

G 0
β1β
(iνn) + . . . (5.17)

If we define G (without indices) as the matrix made of the elements Gαβ , and likewise
for the matrix V with matrix elements Vαβ , then, clearly, Eq. (5.17) can be written and
solved in a compact form using matrix products:

G (iνn) = G0(iνn) +G0(iνn)VG0(iνn) +G0(iνn)VG0(iνn)VG0(iνn) + . . .

= G0(iνn) +G0(iνn)VG (iνn)

y =
�G−1

0 (iνn)− V
�−1

. (5.18a)

The last line was obtained by multiplying the second from the left by G−1
0 and from

the right by G−1. We could have done the same using diagrams:

	 =
 +� +� + . . .

= +�
=
�
(�)−1 − � �−1

. (5.18b)

We see that the problem of calculating the Green’s function in the presence of a local
potential (or, more generally, any perturbation represented by a one-body operator)
boils down to the inversion of a matrix [Eq. (5.18a)]. This is the fate of all quadratic
problems: the particles are independent such that a closed solution exists and coincides
with the complete sum of the perturbation series. We revisit in Sec. 5.2.2.1 the relation
between the Green’s function and the Hamiltonian inverse. To make further progress
toward explicit solutions, we would have to specify the unperturbed system and the
potential. We shall return to this problem later when studying the resistivity of metals
(Sec. 8.3). The document doc–66 proposes a practical implementation of Eq. (5.18a)
for the problem of one-dimensional electrons in a potential.

5.1.3.4 Diagrams for a two-body operator

We turn now to the more interesting and difficult case of a perturbation that is a
two-body operator like the Coulomb interaction. The general form is

V =
1
2

∑
αβγδ

Vαβγδa†
αa†
β

a
δ
aγ ≡�

α

β

γ

δ

. (5.19)
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Note that the labelling of the picture is not arbitrary and respects Eq. (2.44), which
implies that the interaction scatters the particle initially in state γ to state α and the
one initially in state δ to state β . Using again Eq. (5.5), we can write the expansion of
G , which is just slightly more complicated than Eq. (5.11):

Gαβ (τ) = −
∞∑
n=0

�
−1

2

�n
∫ β

0

dτ1 · · · dτn

∑
α1β1γ1δ1

Vα1β1γ1δ1
· · ·

∑
αnβnγnδn

Vαnβnγnδn

×〈Tτa†
α1
(τ1)a

†
β1
(τ1)aδ1

(τ1)aγ1
(τ1) · · · a†

αn
(τn)a

†
βn
(τn)aδn

(τn)aγn
(τn)aα(τ)a

†
β
(0)〉con-diff

0 .

(5.20)

At order n= 0 we get G0, like for the one-body operator. But the term of order n= 1
is already more rich, since

〈a†
α1
(τ1)a

†
β1
(τ1)aδ1

(τ1)aγ1
(τ1)aα(τ)a

†
β
(0)〉

generates 15 terms. 9 of those vanish due to anomalous averages and 2 are discon-
nected:

η〈a†
α1
(τ1)aδ1

(τ1)〉〈a†
β1
(τ1)aγ1

(τ1)〉〈aα(τ)a†
β
(0)〉

〈a†
α1
(τ1)aγ1

(τ1)〉〈a†
β1
(τ1)aδ1

(τ1)〉〈aα(τ)a†
β
(0)〉.

The remaining 4 terms come in two pairs. Each pair has two terms that are not
topologically equivalent (they differ by more than a permutation of the time arguments)
but give the same contribution due to the symmetry of the interaction—V (r , r ′) =
V (r ′, r ) implying Vαβγδ = Vβαδγ according to Eq. (2.44). The first such pair is

η〈a†
α1
(τ1)aγ1

(τ1)〉〈a†
β1
(τ1)aα(τ)〉〈aδ1

(τ1)a
†
β
(0)〉

η〈a†
α1
(τ1)aα(τ)〉〈a†

β1
(τ1)aδ1

(τ1)〉〈aγ1
(τ1)a

†
β
(0)〉 (5.21)

and it gives rise to the following contribution to the Green’s function [see doc–31]:

−η
∫ β

0

dτ1

∑
α1β1γ1δ1

G 0
αα1
(τ−τ1)G 0

δ1β1
(τ1 −τ+1 )Vα1β1γ1δ1

G 0
γ1β
(τ1) =

�α
τ

β

0τ1

α1 γ1

β1 δ1

. (5.22)

The factor 1/2 is cancelled owing to the two equivalent diagrams. This term represents
a process in which the particle goes from state β to state γ1 at time τ1, where it
interacts with a particle-hole pair and is scattered to state α1 before evolving to reach
state α at time τ (see Fig. 5.3). Note that the Green’s function of the particle-hole
pair must be evaluated at time 0− (see doc–31 and Fig. 4.1). In the context of the
Coulomb interaction, this term is called the Hartree term because it accounts for the
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direct (classical) Hartree interaction between an electron and the average electron
density. The second pair of terms is

〈a†
α1
(τ1)aδ1

(τ1)〉〈a†
β1
(τ1)aα(τ)〉〈aγ1

(τ1)a
†
β
(0)〉

〈a†
α1
(τ1)aα(τ)〉〈a†

β1
(τ1)aγ1

(τ1)〉〈aδ1
(τ1)a

†
β
(0)〉 (5.23)

which in turn gives [see doc–31]

−
∫ β

0

dτ1

∑
α1β1γ1δ1

G 0
αα1
(τ−τ1)G 0

γ1β1
(τ1 −τ+1 )Vα1β1γ1δ1

G 0
δ1β
(τ1) =

�α
τ

β

0

τ1

α1 γ1

β1 δ1

=�α βα1 γ1 β1 δ1 . (5.24)

In this process, the particle evolves from state β to state δ1 at time τ1 where it is
scattered into state β1 within a particle-hole pair and gets annihilated in state γ1; at
the same time, the particle of the particle-hole pair is scattered from state γ1 to state α1
and then evolves onto state α at time τ (see Fig. 5.3). Thus, the incoming particle has
been exchanged with another particle and this term is therefore called the exchange
term. The second diagrammatic representation is somewhat easier to remember but
abandons a sense of chronological order that is preserved in the first representation.

Before moving on to the second order, we point out that the two first-order diagrams
become matrix products in the frequency domain, exactly like in the case of a one-body

Hartree α βα1

β1

γ1

δ1

βγ1
α1

δ1

β1

βγ1
α1α

δ1

β1

(1) (2)

Exchange α βα1 β1γ1 δ1

βδ1
β1

γ1

α1

βδ1
β1α

γ1

α1

Figure 5.3: Interpretation of the Hartree and exchange diagrams for fermions. (1) The incident
electron represented by a dotted black square interacts with another electron represented by a
dotted circle in the Fermi sea. The latter can only be excited to a state outside the Fermi sea
due to Pauli exclusion. (2) The excited electron can either recombine with the hole while the
incident electron continues its exciting life (Hartree term), or continue to live outside the Fermi
sea while the incident electron takes a rest by recombining with the hole (exchange term).
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operator [see doc–32]:

� +�= G 0(iνn)Σ
(1)(iνn)G 0(iνn) (5.25)

Σ
(1)
αβ
(iνn) =

1
β

∑
iν̄1

∑
γ1δ1

G 0
δ1γ1
(iν̄1)e

iν̄10+(−ηVαγ1βδ1
− Vαγ1δ1β

).

The same is true for all diagrams of all orders. For the notation iν̄1, see remark at the
end of doc–30. We will see that Σ(1)

αβ
(iνn) is an example of the self-energy that was

introduced in Sec. 5.1.3.1.

The complete analysis of the second-order term in Eq. (5.20) becomes obviously more
tedious and we leave it to the adventurous reader. Up to here we have drawn diagrams
in order to illustrate formula; this is the point where we start using diagrams to effec-
tively replace cumbersome calculations. Here are some figures: 9× 7× 5× 3= 945
terms of second order are generated by Wick’s theorem, 825 are anomalous and 40 are
disconnected. The remaining 80 are grouped in 10 families of 2!× 22 = 8 equivalent
members (n! for topological equivalence and 2n for symmetry of interaction). The 10
relevant diagrams of second order can be constructed either by combining first-order
diagrams:

��	

(2.a) (2.b) (2.c) (2.d)

by “decorating” internal particle lines in first-order diagrams with first-order Hartree
or exchange corrections:

� �  �
(2.e) (2.f) (2.g) (2.h)

by decorating interaction lines in first-order diagrams with
particle loops like in (2.i)—note that diagram 2.e can also
be obtained in this way—or by decorating vertices in first-
order diagrams like in (2.j)—note that diagrams 2.f and
2.g can also be seen as vertex corrections. Finally, another
recipe to generate some of the diagrams of order n + 1
from diagrams of order n is to connect all pairs of particle
lines with an interaction line. Thus (2.g) and (2.i) can be
obtained from the first-order Hartree diagram while (2.h)
and (2.j) follow from the first-order exchange diagram.

�
(2.i)

�
(2.j)

Two important remarks must be made at this point. The first concerns the sign of the
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diagrams. Each term generated by Wick’s theorem has a sign that reflects the number
of individual permutations needed to generate this term starting from the un-decoupled
average—this sign is always +1 for bosons. How can we know this sign for fermions
by just looking at the diagram? The trick is to count the number of fermion loops, i.e.,
any continuous closed path along fermion lines. We will not try to prove this here but
rather trust the generations of physicists who checked that this gives the correct sign
(Fetter & Walecka, 1971, p. 98). Another sign comes from the prefactor (−1)n with n
the order of the diagram. Hence the sign of a diagram is (−1)nηL with L the number
of loops.

The second remark concerns the translation of diagrams from the time domain to the
frequency domain. In practice, we shall mostly work with Matsubara frequencies such
that each particle line in a diagram represents a free propagator G 0

αβ
(iν̄ j) carrying a

different frequency. We must, however, satisfy the constraint that the total frequency
entering and leaving each interaction line is the samey . This can be understood by
considering an interaction at some time τ:�

τ

ν̄1

ν̄2

ν̄3

ν̄4

→
∫ β

0

dτ e−iν̄1τe−iν̄2τe−iν̄3(−τ)e−iν̄4(−τ) = β δν̄1+ν̄2,ν̄3+ν̄4
.

The Fourier transforms of the propagators on the four lines yield four phase factors
and there is no other dependence on τ; after integrating on τ, which is an internal
variable, there results a constraint on the frequencies.

We can now pursue the expansion. At third order the number of diagrams increases
drastically. Here are two examples:

� �
(3.a) (3.b)

(3.a) is a combination of the first-order Hartree diagram with (2.i) while (3.b) is
obtained by connecting two particle lines in (2.i). How many are they? 74: Wick’s
theorem generates 13× 11× 9× 7× 5× 3= 135’135 terms, 130’095 of which vanish,
1488 are disconnected and 3552 remain in 74 families of 3! × 23 = 48 equivalent
pieces... We are slowly getting buried under diagrams and we need a new idea.

5.1.3.5 Dyson equation and self-energy

This new idea comes from the observation that there are two kinds of second- and
higher-order diagrams. Some of them like the series (2.a–2.d) and (3.a) are (matrix)
products of lower-order diagrams. Such diagrams are called reducible. Graphically,
reducible diagrams can be split in two parts by cutting just one particle line. On the
contrary, the diagrams of the series (2.e–2.j) and (3.b) are irreducible. This simple
observation allows us to make tremendous progress, because infinite series of diagrams
can be resumed at once. Consider for instance the following approximation for Gαβ ,
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which we could call the “infinite-order Hartree” approximation:

�H =� +� +� +� + . . . (5.26)

It is obvious that the complete series can be rewritten as

�H =� +�H (5.27)

as can be verified by direct substitution. To solve the latter equation, one multiplies
from the left by the matrix (	)−1 and from the right by

�
H
�−1

:

�H =

�
(�)−1 −�−1

(5.28)

In this way we have obtained an approximation for G that contains terms up to infinite
order in the interaction, but is not harder to evaluate than the first-order approximation� +� , since in both cases only one non-trivial diagram is needed. The trick
can be easily generalized. For instance, the “infinite-order Hartree plus exchange”
approximation would read

�H+exch =� +� +�
+� +� +�
+� + . . .

=� +�×
��+� �

×�H+exch

=

�
(�)−1 −

��+� ��−1

(5.29)

Note that the diagrams containing the interaction in Eqs (5.28) and (5.29) have no
external lines. Proceeding with the same logic, we see that by including all irreducible
parts in the parenthesis of Eq. (5.29), the whole series for Gαβ is indeed generated: =! +"

y # =$+% +& +' +(
+) +* ++ + . . . (5.30)



54 Calculating correlation functions

In mathematical terms and matrix form, this expression becomes

y G (iνn) = G0(iνn) +G0(iνn)Σ(iνn)G (iνn) =
�G−1

0 (iνn)−Σ(iνn)
�−1

. (5.31)

This is known as the Dyson equation. The quantity Σ is the self-energy that we have
introduced in the qualitative discussion of Sec. 5.1.3.1. We have already encountered
another example of self-energy in the section about one-body operators: Eq. (5.18a).
The self-energy was in that case simply given by the perturbation V itself. For a two-
body operator, Eq. (5.30) shows that the self-energy is obtained by taking all irreducible
diagrams of the Green’s function and removing the two external lines.

There are 2 irreducible self-energy diagrams at first order, 6 at second order, 42 at third
order, etc. In most textbooks, many of these diagrams will not� even be displayed for the
following reasons. As we will see in Sec. 5.1.3.7 devoted to the Coulomb interaction,
some diagrams are real and furthermore yield a constant result (i.e., they depend
neither on α or β , nor on the energy iνn). This happens for instance to the first, third,
and fourth diagrams in the right-hand side of Eq. (5.30). A real and constant self-energy
is equivalent to a shift of the chemical potential. Therefore, the contribution of these
real constant diagrams can be absorbed in a redefinition of the chemical potential,
which must anyhow be determined self-consistently in order to fix the density. We also
see that the fifth diagram in the right-hand side of Eq. (5.30) has an internal line that
is modified by a real and constant self-energy. This diagram is also automatically taken
into account by the adjustment of the chemical potential: the latter is carried by G0
and will therefore be reflected on all internal lines. Moreover, there are diagrams like
the second in the right-hand side of Eq. (5.30) that turn out to be real and independent
of frequency. These diagrams can be absorbed in a redefinition of the one-particle
energies ξα. Likewise, the sixth diagram is accounted for by redefining the one-particle
energies on the internal line. Finally, the only really interesting diagrams in Eq. (5.30)
are the last two.

In summary, thanks to Dyson’s equation the calculation of the one-particle Green’s
function by perturbation theory is reduced to the evaluation of all irreducible self-
energy diagrams. The crucial point is that any low-order approximation to the self-
energy automatically leads to a much better infinite-order approximation to the Green’s
function. Second-order perturbation theory often leads to divergences and the only
way to cure these divergences is to include high-order terms. The self-energy and
Dyson’s equation are very convenient tools for achieving this goal.

5.1.3.6 Self-energy diagrams for impurity scattering

The scattering of electrons on defects is the process that dominates the resistivity
of metals at low temperature. The defects break translation invariance and perturb
locally the electronic structure. We model this perturbation by a local potential acting
on the conduction electrons. This potential alone cannot explain resistivity: a local
potential induces elastic (energy-conserving) scattering and no dissipation can result.
In other words, the life-time of the conduction electrons remains infinite consistently
with the fact that the self-energy is real: see Eq. (5.18a) and Sec. 8.2. The scattering is
elastic provided that the whole pattern of quantum interferences generated at each
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defect remains coherent over the entire volume. In real materials, other scattering
mechanisms blur this long-range coherence and defect-induced resistivity becomes
possible over length scales exceeding the typical coherence volume. A convenient way
of modeling the loss of coherence is to wash out any information about the relative
distances between the defects by averaging over their positions. The so-called impurity
average1 must be performed after having calculated the Green’s function for each
configuration of the impurities. The strategy will be to write down the Green’s function
for one particular configuration of the impurities, their positions being chosen at
random, and then to average over all configurations in order to recover a translation-
invariant Green’s function. For simplicity, we will consider only one type of impurity
characterized by a potential v(r ) such that the total potential is

V (r ) =
Ni∑
`=1

v(r −R`) (5.32)

with R` the positions of the Ni impurities. We start in the real-space representation
where the potential is diagonal. Following our results for the one-body operators, the
self-energy is also diagonal:

Σαβ = Vαβ → Vr r ′ = δ(r − r ′)V (r ). (5.33)

As a result, if we assume that the unperturbed system described by G0 is invariant by
translation, the Dyson equation takes the form

G (r , r ′, iνn) = G0(r − r ′, iνn) +

∫
dr1G0(r − r1, iνn)V (r1)G0(r1 − r ′, iνn)

+

∫
dr1dr2G0(r − r1, iνn)V (r1)G0(r1 − r2, iνn)V (r2)G0(r2 − r ′, iνn) + . . . (5.34)

We can now perform the impurity average of each term in Eq. (5.34) by means of the
following prescription:

〈V (r1) · · ·V (rn)〉imp =
1
V Ni

∫
dR1 · · · dRNi

V (r1) · · ·V (rn). (5.35)

Starting with n= 1, we have simply [see doc–33]

〈V (r1)〉imp = ni v(q = 0), (5.36)

with ni the impurity concentration and v(q) the Fourier transform of the impurity
potential. This is a constant that gives the first-order correction to the chemical
potential in the presence of the impurities: the chemical potential must adjust in order
to compensate the overall shift of energy levels due to the superposition of impurity
potentials. Since 〈V (r1)〉imp does not depend on r1 any longer, the second term in the

1 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).

https://doi.org/10.1103/PhysRev.108.590
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right-hand side of Eq. (5.34) becomes a function of r − r ′, hence translation invariance
is restored as expected. Fourier transforming this term, we obtain [see doc–33]

ni v(q = 0)[G0(k, iνn)]
2 =�

kk

q=0

ni

. (5.37)

If not for the replacement of the potential by its spatial average, this result is the same
as Eq. (5.14). For n= 2 we find [see doc–33]

〈V (r1)V (r2)〉imp = ni(ni −V −1)[v(q = 0)]2 + ni

∫
dr v(r )v(r + r1 − r2), (5.38)

which is a function of r1 − r2. The first term is the second-order correction to the
chemical potential while the second term describes processes in which the particle
scatters two times on the same impurity. Assuming ni(ni −V −1)≈ n2

i —in other words,
ni � 1/V , there are many impurities in the volume V—and Fourier-transforming, the
third term in the right-hand side of Eq. (5.34) yields

n2
i v2(0)[G0(k, iνn)]

3 + ni
1
V
∑

q

G0(k, iνn)v(q)G0(k − q , iνn)v(−q)G0(k, iνn) =

�
kk

0

k

0

ni ni

+�
kk

−q

k−q

q

ni

. (5.39)

Here the impurity average produces something new compared with Eq. (5.16): the
second term describes an electron scattering twice on the same impurity with exactly
opposite exchanges of momenta, an outcome of the restored translation invariance.
The momentum exchanges would be independent from each other without impurity
average.

The analysis can be continued at n= 3 and gives five terms:

� +� +� +� +�
Like for the two-body operator, we get reducible and irreducible diagrams. It is then
straightforward to perform the infinite sums of reducible diagrams like in Sec. 5.1.3.5
and deduce a Dyson equation in which the self-energy is made of all irreducible terms:

Σ(k, iνn) = 	 = 
 +� +� +

+� +� + . . . (5.40)

At lowest order, the self-energy is simply the constant ni v(0). The net effect is therefore
a shift of the chemical potential that compensates the average potential induced by
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the distribution of impurities. For all practical purposes, we can forget this term and
consider that it is included in the definition of the chemical potential. The second term
in the self-energy yields the first Born approximation (1BA):

y Σ1BA(k, iνn) =� = ni
1
V
∑

q

|v(q)|2
iνn − ξk−q

. (5.41)

We shall come back to this expression and evaluate it explicitly in Sec. 8.3 when we
study the resistivity. An improved version consists in taking into account all diagrams
of lowest order in the impurity concentration ni , which are expected to dominate
since generally ni is much smaller than the particle density. These diagrams describe
repeated scattering on one impurity [see doc–34]:

ΣFBA(k, iνn) =� +� +� + . . .

= ni
1
V
∑

q

v(−q)w(q ; k, iνn)
iνn − ξk−q

=� (5.42a)

w(q ; k, iνn) = v(q) +
1
V
∑
q ′

v(q − q ′)w(q ′; k, iνn)
iνn − ξk−q ′

. (5.42b)

This is the full Born approximation. Finally, the self-consistent Born approximation is
obtained by replacing the free propagator (iνn−ξk)−1 in Eq. (5.42) by the full propaga-
tor, G (k, iνn) = [iνn −ξk −ΣSCBA(k, iνn)]−1. In practice, the first Born approximation
is sufficient for many purposes: the correction to v(q) in w(q ; k, iνn) turns out to be
small (Bruus & Flensberg, 2004, p. 222).

5.1.3.7 Self-energy diagrams for the Coulomb interaction

In this section, we use the methods of diagrammatic perturbation theory to calculate
the self-energy corrections due to the Coulomb interaction in fermionic systems. It may
appear dubious at first sight to use perturbation theory for the Coulomb interaction, as
this interaction is not at all weak compared with the typical energy scale of a fermion gas,
which is the Fermi energy. Among the effects associated with the Coulomb interaction,
some are one-particle effects that can be captured by mean-field, independent-electron
approximations. Once those are subtracted out, the remaining interaction is ready for
perturbation theory, at least for systems that are not strongly correlated. In the latter,
the Coulomb interaction leads to radical change in behaviors such as a phase transition
toward a new ground state and the perturbation theory is not appropriate.

In order to describe the Coulomb interaction, we work in the plane-wave basis,
Eq. (2.29), such that the matrix elements of the interaction in Eq. (5.19) become
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[see doc–35]

Vαβγδ −→ 〈k1σ1k2σ2|V |k3σ3k4σ4〉
= δσ1σ3

δσ2σ4
δk1+k2,k3+k4

1
V V (k1 − k3) = �1

V V (k1−k3)

k1σ1

k2σ2

k3σ1

k4σ2

(5.43)

where V (q) = e2/(ε0q2) is the Fourier transform of the Coulomb potential. Note that
we did not take into account the constraint on momenta when labeling the diagram.
In view of the discussion in the preceding paragraph, one is tempted to use for V (q)
the screened Coulomb interaction. This procedure is not quite rigorous, though, and
induces a risk of counting some diagrams twice. There is nevertheless a well-controlled
way of replacing the bare Coulomb interaction by the screened one within perturbation
theory, as we shall see in Sec. 5.1.4.6.

We assume that the system under consideration is translation-invariant and non-
magnetic, such that the matrix Green’s function in Eq. (5.20) and the matrix self-energy
in Eq. (5.31) are diagonal in the momentum basis and independent of the spin σ:

Gαβ (iνn) −→ δσσ′δkk ′G (k, iωn), Σαβ (iνn) −→ δσσ′δkk ′Σ(k, iωn). (5.44)

The Dyson equation, Eq. (5.31), reduces to an algebraic equation for the diagonal
elements G (k, iωn),

G (k, iωn) =
1

iωn − ξk −Σ(k, iωn)
, (5.45)

where we have used the fact that G−1
0 (k, iωn) = iωn − ξk .

Let’s start with the Hartree contribution to the self-energy Σ(k, iωn). Following the
rules for calculating diagrams, which are summarized in doc–36, we find [see doc–36]

�= nV (q = 0), (5.46)

with n = N/V the electron density. As anticipated, this is a real constant value
(independent of k and iωn). One should not be troubled by the fact that this constant
is infinite! It is actually expected, since we have been considering a many-electrons
system without positive ions to ensure neutrality. The infinite Hartree self-energy is the
shift of chemical potential needed to compensate the electrostatic shift of the energy
levels, which is infinite in the thermodynamic limit. In a more complete model—the
so-called jellium model—there would be a uniform density n of positive ions, whose
mutual repulsion also produces an electrostatic shift +nV (q = 0), but whose attractive
interaction with the electrons induces a negative shift −2nV (q = 0), such that these
purely electrostatic contributions exactly cancel in a neutral system.

The exchange contribution to the self-energy is [see doc–36]

� = − 1
V
∑
k1

V (k1 − k) f (ξk1
)≡ Σexch(k). (5.47)

This term is also real, shows a dependence on k but is independent of the frequency
iωn. The net effect of the exchange term is to “renormalize” the one-particle energies
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Figure 5.4: Interpretation of the second-order Coulomb self-energy diagrams. The rightmost
interaction vertex in the diagrams describes a process where the incoming electron (momentum
k and energy ε) interacts with an electron in the Fermi sea (momentum k1 and energy ξk1

).
The incoming electron is scattered to momentum k2 and the Fermi-sea electron to momentum
k3 = k+k1−k2. The energy cost is ε+ξk1

−(ξk2
+ξk3

), which explains the energy denominator
in Eq. (5.48); for the process to be possible, k1 must be an occupied state and k2, k3 must
be empty states, hence the indicated combination of Fermi factors. The leftmost vertex in the
diagrams describes the process where the two virtual particles interact again and are scattered
back to k and k1 without (top) or with (bottom) an exchange of the electrons.

according to ξk → ξ∗k = ξk +Σexch(k) as can be seen from Eq. (5.45). Noteworthy,
this renormalization is negative which reflects the energy gain due to exchange. The
renormalized excitation with ξ∗k < ξk therefore has a larger effective mass m∗ > m.

We see that no life-time effects are found at first order: the exchange term changes
the one-particle energies but does not lead to a damping of the excitations because
the corresponding self-energy has no imaginary part. In order to find life-time effects,
we must go to second order in the self-energy. We obtain for the two second-order
diagrams [see doc–36]:

y � + � =
1
V 2

∑
k1k2

�
2|V (k2 − k)|2 − V (k2 − k)V (k1 − k2)

�

× f (ξk1
) f (−ξk2

) f (−ξk+k1−k2
) + f (−ξk1

) f (ξk2
) f (ξk+k1−k2

)

iωn + ξk1
− (ξk2

+ ξk+k1−k2
)

. (5.48)

These two terms depend on both k and iωn and do have an imaginary part. Figure 5.4
proposes a step by step interpretation of these scattering processes. We will come
back to the evaluation of these terms in Sec. 8.4 when discussing the resistivity of
metals. The crucial property is that the imaginary part of these diagrams behaves as
ε2 + (πkBT )2 at low energy, which, as we shall see, is the reason for the ∼ T 2 scaling
of the electron-electron scattering contribution to the resistivity of metals.
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5.1.3.8 Self-energy diagrams for the electron-phonon interaction

The interaction of electrons with phonons in solids leads to inelastic scattering processes
in which an electron emits or absorbs a phonon, thus changing its momentum and
energy. As a result, the energy and momentum of an electron excited above the Fermi
surface is progressively redistributed to phonons and other electrons; after a while,
everything is dissolved into an incoherent soup of low-energy excitations. The resulting
finite life-time of excited electrons is encoded in the self-energy. In this section, we use
perturbation theory to calculate the self-energy due to the electron-phonon coupling.
Unlike in the previous sections, we have to deal here with a system containing two
kinds of particles: electrons and phonons. When the two families of particles are
decoupled, there is no worry: the wave functions are simple products of wave functions
describing particles living in orthogonal Hilbert spaces. When the particles interact,
this nice property breaks down. Fortunately, in perturbation theory all time evolutions
and thermal averages must be evaluated with the coupling set to zero.

The electron-phonon coupling Hamiltonian is given in Eq. (2.73). This coupling
involves pairs of phonon operators in the form bqλ + b†

−qλ. It is therefore convenient
to introduce the creation operator

B†
qλ = b†

qλ + b−qλ, (5.49)

which adds momentum q to the phonon system, either by creating a phonon of polar-
ization λwith momentum q or by removing a phonon of polarization λ and momentum
−q . A quantity of importance in the following discussion is the correlation function of
the operators Bqλ in the absence of coupling. We find [see doc–37]

C 0
BqλB†

q ′λ′
(τ) = δqq ′δλλ′D0

λ(q ,τ), (5.50)

where D0
λ
(q ,τ) = −〈TτBqλ(τ)B

†
qλ(0)〉 is the free-phonon propagator. In the frequency

domain, this propagator has the form [see doc–37]

y D0
λ(q , iΩn) =

1
iΩn −ħhωqλ

− 1
iΩn +ħhωqλ

=
2ħhωqλ

(iΩn)2 − (ħhωqλ)2
. (5.51)

Following Eq. (5.5), the expansion of the Green’s function for electrons coupled to
phonons reads:

G (k,τ) = −
∞∑
n=0

(−1)n
∫ β

0

dτ1 · · · dτn〈TτHel-ph(τ1) · · ·Hel-ph(τn)ckσ(τ)c
†
kσ(0)〉con-diff

0 .

(5.52)
As shown in doc–38, this can be transformed into the form

G (k,τ) = −
∞∑
n=0

(−1)n
∫ β

0

dτ1 · · · dτn〈TτV ph
el-el(τ1) · · ·V ph

el-el(τn)ckσ(τ)c
†
kσ(0)〉con-diff

0 ,

(5.53)
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where V ph
el-el is an effective electron-electron interaction given by

V ph
el-el(τ) =

1
2

∑
k1σ1

∑
k2σ2

∑
qλ

|gqλ|2
∫ β

0

dτ′D0
λ(q ,τ−τ′)

× c†
k1+qσ1

(τ)c†
k2−qσ2

(τ′)ck2σ2
(τ′)ck1σ1

(τ). (5.54)

This interaction is very similar in its form to the Coulomb interaction which, from
Eqs (5.43) and (2.44) follows as

VCb(τ) =
1
2

∑
k1σ1

∑
k2σ2

∑
q

V (q)
V c†

k1+qσ1
(τ)c†

k2−qσ2
(τ)ck2σ2

(τ)ck1σ1
(τ). (5.55)

The main differences between V ph
el-el and VCb are that V ph

el-el has an explicit time de-
pendence encoded in the τ′ integral and is of second order in the electron-phonon
coupling gqλ. The physical interpretation is that the effective interaction between
electrons is mediated by the exchange of phonons: a phonon is emitted (absorbed)
at some time by the electronic system and absorbed (emitted) at some later time,
leading to a retarded interaction. If the phonon propagation were instantaneous, i.e.,
D0
λ
(q ,τ−τ′)∝ δ(τ−τ′), then V ph

el-el would be instantaneous as well like the Coulomb
interaction.1 But the phonons have their own dynamics, as shown in Eq. (5.51), which
leads to a non-trivial frequency dependence of the phonon-mediated interaction. This
brings us to another difference between V ph

el-el and VCb, one with spectacular conse-

quences: while VCb is positive (repulsive), V ph
el-el is attractive at low energy because

D0R
λ
(q ,ε) = D0

λ
(q , iΩn→ ε + i0+) is negative for |ε|< ħhωqλ (see Fig. 5.5). Supercon-

ductivity is known to result from this attractive interaction.

The formal similarity between V ph
el-el and VCb allows us to use the results of Sec. 5.1.3.7

in order to calculate the self-energy due to the electron-phonon interaction, with only
a few adjustments. We represent the interaction vertex like this:

�←− ∑
λ |gqλ|2D0

λ
(q ,τ−τ′)

τ

τ′

k1+q σ1

k2−q σ
2

k1σ1

k2σ2

(5.56)

Like for the Coulomb interaction, the total momentum is conserved and a momentum
q is exchanged between the electrons.2 However, unlike for the Coulomb interaction,
an energy iΩn is also exchanged between the electrons, reflecting the retarded nature
of the interaction. A simplification with respect to VCb is that diagrams involving

1 Of course, in reality the Coulomb interaction is retarded because the photons propagate at the speed
of light. We do not consider relativistic effects in these notes, however, but instead assume that VCb is
instantaneous.

2 In a periodic lattice, the momentum conservation is to be enforced modulo a vector G of the reciprocal
lattice [see Eq. (2.51)]. Processes in which the total momentum of incoming and outgoing electrons differ
by some vector G are called Umklapp processes and they dominate at large momentum transfers.
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Re |gqλ|2D0R
λ
(q ,ǫ)

ǫ
ħhωqλ

µ∗

(a)

VBCS(ǫ)

ǫ

ħhωD

−V0

(b)

Figure 5.5: (a) Energy dependence of the real part of the phonon Green’s function (thick line).
This quantity controls the energy dependence of V ph

el-el and is negative for ε < ħhωqλ. For real, i.e.,
non-free phonons, the singularity at ħhωqλ is suppressed (thin line). µ∗ indicates the average
value of the screened Coulomb repulsion on the Fermi surface: if µ∗ is sufficiently small, the net
interaction between electrons is attractive on the Fermi surface. (b) Simplified Bardeen-Cooper-
Schrieffer interaction: the interaction is attractive up to a typical phonon frequency, taken as the
Debye frequency ωD.

contributions of the kind

�∝ |gq=0,λ|2 (5.57)

where the shaded circle represents any connected sub-diagram, vanish because the
exchanged momentum is q = 0 and the electron-phonon coupling vanishes at q = 0
[see Eq. (2.74)]. At first order in V ph

el-el, we only have to consider the exchange diagram
in the self-energy Eq. (5.30), which reads [see doc–39]:

y � =
∑
qλ

|gqλ|2
�

f (−ξk−q ) + b(ħhωqλ)

iωn − (ħhωqλ + ξk−q )
+

f (ξk−q ) + b(ħhωqλ)

iωn +ħhωqλ − ξk−q

�
. (5.58)

The interpretation of this result in formulated in Fig. 5.6. The existence of two terms,
representing two different processes, is a consequence of the retarded nature of the
interaction: we can have τ > τ′ or τ′ > τ at the vertices [see Eq. (5.56)]. The first
term in the square brackets corresponds to the process in which the incoming electron
of momentum k and energy ε first emits a phonon of momentum q and frequency
ωqλ and then re-absorbs this same phonon at a later time. After emitting the phonon,
the electron has momentum k − q : for this to be possible, the state k − q must be
empty, which explains the factor f (−ξk−q ) in Eq. (5.58). The energy difference, on the
other hand, is ε − (ħhωqλ + ξk−q ) explaining the denominator. The correction b(ħhωqλ)
represents the physical phenomenon of stimulated emission: the emission of phonons
is enhanced if phonons are already present. The second term in the square brackets
contributes mostly for negative energies ε and is therefore best visualized as a process
for a hole at momentum k and energy ε. This hole is first “filled” by an electron of
higher energy, hence a factor f (ξk−q ), leaving a hole in state k−q ; the phonon is then
absorbed by the electron in state k, which returns to k − q and leaves the initial hole



Perturbation theory and Feynman diagrams 63

kk−q

k,ε

k−q

q ,ωqλ

k−q
k k,ε

k−q

(1) (2)

k−q
k

k,εk−q

−q ,ωqλ

k−q

k

k,εk−q

Figure 5.6: Interpretation of Eq. (5.58). The first term corresponds to emission and re-
absorption of a phonon by an electron (top). The second term is the equivalent process for a
hole (bottom).

in state k. The fact that the intermediate state is a hole (the k − q hole) is seen in the
diagram in the fact that the corresponding propagator goes “back in time”.

These various mechanisms contribute to “dress” the electrons with a cloud of phonons,
making the electrons heavier with an effective mass m∗ > m and short-lived with a
finite life-time. Mathematically, the effective mass and the life-time are seen in the
facts that the self-energy depends on energy and possesses an imaginary part. These
important aspects are discussed further in Sec. 7.3. In doc–75, Eq. (5.58) is evaluated
analytically in the simpler case of a phonon spectrum with a single dispersionless
optical phonon. For acoustic phonons, the imaginary part of Eq. (5.58) goes like |ε|3
and explains the dominant contribution ∼ T 3 of the electron-phonon interaction to the
resistivity of metals. Higher-order terms can be evaluated in the same way and describe
the so-called multi-phonon processes. In the case of acoustic phonons, it turns out that
the second-order terms are smaller than the first-order term, Eq. (5.58), by a factor
(m/M)1/2 ∼ 10−3, where m and M are the electron and nucleus masses, respectively.1

Therefore, the higher-order processes can generally be ignored.

5.1.4 Two-particle correlation functions

The Green’s function studied in the previous section, Eq. (5.6), is a one-particle cor-
relation function in the sense that it describes the time evolution of a single particle
created at time zero. Two-particle correlation functions describe the evolution of a pair
of particles or, as will be discussed in this section, the evolution of a particle-hole pair.
These correlation functions are of the kind:

Cαβγδ(τ) = −〈Tτa†
α(τ)aβ (τ)a

†
γ(0)aδ(0)〉= −�α

β

δ

γ

. (5.59)

Like in Eq. (5.10), the right vertex corresponds to imaginary time zero and the left
vertex to imaginary time τ. The shaded box represents all interactions that can take

1 A. B. Migdal, Soviet Phys. JETP 7, 996 (1958). See also Schrieffer (1964, p. 156).



64 Calculating correlation functions

place like the double line in Eq. (5.10) and the minus sign in front of the diagram will
be explained below.

5.1.4.1 Physical interpretation

The object defined in Eq. (5.59) describes the propagation of a particle-hole pair
created at time 0—the particle being created in state γ and the hole being created by
annihilating a particle in state δ—and annihilated in another state at time τ. Like
the Green’s function for single-particle excitations, this propagator will therefore have
poles at energies corresponding to stable particle-hole excitations.

Usually, one considers correlators constructed by summing over the indices α, β ,
γ, and δ. One thus describes the propagation of a superposition of many particle-
hole pairs: such superpositions are collective excitations. For example, the density-
density correlation function Cn(q)n(−q)(τ) with n(q) =

∑
kσ a†

kσak+qσ describes the
propagation of density fluctuations, i.e., collective excitations made of particle-hole
pairs with the same relative wave vector q . It is sometimes called the density-fluctuation
propagator. We will see that Cn(q)n(−q)(iΩn) has poles at energies and wave vectors
corresponding to the resonant density oscillations, like for instance the plasmon.

As a first step, we look at the lowest-order term in the perturbation series for Cαβγδ.
This term is know as the particle-hole bubble.

5.1.4.2 Particle-hole bubble

The zeroth order term in the perturbation series Eq. (5.5) for Cαβγδ(τ) is simply [see
doc–40]

C 0
αβγδ(τ) = −ηG 0

βγ(τ)G 0
δα(−τ) = −�α δ

β γ

. (5.60)

The minus sign in front of the diagram comes directly from the definition Eq. (5.59)
while the η factor is accounted for by the diagrammatic rules because there is one
particle loop. It is customary to work in the representation in which the Green’s function
is diagonal, i.e., Gαβ ∝ δαβ . In that case, the particle-hole bubble takes a familiar
form in the frequency domain [see doc–40]:

C 0
αβγδ(iΩn) = δαδδβγ

d−η(ξα)− d−η(ξβ )

iΩn + ξα − ξβ
. (5.61)

One easily sees how the free-electron density-density correlation function, Eq. (3.29),
can be deduced from Eq. (5.61). C 0

αβγδ
plays in the diagrammatic perturbation the-

ory for two-particle correlation functions a role similar to G 0
αβ

in the diagrammatic

expansion of the one-particle Green’s function. Unlike G 0
αβ

, C 0
αβγδ

has an explicit tem-
perature dependence due to the distribution functions in the numerator. The reason
is that particle-hole excitations depend on the occupation of single-particle states, as
illustrated in Fig. 5.7. In contrast, the injection described by G 0

αβ
of a new particle in a

system is unrelated to the occupation numbers in that system.
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(a) �ξβ > 0

ξα < 0
α

β α occupied : f (ξα)
β empty : 1− f (ξβ )

energy : ξβ − ξα



 ⇒ f (ξα)[1− f (ξβ )]

iΩn − (ξβ − ξα)

(b) �ξβ > 0

ξα < 0
α

β β occupied : f (ξβ )
α empty : 1− f (ξα)

energy : ξα − ξβ



 ⇒ f (ξβ )[1− f (ξα)]

−iΩn − (ξα − ξβ )

Figure 5.7: Interpretation of the particle-hole bubble for fermions. In the particle-hole emission
process (a), one expects a pole when the injected energy iΩn equals ξβ − ξα, provided that the
state α is occupied and the state β is empty. In the recombination process (b), the energy iΩn is
released (minus sign) by the transition of energy ξα−ξβ if the state β is occupied and the state α is
empty. Summing the two terms, we obtain Eq. (5.61) since f (ξα)[1− f (ξβ )]− f (ξβ )[1− f (ξα)] =
f (ξα)− f (ξβ ).

5.1.4.3 Diagrams for a one-body operator

Like for the Green’s function, we start by the case of a one-body operator since this is
the simplest case and it can be solved exactly. The general formula Eq. (5.5) gives:

Cαβγδ(τ) = −
∞∑
n=0

(−1)n
∫ β

0

dτ1 · · · dτn

∑
α1β1

Vα1β1
· · ·
∑
αnβn

Vαnβn

〈Tτa†
α1
(τ1)aβ1

(τ1) · · · a†
αn
(τn)aβn

(τn)a
†
α(τ)aβ (τ)a

†
γ(0)aδ(0)〉con-diff

0 . (5.62)

At order n = 0, we find the particle-hole bubbleC 0
αβγδ
(τ) that we have just encountered.

At order n = 1, the Wick theorem generates two terms that are nonzero, connected,
and topologically different, namely (omitting summations for simplicity):

Vα1β1
η 〈Tτa†

α1
(τ1)aβ (τ)〉0︸ ︷︷ ︸

−ηG 0
βα1
(τ−τ1)

〈Tτa
β1
(τ1)a

†
γ(0)〉0︸ ︷︷ ︸

−G 0
β1γ
(τ1)

〈Tτa†
α(τ)aδ(0)〉0︸ ︷︷ ︸
−ηG 0

δα
(−τ)

= −�α δ

γβ
α1 β1

and

Vα1β1
〈Tτa†

α1
(τ1)aδ(0)〉0︸ ︷︷ ︸

−ηG 0
δα1
(−τ1)

〈Tτa
β1
(τ1)a

†
α(τ)〉0︸ ︷︷ ︸

−G 0
β1α
(τ1−τ)

〈Tτa
β
(τ)a†

γ(0)〉0︸ ︷︷ ︸
−G 0

βγ
(τ)

= −�
β γ

α δ
β1 α1

.

It is not difficult to foresee what will happen at orders n > 1: terms with increasing
numbers of scattering events on the particle and hole lines will be generated, such that
by summing all these terms we simply get a “renormalized” particle-hole bubble in
which the two free Green’s functions in Eq. (5.60) are replaced by the exact Green’s
function given in Eq. (5.18b):� =� (5.63)
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In this case, the particle and the hole in the particle-hole pair propagate and are
scattered by the potential independently. This is, of course, due to the absence of
interaction between the particle and the hole. Quite generally, in a non-interacting
system the many-particle correlation functions will be simple products of the individual
one-particle propagators: this is just another way of stating Wick’s theorem. In this
particularly simple situation, we can use the spectral representation of the exact Green’s
functions to express the correlator in the frequency domain as [see doc–40]:

Cαβγδ(iΩn) =

∫ ∞

−∞
dε1dε2ρa

δ
a†
α
(ε1)ρa

β
a†
γ
(ε2)

d−η(ε1)− d−η(ε2)

iΩn + ε1 − ε2
. (5.64)

Equation (5.64) is the expected generalization of Eq. (5.61), to which it reduces if the
spectral functions are replaced by delta functions.

For non-interacting particles subject to a one-body potential, Eqs (5.63) and (5.64)
provide the exact result. This is of course not true for particles interacting via two-body
forces. In the latter case, two new types of particle-hole diagrams emerge as will be
seen in the next section, which are collectively called vertex corrections. Nevertheless, in
many problems and actual calculations it is customary to neglect the vertex corrections
and use Eq. (5.63) as an approximation to the exact particle-hole propagator, with
the full line	 taken as the appropriate Green’s function for the system under
consideration.

5.1.4.4 Diagrams for a two-body operator

For a two-body operator, we find as for a one-body operator diagrams corresponding
to a “decoration” of the particle or hole, such as
 or � (5.65)

Diagrams of this kind describe processes in which the particle and/or the hole encounter
scattering events in their propagation but without influencing one another. The sum
of all such diagrams is generated by replacing the free particle and hole lines in the
particle-hole bubble by the renormalized lines, like in Eq. (5.63). However, there
are also two other types of diagrams which do not appear in the case of a one-body
operator. The first such type involves interactions between the particle and the hole,
for instance � (5.66)

The second type involves diagrams connecting together different bubbles with interac-
tion lines, for instance  (5.67)

These latter diagrams describe processes in which the particle-hole pair interacts with
another particle-hole pair and recombines. This corresponds to the (classical) inter-
action between density fluctuations; these diagrams are therefore crucial to describe
electrostatic effects such as screening.
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Here, very much like for the single-particle Green’s function, it is possible to perform the
summation of infinite series of diagrams and define the analogous of an irreducible self-
energy. Indeed, one notices that the diagram in Eq. (5.67), unlike those in Eqs (5.65)
and (5.66), can be separated in two disconnected pieces by cutting just one interaction
line. We will call such particle-hole diagrams reducible, and the others irreducible.
Then, if

Παβγδ =� (5.68)

represents the sum of all irreducible particle-hole diagrams, we can write

� =� +� (5.69)

as can be checked by direct inspection. This is the counterpart for two-particle corre-
lators of Dyson’s equation, Eq. (5.31). The quantity Π is called the polarization. We
will see in Sec. 5.1.4.6 that it indeed describes the polarization of the system, which
has the effect of screening the bare interaction. Please note that there is no minus sign
in front of the diagram in the definition of the polarization Eq. (5.68), unlike for the
other two-particle correlation functions Eq. (5.59).

The sum of all irreducible diagrams entering the polarization Παβγδ can also be written
in a suggestive way as � =� (5.70)

In this representation, one can see the appearance of a renormalized vertex given by
the sum of irreducible vertex corrections:

� = � +� +� +� +� + . . . (5.71)

It is important to notice that only one of the two vertices must be renormalized in
Eq. (5.70). Otherwise most diagrams would be counted twice. On the contrary, both
propagator lines are renormalized because they are not topologically equivalent, one
representing a particle and the other a hole.

A very common scheme, known as the random-phase approximation (RPA), consists in
using the particle-hole bubble as an approximation for the full polarization:

�RPA =� (5.72)

Obviously, this approximation neglects both the propagator renormalization and the
vertex corrections. However, when used in Eq. (5.69) it allows one to take into account
the complete series of diagrams of the kind Eq. (5.67). An improved version, the
self-consistent RPA, makes use of the renormalized particle-hole bubble:

�sc
RPA =� (5.73)
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5.1.4.5 Density-density correlation function

Generalities We have already encountered the density-density correlation function
in Secs 1.1 and 3.3.2. In imaginary time and for a translation-invariant system, this
function is defined as

χnn(q ,τ) = −〈Tτn(q ,τ)n(−q , 0)〉 (5.74)

with n(q) the density operator given in Eq. (2.46). The density-density correlation
function is a superposition of particle-hole diagrams like Eq. (5.59) with a specific
relation between the particle and the hole, namely a difference q in their wave vectors:

χnn(q ,τ) = − �kσ
k+qσ

k ′−qσ′

k ′σ′
(5.75)

In this diagram and in the subsequent ones of the same kind, unlike in Eq. (5.59), the
variables (kσ) and (k ′σ′) are summed over like in the definition of the density. The
variables that remain, q and τ, belong to the external “connectors”. One can indeed
see that there is a flow of momentum ħhq from right to left in the diagram. A density
fluctuation of wave vector q is injected from the right (at time zero) by kicking a hole
from k ′ − q to k ′ and released from the left (at time τ) with the recombination of an
electron from k + q to k. In a system of free particles, the expression of χ0

nn is easily
worked out using Eq. (5.61) and gives

y χ0
nn(q , iΩn) =

∑
kσ

d−η(ξk)− d−η(ξk+q )

iΩn + ξk − ξk+q
, (5.76)

as we have already found using the spectral representation [see Eq. (3.29)]. In the
particular case of free fermions, we can perform the momentum sum exactly at zero
temperature. The resulting expression for the retarded function is somewhat compli-
cated [see doc–41] but contains much useful information. We only quote here the
behavior of χ0

nn(q ,ε) in a few important limits—in the following we use the notation
χ0

nn rather than χ0R
nn for the retarded function:

q = ε = 0 χ0
nn(0,0) = −N el

0 (0) [first ε = 0, then q → 0]

ε = 0 χ0
nn(q , 0) = −N el

0 (0)
�

1
2 +

1
4

�
1
x − x

�
ln
�� 1+x

1−x

���

q → 0 χ0
nn(q → 0,ε∝ q) = −N el

0 (0)
�
1− ζ

2 ln
�� 1+ζ

1−ζ
���

ε→∞ χ0
nn(q ,ε) =

4
3 Nel

0 (0)εFεq
ε2





Free fermions at T = 0

x = q
2kF

, ζ= mε
ħh2kFq

εF =
ħh2k2

F
2m , εq =

ħh2q2

2m

(5.77)
In these expressions, N el

0 (0) stands for the density of states (DOS) at the Fermi energy,
namely N el

0 (0) = mkFV /(π2ħh2) for free electrons in 3D. The result χ0
nn(0, 0) = −N el

0 (0)
has a wider validity, though, and holds for any system of independent fermions [see
doc–41]. The high-energy behavior ∝ ε−2 is also a general property valid for all
two-particle auto-correlation functions, due to the fact that their spectral function is
an odd function of ε. As a result, all odd powers of 1/ε disappear in the moment
expansion Eq. (3.43). That the term in ε−1 disappears can also be directly seen from
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Eq. (3.45), since [n(q), n(−q)]− = 0. Therefore, while the high-energy behavior of the
single-particle Green’s function is always exactly 1/ε, the high-energy behavior of the
retarded density-density correlation function is controlled by the first moment of its
spectral function:

χR
nn(q ,ε→∞) = 1

ε2

∫ ∞

−∞
dε ε ρn(q)n(−q)(ε). (5.78)

These various limits of χ0
nn(q ,ε) will be used below to discuss the general features of

the charge-excitation spectrum.

Let’s consider now the case of interacting particles. Following the reasoning of the
previous section, we can rewrite χnn(q , iΩn) in terms of the irreducible polarization as

y χnn(q , iΩn) =
−Π(q , iΩn)

1+ 1
V V (q)Π(q , iΩn)

. (5.79)

In translating Eq. (5.69), we must be careful about the signs:� = −χ, = Π,
and! = −V/V , the latter sign being the one associated with each power of the
interaction in Eq. (5.5). Eq. (5.79) is the basis for studying the collective charge
excitations in a system of interacting particles. Stable collective modes correspond to
poles of χnn(q , iΩn) and are therefore determined by finding the values of q and ε that
satisfy the equation

1+ 1
V V (q)Π(q , iΩn→ ε + i0+) = 0. (5.80)

Clearly, this equation can only be satisfied in regions of the (q ,ε) space where ImΠ(q ,ε+
i0+) = 0. One can distinguish four kinds of solutions. Solutions such as ε = ħhvq
describe sound-like waves propagating in the system. An example is the Landau zero
sound with v ¾ vF, which shows up when the interaction V is short-ranged like in 3He.
There are also solutions of the form ε = ε0 + Aq2. Those correspond to the plasmon
which appears when the interaction is long-ranged and which, like an optical phonon,
has a finite energy at q = 0. There might also be solutions such that ε = 0 and q 6= 0.
The latter correspond to static (ε = 0) and periodic (q 6= 0) charge modulations known
as charge-density waves (CDW). If a charge-density wave solution exists, this generally
means that the system is unstable toward the formation of an ordered ground state
in which this density wave is realized. An example is the Wigner crystal. Finally, a
solution at ε = 0 and q = 0 also signals an instability of the system toward an ordered
ground state in which the density is reorganized, like e.g. in a ferroelectric material.

Density excitation spectrum in RPA, plasmon and zero sound Since in the RPA
approximation one takes [see Eq. (5.72)]

ΠRPA(q , iΩn) = −χ0
nn(q , iΩn), (5.81)

the density-density correlation function in the RPA approximation reads

χRPA
nn (q , iΩn) =

χ0
nn(q , iΩn)

1− 1
V V (q)χ0

nn(q , iΩn)
. (5.82)
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Figure 5.8: Density excitation spectrum in the 3D homogeneous fermion gas for (a) long-range
and (b) short-range interaction. The color scale represents the value of |χRPA

nn (q ,ε)|, and shows
the plasmon in (a) and the zero sound in (b) as bright lines. Typical particle-hole excitations are
sketched in (a).

Based on this expression, we can draw a graph representing the density excitations
of the interacting homogeneous fermion gas (Fig. 5.8). It is convenient to measure
the wave vectors in units of 2kF and the energies in units of 4εF, i.e., to work with
the variables x = q/(2kF) and y = ε/(4εF). The region of the (x , y) plane where
particle-hole excitations do exist corresponds to the region where Imχnn(x , y) 6= 0. In
the RPA approximation, this region coincides with the region where Imχ0

nn(x , y) 6= 0.
We see in doc–41 that the imaginary part of χ0

nn is proportional to y if y < x − x2. This
defines a first region in the graph below the line x− x2, where electron-hole excitations
prevent the formation of collective modes.1 More precisely, collective modes that
would exist in this region are strongly damped by exchanging energy with incoherent
electron-hole excitations and therefore would have a short life-time. This attenuation
of collective modes is known as the Landau damping. Particle-hole excitations are also
present in the region between the lines x2+ x and x2− x , where Imχ0

nn(x , y) decreases
as y increases. x2 + x is the highest energy that can be reached for a particle-hole
excitation of momentum x , i.e., when the wave vector is normal to the Fermi surface,
while x2 − x is the minimal energy attainable with a wave vector larger than 2kF (see
Fig. 5.8).

The type of collective excitation that can exist in the region where Imχnn(x , y) = 0
depends on the range of the interaction V . In the limit q→ 0 (ζ−1 = x/y → 0), we

1 In one dimension, χ0
nn(x , y) = 0 for y < x − x2 because in this case the Fermi surface reduces to two

points and therefore only excitations with q ≈ 0 and q ≈ 2kF are possible close to ε = 0.
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can see from Eq. (5.77) that

χ0
nn(q → 0,ε) = 1

3 N el
0 (0)

�
x
y

�2
+O

��
x
y

�4 �
(5.83)

and therefore χ0
nn increases like (q/ε)2. If the interaction is long-ranged like the

Coulomb interaction, i.e., V (q → 0) ∝ q−2, then V (0)χ0
nn(0,ε > 0) is finite and

the equation 1− 1
V V (0)χ0

nn(0,ε) = 0 admits a solution for a finite ε ≡ ħhωp. In the
homogeneous electron gas, one thus obtains the plasmon excitation and its dispersion
as [see doc–42]

y ωplasmon(q) =ωp +
3v2

F

10ωp
q2 +O(q4), ω2

p =
e2n
ε0m

. (5.84)

The plasmon and its dispersion are visible in Fig. 5.8(a) as a bright line. We also see
on the figure how the Landau damping destroys the plasmon, which dies out upon
entering the continuum of particle-hole excitations at high energies. The plasmon and
its quadratic dispersion have been observed in many simple metals and found to be in
good agreement with the RPA result Eq. (5.84) in Na,1 Mg,2 Al,3 and even Si,4 while
some deviations were found in K, Rb, and Cs.1

If the interaction is short-ranged, V (q = 0) is finite. We then see that the equation
1 − 1

V V (q)χ0
nn(q ,ε) = 0 can still be satisfied in the limit q → 0, provided that the

excitation is a kind of sound with ε = ħhv0q or y = ζx , such that x/y becomes a
constant. In this case, the parameter ζ measures the wave velocity relative to the
Fermi velocity, ζ = v0/vF, with vF = ħhkF/m. We can no longer rely on the expansion
Eq. (5.83) because x/y is not a small number. Instead, we must solve the full equation
1− 1

V V (0)χ0
nn(q → 0,ε) = 0 which, using Eq. (5.77), can be recast as

− 1+
ζ

2
ln

����
1+ ζ
1− ζ

����=
1

1
V V (0)N el

0 (0)
. (5.85)

The graphical solution of this equation is illustrated in Fig. 5.9. We see that there are
always two solutions, one with ζ < 1 and one with ζ > 1. The first solution implies
v0 < vF and corresponds to a damped sound: the line y = ζx in Fig. 5.8(b) lies within
the region where Imχnn 6= 0 if ζ < 1. On the contrary, the solution with v0 > vF
corresponds to a propagating sound which appears clearly in Fig. 5.8(b). The velocity
of this sound approaches vF in the limit of vanishingly small interactions. This sound
is quite different from the ordinary sound in materials and has been called the zero
sound. The driving force for ordinary sound is the pressure gradient generated by
oscillations of the density away from thermodynamic equilibrium. Therefore, local
equilibrium must be restored in the time interval between two density oscillations for
a normal sound to be able to propagate. This is only possible if the typical collision
time τc is short compared with the sound frequency, i.e., ωτc � 1. As τc typically

1 A. vom Felde, J. Sprösser-Prou, and J. Fink, Phys. Rev. B 40, 10181 (1989).
2 C. H. Chen, J. Phys. C: Solid State Phys. 9, L321 (1976).
3 J. Sprösser-Prou, A. vom Felde, and J. Fink, Phys. Rev. B 40, 5799 (1989).
4 C. H. Chen, A. E. Meixner, and B. M. Kincaid, Phys. Rev. Lett. 44, 951 (1980).

https://doi.org/10.1103/PhysRevB.40.10181
https://doi.org/10.1088/0022-3719/9/12/005
https://doi.org/10.1103/PhysRevB.40.5799
https://doi.org/10.1103/PhysRevLett.44.951
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Figure 5.9: Graphical solution of the equa-
tion giving the velocity of the zero sound
in the RPA approximation for a gas of
fermions interacting with short-range inter-
actions. Only the solution with v0 > vF cor-
responds to a propagating sound, the other
excitation being damped by particle-hole ex-
citations.
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increases like T−2 with decreasing temperature (see Sec. 8.4), the condition ωτc � 1
is no longer satisfied as T → 0 and the ordinary sound disappears at low temperature.
On the contrary, the driving force for the zero sound is the direct interaction between
particles and, for this sound not to be damped by collisions, we must be in the opposite
limit, ωτc � 1. One thus sees that nothing prevents the propagation of the zero sound
down to the lowest temperatures, hence its name. The zero sound was discovered by
Landau and has been observed in 3He, which behaves like a liquid of neutral fermions
interacting via short-range forces.1

Charge-density wave instabilities and nesting It may happen that the density-density
correlation function exhibits poles at ε = 0 for a finite wave vector Q, even in the
absence of interaction. As is clear from Eq. (5.76), if ξk = ξk+Q for some vector Q and
sufficiently many vectors k in the Brillouin zone, χ0

nn(Q, 0) can diverge. The property
ξk = ξk+Q is a special case of nesting and Q is called a nesting vector. As an illustration
of this behavior, Fig. 5.10 shows χ0

nn(Q, 0) for the two-dimensional square lattice with
a tight-binding nearest-neighbor dispersion ξk = 2t(cos kx a + cos ky a) − µ, where
a is the lattice parameter. If µ = 0, the band is half-filled and the density amounts
to one electron per lattice site. In these conditions, the Fermi surface (ξk = 0) is
a square as indicated in Fig. 5.10(a). This square is perfectly nested with a nesting
vector Q = (±π/a,±π/a). The corresponding free density-density bubble Eq. (5.76)
at ε = 0 and zero temperature is displayed in Fig. 5.10(b). One can see the divergence
at Q = (π/a,π/a), which results from the nesting of the Fermi surface. Since poles
in the density-density correlation function correspond to stable excitations (in other
words, eigenstates) of the system, a pole at ε = 0 indicates that there exists a competing
ground state characterized by a periodic modulation of the density. The uniform ground
state—the one that was initially assumed to be the true ground state when calculating
χ0

nn—is said to be unstable towards the formation of an ordered ground state that
breaks translational symmetry. Such a symmetry-breaking state is called charge-density
wave (CDW). The mechanism is analogous to the Peierls instability of one-dimensional
systems.

This kind of instability will generally be suppressed by electron-electron interactions

1 W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. 17, 74 (1966). > K. Sköld, C. A. Pelizzari,
R. Kleb, and G. E. Ostrowski, Phys. Rev. Lett. 37, 842 (1976). > P. A. Hilton, R. A. Cowley, R. Scherm, and
W. G. Stirling, J. Phys. C: Solid State Phys. 13, L295 (1980).

https://doi.org/10.1103/PhysRevLett.17.74
https://doi.org/10.1103/PhysRevLett.37.842
https://doi.org/10.1103/PhysRevLett.37.842
https://doi.org/10.1088/0022-3719/13/12/003
https://doi.org/10.1088/0022-3719/13/12/003
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Figure 5.10: Charge-density wave instability in the 2D square lattice at half filling. The
45◦-rotated square in (a) shows the perfectly nested Fermi surface. The nesting vector Q = (πa , πa )
is also indicated. The corresponding zero-energy density-density bubble is plotted in (b) and
shows a logarithmic singularity at Q.

since, according to Eq. (5.82), χnn(Q, 0) approaches the finite value −V /V (Q) if
χ0

nn(Q, 0) diverges. But the interaction can also trigger other CDW instabilities, which
correspond (in the RPA approximation) to solutions of the equation χ0

nn(Q, 0) =
V /V (Q). Since χ0

nn(Q, 0) varies with temperature, the solution, if any, occurs at
one particular temperature to be interpreted as the critical temperature for the CDW
phase transition. Let’s consider a simple case of nesting where this can happen, namely
ξk+Q = −ξk for all k. This condition is obeyed at half-filling (µ = 0) by the two-
dimensional tight-binding dispersion discussed above. It is easy to see that the nesting
condition implies

χ0
nn(Q, 0) = −V

∫ ∞

−∞
dεN el

0 (ε)
1− 2 f (ε)

2ε
< 0, (ξk+Q = −ξk). (5.86)

Because χ0
nn(Q, 0) < 0, there is no instability for a repulsive interaction. If the in-

teraction is attractive, like the phonon-mediated interaction of Eq. (5.54), there will
be a CDW instability but also, of course, a superconducting instability. The system
is said to have competing ground states: only the instability occurring at the highest
temperature has a chance to be realized in practice. In order to estimate the CDW
transition temperature T CDW

c , we may assume the simple form N el
0 (ε) = N el

0 (0) over
the bandwidth extending from −W/2 to W/2, which leads to the following equation
for the critical temperature:

V
V (Q)

= χ0
nn(Q, 0) = −V N el

0 (0)

∫ W/2

−W/2

dε
2ε

tanh

�
ε

2kBT CDW
c

�

≈ −V N el
0 (0) ln

�
0.567

W
kBT CDW

c

�
, (5.87)
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where we have used Eq. (20), assuming kBT CDW
c �W . The solution is

kBT CDW
c ≈ 0.567 W e1/[V (Q)N el

0 (0)]. (5.88)

This expression is similar to the BCS superconducting temperature Eq. (5.144): the
half-bandwidth W/2 replaces the Debye energy ħhωD and the total DOS replaces the
DOS per spin (the BCS pairing interaction only acts between electrons of opposite
spins). If T CDW

c > Tc , the occurrence of the CDW might prevent the formation of the
superconducting state at lower temperatures.

CDW are most often observed in one-dimensional and quasi-one dimensional materials
like NbSe3, TaSe3, or the organic conductors TMTSF or TTF-TCNQ. In such materials,
the CDW state is usually accompanied by a lattice distortion which stabilizes the CDW.1

CDW also often occur on surfaces, which are realizations of two-dimensional systems
analogous to the square lattice of Fig. 5.10. The CDWs on surfaces are most commonly
called surface reconstructions.

5.1.4.6 Polarization and dielectric screening

In addition to being useful for determining the collective density excitations and
the charge instabilities of a system, the density-polarization Π(q , iΩn) appearing in
Eq. (5.79) is closely related to the dielectric screening. To see this, we note that it
is possible to define a Dyson-like equation for the screened interaction, in complete
analogy with Eqs (5.30) and (5.69):" =# +$ (5.89)

The right-hand side of this equation generates all possible decorations of the interaction
line% obtained by polarization insertions. Like the phonon-mediated interaction
of Eq. (5.54), the screened interaction W (q , iΩn) is energy-dependent and can be
deduced by solving Eq. (5.89). The latter reads, schematically, −W/V = −V/V +
(−V/V )Π(−W/V ), which gives (we assume translation invariance in this section):

y W (q , iΩn) =
V (q)

1+ 1
V V (q)Π(q , iΩn)

. (5.90)

If we replace& by' in our diagrams, we are performing yet another partial
resummation of diagrams up to infinite order. In doing so, we must be careful not to
count some diagrams twice. For instance if we use the screened exchange self-energy
diagram, (
we should not also retain the first of the second-order contributions in Eq. (5.48), since
the latter is already accounted for in the screened exchange.2

1 See e.g. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).
2 A popular and successful approximation to the self-energy of interacting fermionic systems is the so-

called “GW” approximation. In the GW approximation, both the interaction screening and the propagator

https://doi.org/10.1103/RevModPhys.60.1129
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By definition, the ratio between the bare and screened interactions is the longitudinal
dielectric function ε‖(q ,ω) [see doc–43]. From Eq. (5.90), we read:

y ε‖(q ,ω) = 1+
1
V V (q)ΠR(q ,ħhω). (5.91)

This relation is sometimes written as

ε−1
‖ (q ,ω) = 1+

1
V V (q)χR

nn(q ,ħhω). (5.92)

Using Eq. (5.79), one easily checks that these two definitions are indeed equivalent.
Working within the RPA approximation, we can now recover a few well-known expres-
sions for the dielectric function. In the RPA approximation, we have Eq. (5.81) and it
follows that:

εRPA
‖ (q ,ω) = 1− 1

V V (q)χ0
nn(q ,ħhω). (5.93)

In the homogeneous interacting electron gas, we therefore get in the static limit and at
zero temperature, using Eq. (5.77):

εRPA
‖ (q , 0) = 1+

k2
TF

q2

�
1
2
+

1
4

�
2kF

q
− q

2kF

�
ln

�����
1+ q

2kF

1− q
2kF

�����

�
, (5.94)

where the Thomas–Fermi wave vector is given by k2
TF =

e2N el
0 (0)
ε0V . In the long-wave length

limit, we recover the famous result which can also be derived from the Thomas–Fermi
approximation:

εRPA
‖ (q → 0,0) = 1+

k2
TF

q2
. (5.95)

In the same limit, the screened interaction is therefore

W RPA(q → 0,0) =
e2

ε0

1
q2 + k2

TF

. (5.96)

Fourier transforming with the help of Eq. (14), we find that the screened interaction is
short-ranged:

W RPA(r →∞, 0) =
e2

4πε0

e−kTF r

r
. (5.97)

A more accurate calculation that takes into account the complete Lindhard function
Eq. (5.94) leads to a screened interaction displaying Friedel oscillations at large dis-
tances:

W RPA(r →∞, 0) =
e2

4πε0

�
e−kTF r

r
+

2k3
Fk2

TF

(8k2
F + k2

TF)2
cos2kFr
(kFr)3

+O(r−4)

�
. (5.98)

renormalization are taken into account by using the diagram

ΣGW =)
This approximation solves the band-gap problem when used in conjunction with Density-Functional Theory
(DFT) and can produce accurate quasi-particle energies. See L. Hedin, J. Phys.: Condens. Matter 11, R489
(1999).

https://doi.org/10.1088/0953-8984/11/42/201
https://doi.org/10.1088/0953-8984/11/42/201
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These oscillations result from the discontinuity of the occupation numbers at the Fermi-
surface, which in turn leads to the logarithmic singularity at q = 2kF in Eq. (5.94). The
oscillations are therefore damped at finite temperature. Finally, we quote the standard
expression in the high-frequency limit, which can be derived using Eq. (5.77):

εRPA
‖ (q ,ω→∞) = 1−

ω2
p

ω2
. (5.99)

These few simple results show how the perturbation theory, once properly resummed
in order to include infinite series of diagrams, allows one to recover approximate
expressions which can also be obtained by other methods. The advantages of the
perturbation theory is that it provides a fully first-principle approach to the various
problems, and indicates directions to develop systematic improvements over existing
approximations.

5.1.4.7 Spin-spin correlation function

Analogous to the density-density correlation function defined in Eq. (5.74), the spin-
spin correlation function is

χss(q ,τ) = −〈TτS(q ,τ) · S(−q , 0)〉, (5.100)

with S(q) the Fourier transform of the spin-density operator given in the plane-wave
basis by Eq. (2.47). The Pauli matrices τx , τy , and τz are given in Eq. (22). It is
customary to introduce longitudinal and transverse components for this correlator,
where “longitudinal” in this context means parallel to the spin quantization axis taken
as the z axis. As shown in doc–44, for electrons interacting via spin-conserving forces
like the Coulomb force, we have

χss(q , iΩn) =
�ħh

2

�2 �
χ‖(q , iΩn) +χ⊥(q , iΩn)

�
(5.101a)

χ‖(q , iΩn) = −
Π(q , iΩn) + 4 V (q)

V Π↑↑(q , iΩn)Π↓↓(q , iΩn)

1+ V (q)
V Π(q , iΩn)

(5.101b)

χ⊥(q , iΩn) = −2[Π↑↓(q , iΩn) +Π↓↑(q , iΩn)], (5.101c)

where the spin-dependent polarizations are

Πσσ′(q , iΩn) =*σ
σ′

σ

σ′
(5.102)

and Π≡ Π↑↑ +Π↓↓ is the total polarization entering Eq. (5.79).

For non-interacting and non-spin polarized electrons, we have V (q) = 0 and Π↑↑ =
Π↓↓ = Π↑↓ = Π↓↑ =

1
2Π

0 = − 1
2χ

0
nn. We therefore obtain

�
2
ħh
�2
χ0

ss(q , iΩn) = 3χ0
nn(q , iΩn). (5.103)

Up to numbers, the free density-density and spin-spin correlation functions are identical.
The factor 3 reflects the three components of the spin. This result is expected because the
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density and spin excitations are both carried by the same particles and, in the absence
of interactions, the propagation of these excitations is governed by the propagation of
that free particle. The situation is going to be different in the presence of interactions
because a density excitation produces a charge disturbance and is therefore sensitive
to the Coulomb interaction, while a spin excitation can be charge-neutral.

We can see this by considering the case of an interacting paramagnetic system for
which Π↑↑ = Π↓↓ = Π↑↓ = Π↓↑ =

1
2Π, such that Eq. (5.101) gives a result similar to that

of independent particles:

�
2
ħh
�2
χss(q , iΩn) = −3Π(q , iΩn) (paramagnetic system). (5.104)

This is quite different from the density-density result Eq. (5.79) and it shows that
the interaction does not lead to such things as spin plasmons or spin-waves in a
paramagnetic electronic system. The existence of static spin-density waves (SDW) is
still possible, though. At the RPA level, for instance, we have simply χRPA

ss ∝ χ0
nn such

that the system of Fig. 5.10 has a SDW instability at Q = (πa , πa ), which indicates the
existence of a competing anti-ferromagnetic ground state.

In a fully polarized system, one can to first approximation assume that only one spin
state is available (Π↑↑ = Π and Π↓↓ = Π↑↓ = Π↓↑ = 0). Since in such a system the
density n = n↑, the existence of the density plasmon also implies the existence of a
spin plasmon, an oscillation of the local magnetization. Hence one expects to have a
pole in the spin susceptibility. We indeed find from Eq. (5.101) that, in this case,

�
2
ħh
�2
χss(q , iΩn) = −

Π(q , iΩn)

1+ V (q)
V Π(q , iΩn)

= χnn(q , iΩn)

(fully polarized system), (5.105)

such that the spin and density excitations have identical structures as expected.

The formulas given in this section were derived for an interaction that does not depend
on the spin, like the Coulomb and phonon-mediated interactions. One of the most
popular model used to investigate the properties of strongly-correlated electrons, the
Hubbard model, represents the interaction by a contact potential V (r , r ′) = Uδ(r−r ′),
or V (q) = U . As a result, the interaction becomes spin-dependent because of the Pauli
exclusion principle: electrons with parallel spins cannot occupy the same position in
space and therefore cannot feel the interaction. For the Hubbard model, the interaction
vertex of Eq. (5.43) carries one additional constraint� , namely δσ1,−σ2

. The analysis of
the spin susceptibility must be revisited accordingly: in the diagrammatic equation of
doc–44, the second term on the right-hand side disappears. Repeating the analysis, we
then find

χHubbard
‖ =

−Π− 2 U
V Π↑↑Π↓↓

1− � U
V
�2
Π↑↑Π↓↓

, (5.106)

while the expression of χ⊥ remains the same as above. In a paramagnetic state, the
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spin-spin correlation function becomes

�
2
ħh
�2
χHubbard

ss (q , iΩn) =
−Π(q , iΩn)

�
3− U

V Π(q , iΩn)
�

1− 1
2

U
V Π(q , iΩn)

(paramagnetic state). (5.107)

Collective excitations are now possible unlike in Eq. (5.104), if the denominator
1− 1

2
U
V ReΠ(q ,ε + i0+) vanishes. Note the sign difference with respect to Eq. (5.80).

These opposite signs for the charge and spin susceptibilities imply, in particular, that in
the case of the nesting condition considered in Eq. (5.86), where we have seen that
no CDW instability occurs for a repulsive interaction, a SDW instability does occur,
corresponding to an ordering of the spins with wave vector Q.

5.2 Equation-of-motion method

The perturbation theory is useful when there exists a small parameter and expanding
in powers of this parameter makes sense. In other situations, the equation-of-motion
method is an alternate analytical approach to evaluate correlation functions. This
method provides a direct and elegant solution to the problem of independent particles.
Furthermore, it allows one to easily derive the conventional mean-field theories of
Hartree–Fock and BCS–Gor’kov and to give them a transparent interpretation in terms
of neglected high-order correlations.

5.2.1 The equation of motion

The equation of motion of the imaginary-time correlation function of the operators A
and B, CAB(τ) = −〈TτA(τ)B(0)〉, is readily found to be [see doc–45]

y − ∂τCAB(τ) = δ(τ)〈[A, B]−η〉+C[A,K]B(τ). (5.108)

The first term in the right-hand side arises due to the time derivative of the theta
function implied by the imaginary-time ordering, while the second term is due to
the time derivative of A(τ). As we see, solving this equation for CAB(τ) requires
another correlation function C[A,K]B(τ). This is just the beginning of an endless series
of coupled equations, because the equation of motion of C[A,K]B(τ) in turn depends
on C[[A,K],K]B(τ), etc. The obvious strategy within the equation-of-motion framework
is therefore to cut this infinite series by approximating the high-order correlation
functions by products of lower-order ones—as if Wick’s theorem would apply—and
thus obtain a closed set of equations. For independent particles this truncation is exact
due to the absence of correlations. Therefore, although the equation-of-motion method
does not provide a practical recipe for calculating correlation functions exactly, it gives
a strategy for building a better and better approximation by decoupling the correlation
functions at higher and higher order. From now on we focus on the one-particle Green’s
function. The treatment of two-particle functions follows the same procedure.
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5.2.2 One-particle Green’s function

Let’s recall that the one-particle Green’s function is the correlation function of the
creation and annihilation operators and thus corresponds to taking A= aα and B = a†

β
,

in which case [A, B]−η becomes [aα, a†
β
]−η = δαβ according to Eq. (2.41). The Green’s

function is denoted Gαβ (τ) as in Eq. (5.6):

Gαβ (τ)≡Caαa†
β
(τ) = −〈Tτaα(τ)a

†
β
(0)〉. (5.109)

5.2.2.1 Independent particles

For independent particles, the Hamiltonian generically has the form of the first term
in Eq. (2.45), K0 =

∑
αβ ξαβa†

αa
β
, and the commutator of aα and K0 that we need in

the equation of motion Eq. (5.108) is given in Eq. (25): [aα, K0] =
∑
γ ξαγaγ. The

equation of motion therefore reads

− ∂τG 0
αβ (τ) = δ(τ)δαβ +

∑
γ

ξαγC 0
aγa†

β

(τ)
︸ ︷︷ ︸
G 0
γβ
(τ)

. (5.110)

A superscript 0 is attached to G in order to stress that these and the following relations
are only valid for independent particles. We see that the equation of motion involves
only G 0 in this case and can therefore be solved in closed form. Moving to the frequency
domain where−∂τ→ iνn and δ(τ)→ 1, we have iνnG 0

αβ
(iνn) = δαβ+

∑
γ ξαγG 0

γβ
(iνn)

or, in other words, ∑
γ

�
iνnδαγ − ξαγ

�
︸ ︷︷ ︸
[iνn11−K0]αγ

G 0
γβ (iνn)︸ ︷︷ ︸
[G0(iνn)]γβ

= δαβ︸︷︷︸
[11]αβ

. (5.111)

It is natural to introduce a “matrix Green’s function” as we did in Sec. 5.1.3.3. We then
see that Eq. (5.111) reduces to the matrix equation

�
iνn11− K0

�G0(iνn) = 11, that is

y G0(iνn) =
�
iνn11− K0

�−1
. (5.112)

This equation is very convenient, as it provides a recipe for evaluating the Green’s
function of independent particles through a simple matrix inversion. It is the same
result that we have obtained in Sec. 5.1.3.3 by summing all diagrams in perturbation
theory for a one-body operator. If the one-particle states ϕα corresponding to a†

α are
chosen as the eigenstates of K0, then K0 =

∑
α ξαa†

αaα is diagonal and the matrix
Green’s function is also diagonal:1

G 0
αβ (iνn) =

δαβ

iνn − ξα
. (5.113)

1 Formally, we could write using Dirac’s notation,

iνn11− K0 =
∑
αβ

|α〉 〈α|iνn11− K0|β〉︸ ︷︷ ︸
δαβ (iνn−ξα)

〈β |=
∑
α

(iνn − ξα)|α〉〈α|.
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The analytic continuation to real energy gives the retarded function that we have
already encountered in Eq. (3.26).

5.2.2.2 Interacting particles

If the Hamiltonian involves an interaction term like the second term in Eq. (2.45),
the equation of motion requires the commutator [aα, V ] =

∑
γµ1µ2

Vαγµ1µ2
a†
γaµ2

aµ1
[see

Eq. (25)] in addition to the contribution from [aα, K0]. It follows that

− ∂τGαβ (τ) = δ(τ)δαβ +
∑
γ

ξαγGγβ (τ) +
∑
γµ1µ2

Vαγµ1µ2
Ca†

γaµ2 aµ1 , a†
β
(τ). (5.114)

This is the general equation of motion of the one-particle Green’s function. Its physical
meaning is that the relaxation of single-particle excitations described by Gαβ (τ) occurs
via the two-body interaction through processes involving the creation of particle-hole
pairs. The equation of motion ofCa†

γaµ2
aµ1

, a†
β
(τ) describes the dynamics of these particle-

hole pairs, which is controlled by higher-order processes and so on and so forth along
the infinite chain of coupled equations mentioned in Sec. 5.2.1. The equation of motion
Eq. (5.114) cannot be solved exactly for a general interaction V , but it can be used to
prove exact relations involving the Green’s function. An example is Eq. (1.9) relating
the grand potential Ω to Gαβ (τ), the proof of which is given in doc–46.

If Wick’s theorem did apply, Ca†
γaµ2

aµ1
, a†
β
(τ) in Eq. (5.114) could be factorized into

products of correlation functions of only two field operators, i.e., Green’s functions. In
this way, the infinite chain of equations of motion could be solved in closed form. The
Wick theorem does not hold if a two-body interaction is present, however, such that
Ca†

γaµ2
aµ1

, a†
β
(τ) cannot be factorized. The essence of the mean-field theories discussed

in the next paragraph is precisely to neglect the correlations present in Ca†
γaµ2

aµ1
, a†
β
(τ)

and to treat this quantity as if particles were independent.

5.2.2.3 Hartree–Fock–Gor’kov decoupling

5.2.2.3.1 Gor’kov equations In this approximation, one assumes that the corre-
lation function in the last term of the equation of motion of the Green’s function
can be “decoupled” using Wick’s theorem, as if the particles were independent. This
approximation thus neglects non-trivial two-particle correlations and is, therefore, an
independent-particle or mean-field approximation. It is in fact the most general static

This expresses the fact that iνn11 − K0 is represented numerically by a diagonal matrix. The matrix
representing the inverse is therefore simply the diagonal matrix with inverse matrix elements, namely

G0(iνn) =
�
iνn11− K0

�−1
=
∑
α

|α〉〈α|
iνn − ξα

,

and the matrix elements of G0 follow:

G 0
αβ (iνn) = 〈α|G0(iνn)|β〉=

∑
γ

〈α|γ〉〈γ|β〉
iνn − ξγ

=
δαβ

iνn − ξα
.
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mean-field approximation one can think of. In the absence of pairing it is equivalent
to the Hartree–Fock approximation, while in the presence of pairing it is just the BCS
theory. We derive it here in a somewhat abstract way in order to emphasize the gener-
ality of the approach. Specific applications will be considered towards the end of this
section. The approximation reads:

Ca†
γaµ2 aµ1 , a†

β
(τ)≈ −〈Tτa†

γ(τ)aµ2
(τ)〉〈Tτaµ1

(τ)a†
β
(0)〉

−η〈Tτa†
γ(τ)aµ1

(τ)〉〈Tτaµ2
(τ)a†

β
(0)〉

− 〈Tτa†
γ(τ)a

†
β
(0)〉〈Tτaµ2

(τ)aµ1
(τ)〉

= 〈a†
γaµ2
〉Gµ1β

(τ) +η〈a†
γaµ1
〉Gµ2β

(τ) + 〈aµ2
aµ1
〉F †

γβ
(τ). (5.115)

The new correlation function introduced here, namely

y F †
αβ
(τ)≡Ca†

αa†
β
(τ) = −〈Tτa†

α(τ)a
†
β
(0)〉, (5.116)

is called anomalous Green’s function. The notationF † does not have the usual meaning
of hermitic conjugation but stands as a reminder that this is the correlation function
〈a†a†〉. The anomalous Green’s function vanishes in normal metals in which the
number of particles is conserved ([K , N] = 0), but can be nonzero in BCS models
of superconductors when a finite density of Cooper pairs exists. In the mean-field
approximation, the anomalous propagator is directly related to the superconducting
order parameter. The equation of motion of F †

αβ
is readily written down using the

general equation of motion Eq. (5.108), the commutator Eq. (26), and the same type
of decoupling as Eq. (5.115):

−∂τF †
αβ
(τ) = −

∑
γ

ξ∗αγF †
γβ
(τ)−

∑
γµ1µ2

V ∗αγµ1µ2
Ca†

µ1 a†
µ2 aγ, a†

β
(τ)

≈ −
∑
γ

ξ∗αγF †
γβ
(τ)−

∑
γµ1µ2

V ∗αγµ1µ2

�
〈a†
µ1

a†
µ2
〉Gγβ (τ)

+η〈a†
µ1

aγ〉F †
µ2β
(τ) + 〈a†

µ2
aγ〉F †

µ1β
(τ)
�
. (5.117)

Note the absence of a term proportional to δ(τ), owing to the fact that [a†
α, a†

β
]−η = 0.

Collecting the equations of motion of G and F †, using a matrix notation and moving
to the frequency domain, we obtain the two coupled equations known as the Gor’kov
equations [see doc–47]

y

�
iνn11− K̃0

�G (iνn)−∆F †(iνn) = 11 (5.118a)
�
iνn11+ K̃∗0

�F †(iνn) +∆
∗G (iνn) = 0. (5.118b)
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We have introduced the modified self-consistent one-particle Hamiltonian K̃0 = K0 +
VH + Vx as well as the mean fields

[VH]αβ =
∑
µ1µ2

Vαµ1βµ2
〈a†
µ1

aµ2
〉= −η

∑
µ1µ2

Vαµ1βµ2
Gµ2µ1

(τ= 0−) (5.119a)

[Vx]αβ = η
∑
µ1µ2

Vαµ1µ2β
〈a†
µ1

aµ2
〉= −

∑
µ1µ2

Vαµ1µ2β
Gµ2µ1

(τ= 0−) (5.119b)

∆αβ =
∑
µ1µ2

Vαβµ1µ2
〈aµ2

aµ1
〉= −η

∑
µ1µ2

Vαβµ1µ2

�
F †
µ2µ1
(τ= 0−)

�∗
. (5.119c)

As shown in doc–47, VH and Vx are the usual Hartree and exchange potentials if V is
the Coulomb interaction and they play similar roles for other types of model or effective
interactions. In particular, the exchange potential is negative (attractive) for fermions
if the interaction V is repulsive. The Gor’kov equations form a set of self-consistent
one-particle equations which can be solved using standard linear-algebra techniques. In
the absence of superconducting pairing (F † =∆= 0), they reduce to the well-known
Hartree–Fock approximation. In the traditional formulation, one derives the latter by
approximating the ground state with a single Slater determinant like Eq. (2.32) and
optimizing the one-particle wave functions ϕα that enter this determinant such as to
minimize the ground-state energy. The resulting variational equations determining
the ϕα turn out to be the same as the equation

�
iνn11− K̃0

�G (iνn) = 11. The present
formulation widens the meaning of that approximation from a variational theory of
the ground state to a consistent theory of the full single-particle excitation spectrum
that neglects two-particle correlations beyond the correlation entailed by the exclusion
principle—that are accounted for in the Hartree–Fock approximation.

The Gor’kov equations are formulated in a variety of different but equivalent ways in
the literature, as we briefly discuss now.

5.2.2.3.2 Dyson-like formulation In the Dyson equation Eq. (5.31), the Green’s
function is expressed in terms of a bare part G0 and a self-energy Σ. The same thing
may be achieved here by eliminating F † from the two Gor’kov equations and solving
for G . We thus obtain

G (iνn) =
�G−1

0 (iνn)−Σ(iνn)
�−1

(5.120a)

where

G−1
0 (iνn) = iνn11− K̃0 and Σ(iνn) =∆G T

0 (−iνn)∆
∗. (5.120b)

Here “T” means transposition and we used K̃∗0 = K̃ T
0 . This formulation is useful when

the mean-field (or order parameter) ∆ is known and the single-particle excitation
spectrum or the local density of states (LDOS) is to be calculated. A particularly simple
example is the case of a homogeneous spin-singlet superconductor with an order
parameter ∆k : in this case the matrix Σ(iωn) is replaced by the function Σ(k, iωn) =
|∆k |2/(iωn+ξ−k); see Sec. 5.2.2.3.5. Another example is a vortex in a superconductor,
where the variation of ∆ in real space is approximately known such that Eqs (5.120)
provide a straightforward way to evaluate the LDOS [see doc–79].
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5.2.2.3.3 Nambu formalism In the Nambu formalism, the two Gor’kov equations
are recast into a single matrix equation. This can also be achieved by introducing
two-component field operators known as the Nambu spinors. It is readily verified that
the two Gor’kov equations and their complex conjugate can be collected together in
the matrix form

�
iνn − K̃0 −∆
∆∗ iνn + K̃∗0

�� G −F
F † −G ∗

�
=
�

11 0
0 11

�
, (5.121)

where F is the complex conjugate of F †. It is then natural to introduce the Nambu
matrix Green’s function

Ĝ =
� G −F
F † −G ∗

�
(5.122)

as well as the Nambu Hamiltonian

K̂ =
�

K̃0 ∆

−∆∗ −K̃∗0

�
(5.123)

such that Eq. (5.121) simplifies to

(iνn11− K̂)Ĝ (iνn) = 11. (5.124)

This is just the same equation as Eq. (5.112) for independent particles. The independent-
particle nature of the mean-field approximation thus appears very explicitly in the
Nambu notation: the two Gor’kov equations are rewritten as an independent-particle
problem at the expense of promoting the Green’s function to a matrix with one ad-
ditional “Nambu index”. Physically, this means that the elementary excitations that
diagonalize the Hamiltonian at the mean-field level and behave as independent objects
in a superconductor are not ordinary particles or holes like in conventional metals, but
a specific particle-hole admixture depending on the properties of the superconducting
order parameter, as we shall see shortly.

The Nambu formalism is especially useful in conjunction with perturbation theory.
The latter must be reconsidered in superconductors because, in addition to the usual
diagrams, there are now diagrams involving the anomalous propagatorsF † andF , i.e.,
lines with either two particles created or annihilated at both ends like in Fig. 5.2(b). This
complication can be elegantly sorted out within the Nambu formalism by promoting
the propagator lines to the level of 2× 2 matrices: the lines in the usual diagrams thus
correspond to the matrix Ĝ just defined rather than to the function G . The vertices
must also be replaced by 2× 2 Pauli matrices. In this way, all anomalous diagrams
are automatically included. For details, see Schrieffer (1964) and doc–68, where the
Eliashberg equations and an example of solution are presented.

5.2.2.3.4 Bogoliubov–de Gennes equations The famous Bogoliubov–de Gennes
equations for superconductors were originally introduced in order to deal with situ-
ations in which the superconducting order parameter or the potential vary in space.
Rather than focussing on the Green’s function, they focus on the wave functions of the
elementary excitations in the superconductor. Let’s therefore define the eigenvalues
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and eigenvectors of the “Nambu Hamiltonian” introduced above: K̂ |γ〉 = Eγ|γ〉. These
are the Bogoliubov–de Gennes equations. They are usually written in 2×2 matrix form
as1 �

K̃0 ∆

−∆∗ −K̃∗0

��|uγ〉
|vγ〉

�
= Eγ

�|uγ〉
|vγ〉

�
. (5.125)

In this formulation, the problem becomes an eigenvalue problem to be solved for
|uγ〉, |vγ〉, and Eγ. uγ(r ) and vγ(r ) are the particle and hole parts of the elementary
excitations that diagonalize K̂. The spectrum of eigenvalues Eγ is even with respect
to Eγ = 0: it is indeed easy to check that, if (uγ, vγ) is a solution with energy Eγ,
(v∗γ , u∗γ) is also a solution with energy −Eγ. For a complete self-consistent solution of
the Bogoliubov–de Gennes system, we need to relate the mean fields VH, Vx, and ∆ to
the amplitudes uγ, vγ, and the energies Eγ. This can be done simply by noting that the
Green’s function is diagonal in the representation of the |γ〉:

Ĝ (iνn) = (iνn11− K̂)−1 =
∑
γ

|γ〉〈γ|
iνn − Eγ

=
∑
γ

1
iνn − Eγ

�|uγ〉〈uγ| |uγ〉〈vγ|
|vγ〉〈uγ| |vγ〉〈vγ|

�
. (5.126)

Projecting onto the original representation of the one-particle states |α〉, we get

Gαβ (iνn) = 〈α|Ĝ11(iνn)|β〉=
∑
γ

〈α|uγ〉〈uγ|β〉
iνn − Eγ

(5.127)

F †
αβ
(iνn) = 〈α|Ĝ21(iνn)|β〉=

∑
γ

〈α|vγ〉〈uγ|β〉
iνn − Eγ

. (5.128)

These expressions lead to the mean fields in Eq. (5.119) with the help of Eq. (17):

Gαβ (τ= 0−) = −η
∑
γ

〈α|uγ〉〈uγ|β〉d−η(Eγ) (5.129)

F †
αβ
(τ= 0−) = −η

∑
γ

〈α|vγ〉〈uγ|β〉d−η(Eγ). (5.130)

5.2.2.3.5 Solution for spin-singlet pairing of electrons The derivations until now
are general and somewhat formal: here we detail the application to the most common
situation, which is spin-singlet pairing of electrons in a non-magnetic system. We thus
recover the basic BCS equations and their extension to inhomogeneous superconduc-
tivity. We start in the real-space representation and assume that a pairing interaction
V (r , r ′) acts between electrons. In this situation, we find that the pairing field ∆αβ
becomes [see doc–48] ∆αβ → ∆rσr ′σ′ = −V (r , r ′)〈crσcr ′σ′〉. If the electron pairing
takes place in the singlet channel only, then ∆↑↑ =∆↓↓ = 0 and we define

∆(r , r ′)≡∆r↑r ′↓ = −V (r , r ′)〈cr↑cr ′↓〉. (5.131)

1 Please note the sign difference between Eq. (5.125) and the Bogoliubov–de Gennes equations as they
are commonly written, with +∆∗ instead of −∆∗. This is not a misprint. The “plus” sign arises when
these equations are specialized to the case of spin-singlet pairing of electrons, i.e., when only electrons of
opposite spins pair. In this case ∆→∆↑↓ and −∆∗→∆∗↑↓ (see Sec. 5.2.2.3.5 and doc–48). Eq. (5.125)
applies to spin-singlet pairing of electrons as well as to bosons and spin-triplet pairing.
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We similarly have F †
↑↑ =F †

↓↓ = 0 and define

F †(r , r ′,τ)≡F †
↓↑(r , r ′,τ). (5.132)

The assumption of a non-magnetic system implies that the Hamiltonian has no spin-
flip term and that the Green’s function is diagonal in the spin indices: [K̃0]rσr ′σ′ =
δσσ′ K̃0(r , r ′) and Grσr ′σ′(τ) ≡ δσσ′G (r , r ′,τ). As a result we find that the Gor’kov
equations take the form [see doc–48]

∫
dr1

�
iωnδ(r − r1)− K̃0(r , r1)

�G (r1, r ′, iωn)

−
∫

dr1∆(r , r1)F †(r1, r ′, iωn) = δ(r − r ′) (5.133a)

∫
dr1

�
iωnδ(r − r1) + K̃∗0(r , r1)

�F †(r1, r ′, iωn)

−
∫

dr1∆
∗(r1, r )G (r1, r ′, iωn) = 0, (5.133b)

and they are supplemented by the gap equation

∆(r , r ′) = V (r , r ′)
�F †(r ′, r ,τ= 0+)

�∗
. (5.134)

These equations do not assume translational invariance and can therefore be used to
investigate non-homogeneous systems like vortices, vortex lattices, surfaces, interfaces,
defects, grain boundaries etc. The corresponding equations in the Dyson, Nambu, and
Bogoliubov–de Gennes formulations are readily obtained too [see doc–48].

In case of translation invariance, the Gor’kov equations become algebraic because K̃0, G ,
∆, andF † are all functions of the difference in coordinates and Fourier transformation
immediately yields

(iωn − ξk)G (k, iωn)−∆kF †(k, iωn) = 1 (5.135a)

(iωn + ξ−k)F †(k, iωn)−∆∗kG (k, iωn) = 0, (5.135b)

where ξk is the Fourier transform of K̃0(r − r ′), etc. We can solve by eliminating F †

to find

y GBCS(k, iωn) =
1

iωn − ξk − |∆k |2
iωn+ξ−k

. (5.136)

This is the Green’s function for a homogeneous spin-singlet BCS superconductor. It
may be used to compute the DOS using Eq. (5.7). The document doc–67 shows how
this calculation can be performed for arbitrary gap symmetries in dimension two. In
the particular case of an s-wave symmetry, i.e., a momentum-independent gap∆k ≡∆,
the calculation can be completed analytically and yields, for a flat normal-state DOS
N el

0 (0), the well-known expression [see doc–67]

N (s-wave)
BCS (ε) = N el

0 (0)Re
� |ε|p
ε2 −∆2

�
. (5.137)
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Figure 5.11: Gapped excitation spectrum of a spin-singlet BCS superconductor. (a) Excitation
energies ±Ek compared with the bare dispersion ξk . At k = kF, the minimal excitation energy
is ±|∆kF

|. (b) Representation of the spectral function: at each k, the spectral function is the
superposition of two delta peaks of weights u2

k (upper branch) and v2
k (lower branch). The

weight on each branch is indicated by the color scale. At k = kF, both branches have the same
weight of 1/2. (c) BCS density of states for s-wave and d-wave gap symmetries [see doc–67].
Inset: Temperature dependence of the BCS gap from Eq. (5.142).

This function is plotted in Fig. 5.11(c). A slightly more complicated formula results if
N el

0 (ε) is not flat, as reported in doc–67. The BCS Green’s function Eq. (5.136) can
also be recast in a form which shows explicitly the electron-hole and long-lived nature
of the elementary excitations, the so-called Bogoliubov excitations:

GBCS(k, iωn) =
u2

k

iωn − Ek
+

v2
k

iωn + Ek
(5.138)

with

Ek =
q
ξ2

k + |∆k |2, u2
k =

1
2

�
1+

ξk

Ek

�
, v2

k =
1
2

�
1− ξk

Ek

�
. (5.139)

For simplicity, we assumed inversion symmetry—sometimes referred to as time-reversal
symmetry—i.e., K̃0(r ) = K̃0(−r ), which implies ξk = ξ−k . In the form of Eq. (5.138),
it appears clearly that GBCS is the superposition of two poles at energies +Ek and −Ek
with weights u2

k and v2
k , respectively. Since Ek > 0, the pole at +Ek represents an

electron-like excitation: if ξk � |∆k |, we indeed have Ek ≈ ξk , u2
k ≈ 1, and v2

k ≈ 0,
such that only this part subsists. Inversely, if ξk �−|∆k | we have u2

k ≈ 0, v2
k ≈ 1, and

only the second term in Eq. (5.138) remains, which represents a hole-like excitation at
negative energy −Ek . At low energies ξk ≈∆k , the excitations are a mixing of electron-
like and hole-like parts. The conservation of the total spectral weight is guaranteed
by the property u2

k + v2
k = 1. At the location of the Fermi surface (ξk = 0), we have

Ek = |∆k |: the Bogoliubov excitations are gapped and the minimal excitation energy
at a given Fermi-surface wave vector is |∆k |, which illustrates why the order parameter
∆ is commonly called the gap. The shape of the excitation spectrum is illustrated in
Fig. 5.11, which also displays the spectral function

ABCS(k,ε) = u2
kδ(ε − Ek) + v2

kδ(ε + Ek). (5.140)

We conclude this section with a discussion of the gap equation, which in the present
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context reads [see doc–48]

∆k = −
1
V
∑
k ′

V (k − k ′)
∆k ′

2Ek ′
tanh

�
β

2
Ek ′

�
. (5.141)

This is a non-linear equation because Ek ′ in the integrand depends on∆k ′ [Eq. (5.139)].
Simplified forms can be written down at T = 0 [tanh(· · · ) ≡ 1] and T = Tc (∆k →
0). Let’s continue with an interaction of the BCS weak-coupling type as depicted in
Fig. 5.5(b): V (k − k ′) = −V0 if k and k ′ are wave vectors close to the Fermi surface—
specifically, if |ξk | and |ξk ′ | are smaller than ħhωD—and V (k − k ′) = 0 otherwise. This
is the simplest way of representing an attraction that is only effective inside a shell
of thickness 2ħhωD around the Fermi surface, as e.g. the phonon-mediated interaction
of Eq. (5.54). The BCS interaction, together with Eq. (5.141), imply that ∆k = 0 if
|ξk |> ħhωD. We now look for an s-wave solution of the kind ∆k =∆ for |ξk |< ħhωD.
The gap equation simplifies to

1
V0
=

1
V

∑
|ξk′ |<ħhωD

tanh
�
β
2 Ek ′

�

2Ek ′
=

∫ ħhωD

−ħhωD

dξ Ñ el
0 (ξ)

tanh
�
β
2

p
ξ2 +∆2

�

2
p
ξ2 +∆2

. (5.142)

Ñ el
0 is the non-interacting density of states per spin direction. If the latter can be

considered constant over the energy range ±ħhωD, the equation reduces at T = 0 to

1/[V0Ñ el
0 (0)] =

∫ ħhωD

0 dξ/
p
ξ2 +∆2 = sinh−1(ħhωD/∆), or

∆BCS(T = 0) = ħhωD

À
sinh

�
1

V0Ñ el
0 (0)

�
≈ 2ħhωD e−1/[V0Ñ el

0 (0)]. (5.143)

The last approximation is justified because the interaction is usually weak, such that
V0Ñ el

0 (0)� 1. At T = Tc , where ∆ approaches zero, we have instead 1/[V0Ñ el
0 (0)] =∫ ħhωD

0 dξ tanh(βc
2 ξ)/ξ. Assuming kBTc � ħhωD and using Eq. (20), this becomes

1/[V0Ñ el
0 (0)]≈ ln [(2eγ/π)βcħhωD]. The solution is

kBTc ≈
2eγ

π
ħhωD e−1/[V0Ñ el

0 (0)]. (5.144)

Hence 2∆BCS(T = 0)/(kBTc)≈ 2π/eγ = 3.53, a ratio known as the BCS coupling ratio.
The temperature dependence of the BCS gap ∆(T) obtained by solving numerically
Eq. (5.142) is shown in Fig. 5.11(c). The curve ∆(T )/∆(0) versus T/Tc is said to be
universal, because in the regime where it is valid, it does not depend on the model
parameters that appear in Eq. (5.142): V0, Ñ el

0 (0), and ħhωD.

This brief overview illustrates the power of the Gor’kov formalism: we have been able
to derive all the main results of the BCS theory of superconductivity without even
mentioning the celebrated BCS ground-state wave function and the associated lengthy
operator algebra. Moreover, these results all follow rather directly by simple deductions
from the general equation of motion Eq. (5.114) and its decoupling Eq. (5.115), which
is the only non-trivial and intellectually challenging step of the whole derivation.
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Response of matter to applied fields

Many condensed-matter experiments make use of an external field as a mean to probe
a physical system. The method is in principle simple: turn on the external field
and measure the change in some property of the system. This is called a response
experiment, as opposed to scattering experiments which look at how a system scatters
a beam of particles. From the theoretical viewpoint, the challenge is to understand
how the external field affects the properties of the system and what is actually being
measured in the experiment. If the intensity of the field is sufficiently weak and does
not induce dramatic effects such as phase transitions, one can tackle the problem using
perturbation theory. This chapter describes the response theory up to second order as
well as the most common probing fields. This provides the basis for understanding the
response experiments (Chapters 7, 8, and 9).

6.1 Linear and quadratic response

Before starting with the calculations, let’s briefly outline the procedure. The system
under investigation is initially represented by the Hamiltonian K , which contains all
interactions needed to describe it (and is therefore usually intractable). The external
field is adiabatically switched on and induces a perturbation Vt with the property
V−∞ = 0. The question is the following: what is the time evolution of the expectation
value of some observable, say 〈A(t)〉?
In order to answer this question, we can either work within the Schrödinger or the
Heisenberg picture. In the former, the time evolution is carried by the wave function or
by the density matrix in a mixed state, while the operator A remains time independent;
one therefore writes 〈A(t)〉 = Trρ(t)A and one seeks an expansion of the density
matrix ρ(t) in powers of V . This route is followed, e.g., in Bruus & Flensberg (2004).
We shall here use the Heisenberg and interaction pictures, in which case the density
matrix remains time independent but the operators evolve in time according to A(t) =
Û†(t)Â(t)Û(t) [see Sec. 2.2.1 and Eq. (2.20)]. The reason for choosing this route
is that we have already derived the perturbation expansion of Û(t), Eq. (2.22), and
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therefore all the work is basically done. We indeed have

〈A(t)〉V = TrρA(t) = Trρ Û†(t)Â(t)Û(t) (6.1)

= Trρ

�
11+

∞∑
n=1

�
i
ħh

�n
∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn V̂ (tn) · · · V̂ (t1)

�
Â(t)

×
�

11+
∞∑
n=1

�
− i
ħh

�n
∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn V̂ (t1) · · · V̂ (tn)

�
,

where ρ = e−βK/(Tre−βK). In this chapter, we denote 〈· · · 〉V the thermal average in
the presence of the perturbation V , while 〈· · · 〉 means the thermal average for� V = 0.1

At order zero in V , we have Û(t) = 11 such that the zeroth-order value is trivially

〈A(t)〉(0)V = TrρÂ(t) = 〈A(t)〉. (6.2)

Remember that Â(t) = A(t) in the absence of perturbation.

At order one, we get two terms. The first results from taking Û†(t) at order one in V
and Û(t) = 11 in Eq. (6.1) and the second from taking Û†(t) = 11 and Û(t) at order
one in V :

〈A(t)〉(1)V = Trρ

�
i
ħh

∫ t

−∞
d t1 V̂ (t1)Â(t) + Â(t)

�
− i
ħh

�∫ t

−∞
d t1 V̂ (t1)

�

= − i
ħh

∫ t

−∞
d t1


�
A(t), V (t1)

��
. (6.3)

Again, we could replace Â(t) by A(t) and V̂ (t1) by V (t1) because the Heisenberg and
interaction pictures coincide at V = 0. [ · , · ] is a short-hand for [ · , · ]− and denotes the
commutator. Eq. (6.3) is the foundation of the linear-response theory, which we shall
elaborate more explicitly in the next section.

We will also need the quadratic response. At order two we get three terms, namely

〈A(t)〉(2)V = Trρ

��
i
ħh

�2
∫ t

−∞
d t1

∫ t1

−∞
d t2 V̂ (t2)V̂ (t1)Â(t)

+
i
ħh

∫ t

−∞
d t1 V̂ (t1)Â(t)

�
− i
ħh

�∫ t

−∞
d t2 V̂ (t2)

+ Â(t)
�
− i
ħh

�2
∫ t

−∞
d t1

∫ t1

−∞
d t2 V̂ (t1)V̂ (t2)

�
. (6.4)

This expression can be rearranged in a more compact fashion by extending all integra-
tions up to time t and using the fact that θ (t1 − t2) + θ (t2 − t1) = 1:

〈A(t)〉(2)V =
�
− i
ħh

�2
∫ t

−∞
d t1d t2 θ (t1 − t2)


��
A(t), V (t1)

�
, V (t2)

��
. (6.5)

1 Many authors prefer to use 〈· · · 〉 for V 6= 0 and 〈· · · 〉0 for V = 0. This notation might lead speedy readers
to understand that the thermal average 〈· · · 〉0 is performed with all interactions turned off, i.e., using a
quadratic Hamiltonian, which is incorrect since only the applied field must be discarded.
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The procedure can be carried on to arbitrary order. The nth order response involves n!
terms of the kind

θ (t1 − t2) · · ·θ (tn−1 − tn)〈[· · · [[A(t), V (t1)], V (t2)], . . . , V (tn)]〉
obtained by taking all permutations of the time variables.1 At order two, both permu-
tations give the same contribution and we are thus left with just one term.

6.2 Response functions, susceptibilities

We have seen how the changes induced by an applied field to the value of an observable
can be calculated using the response theory. To be more specific, we consider here the
case where the applied field is a time-dependent classical field, say F(t), that couples
to the system via an observable B:

Vt = B ∗ F(t). (6.6)

The notation B ∗ F stands for a generalized scalar product. For instance, in the case
where B and F are two vector fields we would have B ∗ F(t)≡ ∫ dr B(r ) · F(r , t). In
Eq. (6.6), we have written the perturbation V in the Schrödinger picture, in which
the operator B is time independent. The perturbation has nevertheless an external
(or “explicit”, see footnote in Sec. 2.2.1) time dependence due to the external field. In
order to use the response theory, we need Vt(t) in the Heisenberg picture, i.e., we have
to replace B by B(t) = U†(t)BU(t) following Eq. (2.15). This adds an internal time
dependence to Vt(t) in addition to the external time-dependence due to the applied
field.

The effect of the field is to change certain properties of the system, in particular the
property B. For the sake of generality, we consider a property A which might or might
not be the same as B. Using the response theory formulas Eqs (6.2) and (6.3), we can
write

〈A(t)〉V − 〈A(t)〉=
∫ ∞

−∞
d t1

�
− i
ħh

�
θ (t − t1)


�
A(t), B(t1)

�� ∗ F(t1) +O(F2)

≡
∫ ∞

−∞
d t1χAB(t − t1) ∗ F(t1) +O(F2). (6.7)

We have extended the time integration to +∞ and corrected with the theta function.
At the second line, we have defined the general linear susceptibility

y χAB(t) = −
i
ħhθ (t)


�
A(t), B(0)

��
= CR

AB(t). (6.8)

As indicated, the susceptibility χAB(t) is nothing but the retarded correlation function
of the operators A and B [see Eq. (3.4)]. Eq. (6.7) is one of the pinnacles of many-body
theory: The first-order variation of the property A induced by a field that couples to the
property By is proportional to the retarded correlation function of the operators A and B.

1 R. P. Wehrum and H. Hermeking, J. Phys. C: Solid State Phys. 7, L107 (1974).

https://doi.org/10.1088/0022-3719/7/6/003
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The concept of susceptibility and its relation with the linear response of a system to
applied fields shed light on the idea discussed in Sec. 5.1.4. There, we saw that poles in
the two-particle correlation functions correspond to collective modes (at finite energy)
or to instabilities (at zero energy). Here, we find that the same two-particle correlation
functions provide the susceptibility to applied fields. Therefore, in the present context,
a pole in the correlation function should be regarded as a divergent susceptibility, i.e.,
the ability for the system to develop a finite response even in the absence of applied
field. This is clearly the same physics as collective modes or instabilities.

Very often, the linear term dominates the response to an external field. However there
are situations like external photoemission, where the linear response vanishes and the
dominant contribution therefore comes from second order. Using Eq. (6.5), we can
define a second-order susceptibility and write

〈A(t)〉(2)V =

∫ ∞

−∞
d t1d t2χ

(2)
AB (t − t1, t − t2) ∗ F1(t1) ∗ F2(t2) (6.9)

where

χ
(2)
AB (t, t ′) =

�
− i
ħh

�2 1
2

¦
θ (t)θ (t ′ − t)


��
A(t), B1(0)

�
, B2(t − t ′)

��

+ θ (t ′)θ (t − t ′)

��

A(t ′), B2(0)
�
, B1(t

′ − t)
��©

. (6.10)

The indices in F1, F2, B1, and B2 represent the internal variables that may belong to
these quantities [e.g., B1(0) ∗ F1(t1)≡

∫
dr1 B(r1)F(r1, t1) and B2(t2 − t1) ∗ F2(t2)≡∫

dr2 B(r2, t2 − t1)F(r2, t2)].

6.3 Examples of couplings

Up to now the discussion has been somewhat abstract. The purpose of this section is
to briefly review typical examples of phenomena in condensed-matter physics that can
be addressed using the linear-response theory.

6.3.1 Moving electrons with an electric potential

According to the basic laws of electrostatics, the total-energy variation of an electronic
system subject to a scalar electric potential φ(r , t) only depends on the electron density
according to:

Vt =

∫
dr (−e)n(r )φ(r , t). (6.11)

This is an example of coupling of the form Eq. (6.6), where the observable B is −en(r )
and the field F is φ(r ). The electric potential can displace charges and thus change the
density in the system. According to Eqs (6.7) and (6.8), the first-order change in density
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is proportional to the dielectric susceptibility, in other words the retarded density-
density correlation function χnn(r , r ′, t − t ′) = −(i/ħh)θ (t − t ′)〈[n(r , t), n(r ′, t ′)]〉:

〈n(r , t)〉V − 〈n(r , t)〉= −e

∫
dr ′d t ′χnn(r , r ′, t − t ′)φ(r ′, t ′) +O(φ2). (6.12)

In a translation-invariant system, χnn(r , r ′, t) becomes a function of r − r ′ and its
Fourier transform is just the analytic continuation of χnn(q ,τ) = −〈Tτn(q ,τ)n(−q , 0)〉
discussed previously in Sec. 5.1.4.5. An electric potential can also produce a current.
The relevant response function in this case is the current-density correlation function
χ jn(q ,τ) = −〈Tτ j(q ,τ)n(−q , 0)〉.

6.3.2 Animating spins with a magnetic field

In the presence of an applied magnetic field H(r , t), the energy of a piece of matter
changes according to

Vt =

∫
dr (−µ0)M(r ) ·H(r , t), (6.13)

where M(r ) is the magnetization of the material. This expression directly results from
the facts that the electromagnetic energy is the volume integral of 1

2µ0
B2 and that the

total magnetic field is B = µ0(H−M). There are several sources of magnetization. One
is the polarization of the electron spins, which relates to the local spin density through
M(r ) = geµBS(r )/ħh. For electrons, ge = −2.0023. Other sources of magnetization
include the orbital motion of the electrons in the field and the polarization of the
nuclear spins. For this discussion, we disregard the magnetization of nuclear spins,
which is typically smaller than that of the electron spins by a factor µN/µB = me/mp.
We also ignore the orbital magnetism as appropriate in insulators or metals in which
the orbital moment is quenched by the crystal field. Using the linear-response formula,
we can express the first-order change in magnetization induced by the applied field in
terms of the spin-spin correlation function:

〈Mµ(r , t)〉V − 〈Mµ(r , t)〉= −
∑
ν

∫
dr ′d t ′χMµ(r )Mν(r ′)(t − t ′)µ0Hν(r

′, t ′)

= −
� geµB

ħh

�2∑
ν

∫
dr ′d t ′χµνss (r , r ′, t − t ′)µ0Hν(r

′, t ′). (6.14)

The susceptibility of interest here is χµνss (r , r ′, t) = −(i/ħh)θ(t)
�Sµ(r , t), Sν(r ′, 0)
��

which, in a translation-invariant system, can be deduced from the corresponding
imaginary-time correlator χµνss (q ,τ) = −〈TτSµ(q ,τ)Sν(−q , 0)〉. In the particular case
of a static and uniform field H(r , t) = Hez , we have the change in magnetization

δMµ = −
� geµB

ħh

�2
χµz

ss (q = 0,ε = 0)µ0H. (6.15)

Finally, for an isotropic system (χµνss ∝ δµν) of independent electrons (ge ≈ −2 and

χzz,0
ss =

�ħh
2

�2
χ0

nn, see doc–44), we recover using Eq. (5.77)

δM = µ2
BN el

0 (0)µ0H . (6.16)
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This is the Pauli paramagnetism describing the response of independent-electron spins
to magnetic fields and providing another measure of the Fermi-level DOS, beside
the specific heat Eq. (2.56). The contribution of the electronic orbital motion, ne-
glected here, leads to Landau diamagnetism and in particular to de Haas–van Alphen
oscillations in clean systems at low temperature.

6.3.3 Exciting electrons with photons

As we have seen in doc–14, the energy resulting from the interaction of a material
with an electromagnetic field is

Vt =

∫
dr j(r ) · (−e)A(r , t). (6.17)

A(r , t) is the vector potential, the gauge is such that the scalar potential vanishes, and j
is the particle current—not the electric current, the latter being e j with e = −|e|. Hence
the light couples to the current operator and thereby puts the electrons in motion. The
resulting current is, at leading order in A:

〈 jµ(r , t)〉V − 〈 jµ(r , t)〉= −e
∑
ν

∫
dr ′d t ′χµνj j (r , r ′, t − t ′)Aν(r

′, t ′). (6.18)

Here χµνj j (r , r ′, t) is the retarded current-current correlation function, i.e., the analytic
continuation of the corresponding imaginary-time function defined in real space as
χ
µν
j j (r , r ′,τ) = −〈Tτ jµ(r ,τ) jν(r ′, 0)〉. This function is closely related to the conductiv-

ity tensor σµν(q ,ω), as we shall see in Chapter 8.

6.4 Response functions and imaginary-time functions

The response of a system to applied fields is given by the retarded correlation functions
of that system evaluated in the absence of field. Therefore, in many situations the
comparison of experiment and theory requires us to calculate these retarded correlation
functions. For independent particles this is relatively straightforward once the single-
particle energies are known—although the calculation may be technically difficult in
practice. However, for interacting particles we will have to use an approximate method
like, e.g., perturbation theory in the interaction. This is where the imaginary-time
formalism is very useful. Indeed, there is no perturbative method for calculating
retarded functions at finite temperature. Nevertheless, we have seen that they can be
obtained by the analytic continuation1 of the corresponding imaginary-time functions
through CR

AB(ω) =CAB(iνn→ ħhω+ i0+) and that, furthermore, CAB(iνn) does have a
series expansion that can be evaluated using Feynman diagrams.

Introducing the time-Fourier transform of the applied field, F(ω) =
∫∞
−∞ d t F(t)eiωt

and the short-hand notation ħhω+ = ħhω+ i0+, we can rewrite the linear response in

1 The analytical continuation is a hard problem when the imaginary-frequency function is known numerically
rather than analytically [see doc–69].
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Eq. (6.7) in terms of the imaginary-time function as

〈A(t)〉(1)V =

∫ ∞

−∞

dω
2π

e−iωt CAB(iνn→ ħhω+) ∗ F(ω). (6.19)

Analogous expressions can be written at any order.1 At order two, in particular, we
have

〈A(t)〉(2)V =
1
2

∫ ∞

−∞

dω1

2π
dω2

2π
e−i(ω1+ω2)t

×CAB1B2
(iν̄1→ ħhω+1 , iν̄2→ ħhω+2 ) ∗ F1(ω1) ∗ F2(ω2) (6.20)

where the appropriate imaginary-time function to consider is2

CAB1B2
(τ,τ′) = 〈TτA(τ)B1(0)B2(τ−τ′)〉. (6.21)

We will see an application of these formula when discussing external photoemission,
which is a second-order process in the applied electromagnetic field.

1 R. P. Wehrum and H. Hermeking, J. Phys. C: Solid State Phys. 7, L107 (1974).
2 See Appendix A of C. Berthod, M. Köhl, and T. Giamarchi, Phys. Rev. A 92, 013626 (2015).

https://doi.org/10.1088/0022-3719/7/6/003
https://doi.org/10.1103/PhysRevA.92.013626
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External photoemission

(XPS, PES, ARPES)

«Photoemission presents a considerable challenge to the theorist since, for a complete
solution, one must deal simultaneously with several complicated problems. A description
is needed of both the equilibrium and excited electronic structure of a material and its
interaction with the ion array and with the driving electromagnetic fields, whose form is
modified by this interaction. Furthermore both problems must be solved in the vicinity of
the surface, through which all system properties change dramatically. Not surprisingly, no
complete solution of the problem has yet been developed.»1 This statement from 1978
remains up-to-date. The development of density-functional theory has enabled first-
principle approaches that improve the description of the phenomenon by taking the
microscopic details of the surface into account. Although promising, such developments
are presently limited to materials for which the independent-electron approximations
are appropriate. On the other hand, progress in the computational methods for strongly
interacting electrons is still limited to bulk systems. Our understanding of what hap-
pens close to the surface of a material featuring correlated electrons is still at a very
preliminary stage.

Berglund and Spicer introduced in 1964 the three-step model.2 This model considers
photoemission as a sequence of three independent processes: the primary excitation
of the electron, its transport to the surface and its transmission through the surface.
This phenomenological view was later replaced by one-step approaches that envision
photoemission as a single quantum-mechanical process. These descriptions are based
either on the response theory3 (the photocurrent is viewed as the steady response

1 W. L. Schaich, in Photoemission in Solids vol. 1, M. Cardona and L. Ley ed. (Springer-Verlag, Berlin, 1978),
p. 105.

2 C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030 (1964).
3 W. L. Schaich and N. W. Ashcroft, Phys. Rev. B 3, 2452 (1970). > For a review, see C.-O. Almbladh, J.

Phys.: Conf. Series 35, 127 (2006).

99

https://doi.org/10.1103/PhysRev.136.A1030
https://doi.org/10.1103/PhysRevB.3.2452
https://doi.org/10.1088/1742-6596/35/1/011
https://doi.org/10.1088/1742-6596/35/1/011
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of the system to an applied electromagnetic field) or on the scattering theory1 (the
photoemission event is viewed as the inelastic scattering of a photon). Both approaches
were shown to provide equivalent predictions in certain limits2 and to reduce to the
most popular “golden-rule” expression where appropriate [see doc–71].3

In this chapter, we present the response theory of photoemission. We choose this
approach firstly because it enters naturally within the flow of the course: the photo-
current is expressed in terms of a response function related to an imaginary-time
correlation function that can be studied using diagrammatic techniques.4 This ap-
proach moreover implements most naturally many-body effects and does not rest on
uncontrolled assumptions like the assumption of a factorized final state needed in
the golden-rule treatment. Starting from the general expressions, we underline the
various approximations needed in order to recover the common interpretation of the
photoemission intensity in terms of the one-electron spectral function. The last two
sections discuss the notion of quasi-particle and some phenomena that go beyond the
spectral-function paradigm.

7.1 Response theory of external photoemission

A photoemission experiment uses light to extract electrons from a sample. Let’s denote
by A(r , t) the vector potential describing the light. We work in the gauge where the
scalar potential is zero. As we saw in doc–14, the light couples to the electron current
in the sample via

Vt =

∫
dr j(r ) · (−e)A(r , t). (7.1)

In response to the light, photo-electrons are emitted and collected in a detector at some
point R outside the sample. The experiment measures the steady electron current j(R)
at the point R. We can use the response theory for evaluating the expectation value of
this current.

At zero’th order, Eq. (6.2) gives 〈 j(R, t)〉(0)V = 〈 j(R, t)〉. This contribution describes the
current flowing out of the sample in the absence of applied electromagnetic field. Such
a current can arise from thermally excited electrons that overcome the surface energy
barrier and the effect is therefore called thermionic emission. This effect is completely
negligible if the temperature is low compared with the surface barrier and R is far from
the sample surface. The first-order contribution reads, according to Eq. (6.19),

〈 jµ(R, t)〉(1)V = −e

∫ ∞

−∞

dω
2π

e−iωt
∑
ν

∫
dr C jµ(R) jν(r )(iΩn→ ħhω+)Aν(r ,ω).

This term does not contribute to the dc photo-current. One indeed sees that its time
average is proportional to Aν(r , 0) = 0. Furthermore, the correlation function vanishes

1 G. D. Mahan, Phys. Rev. B 2, 4334 (1970).
2 W. L. Schaich, op. cit.
3 H. Hermeking and R. P. Wehrum, J. Phys. C: Solid State Phys. 8, 3468 (1975).
4 H. Keiter, Z. Phys. B 30, 167 (1978).

https://doi.org/10.1103/PhysRevB.2.4334
https://doi.org/10.1088/0022-3719/8/20/024
https://doi.org/10.1007/BF01320982
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for R outside the sample: because C is to be evaluated in the absence of light, the
trace is taken over a set of states |a〉 that have no electron at the point R. All terms
〈a| jµ(R,τ) jν(r , 0)|a〉 entering C jµ(R) jν(r )(τ) simply vanish because jµ(R)|a〉= 0.

Hence the external photoemission is of second order in the electromagnetic field. This
is actually expected, since the photo-current is known to be proportional to the intensity
of the light, i.e., A2. The second-order photo-current is read directly from Eq. (6.20):

〈 jµ(R, t)〉(2)V =
e2

2

∫ ∞

−∞

dω1

2π
dω2

2π
e−i(ω1+ω2)t

∑
ν1ν2

∫
dr1dr2

×C jp
µ(R) j

p
ν1 (r1) j

p
ν2 (r2)(iΩ̄1→ ħhω+1 , iΩ̄2→ ħhω+2 )Aν1

(r1,ω1)Aν2
(r2,ω2) (7.2)

with the three-current correlation function given by

C jp
µ(R) j

p
ν1 (r1) j

p
ν2 (r2)(τ,τ′) = 〈Tτ jp

µ(R,τ) jp
ν1
(r1, 0) jp

ν2
(r2,τ−τ′)〉. (7.3)

We could replace the total current j by the paramagnetic current j p because the
diamagnetic current Eq. (2.49c) is proportional to A and leads to contributions of order
at least A3. Unlike the two-current correlator, the three-current correlator does not
vanish because, owing to time ordering, it contains terms like 〈a| jp

ν2
(r2) jp

µ(R) j
p
ν1
(r1)|a〉

in which the current j p(R) does not act directly on the states |a〉, but on states like
jp
ν1
(r1)|a〉 in which there is a finite amplitude that the operator jp

ν1
(r1) has transferred

an electron to the point R.

We introduce three ingredients in order to proceed with the calculation. First, we
specialize to a monochromatic light A(r , t) = A(r ) cos(ω0 t), in other words

A(r ,ω) = πA(r ) [δ(ω−ω0) +δ(ω+ω0)] (7.4)

withω0 > 0 for definiteness. Inserting this into Eq. (7.2) and performing the frequency
integrations, we get four terms. Two of those terms evolve in time like e2iω0 t and
e−2iω0 t , respectively: such terms vanish on average and do not contribute to the dc
photo-current. The two remaining terms are independent of time and obtained by
taking one of the two combinations ω1 = −ω2 = ±ω0. We reach the same conclusion
by performing directly the time average in Eq. (7.2), which yields a factor δ(ω1 +ω2).
Second, we note that the experiment does not measure exactly the current density at
point R, but rather the total current through a solid angle dΩ around the direction
n = R/R—or through a surface element R2dΩ in the direction n. The quantity of
interest is therefore dJ(n) = R2dΩn · 〈 j(R)〉V in the limit R→∞. Third, we express
the three-current correlator in terms of the real-space fermion operators c†

rσ. For this
purpose, we use the expression of the paramagnetic current Eq. (2.49b), recast for
convenience in the following equivalent form:

j p(r ) =
iħh
2m

∑
σ

�
∇r −∇r

�
c†

rσcrσ

���
r=r

. (7.5)

Upon insertion of these three ingredients in Eq. (7.2), the formula for the photo-current
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becomes somewhat hairy:

dJ(n)
dΩ

=
−ie2ħh3R2

64m3

�
n · �∇R −∇R

�� ∑
σσ1σ2

∫
dr1dr2

×
�
A(r1) ·

�
∇r 1
−∇r1

���
A(r2) ·

�
∇r 2
−∇r2

��

×Cc†
RσcRσc†

r1σ1 cr1σ1 c†
r2σ2 cr2σ2

(ħhω+0 ,−ħhω+0 ) + {ω0→−ω0}. (7.6)

However, it is in a good shape for a systematic investigation using Feynman diagrams.
The limits R→ R, r 1→ r1, and r 2→ r2, as well as R→∞ are implicit in Eq. (7.6).
The notation {ω0→−ω0} represents a second term identical to the first, except that
ω0 is replaced by −ω0.

The correlation function that we have to consider is the following:

C···(τ,τ′) = 〈Tτc†
Rσ(τ)cRσ(τ)c

†
r 1σ1
(0)cr1σ1

(0)c†
r 2σ2
(τ−τ′)cr2σ2

(τ−τ′)〉. (7.7)

Its diagrammatic representation is depicted in Fig. 7.1(a). A second diagram (not
shown) is obtained by reversing all arrows in Fig. 7.1(a) and is topologically different
from the first. This second diagram gives the same contribution as Fig. 7.1(a), except
that the roles of (r1,σ1) and (r2,σ2) are interchanged. This amounts to an exchange
of τ and τ′, which is the same as ω0→−ω0. Therefore, this second diagram is also
generated by the second term in Eq. (7.6) and we can account for the two topologically
different diagrams with an overall factor of two.

As usual, the Feynman diagrams permit an intuitive interpretation in terms of the
physical processes taking place. The lower point at r1 in the diagram represents the
excitation of the photo-electron by light: a photon is absorbed, an electron is created
(line leaving to the right), and a hole is left behind (the photo-hole). This is like the
particle-hole pair in the diagram Eq. (5.59). Before reaching the detector at point
R, the photo-electron experiences various interactions—interactions with the other
electrons, impurities, phonons, with the sample surface, etc., attractive interaction with
the photo-hole—represented by the shaded box. Finally, the photo-electron escapes and

�
(r1σ1, 0)

(r2σ2,τ−τ′)

(Rσ,τ)

(a) �G bulk(r 1−r 2
,τ
′ −
τ
)

G
free (r2−R,−τ ′)

G free(R
−r 1

,τ)

(b)

Figure 7.1: (a) Generic diagram describing the photoemission experiment. The interaction
of the electrons with the electromagnetic field occurs at points r1 and r2, while the point R
represents the detector. The shaded box stands for all interactions that can take place. (b)
Diagram corresponding to the usual sudden approximation: the photo-electron is supposed to
fly freely from the point where it is excited up to the detector and the hole propagator in the
material is identified with the bulk propagator, thus overlooking the effect of the surface.
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flies to the detector. Likewise, the photo-hole is affected by interactions as it propagates
“back in time”, i.e., vertically in the present case. The upper part of the diagram,
which connects the detector at R with the point r2, represents the neutralization of
the sample. As electrons are removed from the sample and absorbed by the detector,
carriers must be supplied for keeping the sample neutral. This establishes an electrical
contact between detector and sample, for instance via the ground, and may be seen as
electrons injected in the sample from the detector (upper line). Those interact before
recombining with the photo-holes at r2, each recombination leading to the emission of
a photon. The sequence of events occurs in the “logical” order if 0< τ < τ−τ′ (first
photoemission, then measurement and finally recombination). This is one of the time
orderings that contribute to the correlation function, as discussed after Eq. (7.3).

In the next section, we present an approximation to Eq. (7.6) allowing us to recover
the standard interpretation of the photo-current in terms of the one-electron spectral
function. In the golden-rule approach, this same interpretation results from the so-
called sudden approximation [see doc–71]. Our approach provides a different and
somewhat clearer perspective on the nature of the sudden approximation. A qualitative
discussion of a few effects that go beyond the sudden approximation is given in Sec. 7.4.

7.2 Sudden approximation and spectral function

In order to get a fruitful intuition on what the photoemission experiment actually
measures, we certainly need a formula simpler than the general expression Eq. (7.6).
Three assumptions will be needed before we can arrive at such a simple formula.
The first assumption is that the photo-electron is directly emitted into the vacuum.
In other words, it behaves like a free electron as soon as it is excited. The possible
energy losses and momentum changes experienced by the photo-electron during its
travel inside the material and its jump over the surface barrier are therefore neglected.
Since the experiment actually probes a very thin layer below the surface, it is not
unreasonable to think that at least some of the photo-electrons reach the vacuum
without substantial losses. Our approximation might therefore be valid for this part
of the photoemission signal (the so-called no-loss part). Formally, this approximation
means that the propagations from the point r1 to the point R and from the point R to
the point r2 in the diagram of Fig. 7.1(a) are replaced by free-particle propagations in
the vacuum. They are described by the free propagator Gfree discussed in doc–49.

The second assumption is that the remaining propagation from the point r2 to the
point r1 can be identified with the bulk propagation described by the Green’s function
Gbulk, despite the presence of the nearby surface. In practice, this means that upon
performing the r1 and r2 integrations we shall ignore the presence of the surface and
pretend we are in the bulk.

The third assumption is that the electromagnetic field to which the electrons couple
at the points r1 and r2 is the same as the electromagnetic field in the vacuum. In
other words, the possibly complicated modifications of the field due to the presence of
the surface as well as the screening of the field inside the material are not taken into
account. The latter approximation is quite unphysical for metals because in reality the
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penetration depth of the light inside the material is no more than a few nanometers.
If, as we assume, the light penetrates the whole sample and the photo-electrons are
directly excited into the vacuum, then the whole bulk of the material contributes to
the photo-current. Hence our final result should be proportional to the sample volume.
This problem will be discussed further below.

The diagram implementing our three assumptions is displayed in Fig. 7.1(b). From
this point, we can proceed with the calculation without further approximation and
completely evaluate the diagram to get [see doc–50]

dJSA(n)
dΩ

=
e2V

8π2mħh
��A · n

��2
∫ ∞

−∞
dε κ3(ε)A(κn,ε) f (ε). (7.8)

Eq. (7.8) is valid provided that the momentum of the photons is negligible compared
with the typical momenta of the electrons, which is true in the case of photons with
energies® 20 eV. In the opposite situation, a slightly more complicated formula replaces
Eq. (7.8) [see doc–50]. A(k,ε)≡ ρckσc†

kσ
(ε) is the spectral function of the retarded one-

electron Green’s function. It can be deduced from the corresponding imaginary-time
Green’s function according to Eqs (3.47) and (4.12):

A(k,ε) = − 1
π

ImG (k, iωn→ ε + i0+). (7.9)

The quantity κ entering Eq. (7.8) is the magnitude of the free photo-electron wave
vector, κ=

Æ
2m(ε +ħhω0 −φ)/ħh2 =

Æ
2mEkin/ħh2, with Ekin the energy of the photo-

electron measured above the vacuum level and φ the surface work function. The
presence of a κ3 factor is a direct consequence of the photo-current being a three-
current correlation function, Eq. (7.2). κ has a weak dependence on ε, because the
typical energies ε of interest for valence-band photoemission (® 0.5 eV) are small
compared with the photon energy ħhω0 (¦ 10 eV).1

We see that the photo-current Eq. (7.8) is proportional to the sample volume as
anticipated. In order to cure this problem, one could phenomenologically introduce
the finite penetration depth `p of the photons and replace the sample volume V
by the volume of a thin layer of thickness `p below the surface. Alternatively, one
could introduce the finite escape depth `e of the photo-electrons due to their various
interactions inside the material, such that V would be replaced by the volume of a
layer of thickness `e. Which one of these two phenomena is the actual limiting factor
depends on which one of `p and `e is the shortest: most likely `e, which is usually just
a few atomic layers. In Sec. 7.4, we will see that both phenomena can in principle be
taken into account by including the appropriate diagrams in the modeling.

Our model gives an emission that vanishes in the directions normal to the vector
potential A and is largest when A ‖ n. This is consistent with the experimental
observation that the efficiency is better with light polarized in the plane of incidence
(so-called p-polarization) as compared to light polarized parallel to the sample surface
(s-polarization). The form A · n results from taking a linearly-polarized light and a
single plane wave for the final state of the photo-electron. Other light polarizations

1 Modern laser-ARPES setups use lower-energy photons in the range 5–10 eV.



Sudden approximation and spectral function 105

Figure 7.2: Angle-resolved photoemission spectroscopy (ARPES). Photo-electrons are collected
along the direction n while the sample is rotated by the angles ϑ and ϕ. A tunable radial
electric field E is used to discriminate photo-electrons according to their kinetic energy Ekin in a
hemispherical detector. The knowledge of Ekin, ϑ, and ϕ allows one to deduce the energy ε and
momentum k of the electron before its excitation. See also Fig. 10.2, p. 214.

and a more detailed modeling of the final state can lead to less caricatural forms [see
doc–72].

Eq. (7.8) gives the total—energy-integrated—electron count in the direction n through
the solid angle dΩ (dJSA/dΩ has the dimension s−1). For energy-resolved experiments,
one uses a hemispherical analyzer in which a radial electric field curves the trajectories
in order to select electrons having one particular energy Ekin in the vacuum, as sketched
in Fig. 7.2. This corresponds to selecting electrons that have in the material an energy
ε = Ekin+φ−ħhω0 measured from the chemical potential (see Fig. 10.2, p. 214). Apart
from corrections due to the finite angular and energy resolutions, the angle and energy
resolved photoemission intensity is therefore given in the sudden approximation by

y
d2JSA(n,ε)

dΩdε
= M(n,ħhω0 −φ)A(k,ε) f (ε), (7.10)

where the relations between (k,ε) and (ϑ,ϕ, Ekin) are recalled in Fig. 7.2. We have
neglected the ε-dependence of κ and introduced the “matrix element” M(n,ħhω0−φ) =
e2|A · n|2κ3V /(8π2mħh) which depends upon the light intensity, polarization, and
frequency. The very crude form of this matrix element, in particular the fact that it does
not depend on the electronic wave functions in the sample, reflects our assumption of
translation invariance for the sample Green’s function. A generalization is proposed in
doc–72, where some matrix-element effects are also discussed.1

1 For a more in-depth discussion of the photoemission matrix element, in particular regarding the role of the
surface, see S. Moser, J. Elec. Spectrosc. Rel. Phenom. 214, 29 (2017).

https://doi.org/10.1016/j.elspec.2016.11.007
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Figure 7.3: Illustration of the EDC and MDC photoemission spectra.1 The data are shown for
the high-Tc superconductor Bi2Sr2CaCu2O8+δ, a quasi-two dimensional material with a nearly
cylindrical Fermi surface centered at k‖ = (π/a,π/a) (inset). The color map shows J(k,ħhω) for
k along the segment represented by the double arrow in the inset and ħhω between −300 and
+200 meV. The temperature is T = 48 K (∼ 4 meV), such that the signal is suppressed above
ħhω∼ 4 meV. The EDC’s are obtained by plotting J(k,ħhω) at fixed k as a function of ħhω (vertical
cut), while the MDC’s are obtained by plotting at fixed ħhω as a function of k (horizontal cut).

Eq. (7.10) provides the foundation for interpreting most angle-resolved photoemission
spectroscopy (ARPES) experiments nowadays. The procedure is to fix the light polar-
ization (A), frequency (ω0), and the direction of observation (n)—i.e., to fix the matrix
element M—and then to rotate the sample in order to vary the internal momentum k
at which the spectral function is measured (see Fig. 7.2). Intensity spectra recorded at
constant k as a function of ε are called energy-distribution curves (EDC), while intensity
spectra recorded at constant ε as a function of k are called momentum-distribution
curves (MDC).

Figure 7.3 illustrates the difference between EDC and MDC. The MDC’s often have a
symmetric Lorentzian line-shape, while the EDC’s are more asymmetric and show a
background at high binding energy. This is a consequence of the fact that the energy de-
pendence of the self-energy is generally pronounced, while its momentum dependence
is weak. The main features of Fig. 7.3, in particular the difference between the EDC
and MDC line-shapes, can be captured in a very simple model with a phenomenological
self-energy [see doc–74].

The scientific literature on photoemission is vast.2 We pick just a few random examples

1 T. Valla, A. V. Fedorov, P. D. Johnson, B. O. Wells, S. L. Hulbert, Q. Li, G. D. Gu, and N. Koshizuka, Science
285, 2110 (1999).

2 For review articles, see for instance A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473
(2003). > F. Reinert and S. Hüfner, New J. Phys. 7, 97 (2005). > D. Lu, I. M. Vishik, M. Yi, Y. Chen, R. G.
Moore, and Z.-X. Shen, Annu. Rev. Condens. Matter Phys. 3, 129 (2012). > N. C. Plumb and M. Radović,

https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1126/science.285.5436.2110
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1088/1367-2630/7/1/097
https://doi.org/10.1146/annurev-conmatphys-020911-125027
https://doi.org/10.1146/annurev-conmatphys-020911-125027
https://doi.org/10.1088/1361-648X/aa833f
https://doi.org/10.1088/1361-648X/aa833f
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Figure 7.4: (a) Calculated valence band structure of a 10-layer slab of the metal dichalcogenide
WSe2, plotted along the Γ–K line of the surface Brillouin zone. The Fermi level was adjusted and
the bands energies scaled by 6% to match the experimental bandwidth. The color scale shows
the spectral weight of states that are even relative to the plane of the figure. (b) Spectral intensity
measured by ARPES using the p-polarization (A in the plane of the figure). (c) Comparison of
the measured and calculated band dispersions.1

in order to illustrate the capabilities of the technique. ARPES can be used as a band-
mapping tool. Thanks to a steady progress in energy and momentum resolutions, it has
become possible to resolve fine details such as the spin-orbit splitting in the valence
band of materials. For the Shockley state on the Cu(111) surface, a spin-orbit splitting
of only 0.006 Å−1 was resolved using a 6 eV laser source, while the He lamp at 21 eV
showed only one broad electronic band.2 Another example of band mapping is shown
in Fig. 7.4. In this study, the light polarization was varied in order to distinguish states
that are even or odd relative to a mirror plane of the crystal.

Beside the band-mapping activity which focuses on the one-particle physics of the
photoemission matrix element and dispersion ξk , the ARPES technique is also used to
gain information about the many-particle physics going on in the self-energy Σ(k,ε).
Following a pioneering work on Mo(110),3 where the effects of impurities and electron-
electron interactions could be investigated, many studies have tried to determine
the self-energy from the photoemission spectral line-shape. In graphite,4 alongside
the characteristic linear hour-glass dispersion above and below EF, a strong damping
due to electron-phonon scattering was observed with a linear energy dependence
at high energy. In 1T -TiTe2, a quasi-two-dimensional metal, the effects of impurity,
electron-phonon, and electron-electron scattering were tentatively distinguished by

J. Phys.: Condens. Matter 29, 433005 (2017).
1 I. Tanabe, T. Komesu, D. Le, T. B. Rawal, E. F. Schwier, M. Zheng, Y. Kojima, H. Iwasawa, K. Shimada, T. S.

Rahman, and P. A. Dowben, J. Phys.: Condens. Matter 28, 345503 (2016).
2 A. Tamai, W. Meevasana, P. D. C. King, C. W. Nicholson, A. de la Torre, E. Rozbicki, and F. Baumberger,

Phys. Rev. B 87, 075113 (2013).
3 T. Valla, A. V. Fedorov, P. D. Johnson, and S. L. Hulbert, Phys. Rev. Lett. 83, 2085 (1999).
4 K. Sugawara, T. Sato, S. Souma, T. Takahashi, and H. Suematsu, Phys. Rev. Lett. 98, 036801 (2007).
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Figure 7.5: (a) ARPES data for electrons confined to the SrTiO3 (100) surface.1 The peak
positions and a model dispersion are indicated in black and blue, respectively. (b) Extracted
self-energy compared with different models. The real part has a broad maximum between −20
and −60 meV, pointing to several phonon modes (red dots). (c) Comparison of theory (left and
insets) and measurement (right, second-derivative data) showing the renormalized heavy band
in addition to the light bands seen in (a).

a detailed fitting of the quasi-particle peak.2 A subsequent study of the same system
revealed deviations from the sudden approximation.3 Figure 7.5 shows data recorded
from a two-dimensional electron gas at the surface of SrTiO3. This data set displays,
among other things, a dispersion kink and concomitant line-width broadening typical of
electron-phonon interaction. The document doc–75 presents an analytical expression
for the temperature-dependent self-energy of electrons coupled to dispersionless optical
phonons, as well as a practical application to analyze EDC data taken on the (0001)
surface of beryllium.

7.3 The notion of quasi-particle

For independent particles, we have seen that the spectral function is A(k,ε) = δ(ε−ξk)
with ξk the particle energy measured from the chemical potential. In a hypothetical
system of independent particles, the photoemission signal would therefore display a
sharp peak, allowing for an unambiguous determination of the particle energy as a
function of k (for occupied states). The vanishing width of this peak is the signature
of the long-lived nature of the one-particle excitations in such systems. Moreover,
the spectral weight of the peak is unity: the excited particle leaves nothing behind.
Knowing the dispersion ξk , one could then evaluate the group velocity vk = ħh−1∇ξk ,
as well as the mass tensor m−1

µν = ħh
−2∂kµ∂kνξk .

1 P. D. C. King, S. McKeown Walker, A. Tamai, A. de la Torre, T. Eknapakul, P. Buaphet, S.-K. Mo, W. Meevasana,
M. S. Bahramy, and F. Baumberger, Nat. Commun. 4, 3414 (2014).

2 L. Perfetti, C. Rojas, A. Reginelli, L. Gavioli, H. Berger, G. Margaritondo, M. Grioni, R. Gaál, L. Forró, and F.
Rullier Albenque, Phys. Rev. B 64, 115102 (2001). > G. Nicolay, B. Eltner, S. Hüfner, F. Reinert, U. Probst,
and E. Bucher, Phys. Rev. B 73, 045116 (2006).

3 E. E. Krasovskii, K. Rossnagel, A. Fedorov, W. Schattke, and L. Kipp, Phys. Rev. Lett. 98, 217604 (2007).

https://doi.org/10.1038/ncomms4414
https://doi.org/10.1038/ncomms4414
https://doi.org/10.1103/PhysRevB.64.115102
https://doi.org/10.1103/PhysRevB.64.115102
https://doi.org/10.1103/PhysRevB.73.045116
https://doi.org/10.1103/PhysRevB.73.045116
https://doi.org/10.1103/PhysRevLett.98.217604
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Of course, independent particles do not exist in Nature. Nevertheless, for weakly
interacting particles this picture is not expected to change dramatically: one still
expects to observe a peak in the spectral function at some energy Ek ≈ ξk . This peak
has to be broadened due to interactions to a width Γk and its spectral weight might be
smaller than unity. In such a case, we can consider that the one-particle excitations
are like independent particles: they have a well-defined energy Ek , a reasonably long
life-time τk ∝ Γ−1

k , and a spectral weight Zk ® 1. When these conditions are fulfilled,
one speaks about quasi-particles with a quasi-particle energy and life-time Ek and τk ,
respectively, and a quasi-particle residue Zk . Such excitations are also often called
dressed particles and a system exhibiting such excitations is known as a Fermi liquid.

Although the above description is not quite rigorous, it corresponds to the phenomenol-
ogy that is commonly associated with quasi-particle physics in the context of photoe-
mission. We shall give below a precise meaning to the concepts of life-time, residue, etc.
Before moving on, we stress that the very existence of quasi-particles in many materials
in Nature is the reason for the success of the conventional—mostly perturbative—
descriptions of the low-energy properties in these systems, as formalized in the Landau
theory of Fermi liquids. The existence of quasi-particles is not ineluctable, however,
and research is nowadays largely dedicated to the study of materials in which the
low-energy excitations most likely are not quasi-particles, such as fractional quantum
Hall systems or high-Tc superconductors.1

In the remainder of this section, we denote the real and imaginary parts of the retarded
self-energy byΣ′ andΣ′′, respectively, a convention that is popular in the photoemission
community:

ΣR(k,ε) = Σ′(k,ε) + iΣ′′(k,ε). (7.11)

From the general definition Eq. (7.9), we see that the spectral function takes the form

A(k,ε) =
− 1
πΣ
′′(k,ε)

[ε − ξk −Σ′(k,ε)]2 + [Σ′′(k,ε)]2
. (7.12)

There are constraints on A(k,ε) and ΣR(k,ε) that result from the analytic properties
of the Green’s function. As we saw in Sec. 3.4, A(k,ε) integrates to unity. From the
general spectral representation Eqs (3.12) and (3.14), we further see that A(k,ε)> 0,
because it is the spectral function of the correlation function of two adjoint operators
(i.e., ckσ and c†

kσ). From Eq. (7.12), it is obvious that the positivity of A(k,ε) requires
the negativity of Σ′′(k,ε). Some other useful analytic properties of the self-energy are
discussed in doc–73.

Most often, one is interested in the single-particle excitations at low energy and close
to the Fermi surface. But the very notion of Fermi surface might lose its meaning in
the presence of interactions: for independent particles, the Fermi surface is defined
by the discontinuity of the distribution function 〈nk〉= f (ξk) [Eqs (3.39) and (3.25)]
at zero temperature, which marks the frontier between occupied and empty states.
In the presence of interactions—or at finite temperature—it is natural to define the
Fermi “surface” as the locus of zero-energy excitations in momentum space, in other

1 For a perspective on this subject, see J. K. Jain and P. W. Anderson, PNAS (USA) 106, 9131 (2009).

https://doi.org/10.1073/pnas.0902901106
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words the maximum of A(k, 0). From Eq. (7.12), one sees that, up to small corrections
involving the momentum derivative of Σ′′(k, 0), this maximum is given by the equation

y ξkF
+Σ′(kF, 0) = 0. (7.13)

This shows that, unless the real part of Σ vanishes at zero energy, the effects encoded
in the self-energy displace the “bare” Fermi surface defined by ξk0

F
= 0.

For studying the low-energy one-particle excitations in weakly-interacting systems, the
next step is to expand the Green’s function GR(k,ε) close to k = kF and ε = 0. Because
GR has a nearly singular structure near k = kF and ε = 0, it is more convenient to
expand 1/GR:

1
GR(k,ε)

= ε − ξk −Σ′(k,ε)− iΣ′′(k,ε)

= ε −
�
ξkF
+ (k − kF) ·∇ξk

��
kF

�

−
�
Σ′(kF, 0) + (k − kF) ·∇Σ′(k, 0)

��
kF
+ ε∂εΣ

′(kF,ε)
��
ε=0

�

− iΣ′′(k,ε) +O
�
(k − kF)

2,ε2
�

. (7.14)

Thanks to Eq. (7.13), we can eliminate the terms −ξkF
− Σ′(kF, 0). The remaining

terms can be recast in the form

1
GR(k,ε)

=
1

Z(kF)

�
ε − Ek +

iħh
2τ(k,ε)

�
+O[(k − kF)

2,ε2] (7.15)

with the help of the definitions

1
Z(kF)

≡ 1− ∂εΣ′(kF,ε)
��
ε=0 (7.16a)

Ek ≡ Z(kF) (k − kF) ·∇
�
ξk +Σ

′(k, 0)
�

kF
(7.16b)

ħh
τ(k,ε)

≡ −2Z(kF)Σ
′′(k,ε). (7.16c)

These various quantities correspond to the concepts of quasi-particle residue, energy,
and life-time introduced in the previous qualitative discussion, as can be seen by
rewriting the Green’s function Eq. (7.15) in the more suggestive form

GR(k,ε) =
Z(kF)

ε − Ek +
iħh

2τ(k,ε)

+ Ginc(k,ε). (7.17)

The first term describes a peak with the maximum at ε = Ek and a width ħh/τ (the
so-called “coherent” quasi-particle peak). The weight of the peak is not one but Z(kF).
If the life-time τ does not depend on k and ε, the quasi-particle peak has a Lorentzian
shape and a width ħh/τ (full width at half maximum). Ginc contains “the rest”, i.e., the
part not contained in the coherent quasi-particle peak; it is not expected a priori to
have a pole structure. Figure 7.6 illustrates the concept of quasi-particle peak using
the model self-energy introduced in doc–74.



The notion of quasi-particle 111

−2 −1 0 1 2
ǫ/W

Sp
ec

tr
al

fu
nc

ti
on

ξk/W = −0.1

Incoherent
part

(a)

−2 −1 0 1 2
ǫ/W

ξk/W = −0.75

Quasi-particle
peak

(b)

Figure 7.6: Spectral function (blue) and coherent quasi-particle peak (orange) for the model
self-energy Eq. (11.39) with parameters Γ = 0.1, α = 1, and W = 1. The dashed green lines
indicate the bare dispersion ξk , which differ from the quasi-particle peak energy Ek . (a) When
|ξk | is small, the quasi-particle peak captures well the main feature of the spectral function.
(b) At higher value of |ξk |, the incoherent part increases and the quasi-particle description
progressively breaks down. The vertical scales are different in (a) and (b) as indicated by the
gray shade.

In many systems—but there are important exceptions—the self-energy depends on
momentum much less than it depends on energy and neglecting the momentum depen-
dence altogether can be a reasonable approximation. There are plenty of theoretical
models in which the self-energy is momentum independent, e.g., the second-order
Coulomb interaction diagram (Sec. 8.4), the Kondo problem (Sec. 8.5), or the case of
electrons interacting with optical phonons (doc–75). Momentum independence of the
self-energy occurs when the interaction itself is local (i.e., momentum independent).
For the Coulomb repulsion, the potential can be considered momentum independent
for electrons close to the Fermi surface; more precisely, the screening transforms the
long-range Coulomb potential into a screened potential which is almost local (see
Sec. 5.1.4.6). In the Kondo problem, the electrons interact with localized spins, lead-
ing to a momentum-independent potential. Finally, for electrons coupled to optical
phonons, the momentum independence stems from neglecting the weak dispersion
of the optical phonons. If we develop the real part of a momentum-independent
self-energy for low energies, Σ′(k,ε) ≈ Σ′(0)− λε +O(ε2), we see that the Green’s
function takes the quasi-particle form Eq. (7.17) at low energy:

GR(k,ε)≈ 1
ε − ξk − [Σ′(0)−λε]− iΣ′′(ε)

=
Z

ε − Ek +
iħh

2τ(ε)

, (7.18)

with Z = 1/(1+λ), Ek = (εk −µ′)/(1+λ), µ′ = µ−Σ′(0), and ħhτ−1(ε) = 2Z |Σ′′(ε)|.
This Green’s function describes low-energy quasi-particles with a life-time τ(ε), a
renormalized dispersion Ek , i.e., a renormalized velocity

vk −→ v∗k =
vk

1+λ
, (7.19)

a reduced spectral weight

1 −→ Z =
1

1+λ
, (7.20)
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Figure 7.7: Determination of the self-energy by photoemission for a linear dispersion. (a) The
peak position k0 in the Lorentzian-shaped MDC at energy ε0 gives the quasi-particle dispersion
(b) as ε0 is varied. The width of the MDC gives −Σ′′ as shown in (c). Once the noninteracting
dispersion is known, Σ′ is given by the difference between the quasi-particle and noninteracting
dispersions. As Σ(ε) is causal, a maximum in Σ′ corresponds to a change of curvature in −Σ′′
and a zero in Σ′ to a maximum in −Σ′′.

and a correspondingly enhanced mass and density of states at the Fermi level,

m −→ m∗ = (1+λ)m, N el
0 (0) −→ N el(0) = (1+λ)N el

0 (0). (7.21)

The dimensionless parameter λ, related to the zero-energy derivative of the real part
of the self-energy,

λ= − ∂Σ
′(ε)
∂ ε

����
ε=0

, (7.22)

plays a central role in describing the properties of quasi-particles. It is often called the
renormalization factor. Since it is possible to measure v∗k by photoemission, the renor-
malization factor can in principle be determined as λ = vk/v

∗
k − 1 if the noninteracting

velocity vk is known.

More generally, a momentum-independent self-energy can in principle be completely
determined (at negative energies) by photoemission, provided that the noninteracting
dispersion can be assumed to be linear with un-renormalized Fermi surface, i.e., ξk ≈
vF(k− kF). This is possible even if vF is unknown, by exploiting the causal nature of
the self-energy. For a momentum-independent self-energy, the spectral function reads

A(k,ε) =
−Σ′′(ε)/π

[ε − ξk −Σ′(ε)]2 + [Σ′′(ε)]2
. (7.23)

For a linear dispersion, a measurement of the MDC, i.e., A(k,ε0) versus k at fixed
energy ε0 must yield a Lorentzian peaked at the wave vector k0 that is the solution
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of ε0 − ξk0
−Σ′(ε0) = 0 [Fig. 7.7(a)]. By varying ε0 and plotting k0 as a function of

ε0, one obtains the quasi-particle dispersion as illustrated in Fig. 7.7(b). The width
2∆k of the Lorentzian gives the imaginary part according to Σ′′(ε0) = −vF∆k. One
can thus construct the curve −Σ′′(ε) [Fig. 7.7(c)], up to the unknown factor vF. This
curve should present a maximum at some energy ε∗, because the self-energy must
vanish at sufficiently high energy; Kramers-Kronig consistency then implies that the
real part Σ′(ε) must vanish close to ε∗. This allows one to fix vF and the noninteracting
dispersion, since the quasi-particle and noninteracting dispersions are equal at ε∗. Once
vF is fixed, the curve Σ′(ε) can be constructed by measuring the vertical difference
between the quasi-particle and noninteracting dispersions. Another check of Kramers-
Kronig consistency is that a maximum inΣ′(ε)must coincide with a change of curvature
in −Σ′′(ε). This procedure is often not directly applicable in practice, because the scale
ε∗ corresponds to energies where the curvature of the dispersion can no longer be
neglected.

7.4 Beyond the sudden approximation

The main virtue of the response theory of photoemission is to pinpoint directions where
the theory can be improved beyond the mainstream paradigm. In this section, we sketch
a few of them, suggesting the road to follow rather than doing actual calculations.

7.4.1 Surface barrier

Unlike we assumed in Sec. 7.2, the photo-electrons are not excited directly into the
vacuum, but within the material. In order to reach the vacuum they must overcome
the surface barrier, which in a first approximation is a potential step of height φ (see
Fig. 10.2, p. 214). In order to understand the effect of this barrier, we may keep using
a diagram of the type displayed in Fig. 7.1(b) but replace the propagators Gfree by a
better approximation, closer to the exact propagator G that should actually be used in
evaluating the diagram, e.g. � (7.24)

In the calculation of doc–50, this amounts to replacing the product

GR
free(R− r 1, ε +ħhω0)G

A
free(r2 −R, ε +ħhω0)

by

GR(R, r 1, ε +ħhω0)G
A(r2, R, ε +ħhω0) =

G (R, r 1, iωn→ ε +ħhω0 + i0+)G (r2, R, iωn→ ε +ħhω0 − i0+). (7.25)

G describes the actual propagation from r1 to R and R to r2. In the presence of
a potential V (r )—describing the surface barrier and/or the lattice potential—this
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propagator G becomes, according to Eq. (5.18a),

G (r , r ′, iωn) = Gfree(r − r ′, iωn) +

∫
dr ′′Gfree(r − r ′′, iωn)V (r

′′)G (r ′′, r ′, iωn).

(7.26)
In order to describe the effect of the surface barrier, we would therefore have to solve
this equation for G and insert the result in the calculation of doc–50. At lowest order in
V , we could replace G (r ′′, r ′, iωn) by Gfree(r ′′ − r ′, iωn) in the second term, reducing
the calculation to the evaluation of a single integral.

For a proper treatment of the surface barrier, we should also replace Gbulk in Fig. 7.1(b)
by the true propagator in the material, which is modified by the presence of the surface.
We would in this way take into account the modifications of the hole spectral function
due to the presence of the surface as well as the interference between the photo-electron
and electrons of the material that are reflected by the surface.

7.4.2 Intrinsic losses, damping

Damping effects are essential for a correct interpretation of photoemission data. On
one hand, they determine the self-energy which enters in the spectral function of
Eq. (7.10); on the other hand, they are responsible for the finite escape depth of the
photo-electrons. Much of these damping effects can already be investigated within the
approximation given in Eq. (7.24) by improving the calculation of the three propagators
involved in the diagram.

The damping of the excitations can have various origins: scattering on impurities
(Sec. 5.1.3.6), electron-electron interaction (Sec. 5.1.3.7), electron-phonon interaction
(Sec. 5.1.3.8), spin-orbit interaction, etc. The crudest approach is to consider that
these phenomena lead to a purely imaginary self-energy Σ(k,ε)≈ −iΓ for the photo-
electron. If this correction is introduced in the free propagator of doc–49 (replacing
iνn by iνn+ iΓ ), the propagator vanishes exponentially with distance like e−|Imκ|r . This
defines the electron mean-free path as 1/`e = 2|Imκ|. As a result, the photo-electrons
created at a depth exceeding `e in the material have no chance to reach and cross the
surface.

7.4.3 Extrinsic losses

Beside the diagram Eq. (7.24), the three-current correlator involves many terms that
account for the interactions of the photo-electron with the material. These terms can
represent impurity scattering, Coulomb interaction, or electron-phonon interaction,
like in the following diagrams:� , � , or � .

The case of the Coulomb interaction was treated by Chang and Langreth. In this
analysis, they describe a phenomenon of great importance for the XPS (core-electron)
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tion of b with !, and we compare the present experimental
data with those results "see Fig. 6#. b tot(F) was calculated by
Baird et al. using the method suggested by Feibelman,16

which assumes infinite core-hole lifetime and a smooth cut-

off at the critical wave vector (qc). b tot(S) was calculated by

the method suggested by Šunjić and co-workers18,19 which

assumes a finite core-hole lifetime and a sharp cutoff at qc .

Both the methods are based on jellium model and use the

semiclassical model of electron-electron interaction. bext(F)

was calculated by Feibelman’s method considering only the

extrinsic plasmon contribution.8 From the comparison of

theory8 and present data, although the ! variation is similar,
it is clear that both the methods "F and S# overestimate the
intrinsic plasmon contribution. On the other hand, bext(F)

lies below the experimental data because the intrinsic and

interference contributions are not included in this calcula-

tion. As in the case of surface plasmons, if we consider that

the intrinsic and interference terms are ! independent, the
addition of a constant term to bext(F) should be able to simu-

late the experimental data. This constant value, which gives a

quantitative estimate of the sum of intrinsic and interference

contributions, turns out to be 0.14, and gives a reasonable fit

to the experimental data "solid line in Fig. 6#. This value has
been used by us to estimate the intrinsic bulk plasmon prob-

ability "discussed later#.
In order to obtain quantitative estimates of the intrinsic,

extrinsic, and interference processes in bulk plasmons, we

have studied the Al 2s core-level spectrum over a wide ki-

netic energy range. The spectrum clearly shows the bulk

plasmon peaks at 15.4, 30.8, 46.2, 62, 76.6, and 92.6 eV loss

energies corresponding to multiple (n!1–6) bulk plasmon
(n$p) excitations "Fig. 7#. The main peak is truncated to
show the plasmon region in an expanded scale. Besides the

bulk plasmon peaks, 1$s "at 10.4 eV loss energy# and mul-
tiple bulk and surface plasmons excitations towards higher

loss energies like 2$s , 1$p"1$s , 2$p"1$s , and 3$p

"1$s are indicated sequentially "from lower to higher loss

energy# by arrows in Fig. 7. The energies of the 3$p and

4$p excitations corresponding to Al 2p are shown with

slanted arrows. We find that the intensity contribution from

Al 2p related 3$p , which almost coincides with the Al 2s

main peak, to be about 6% compared to the main peak. The

fit to the experimental data, where each of the above men-

tioned plasmon features are fitted with asymmetric Lorentz-

ians, is shown by a solid line through the data points. From

the fitting we find that %L is larger than %R and both these

widths increase steeply with n and shows a saturating trend

for n&5 "inset, Fig. 7#. The increase in width, for example,
for 2$p , is due to the excitation of 2$p photoelectrons

through a second plasmon excitation by 1$p photoelectrons.

Thus the 2$p line shape can be approximated to be the self-

convolution of the 1$p line shape.
3 The asymmetry of the

bulk plasmon line shape, quantified by ' (!%L /%R!2.5), is
independent of n. Thus, although the width increases with n,

the bulk plasmon asymmetry remains unchanged. Interest-

ingly, this is in contrast to the systematic change in asymme-

try "'# as a function of ! observed for both surface and bulk
plasmon "as discussed in Sec. III A#.

The variation of the n$p relative intensity as a function of

n (b(n)) has been studied by different groups to determine
the relative extrinsic and intrinsic contributions to the bulk

plasmon. However, the results from the different

studies1,3,6,5,20 are not in agreement. The combined effect of

intrinsic and extrinsic plasmon in the n$p intensity variation

was suggested by Langreth17 to be

b"n #!*n +
m!0

n
",/*#m

m!
, "10#

where * is the extrinsic plasmon creation probability. , is the
measure of probability (P int(n)) of the intrinsic excitation of
n plasmons given by

P int"n #!e#,
,n

n!
. "11#

Based on perturbation theory arguments in momentum space,

Chang and Langreth14 suggested that the strength of extrinsic

plasmons for n$p should vary as *n, where * is about 0.5.
Based on Eq. "10#, van Attekum et al.5 found the Al 2s re-

lated intrinsic bulk plasmon component to be 25% (,
!0.21,*!0.62) of the total plasmon intensity. Using a simi-
lar procedure, Steiner et al.6 determined , and * in Al to be
0.11 and 0.66, respectively, and thus the intrinsic plasmon

was a factor of 2 lower than that estimated by van Attekum

et al.5 Neither of these studies5,6 considered the interference

FIG. 7. Wide range Al 2s core-level spectrum recorded at !
!45° "experiment: open circles; fit: solid line through experimental
data# showing multiple (n!1–6) bulk plasmon excitations (n$p).

Vertical arrows indicate the energy positions of the multiple bulk

and surface plasmon excitations related to Al 2s , while the slanted

arrows show the energy positions of 3$p and 4$p excitations re-

lated to Al 2p "see the text#. The deconvoluted n$p line shapes

"solid lines# are shown at the bottom. The inset shows the variations
of n$p left (%L , filled square# and right (%R , filled circle# Lorent-
zian widths as functions of n.

BISWAS, SHUKLA, BANIK, AHIRE, AND BARMAN PHYSICAL REVIEW B 67, 165416 "2003#

165416-8

Figure 7.8: XPS photoemission
spectrum of the 2s core level in
elemental Al (circles).1 Beside the
main peak, there are several equidis-
tant satellite peaks at lower energies
corresponding to 2s photo-electrons
having excited one or more plas-
mons before escaping. The Al bulk
plasmon has an energy ħhωp ≈ 15 eV.
The photo-electrons can also excite
surface plasmons, which in Al have
a lower energy near 10 eV. These
losses lead to smaller satellite peaks
indicated by the vertical arrows.

spectroscopy, namely the losses due to the excitation of one or more plasmons by the
photo-electron.2 These losses are captured by the diagrams� , � , . . .

and they lead to satellite peaks in the core-level photoemission spectrum of solids
beside the main quasi-particle (or “no-loss”) peak (see Fig. 7.8 for an example).

The diagrams above with the wavy lines replaced by phonon lines describe losses due
to the photo-electron exciting phonons. The phonons typically have energies below
50–100 meV in solids, two orders of magnitude lower than the typical plasmon energies,
such that their effect on the core-electron photoemission line-shape cannot be seen
due to insufficient energy resolution. The various effects of electron-phonon scattering
in photoemission were discussed by Caroli et al.3

7.4.4 Screening of the electromagnetic field

In the vicinity of the surface, the electromagnetic field may change dramatically due to
the screening by the material. In metals, in particular, the field vanishes beyond a short
distance `p inversely proportional to the conductivity (skin effect). One can approach
this problem with the macroscopic Maxwell equations and a suitable dielectric function

1 C. Biswas, A. K. Shukla, S. Banik, V. K. Ahire, and S. R. Barman, Phys. Rev. B 67, 165416 (2003).
2 J.-J. Chang and D. C. Langreth, Phys. Rev. B 8, 4638 (1973).
3 C. Caroli, D. Lederer-Rozenblatt, B. Roulet, and D. Saint-James, Phys. Rev. B 8, 4552 (1973).

https://doi.org/10.1103/PhysRevB.67.165416
https://doi.org/10.1103/PhysRevB.8.4638
https://doi.org/10.1103/PhysRevB.8.4552
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in order to determine the vector potential in the vicinity of the surface. From our more
microscopic perspective, we recognize that the diagrams	 and 

contain this screening effect treated within the self-consistent RPA approximation (see
Secs. 5.1.4.6 and 5.1.4.4).

Turning the few ideas sketched here into concrete calculations is a formidable task.
Fully analytical calculations are generally impossible, except for simple models that
are designed to exhibit this or that particular aspect of the phenomenology. As an
illustration of this difficulty, and in order to close this chapter as we opened it, let’s
quote W. L. Schaich once again: «(...) the possible utility of such calculations in revealing
new physics as opposed to simply providing a better fit to experiment does not seem
compelling when weighted against the extra effort.»1

1 W. L. Schaich, op. cit., p. 117.
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Electrical resistivity

The electrical characterization of new materials or new samples often begins with a
measurement of the dc resistivity versus temperature. Such a measurement would
normally not be considered as a spectroscopic probe. Yet it does provide an access to the
electronic self-energy: the present chapter emphasizes this relationship. It is not aimed
at a general presentation of resistivity in solids, but at providing a few streetlights
along the route that the many-body theory exposed in the previous chapters provides
for describing the phenomenon of resistivity. Despite its importance, the resistivity is
neither straightforward to measure precisely nor easy to calculate theoretically. More
often than not, the theoretical description of resistivity is phenomenological rather than
first-principles. One difficulty is that several mechanisms contribute to the resistivity
and a complete theory seems to be out of reach. In a given temperature range, though,
the resistivity is often dominated by a single mechanism which can thus be distinguished
and studied separately. In the following, we first show how the resistivity is connected
with the microscopic self-energy via Ohm’s law and linear-response theory. We then
discuss impurity scattering and electron-electron interaction and their roles in the
resistivity of metals. More advanced topics are then addressed, like the Kondo effect
and the phenomenon of weak localization.

8.1 Kubo formula for the conductivity

The Ohm’s law expresses a linear relationship between the electric field E and the
current j (i.e., the electric current, which is e times the particle current) in the form
j = σE. In this expression, the conductivity σ characterizes the linear response of the
system to the electric field E, the response being an induced current j. It is therefore
natural to try and express the conductivity as a response function. Like any response
theory, the Ohm’s law must be envisioned in general as a non-local (in space and time)
relation between the electric field and the current, which at first order has to take the
form

e〈 jµ(r , t)〉V =
∑
ν

∫
dr ′

∫ ∞

−∞
d t ′σµν(r , r ′, t − t ′)Eν(r

′, t ′). (8.1)

117
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In this definition, jµ(r , t) is the particle-current operator defined in Eq. (2.49), E(r , t)
is the electric field, and σµν is the conductivity tensor. Eq. (8.1) has the same form
as the general linear-response relation Eq. (6.7). Therefore, in order to determine
σµν one has to derive a relation similar to Eq. (8.1) from the response theory and
deduce the conductivity by identification. The perturbation V due to the electric field
is, like in Eqs (6.17) and (7.1), Vt =

∫
dr j(r ) · (−e)A(r , t). Since Eq. (8.1) involves

the electric field E rather than the vector potential A, it is better to work in the gauge
where the scalar potential φ(r , t)≡ 0 and to use the relation E(r , t) = −∂t A(r , t) in
the form E(r ,ω) = iωA(r ,ω). Then, from the general principle expressed in Eq. (6.8)
and the fact that the electric field couples to the current operator, one foresees that
the conductivity tensor must be related to a current-current correlation function. The
explicit derivation is performed in doc–51 and yields

σµν(r , r ′,ω) =
ie2

ω

�
C jp

µ(r ) j
p
ν (r ′)(iΩn→ ħhω+ i0+) +δµνδ(r − r ′)

〈n(r )〉
m

�
. (8.2)

The factor 1/ω reflects the fact that the current is not proportional to the vector
potential A but to its time derivative E. The current-current correlation function
involves only the paramagnetic current Eq. (2.49b), while the contribution of the
diamagnetic current Eq. (2.49c) is given by the second term in the square brackets.

When translation invariance is assumed, the conductivity takes a simpler form in
reciprocal space [see doc–51]:

y σµν(q ,ω) =
ie2

ω

�
1
V χ

µν
j j (q , iΩn→ ħhω+ i0+) +δµν

〈n〉
m

�
, (8.3)

where we have introduced the current-current correlation function in momentum space

χ
µν
j j (q ,τ) = −〈Tτ jp

µ(q ,τ) jp
ν (−q , 0)〉. (8.4)

The latter two relations provide the starting point for calculating the conductivity from
first-principles. The non-translation invariant case is very similar [see doc–76].

Looking at the expression Eq. (2.50) of the paramagnetic current, we see that the
correlation function χµνj j can be represented by the generic diagram

χ
µν
j j (q ,τ) = − �kσ

k+qσ

k ′−qσ′

k ′σ′
µ ν (8.5)

Each circle represents a bare current vertex, i.e., ħhm (kµ + qµ/2) on the left side and
ħh
m (k

′
ν−qν/2) on the right side of the diagram if we work in the plane-wave basis. Apart

from this current vertex, the expression of the χµνj j correlator is very similar to the
density-density correlator in Eq. (5.75). In effect, it is possible to derive an explicit
relation between the density-density and current-current correlation functions by using
the continuity equation [see doc–14], which expresses the conservation of particle
number and links the density and current operators. This relation is called a Ward
identity.1

1 The Ward identity relating the density-density and current-current correlation functions reads

Ω2
nχnn(q , iΩn) +ħh2

∑
µν

qµqνχ
µν
j j (q , iΩn) = −N

ħh2q2

m
.



Kubo formula for the conductivity 119

Like for the density-density correlation function, we can distinguish two types of
diagrams: those corresponding to renormalizations of the propagators and those corre-
sponding to renormalizations of the current vertex. We thus have

χ
µν
j j (q , iΩn) = − �

kσωn

k+qσωn+Ωn

µ ν + vertex corrections

=
� ħh

m

�2∑
kσ

�
kµ +

qµ
2

��
kν +

qν
2

�∫ ∞

−∞
dε1dε2 A(k,ε1)A(k + q ,ε2)

× f (ε1)− f (ε2)
iΩn + ε1 − ε2

+ vertex corrections. (8.6)

The calculation leading to the second line proceeds exactly like for the renormalized
bubble in doc–40: we use the one-electron spectral function A(k,ε) ≡ ρ ckσc†

kσ
(ε) to

replace the product of Green’s functions G (k, iωn)G (k + q , iωn + iΩn) appearing in
the expression of the diagram and we evaluate the Matsubara sum over iωn using
Eq. (16).

We close this section by a derivation of the dc conductivity tensor (q = 0 and ω= 0)
when the vertex corrections are neglected. Starting from Eq. (8.3) and using Eqs (8.6)
and (10), we can write the conductivity as

Reσµν(q = 0,ω) = − e2

ω

1
V Imχµνj j (0, iΩn→ ħhω+ i0+)

=
πe2ħh2

m2ω

1
V
∑
kσ

kµkν

∫ ∞

−∞
dεA(k,ε)A(k,ε +ħhω)[ f (ε)− f (ε +ħhω)], (8.7)

since the diamagnetic contribution is purely imaginary. In the dc limit ω→ 0, this
expression simplifies using f (ε)− f (ε +ħhω) = − f ′(ε)ħhω+O(ω2):

Reσµν(0, 0) =
πe2ħh3

m2

1
V
∑
kσ

kµkν

∫ ∞

−∞
dε [− f ′(ε)]A2(k,ε). (8.8)

This is the exact expression of the dc conductivity tensor for a translation-invariant
system when all vertex corrections are neglected. At T = 0, the conductivity is
determined by A2(k, 0); since A(k, 0) gives the zero-energy distribution of spectral
weight for single-electron excitations, in other words the region of k-space where
zero-energy excitations are present, we recognize in Eq. (8.8) the idea that there
must be zero-energy single-electron excitations to produce conductivity (unless vertex
corrections introduce another mechanism of conduction). The presence of the square
of the spectral function shows that electrical conductivity is produced by scattering
phenomena close to the Fermi surface, which imply contributions from initial and
final states. This view contrasts with the phenomenological interpretation of charge
transport by electrons following semiclassical orbits along the Fermi surface. Lastly, we
see that Eq. (8.8) correctly gives an infinite conductivity for systems of independent
particles where A(k,ε) = δ(ε − ξk). This is actually expected, since for independent
particles there are no vertex corrections and Eq. (8.8) is exact.

It is an instructive exercise to check that this relation is obeyed by free electrons. See also Sec. 8.6.
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8.2 Derivation of the Drude formula

In this section, we derive the Drude formula starting from Eq. (8.8). If the material is
isotropic, we can obtain the dc conductivity by averaging the three directions:

σdc =
1
3

Re
�
σx x(0, 0) +σy y(0, 0) +σzz(0, 0)

�
. (8.9)

We proceed with a simplifying assumption, namely that the electron self-energy Σ(k,ε)
has a weak momentum dependence which can be neglected. This is often a good
approximation for three-dimensional metals. It does not need to be true for all momenta,
but only in the vicinity of the Fermi surface because momenta far from there do not
contribute to Eq. (8.8). It can also be shown1 that a momentum-independent self-
energy implies that all vertex corrections vanish: Eq. (8.8) therefore gives the exact
conductivity in the framework of this approximation. We then get for σdc the result
[see doc–52]:

y σdc =
ne2

m

∫ ∞

−∞
dε [− f ′(ε)]τtr(ε), (8.10)

where we have defined the transport life-time

τtr(ε) =
ħh

2|ImΣ(kF,ε)| . (8.11)

The transport life-time is shorter than the quasi-particle life-time τ(ε) defined in
Eq. (7.16c) by a factor Z(kF): τtr(ε) = Z(kF)τ(ε). For a momentum-independent
self-energy we have Z(kF) = m/m∗ < 1. Note also that m in Eq. (8.10) is the bare
electron mass (or the band mass, see doc–76), not the effective mass m∗. The usual
Drude formula σdc = ne2τtr(0)/m is recovered at T = 0 where − f ′(ε) = δ(ε) or if
τtr(ε)≡ τtr(0), since

∫∞
−∞ dε [− f ′(ε)] = 1. Eq. (8.10) shows that, at finite temperature,

the life-time entering the dc conductivity is an average of the transport life-time in
a small region of width ∼ kBT around the Fermi surface. This eventually leads to
the insightful notion that the temperature dependence of the resistivity resembles the
energy dependence of the self-energy. The resistivity ρ = 1/σdc is proportional to the
inverse of the thermally-averaged inverse self-energy. This double inversion reduces
to the identity at T = 0 and remains close to an identity at low enough temperatures,
provided that the self-energy varies slowly on the scale of kBT . In other words, if we
can make sure that

�∫ ∞

−∞
dε

[− f ′(ε)]
|ImΣ(kF,ε)|

�−1

≈
∫ ∞

−∞
dε [− f ′(ε)]|ImΣ(kF,ε)|,

then the resistivity is given in terms of the thermally-averaged self-energy. Imagine
now that the self-energy is regular close to ε = 0, as it is usually the case, and has a
Taylor expansion |ImΣ(kF,ε)|=∑`α`|ε|`. Because − f ′(ε) is a function of the form

1 A. Khurana, Phys. Rev. Lett. 64, 1990 (1990).

https://doi.org/10.1103/PhysRevLett.64.1990
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1
T F(ε/T ), we can write

ρ ≈ 2m
ne2ħh

∑
`

α`

∫ ∞

−∞

dε
T

F
� ε

T

�
|ε|`

︸ ︷︷ ︸
T `
∫∞
−∞ d x F(x)|x |`

=
∑
`

A`T
` (8.12)

with A` =
2m

ne2ħhα`
∫∞
−∞ d x F(x)|x |`. This shows that the temperature dependence of the

dc resistivity informs us about the energy dependence of the self-energy. For instance,
the explanation of a T -linear resistivity is often searched in microscopic models that
produce a linear-in-energy self-energy. Of course, these considerations assume that
the vertex corrections can be neglected, which cannot always be true. It is known, in
particular, that the exact transport life-time (i.e., the value of τtr(ε) extracted from
measurements of the conductivity) generally differs from Eq. (8.11) and from the
quasi-particle life-time measured e.g. by photoemission. Eq. (8.10) is nevertheless a
good starting point for investigating the effects of various scattering mechanisms on
the conductivity, as will be done in the next three sections.

8.3 Residual resistivity of metals and impurity scattering

In ordinary metals, the resistivity is dominated at low temperature by scattering
off defects and impurities. The amount of defects (vacancies, dislocations, grain
boundaries, . . . ) can in principle be reduced by specific treatments that improve the
crystalline quality of the materials. Impurities, on the contrary, are often introduced
on purpose, either to dope or to alloy a material and thus change its electrical and
mechanical properties. In this section, we consider the case of a defect-free metal in
which substitutional impurities are introduced. If the number of impurities is not too
large, one observes an increase of the residual resistivity ρ0 (the resistivity at T = 0)
and this increase is proportional to the impurity concentration. This is usually written
as ρ0 = αx with x the impurity concentration in atomic percent. The parameter α
depends weakly on the host material—materials with higher electron densities tend
to have lower α values—but increases strongly with increasing the valence difference
Z between the host and impurity atoms (see Fig. 8.1). In this section, we use the
results of Sec. 5.1.3.6 on impurity scattering and the expression Eq. (8.10) of the dc
conductivity and find that they allow to explain semi-quantitatively the data in Fig. 8.1.

The self-energy due to scattering on impurities at low impurity concentration is given
in the first Born approximation by Eq. (5.41). For a heterovalent impurity with a
difference of valence Z in a metallic host, we can approximate the impurity potential
by a Yukawa potential:

v(q) =
Ze2

ε0

1
q2 + k2

TF

. (8.13)

kTF is the Thomas–Fermi wave vector introduced in Sec. 5.1.4.6, which gives the leading
contribution to the static screening in metals. For the host metal, we use a nearly-free
electron description with a dispersion ξk = ħh2k2/(2mb)− εF, where mb is the band
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Figure 8.1: Coefficient α describing the lin-
ear increase of the residual resistivity as a
function of the valence difference Z between
the host and impurity atoms.1 Filled squares
(circles) correspond to impurities Cu, Zn, Ga,
Ge, As introduced in silver (copper), respec-
tively, while open squares and circles corre-
spond to the series Ag, Cd, In, Sn, Sb. The
lines are quadratic fits α∝ Z2.
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mass [see doc–76]. The calculation of the self-energy can then be performed exactly
[see doc–53],

Σ1BA(k,ε) =
πe2

8ε0a0︸ ︷︷ ︸
134 eV

nia
3
0

(kFa0)2
Z2

× kF

k

 
1

kF
kTF

q
1+ ε

εF
− k

kTF
+ i
− 1

kF
kTF

q
1+ ε

εF
+ k

kTF
+ i

!
, (8.14)

where a0 = 4πε0ħh2/(me2) = 0.53 Å is the Bohr radius. In spite of the large prefactor
of 134 eV, the self-energy remains in the 10 meV range because nia

3
0, the number of

impurities in a volume a3
0, is of the order 10−4–10−5.

The energy and momentum dependencies of Σ1BA are displayed in Fig. 8.2. The first
important thing to remark is that Σ1BA has an imaginary part. The latter vanishes for
energies below the bottom of the band (ε/εF < −1) and decreases as ε−3/2 at high
energy. The presence of an imaginary part means that impurity scattering induces
damping in the first Born approximation and thus produces resistivity. The damping
results from the interference due to scattering twice on the same impurity—this is
the only process contained in Eq. (5.41). We have seen in Sec. 5.1.3.6 that the term
corresponding to a single scattering produces no damping and is just ni v(q = 0). The
double scattering on one impurity is the reason for the behavior proportional to ni Z

2:
scattering on several impurities leads to corrections of order at least n2

i , while scattering
more that twice leads to corrections of order at least Z3.

Another very useful observation is that the self-energy is almost constant in the vicinity

1 Blatt, Phys. Rev. 108, 285 (1957).

https://doi.org/10.1103/PhysRev.108.285
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Figure 8.2: Self-energy in the first Born approximation (a) as a function of energy at k = kF

and (b) as a function of momentum at ε = 0. The quantity plotted is the self-energy Eq. (8.14)
divided by the constant prefactor in the case kTF = kF. The insets show the behavior at low
energy close to the Fermi surface.

of the Fermi surface. In many practical applications (low energy and wave vectors
close to kF), one can therefore take into account the effect of impurities by introducing
a phenomenological self-energy that is purely imaginary:

Σimp(k,ε)≈ −iΓ . (8.15)

The almost constant real part can be lumped in the chemical potential. In the expression
of the retarded Green’s function, this simply amounts to replacing ε + i0+ by ε + iΓ .
When performing numerical calculations, one has to replace 0+ by a small (but not
infinitesimal) positive number; we see that this can be justified as a phenomenological
way to take into account impurity scattering. A slightly more elaborate model would
incorporate the linear term in the real part by taking Σimp(ε)≈ (1− Z−1)ε − iΓ with Z
the quasi-particle residue [see Eq. (7.16a)].

In doc–53, we estimate the value of ρ0 obtained from Eq. (8.14) using Eq. (8.10), and
we get the numbers αCu/Z

2 = 0.37 µΩ cm/% imp. and αAg/Z
2 = 0.44 µΩ cm/% imp.

for copper and silver, respectively, if the free-electron value of kTF is increased by a
factor two in order to account for the screening by d electrons. These values reproduce
the trends observed in Fig. 8.1, except the different α values found for impurities with
the same valence but different masses: heavier impurity atoms increase resistivity
less than light atoms. In order to understand this effect, one would have to improve
our model Eq. (8.13) for the impurity potential. Since d electrons tend to be more
localized in heavier atoms, one could argue that kTF in Eq. (8.13) increases with the
atomic mass, which would reduce the scattering. Crystal-field effects, which lead to a
non-spherical potential, can also play a role.
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8.4 T 2 law and electron-electron interaction

8.4.1 Phenomenology

At low temperature, the resistivity of many metals increases like T 2. This is considered
a signature of Fermi-liquid behavior because, as we shall see, it corresponds to the
expected effect that the Coulomb interaction has on the resistivity in a fluid of weakly-
interacting electrons. This behavior is not only observed in simple metals, but in a
large variety of materials. Among those, the famous heavy-fermion compound CeAl3 is
often cited as an example: this material has a well-defined Fermi surface showing de
Haas van Alphen oscillations in a magnetic field and displays T 2 resistivity at very low
T ,1 two characteristics of a Fermi liquid. Another famous heavy-fermion material is
LaRu2Si2, which also displays T 2 resistivity.2 More exotic materials such as the sodium
cobaltate Na0.7CoO2,3 or the iron pnictide CaFe4As3,4 also exhibit a T 2 law. Often
materials enter an ordered phase like for instance superconductivity at low temperature.
In such a situation, the T 2 law, if present, is hidden by the specific signature of the
ordered phase. Suppressing the ordered phase by applying pressure or magnetic field,
one can then recover a T 2 law like in the heavy-fermion U2Pt2In,5 in the pyrochlore
Hg2Ru2O7,6 or even in the high-Tc cuprate superconductor Tl2Ba2CuO6+x and other
similar copper oxides.7

The T 2 behavior can also appear in conjunction with other mechanisms. For example,
it has been proposed that the low-temperature resistivity of the high-Tc superconductor
La2−xSrxCuO4 is the superposition of a T -linear and a T 2 term.8 The same phenomenol-
ogy was reported for several classes of superconducting materials (organic conductors,
iron pnictides, cuprates), and it was found that the amplitude of the T -linear term
is proportional to the critical temperature.9 These observations suggest that these
materials are Fermi liquids in which another scattering mechanism develops at low
temperature, responsible for both the T -linear resistivity and the formation of the
superconducting state.

Our goal in this section is to derive the T 2 law from perturbation theory using the
diagrammatic technique for the Coulomb interaction. We will also discuss the Kadowaki–
Woods scaling, which relates the coefficient of the T 2 resistivity to the coefficient of
the T -linear specific heat and was recently generalized and corrected to include 2D

1 K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 35, 1779 (1975).
2 K. Marumoto, T. Takeuchi, Y. Miyako, M. Ocio, P. Pari, and J. Hammann, Solid. State Commun. 117, 245

(2001).
3 S. Y. Li, L. Taillefer, D. G. Hawthorn, M. A. Tanatar, J. Paglione, M. Sutherland, R. W. Hill, C. H. Wang, and

X. H. Chen, Phys. Rev. Lett. 93, 056401 (2004).
4 L. L. Zhao, T. Yi, J. C. Fettinger, S. M. Kauzlarich, and E. Morosan, Phys. Rev. B 80, 020404(R) (2009).
5 P. Estrela, A. de Visser, T. Naka, F. R. de Boer, L. C. J. Pereira, Physica B 312, 482 (2002).
6 N. Takeshita, C. Terakura, Y. Tokura, A. Yamamoto, and H. Takagi, J. Phys. Soc. Jpn. 76, 063707 (2007).
7 T. Shibauchi, L. Krusin-Elbaum, M. Hasegawa, Y. Kasahara, R. Okazaki, and Y. Matsuda, Proc. Nat. Acad.

Sci. U.S.A. 105, 7120 (2008). > N. Barišić, M. K. Chan, Y. Li, G. Yu, X. Zhao, M. Dressel, A. Smontara, and
M. Greven, Proc. Natl. Acad. Sci. U.S.A. 110, 12235 (2013).

8 R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara,
H. Takagi, C. Proust, and N. E. Hussey, Science 323, 603 (2009).

9 N. Doiron-Leyraud, P. Auban-Senzier, S. René de Cotret, C. Bourbonnais, D. Jérome, K. Bechgaard, and L.
Taillefer, Phys. Rev. B 80, 214531 (2009).
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and 1D materials.

8.4.2 Life-time at second order

We saw in Sec. 5.1.3.7 that the Coulomb interaction induces electron damping at second
order because the self-energy terms Eq. (5.48) are complex. In order to calculate the
electron life-time at low energy and/or low temperature, we need the imaginary part
of these diagrams near ε = 0. The calculation can not be easily done analytically,
even for an isotropic free-electron dispersion, due to the kinematic constraint between
momenta appearing both in the Coulomb potential and in the dispersion. In three
dimensions, as the constraint is easily satisfied it is a reasonable approximation to relax
it and furthermore approximate the Coulomb potential by a constant value V0. With
these simplifications, we obtain [see doc–54]

y − Im
�� +� �

≈ cste× �ε2 + (πkBT )2
�

, (8.16)

where the constant does not depend on energy or temperature. This result is very
important. It provides the microscopic justification for the phenomenological Landau
theory of Fermi liquids. The latter theory postulates the existence at T = 0 of quasi-
particles close to the Fermi surface, i.e., long-lived single-particle excitations with
the same quantum numbers as the electrons. Eq. (8.16) confirms that the quasi-
particle life-time diverges as 1/ε2 at zero temperature, in other words the damping
due to electron-electron interactions disappears on the Fermi surface. The fact that the
scattering rate is proportional to ε2 means that the width of the quasi-particle peak in
the electron spectral function (see Sec. 7.3) is smaller than the energy Ek ≈ ε of the peak
when ε→ 0. We see in Eq. (8.16) the appearance of two regimes: ε� kBT corresponds
to the low-temperature regime just discussed, where the scattering rate goes like ε2.
When ε� kBT , on the other hand, the scattering rate becomes independent of energy
and goes like T 2. The latter regime corresponds to the measurement conditions of the
dc conductivity, as well as the low-frequency optical conductivity where a Drude-like
response is expected due to the energy-independent scattering rate. We also see that
the energy and the temperature play symmetric roles in the self-energy, another generic
feature of Fermi liquids. The correspondence ε↔ πkBT can be traced back to the
specific relationship between time and temperature or between real and imaginary
times, as illustrated by the fact that the Matsubara frequencies iνn∝ πkBT [Eq. (4.9)].
Let’s finally note that, in spite of the fact that Eq. (8.16) gives the result at second
order, it is possible to show that this behavior is robust and remains the same at all
orders in perturbation theory.1 This is illustrated in doc–77 with the example of the
RPA (random phase approximation), which sums an infinite subset of diagrams and
recovers the generic energy and temperature dependence given in Eq. (8.16). A simple
interpretation of the ε2 behavior is also proposed there: a direct consequence of the
fact that the number of electron-hole excitations increases linearly with energy.2

1 J. M. Luttinger, Phys. Rev. 121, 942 (1961).
2 This objection is often raised: The Coulomb interaction cannot induce resistivity because it conserves

momentum. The argument goes as follows. Resistivity essentially measures the relaxation time of the

https://doi.org/10.1103/PhysRev.121.942
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8.4.3 T2 resistivity and Kadowaki–Woods scaling

Using Eq. (8.11), the Drude formula Eq. (8.10) for a band mass mb can be rewritten in
terms of the self-energy as

σdc =
ne2ħh
2mb

∫ ∞

−∞
dε
[− f ′(ε)]
|ImΣ(ε)| . (8.17)

With the expression Eq. (8.16), |ImΣ(ε)|= α[ε2 + (πkBT )2], we have
∫ ∞

−∞
dε
[− f ′(ε)]
|ImΣ(ε)| =

1
α(kBT )2

∫ ∞

−∞
d x

ex/(ex + 1)2

x2 +π2

︸ ︷︷ ︸
1

12

=
1

12α(kBT )2
, (8.18)

and we thus see that the resistivity increases like T 2:

ρ(T ) = AT 2, A=
24mbk2

B

e2ħh
α

n
. (8.19)

In order to check whether the numbers make sense, we may use for the value of α
the RPA result given in doc–77: α ≈ (π/16)3/2/

�
εF

p
kFa0

�
. It is thus seen that the

coefficient A varies like the square of the mass, which explains the famous empirical
Kadowaki–Woods graph.1 In this graph, the experimental value of A is plotted as a
function of γ2, where γ is the coefficient of the T -linear term in the low-temperature
electronic specific heat. For weakly-interacting electrons with quadratic dispersion, we
know [Eq. (2.56)] that γ= (π2/3)k2

BN el(0) = k2
Bm∗kF/(3ħh2)V , such that the so-called

Kadowaki–Woods ratio becomes

A
γ2
=

8π
3

ħha7
0

e2k2
B

(mb/m
∗)2

V 2
r15/2

s . (8.20)

We have used the electron gas formula n = k3
F/(3π

2) as well as the density parameter rs
given by 1/n = (4/3)π(rsa0)3 with a0 the Bohr radius. Empirically, it is found that this

current: in the Kubo formula Eq. (8.3), this is represented by the current-current correlation function,
which is the propagator of the current. If the current is a conserved quantity in the long-wavelength limit,
the resistivity vanishes. Now, according to Eq. (2.50), the operator giving the current at q = 0 is ħhK/m,
where ħhK is the total momentum of the electrons. The Coulomb interaction allows momentum exchanges
among the electrons but does not change the total momentum. One is lead to the conclusion that K
is a conserved quantity and therefore the Coulomb interaction does not induce any resistivity. . .More
formally, working in the plane-wave basis and using Eqs (2.50), (5.55), and (5.43), one indeed verifies
that [ j p(q = 0), VCb] = 0. This operator identity is true in any basis. Eqs (2.50) and (2.45) furthermore
lead to [ j p(0), K0] = (ħh/m)

∑
kk′ (k − k ′)ξkk′ c

†
k ck′ in the plane-wave basis. For a translation-invariant

system, ξkk′ ∝ δkk′ and the current is conserved if the Hamiltonian is K0 + VCb. Such a system has
infinite conductivity. The translation invariance is broken in real materials, though. The periodic lattice
potential implies that ξkk′ contains terms V (G)δk,k′+G : the electrons can experience Umklapp processes
and transfer a momentum ħhG to the lattice. When phonons are excited at finite temperature, even the
discrete translation symmetry of the lattice is broken. Defects and impurities disrupt it even further. Hence
the current is not conserved. The global coherence among all momenta needed for the Coulomb interaction
to conserve the current is lost and the initial current decay is governed by the fastest process which, at low
temperature, may be the quasi-particle decay due to electron-electron interaction.

1 M. J. Rice, Phys. Rev. Lett. 20, 1439 (1968). > K. Kadowaki and S. B. Woods, Solid. St. Commun. 58,
507 (1986).
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and γ 2, which we predict takes a single value in a broad class
of strongly correlated metals, and the demonstration that this
ratio does indeed describe the data for a wide variety of strongly
correlated metals (Fig. 2).

It has been argued that the KWR is larger in the heavy
fermions than the transition metals because the former are
more strongly correlated (in the sense that the self-energy is
more strongly frequency dependent) than the latter6. Several
scenarios have been proposed to account for the large KWRs
observed in UBe13, transition-metal oxides and organic charge-
transfer salts, including impurity scattering6, proximity to a
quantum critical point7 and the suggestion that electron–phonon
scattering in reduced dimensions might give rise to a quadratic
temperature dependence of the resistivity14. It has been previously
observed3 that using volumetric (rather than molar) units for
γ reduces the variation in the KWRs of the transition-metal
oxides. However, even in these units, the organic charge-transfer
salts have KWRs orders of magnitude larger than those of other
strongly correlated metals. We shall argue that the different
KWRs observed across this wide range of materials result from
the simple fact that the KWR contains a number of material-
specific quantities. As a consequence, when we replace the KWR
with a ratio that accounts for these material-specific effects
(equation (5)) the data for all of these materials do indeed lie on
a single line (Fig. 2).

Many properties of strongly correlated Fermi liquids can be
understood in terms of a momentum-independent self-energy15,16.
Therefore, following ref. 6, we assume that the imaginary part of the
self-energy,Σ ′′(ω,T ), at energyω, is given by

Σ ′′(ω,T )= − !
2τ0

− s
ω2 +(πkBT )2

ω∗2 (1)

for |ω2+(πkBT )2|<ω∗2 and

Σ ′′(ω,T )= −[!/2τ0 + s]F([ω2 + (πkBT )2]1/2/ω∗)

for |ω2 + (πkBT )2| > ω∗2, where 2s/! is the scattering rate
due to electron–electron scattering in the absence of quantum
many-body effects, τ−1

0 is the impurity scattering rate, F is
a monotonically decreasing function with boundary conditions
F(1) = 1 and F(∞) = 0 and ω∗ is determined by the strength of
the many-body correlations. (See the Methods section for further
discussion of the self-energy.)

The diagonal part of the conductivity tensormay bewritten as17

σxx(T )= !e2
∫

dk
(2π)3

v20x

∫
dω
2π

A2
s (k,ω)

(−∂f (ω)
∂ω

)
(2)

where k= (kx ,ky ,kz) is the momentum, v0x = !−1∂ε0(k)/∂kx is the
unrenormalized velocity in the x direction, f (ω) is the Fermi–Dirac
distribution, As(k,ω) = −2 Im{[ω − ε0(k) + µ∗ − Σ (ω,T )]−1}
is the spectral density, ε0(k) is the non-interacting dispersion
relation and µ∗ is the chemical potential. Note that equation (2)
does not contain vertex corrections; the absence of vertex
corrections to the conductivity is closely related to the momentum
independence of the self-energy15. Further, the presence of
Umklapp processes, which enable electron–electron scattering to
contribute to the resistivity in the pure limit18, is implicit in
the above formula.

In a strongly correlated metal, s may be approximated by its
value in the unitary scattering limit6,16, su = 2n/3πD0, where n is
the conduction-electron density and D0 is the bare density of states

A
 (

µΩ
 c

m
 K

¬2
)

104

103

102

101

100

10¬1

10¬2

10¬3

10¬4

10¬5

2/fdx (n) (kg4 m9 s¬6 K¬4)
10¬132 10¬130 10¬128 10¬126 10¬124 10¬122

Os
Re

FePt
Ni

Pd

La1.7Sr0.3CuO4

Tl2Ba2CuO6

Sr2RuO6 Rb3C60

UAl2

Na0.7CoO2

LiV2O4
UPt3

CeB6

CeCu2Si2

CeCu6

UBe13

Sr2RuO4⊥

K-Br

K-NCS

-IBr2β

-I3β

γ

Transition metals
Heavy fermions
Organics
Oxides

Figure 2 | Comparison of the ratio defined in equation (5) with
experimental data. It can be seen that, in all of the materials studied,
the data are in excellent agreement with our prediction (line). The
abbreviations in the data-point labels are the same as in Fig. 1. Further
details of the data are given in Supplementary Information.

(DOS) at the Fermi energy. In the low-temperature, pure limit we
find (see the Methods section) that

A= 16nk2B
π!e2〈v20x〉D2

0ω
∗2 (3)

where 〈···〉 denotes an average over the Fermi surface. Note that
neither the DOS nor the Fermi velocity are renormalized in this
expression. Indeed, all of the many-body effects are encapsulated
byω∗, which determines themagnitude of the frequency-dependent
term inΣ ′′(ω,T ); see equation (1).

The Kramers–Kronig relation for the retarded self-energy19,20
can be used to show (see the Methods section) that, in the
pure limit,

γ = γ0

(
1− ∂Σ ′

∂ω

)
= γ0

(
1+ 4suξ
πω∗

)

where γ0 = π2k2BD0/3 is the linear coefficient of the specific
heat for a gas of non-interacting fermions, Σ ′ is the real part
of the self-energy and ξ ≈ 1 is a pure number defined in the
Methods section. Thus we see that the renormalization of γ is also
controlled by ω∗. For a strongly correlated metal the effective mass,
m∗ (m0, the bare (band) mass of the electron, hence su ( ω∗ and
γ ) (8nk2Bξ)/(9ω∗). The corrections to this approximation are given
in the Methods section.

Combining the above results we see that the KWR is

A
γ 2

= 81
4π!k2Be2

1
ξ 2nD2

0〈v20x〉
(4)

First, we note that in this ratio the dependence of the individual
factors onω∗ has vanished.Hence theKWR is not renormalized.On
the other hand, although the first factor contains only fundamental
constants, the second factor is clearly material dependent as it
depends on the electron density, the DOS and the Fermi velocity
of the non-interacting system. An important corollary to this result
is that band-structure calculations should give accurate predictions

NATURE PHYSICS | VOL 5 | JUNE 2009 | www.nature.com/naturephysics 423
©!2009!Macmillan Publishers Limited.  All rights reserved.

Figure 8.3: The Kadowaki-
Woods plot revisited.1 The
coefficient A of the T 2 term
in the resistivity is plotted
as a function of γ2/ fd x(n),
with γ the coefficient of the
T -linear specific heat and
fd x (n) a material-dependent
factor [see Eq. (8.22)]. One
sees that many materials
with largely different char-
acteristics and different di-
mensionalities all fall onto
the same straight line.

ratio takes a nearly constant value for transition metals (≈ 0.4 µΩ cm mol2 K2 J−2) and
another nearly constant value for heavy-fermion materials (≈ 10 µΩ cm mol2 K2 J−2).
This suggests that the material-dependent factor (mb/m

∗)2r15/2
s does not vary much

within one class of materials. This material-dependent factor changes if a more accurate
model is used instead of the isotropic electron gas within RPA. We may nevertheless
check that the expression found gives the correct order of magnitude for simple metals,
where the dynamical mass renormalization is small. Introducing the molar volume
Vmol, we rewrite

A
γ2
= 0.021

(mb/m
∗)2r15/2

s

(Vmol/cm3)2
µΩ cm mol2 K2 J−2. (8.21)

The numbers for gold (m∗/mb = 1.1, Vmol = 10.21 cm3, rs = 3.01) yield the very
reasonable value 0.65 µΩ cm mol2 K2 J−2, while an average over the 27 simple metals
listed in Ashcroft & Mermin (1976) gives an average of 0.6.

There are classes of materials displaying T 2 resistivity and T -linear specific heat without
following the Kadowaki–Woods scaling: these are for example the organic conductors
and many oxides. A new scaling was recently proposed,1 which also takes into account
the real part of the self-energy and the dimensionality of the Fermi surface. With this
new scaling, the four classes of materials (transition metals, heavy fermions, organic
conductors, and oxides) all fall onto the same straight line in spite of the fact that A
varies by 10 orders of magnitude (see Fig. 8.3). The new scaling law reads

A
γ2
× [N el(0)]2〈v2

0x〉nξ2 =
81
4π

1
e2ħhk2

B

(8.22)

1 A. C. Jacko, J. O. Fjærestad, and B. J. Powell, Nat. Phys. 5, 422 (2009).
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where 〈v2
0x〉 is the Fermi-surface average of the unrenormalized squared Fermi velocity

and ξ is a pure number of order one.

8.5 Magnetic impurities and Kondo effect

The scattering on dilute impurities leads to a temperature-independent residual re-
sistivity as T → 0 (Sec. 8.3). In many magnetic alloys such as AuFe, however, one
observes a qualitatively different behavior with a minimum in the ρ(T ) curve at low
temperature (see Fig. 8.4). For illustrations of the same behavior in other materials, see
e.g. the electron-doped cuprate Ce2CuO4,1 or the cobaltate Na0.7CoO2.2 Although this
phenomenology was known since the thirties, the effect remained a mystery until 1964
with the work of Jun Kondo.3 Kondo showed that the scattering on the impurity spins
leads within perturbation theory to a resistivity correction that diverges logarithmically
as temperature goes to zero. This divergent result pointed to a failure of perturbation
theory as T → 0, a failure which became known as the Kondo problem. The search for
a solution to the Kondo problem initiated the era of the renormalization-group theory
in condensed-matter physics.

8.5.1 Models for electron scattering on magnetic impurities

An impurity atom in a host metal not only leads to a change in the local potential—this
effect was considered in Sec. 8.3—but also introduces new energy levels associated
with the foreign atom. A famous model that describes one such foreign level (e.g. a
d-electron level in a gas of s electrons) is the Anderson impurity model

HA =
∑
kσ

ξk c†
kσckσ + ξd

∑
σ

c†
dσcdσ +

∑
kσ

�
Vkd c†

kσcdσ + h.c.
�
+ Und↑nd↓. (8.23)

The first term represents the unperturbed conduction electrons [see Eq. (2.53)] in a
one-band scheme, the second term represents the foreign level, the third term describes
processes in which electrons hop from the d level to the conduction band and inversely,
and the last term accounts for the Coulomb repulsion when two electrons occupy the
impurity level. The model is depicted in Fig. 8.4(c). Two different situations can arise
depending upon the position of the chemical potential with respect to the impurity
levels. If µ lies below εd or above εd + U , the impurity level is either unoccupied or
occupied by two electrons: in both cases it carries no spin and the impurity behaves
like a non-magnetic impurity. If the chemical potential is between εd and εd + U , the
impurity is occupied by only one electron and carries a spin 1/2.

The two-body interaction term in Eq. (8.23) prevents any closed analytical solution.
The problem with U = 0 is exactly solvable, but its physical properties are different
from those of the original model because the doubly-degenerate impurity level has no

1 T. Sekitani, M. Naito, and N. Miura, Phys. Rev. B 67, 174503 (2003).
2 Z. Zhang, J. Zhang, Y. Xu, C. Jing, S. Cao, and Y. Zhao, Phys. Rev. B 74, 045108 (2006).
3 J. Kondo, Prog. Theor. Phys. 32, 37 (1964). See also the 40th birthday special issue: J. Phys. Soc. Jpn.

74, No.1 (2005).
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https://journals.jps.jp/toc/jpsj/2005/74/1
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Figure 8.4: Typical temperature dependencies of the resistivity at low temperature for (a)
non-magnetic dilute metallic alloys and (b) metals containing magnetic impurities. (c) Schematic
representation of the Anderson impurity model Eq. (8.23): the two impurity levels εd and εd +U
are degenerate with the conduction band εk . If the chemical potential lies between εd and εd+U ,
the impurity is occupied by only one electron and carries a spin 1/2. Otherwise the impurity is
occupied by either zero or two electrons and is non-magnetic.

magnetic degree of freedom. The net result at U = 0 is that the level εd gets broadened
and slightly shifted due to the hybridization Vkd . One can also attempt a mean-field
treatment, replacing Und↑nd↓ by U[nd↑〈nd↓〉 + nd↓〈nd↑〉 − 〈nd↑〉〈nd↓〉]. In this case,
beside the non-magnetic solution 〈nd↑〉= 〈nd↓〉 that always exists, there are magnetic
solutions corresponding to the formation of a magnetic moment on the impurity when
U exceeds a critical value. These solutions are unphysical artifacts of the mean-field
approximation, however, since there is nothing in the initial Hamiltonian breaking the
spin-rotation invariance.

Another approach known as the Schrieffer–Wolff transformation1 simplifies Eq. (8.23)
and reduces it to a model in which the conduction electrons only interact with the
impurity spin. In a spin-only model, the occupation of the impurity level must be fixed
and therefore no term like the third one in Eq. (8.23) can appear. The idea is therefore
to set up a unitary transformation S of the Hamiltonian such that the transformed
Hamiltonian H̃A = eiSHAe−iS does not depend on Vkd , at least approximately for low
energies and wave vectors close to the Fermi surface. The derivation is performed in
Bruus & Flensberg (2004, p. 169) and leads to the so-called sd Hamiltonian, or Kondo
Hamiltonian, which was originally considered by Kondo:

Hsd =
∑
kσ

ξk c†
kσckσ + J

∫
dr Sd(r ) · S(r ). (8.24)

We have written the model for a situation where there are Ni magnetic impurities
at random positions R` rather that just one impurity like in Eq. (8.23). Similar to
Eq. (5.32), Sd(r ) is the spin density due to the Ni impurities,

Sd(r ) =
Ni∑
`=1

sd δ(r −R`), (8.25)

with sd =
ħh
2τ the spin carried by each impurity and τ the vector of Pauli matrices given

in Eq. (22). S(r ) is the spin density of the conduction electrons given by Eq. (2.47).
1 J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).

https://doi.org/10.1103/PhysRev.149.491
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The coupling parameter J resulting from the Schrieffer–Wolff transformation is

J =
2|VkFd |2U

−ξd(ξd + U)
. (8.26)

We see that the coupling is anti-ferromagnetic (J > 0)—i.e., the energy is lower when
Sd and S are anti-parallel—if ξd < 0 and ξd + U > 0;1 this is the situation where the
chemical potential is between εd and εd + U .

8.5.2 Third-order perturbation calculation

Following Kondo, we study the Hamiltonian Eq. (8.24) by means of the perturbation
theory in J . We perform an impurity average like in Sec. 5.1.3.6 and thus restore the
translation invariance. Expressed in terms of the electron operators, the perturbation is

V =
ħhJ
2

∫
dr

∑
µσσ′

τ
µ
σσ′S

µ

d (r )c
†
rσcrσ′ . (8.27)

This form is similar to the generic one-body perturbation Eq. (5.9) with two differences:
as we are coupling the vector fields Sd(r ) and S(r ), there is an additional µ sum for
the scalar product; more importantly, in the “matrix element” we have Sµd (r ) which
is an operator rather than a scalar. This complicates the perturbation theory because
there is no equivalent of Wick’s theorem for spin operators.

Applying the general perturbation expansion2 Eq. (5.5) to the case of the Green’s func-
tion Gσσ′(k,τ) =C ckσc†

kσ′(τ), inserting the expression of the perturbation Eq. (8.27),
and performing the impurity average, we obtain the expansion

Gσσ′(k,τ) = −
∞∑
n=0

�
−ħhJ

2

�n
∫ β

0

dτ1 · · · dτn

∫
dr1

∑

µ1σ1σ
′
1

· · ·
∫

drn

∑
µnσnσ′n

×τµ1

σ1σ
′
1
· · ·τµn

σnσ′n
〈〈TτSµ1

d (r1,τ1) · · ·Sµn
d (rn,τn)〉0〉imp

× 〈Tτc†
r1σ1
(τ1)cr1σ

′
1
(τ1) · · · c†

rnσn
(τn)crnσ′n

(τn)ckσ(τ)c
†
kσ′(0)〉con-diff

0 . (8.28)

The thermal average in Eq. (5.5) could be split into one part for the impurity spins and
one part for the conduction electrons, because in the absence of interaction these two
sub-systems are decoupled. The impurity average denoted by 〈· · · 〉imp like in Eq. (5.35)
only concerns the correlation function of the impurity spins and has no effect on the
conduction electrons.

The calculation of the terms up to order n = 3 is performed in doc–55. The Green’s
function turns out to be diagonal in the spin indices, as required by the spin-rotation

1 The opposite convention is often taken in the literature for the sign of J , with an extra minus sign in
Eqs (8.24) and (8.26).

2 See Bruus & Flensberg (2004, p. 241) for a proof that Eq. (5.5) remains valid in the absence of Wick’s
theorem for the spin operators.
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invariance of the problem: Gσσ′ ∝ δσσ′ . The first term (n = 1) vanishes. For non-
magnetic impurities, the first-order term Eq. (5.37) is a constant shift of the chemical
potential compensating the average potential induced by the impurity charges. As
spins are neutral, there is no such correction in the present case.1 At second order, the
self-energy is [see doc–55]

Σ(2)(k, iωn) = ni
3ħh4J2

8
1
V
∑

q

1
iωn − ξq

. (8.29)

This is the same expression as we obtained for scattering on non-magnetic impurities
within the first Born approximation, Eq. (5.41), applied to the case of point-like defects
with a potential v(q) = (3/8)

1
2ħh2J . Therefore, at second order the scattering on

impurities carrying a spin is similar to the scattering on non-magnetic impurities. In
particular, it induces a temperature-independent residual resistivity (Sec. 8.3) and
is unable to explain the resistivity upturn depicted in Fig. 8.4(b). Looking back at
the calculation in doc–55, one sees that the contribution of the impurity spins to the
scattering is independent of time, meaning that the internal spin state of the impurity
is not changed during the second-order scattering process. This is the reason for the
deceptive result Eq. (8.29): at second order, the impurity spins show no dynamical
behavior but instead behave like static objects.

Something new happens at third order: here the scattering involves an intermediate
state in which the spin of the impurity is changed and the intrinsic dynamics of the
impurity starts to play a role. The resulting scattering rate is [see doc–55]

− ImΣ(3)(k,ε) =
3πniħh6J3

32
N el

0 (ε)

∫ ∞

−∞
dξN el

0 (ξ)
tanh(βξ/2)
ξ− ε . (8.30)

This scattering rate diverges as ln(1/T ) as T → 0. To fix ideas, let’s take a density of
states equal to the constant N0 over the bandwidth extending from −W/2 to W/2 and
let’s look at ε = 0: then, using Eq. (20),

−ImΣ(3)(k, 0)≈ 3πniħh6(JN0)2

32
J

∫ W/2

−W/2

dξ
tanh(βξ/2)

ξ

≈ 3πniħh6(JN0)2

16
J ln

�
0.567

W
kBT

�
. (8.31)

The first thing to remark is that this contribution is positive—and therefore increases
the scattering rate—if the coupling is anti-ferromagnetic (J > 0). Therefore, this
correction is able to produce a resistivity upturn like in Fig. 8.4(b).

The singular nature of this correction points to a failure of perturbation theory as T → 0.
The fact that the third-order correction diverges, while the second-order correction is
finite, suggests that one has to sum all terms in the perturbation series in order to get a
finite result at T = 0. This is not the case, though: summing logarithmic contributions

1 The situation would be different in the presence of a magnetic field which aligns the impurity spins
and leads to a finite magnetization: in this case, the first-order correction is finite and accounts for the
difference in chemical potential for up and down electrons.



132 Electrical resistivity

from higher-order terms leads to an even more singular result, which diverges at a
finite temperature TK known as the Kondo temperature.1 We must conclude that the
perturbation theory is unreliable at temperatures below TK. Above TK, the perturbation
theory works because the third-order correction is smaller than the second-order one.
Collecting Eqs (8.29) and (8.31), we see that the scattering rate on the Fermi surface is

− ImΣ(k, 0) =
3πniħh2J

16

�
(ħh2JN0) + (ħh2JN0)

2 ln
�

0.567
W

kBT

�
+ . . .

�
, (8.32)

where the ellipsis indicates higher-order terms. We can estimate the Kondo temperature
by equating the first two terms in the expansion, with the result

kBTK = 0.567 W e−1/(ħh2JN0). (8.33)

Note the similarity of this expression with other non-perturbative results such as
Eqs (5.88) and (5.144).

8.5.3 Beyond perturbation theory

The breakdown of perturbation theory for scattering on local magnetic moments has
become known as the Kondo problem. In fact, similar phenomena may occur whenever
the scattering centers have internal degrees of freedom, i.e., a proper dynamics which
contributes to the scattering process. Another well-known example exhibiting Kondo
physics is the transport through the localized levels of a quantum dot or through
individual atoms on surfaces probed by scanning tunneling spectroscopy. Theoretical
progress has been achieved in these problems thanks to the renormalization-group
method. In this section, we provide a bird-eye view of the renormalization-group
approach with the aim of introducing the basic idea and jargon. Interested readers
should read introductions by experts.2

In order to understand why perturbation theory fails, we must take one step back
and remember the very first assumptions on which perturbation theory relies. The
first assumption is that the observable quantities that we are calculating do have a
regular expansion in powers of the perturbation. In practice, this assumption is already
implicitly made when we write the series Eq. (2.23) for the evolution operator. The
second assumption is that of adiabatic connection, stating that the actual ground (or
thermodynamic) state in the presence of interactions can be reached by switching on
the interaction adiabatically starting from the non-interacting state. If any of these
conditions is not met, we must expect the perturbative approach to fail, even if the
perturbation series can be completely summed up to infinite order. As a simple analogy,
consider a function f (x) that we try to evaluate at x = x0 near x = 0. If this function
is singular exactly at x = 0, like 1/x , ln x , or e−1/x , the Taylor expansion is simply
ill-defined and we get singular values if we try and evaluate the terms of the expansion.
The second possibility is that the function is regular at x = 0 but has a singularity

1 A. A. Abrikosov, Physics 2, 5 (1965).
2 H. J. Maris and L. P. Kadanoff, Am. J. Phys. 46, 652 (1971). > B. Delamotte, Am. J. Phys. 72, 170 (2004);

Lecture Notes in Physics 852 (2012).

https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1119/1.11224
https://doi.org/10.1119/1.1624112
https://doi.org/10.1007/978-3-642-27320-9_2
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between x = 0 and x = x0, like tan x if x0 = π: in this situation, the expansion around
x = 0 is of no use to evaluate f (x0).

The quest for a solution to the Kondo problem has led to the advent of the renormal-
ization group in condensed-matter physics. The goal of this methodology is to find
the effective Hamiltonian (or the effective action) that determines the properties of
the system at low energy and/or low temperature: when T → 0, only the few lowest
levels of the original Hamiltonian contribute significantly to the thermal average. The
idea is therefore to build a low-energy effective Hamiltonian by excluding high-energy
levels, with the hope that the effective theory will be easier to solve than the original
problem. The process of eliminating the high-energy degrees of freedom changes the
parameters of the original Hamiltonian. In some cases, the low-energy theory turns out
to be just a Fermi-liquid theory with renormalized parameters (velocities, masses, etc.).
In this situation, one can generally rely on perturbation theory. In other words, one
can take the J → 0 limit first—if J is the parameter controlling the interactions—and
the limit T → 0 after: theorists say “J is the smallest energy scale in the problem” or
“the renormalization group flows to weak coupling”. In other cases, the low-energy
theory has a different character reflecting the fact that the ground-state wave function
is not adiabatically connected with the non-interacting ground state. In this situation,
one should take the T → 0 limit first, in other words solve the problem at finite J : now
T is the smallest energy scale in the problem and the renormalization group “flows to
strong coupling” (i.e., J � T as T → 0).

To be slightly more explicit, we consider the Kondo Hamiltonian characterized by the
partition function Z(T, J). The renormalization is a transformation R—to be chosen
wisely according to the problem at hand—which delivers a new partition function Z ′

and new temperature and interaction parameters T ′ and J ′:

Z(T, J) = Tr e−βK R7−→ Z ′(T ′, J ′) = Tr e−β
′K ′ =RZ(T, J). (8.34)

The transformation is useful if the new problem has less degrees of freedom than the
original problem. If the function Z ′ is the same function of its arguments than the
function Z , the problem is called exactly renormalizable. If this is not the case, one
has to choose a transformation R such that the terms that make the function Z ′ differ
from Z are small. If Z ≡ Z ′, we can iterate:

Z(T, J)
R7−→ Z(T ′, J ′)

R7−→ Z(T ′′, J ′′)
R7−→ . . . (8.35)

In this iterative process, the parameters T and J “flow” toward fixed points such
that RZ(T ∗, J∗) = Z(T ∗, J∗). We can envision three possibilities: (T ∗ = 0, J∗ =∞)
corresponds to the strong-coupling fixed point, where only the second term in Eq. (8.24)
matters; (T ∗ =∞, J∗ = 0) corresponds to the weak-coupling fixed point, where the
perturbation theory is reliable; and (T ∗ = Tc , J∗ = Jc) would describe a phase transition
between two different regimes at some particular temperature and coupling.

In the case of the Kondo problem, it turns out that J flows to the strong-coupling
fixed point J∗ =∞. This was demonstrated in a famous work by Kenneth Wilson.1

1 K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

https://doi.org/10.1103/RevModPhys.47.773
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Wislon’s solution starts by rewriting Hsd in terms of new operators f †
nσ corresponding

to spherical wave functions centered on the impurity and localized in a shell whose
radius increases exponentially with the index n. At low values of n, the wave function
is localized on the impurity and is built from states c†

kσ covering a large part of the
band, while high values of n correspond to extended states built from states c†

kσ closer
and closer to the Fermi energy. With this rewriting, the Hamiltonian takes the form
of a one-dimensional chain that couples state n to state n− 1 and state n = 0 to the
impurity spin. By increasing n and eliminating high-energy states, Wilson was able
to set up a renormalization scheme and show that the Kondo Hamiltonian Eq. (8.24)
flows to strong coupling.

The physical interpretation is that the effective anti-ferromagnetic interaction between
the conduction electrons and the spin of the impurities increases as T → 0 and the
electrons therefore tend to form singlet states together with the impurity spins. The
formation of a bound state between conduction electrons and impurity spins is the
non-perturbative process that disconnects the ground state from the Fermi sea, very
much like the formation of Cooper pairs disconnects the BCS ground state from the
Fermi sea. Once the singlets are formed, the impurity spins are screened such that the
impurities become effectively non-magnetic at T = 0. Since non-magnetic impurities
give a non-singular residual resistivity at T = 0, the saturation of the resistivity in
Fig. 8.4(b) can be finally understood.

8.6 Effects beyond quasi-particle scattering

In the previous sections, we have considered applications that neglected the vertex
corrections in Eq. (8.5). As a result, the resistivity was entirely controlled by the
self-energy Σ, as expressed in the Drude formula Eq. (8.10). In this section, we discuss
qualitatively some effects corresponding to vertex corrections, that therefore go beyond
this version of the Drude formula.

8.6.1 Vertex functions, Ward identities, conserving approximations

Separating the contributions with and without vertex corrections in Eq. (8.5), we have

χ
µν
j j = −� −�

︸ ︷︷ ︸
δχ

µν
j j

(8.36)

where the second term gives the vertex corrections, i.e., all diagrams in which the
electron and hole lines are connected by the interaction. The shaded box is a vertex
function; it depends on three energy-momentum variables and we shall denote it Λ:

�K+Q

K

K ′

K ′−Q

≡ Λ(K , K ′,Q). (8.37)
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In order to lighten the formula in this section, we use the “four-vector” notation:

K ≡ (k,σ, iωn), Q ≡ (q , iΩn),
∑

K

≡
∑
kσ

1
β

∑
iωn

. (8.38)

Translating the second diagram in Eq. (8.36), the vertex corrections to the current-
current correlation function can be formally written as1

δχ
µν
j j (Q) =

∑
KK ′
Γ
µ
0 (K ,Q)G (K)G (K +Q)Λ(K , K ′,Q)

×G (K ′)G (K ′ −Q)Γ ν0 (K
′,−Q), (8.39)

where Γ 0(K ,Q) = ħhm
�
k + q

2

�
is the bare current vertex and G is the full Green’s func-

tion containing all self-energy corrections. The goal is to find good approximation
schemes for the vertex function Λ. In another equivalent formulation, one introduces
the renormalized current vertex Γ (K ,Q) by writing

χ
µν
j j (Q) = −�

K

K+Q

Γ µ Γ ν0

=
∑

K

Γ µ(K ,Q)G (K)G (K +Q)Γ ν0 (K +Q,−Q). (8.40)

Comparing with Eq. (8.36) or Eq. (8.39), we can deduce the relation between the
renormalized vertex Γ and the vertex function Λ:

	
K+Q

K

= 
K+Q

K

+ �
K ′+Q

K ′

K+Q

K
(8.41)

Γ (K ,Q) = Γ 0(K ,Q) +
∑
K ′
Γ 0(K

′,Q)G (K ′)G (K ′ +Q)Λ(K ′, K +Q,Q).

The expressions Eqs (8.39) and (8.40) provide formally exact representations of the
current-current correlation function in which the vertex corrections have been encapsu-
lated in the functions Λ and Γ . Such formula are useful for establishing exact relations
between correlation functions known as Ward identities, which arise from conservation
laws.

The conservation of electric charge results in the continuity equation discussed in
doc–14, a relation between the density and current operators: iΩnn−ħhq · j = 0. Not
surprisingly, this relation which binds together density and current also has implications
for the density-density and current-current correlation functions. By analogy with
Eq. (8.40), the density-density correlation χnn(Q) defined in Eq. (5.75) can be formally

1 There is no consensus in the literature as to what is the best convention for labeling the diagram and
naming the arguments of Λ. Here we adopt the following convention [see Eq. (8.37)]: K and K ′ for input
legs, K +Q and K ′ −Q for output legs, K , K ′, and Q for the arguments of the function Λ.
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written in terms of a bare density vertex, which is just unity, and a renormalized density
vertex Γc(K ,Q) according to

χnn(Q) =
∑

K

Γc(K ,Q)G (K)G (K +Q). (8.42)

The Ward identity corresponding to the conservation of charge takes a simple form
when expressed in terms of the renormalized vertices and Green’s function:1

y iΩnΓc(K ,Q)−ħhq · Γ (K ,Q) = G−1(K +Q)−G−1(K). (8.43)

This important formula should be satisfied by any approximation scheme that claims
to be conserving, i.e., that satisfies the conservation of charge (an analogous relation
between the spin-spin and spin-current correlation functions expresses the conservation
of spin). We can readily check that the Ward identity Eq. (8.43) is satisfied by free
electrons: take Γc(K ,Q) ≡ Γc0 = 1, Γ (K ,Q) ≡ Γ 0(K ,Q) = ħhm

�
k + q

2

�
, G−1(K +Q) =

iωn + iΩn − ξk+q , G−1(K) = iωn − ξk , and ξk = ħh2k2/(2m)−µ. The approximation
behind the Drude formula is not conserving, because it assumes Γc ≡ Γc0 and Γ ≡ Γ 0,
which according to Eq. (8.43) constrains the self-energy to obey

Σ(k + q , iωn + iΩn)−Σ(k, iωn) = ξk +
ħh2

2m
(2k · q + q2)− ξk+q ,

a relation generally violated by the approximations used for the self-energy in the
Drude formula.

8.6.2 Ladder approximation, diffuson, transport life-time

The first term in the right-hand side of Eq. (8.36) describes the propagation of uncorre-
lated electron-hole pairs: it takes into account all scattering effects for the electron
and the hole separately, but neglects all interactions between electron and hole. Hence
the second term accounts for the corrections due to these interactions between the
electrons and the holes. When the electron-hole pair density is low, it is likely that
the dominant terms are those where the same electron repeatedly interacts with the
same hole. The corresponding set of diagrams in the vertex function Λ is known as
the diffuson ΛD. The diffuson is given by a ladder sum (for definiteness, we draw the
diagrams for the case of the Coulomb interaction):

�D =  +� +� + . . .

= � +�D (8.44)

The second line corresponds to a closed integral equation which can in principle be
solved for ΛD(K , K ′,Q). The solution is particularly simple in the case of scattering on

1 For a derivation, see Schrieffer (1964, p. 228) or W. Metzner and C. Di Castro, Phys. Rev. B 47, 16107
(1993).

https://doi.org/10.1103/PhysRevB.47.16107
https://doi.org/10.1103/PhysRevB.47.16107
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point-like impurities [i.e., such that v(q)≡ v0 in Eq. (5.41)], since in this case ΛD does
not depend on K and K ′:

�D = �K+Q

K

K ′

K ′−Q

+ �
K1

K1+Q
K+Q

K

K ′

K ′−Q

+ �
K1

K1+Q

K2

K2+Q
K+Q

K

K ′

K ′−Q

+ . . .

= ni v
2
0 +

�
ni v

2
0

�2
∑
K1

G (K1)G (K1 +Q)

+
�
ni v

2
0

�3
∑
K1

G (K1)G (K1 +Q)
∑
K2

G (K2)G (K2 +Q) + . . .

= ni v
2
0

¦
1+ ni v

2
0ζ(Q) +

�
ni v

2
0ζ(Q)

�2
+ . . .

©
=

ni v
2
0

1− ni v
2
0ζ(Q)

(8.45)

ζ(Q) =
∑

K

G (K)G (K +Q). (8.46)

Introducing this form in Eq. (8.39), one gets a contribution to the conductivity that
corrects the Drude formula Eq. (8.10), replacing the simple transport life-time defined
in Eq. (8.11) by a shorter time [see Bruus & Flensberg (2004, p. 291)].

8.6.3 Cooperon, weak localization

Another class of diagrams appearing in the vertex function Λ is the series of so-called
maximally-crossed diagrams:

�C =� +� + . . .

=� +� + . . . (8.47)

At the second line, we have twisted the upper part of the diagrams, thus showing that
this series again gives rise to a ladder sum like in the expression of the diffuson, however
with the important difference that the ladder is now in the particle-particle channel
rather than the particle-hole channel. This set of terms describes the propagation of two
electrons repeatedly interacting with each other. If the interaction is attractive, these
two electrons eventually form a bound state which is nothing but a Cooper pair. This
series of diagrams has therefore become known as the cooperon. In doc–78, we show
explicitly the relationship between the cooperon and superconductivity by introducing
the pairing susceptibility and using the Thouless criterion for determining the critical
temperature.

In the context of impurity scattering, the cooperon describes processes in which elec-
trons follow the same closed path in real space in opposite directions (time-reversed
paths) and interfere constructively. The constructive interference for this particular
type of trajectories enhances the probability for an electron to follow a closed path and
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thus be more localized than purely itinerant electrons: the phenomenon is known as
weak localization and gives rise to a logarithmic upturn in the resistivity at very low
temperature.

In order to link this qualitative description with the cooperon diagrams, let’s consider
the first of these diagrams. Since we have twisted the upper part, the momenta on the
left legs are now K +Q and K ′ −Q:

�
K ′−K1

K+K1

K+Q

K ′−Q

K ′

K

The value of the diagram is
�
ni v

2
0

�2
ζ̃(K+K ′), where ζ̃(K+K ′) =

∑
K1
G (K+K1)G (K ′−

K1). It is independent of Q, in contrast to the diffuson diagrams which depend on Q
but not on K and K ′. Hence we can evaluate the diagram at Q = 0 without loss of
generality; visualizing the diagram in imaginary time rather than imaginary frequency,
we see two electrons evolving, one starting at time 0 with momentum k ′ and ending
at time τ with momentum k (lower part of the diagram), the other starting at time τ
with momentum k (recall that we have twisted the upper part, thus also exchanging
times) and ending at time 0 with momentum k ′. This is the momentum-space analog
of the real-space time-reversed trajectories discussed above.

The constructive interference can be understood as follows. The complete set of
maximally-crossed diagrams form a geometric series and can be summed giving the
value of the cooperon as

�
ni v

2
0

�2
ζ̃(P)/[1− ni v

2
0 ζ̃(P)] with P ≡ K + K ′. It turns out

that within the first Born approximation, ni v
2
0 ζ̃(0) = 1 (Bruus & Flensberg, 2004,

p. 304), meaning that the cooperon diverges at P = 0 and thus the corresponding
correction to the conductivity comes from the region of four-momenta K ′ ≈ −K.
Let’s now consider the case of two scattering events as in the diagram shown above.
If the impurities are at positions R1 and R2 and the electron initially at position
r , the phase accumulated along the first trajectory (lower part of the diagram) is
eik ′·(R1−r )ei(k ′−k1)·(R2−R1)eik·(r−R2). Along the time-reversed trajectory (upper part of
the diagram) it is eik·(R1−r )ei(k+k1)·(R2−R1)eik ′·(r−R2). The diagram is proportional to the
product of these two phases, which in general depends on the impurity positions R1
and R2. But a phase that depends on the impurity positions vanishes when the impurity
average is performed and such contributions disappear. However if we take k ′ = −k
(P = 0) the two phases exactly cancel, such that the relative phase no longer depends
on the impurity positions and survives the impurity average.

The detailed calculation of the correction δχµνj j to the conductivity is somewhat tedious
(Bruus & Flensberg, 2004) and yields a logarithmically divergent result. The divergence
arises because time-reversed paths of arbitrary lengths are retained in the calculation,
while physically the electrons do not maintain phase coherence over arbitrarily long
times. Hence there should be an upper cutoff given by vFτφ in the length of the paths,
where τφ is the phase coherence time. This new length scale, in addition to the usual
mean free path `0 = vFτ0 due to conventional impurity scattering, regularizes the
divergence. One then finds that the correction is largest in two dimensions, where it is
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FIG. 1. (a) Temperature dependence of the resistivity at
densities with ps in the range !3.2 5.6" 3 1010 cm22.
(b) The same data, scaled to collapse onto metallic and insu-
lating branches. (c) Temperature dependence of the resistivity
in the metallic regime at carrier densities of 4.8, (d) 8.6, and
(e) 17 3 1010 cm22. The dashed lines show the fit to Eq. (1).

regime, with fits to Eq. (1) shown as dashed lines. In
Fig. 1(c), at a density close to the transition, saturation
of the resistivity is just visible at the lowest temperatures
(100 mK). As the density is increased and we move further
into the metallic regime this saturation becomes visible
at higher temperatures until at the highest density r!T "
saturates below 350 mK. The empirical formula (1),
which characterizes the metallic behavior observed in
all 2D systems therefore dictates a saturation of r!T "
as T ! 0. Although different from the scaling analysis
of Ref. [1] and shown in Fig. 1(b), it is still consistent
with the existence of a 2D metal-insulator transition
because r!T " remains finite as T ! 0. Early studies
of weakly interacting, disordered 2D systems (rs # 4)
[8] demonstrated that both weak localization and weak
electron-electron interactions caused a logarithmic re-
duction of the conductivity as T ! 0. More recently it
has been shown that the same interaction effects occur
in slightly less disordered samples (rs # 6) that exhibit
“metallic behavior,” at high carrier densities, far from
the metal-insulator transition [9]. However, neither the
scaling analysis in Fig. 1(b) nor the empirical Eq. (1)
address what has happened to these logarithmic correc-
tions near the metal-insulator transition, and whether the
conductivity remains finite as T ! 0.
We now turn to one of two main results of this

paper. Figure 2 shows the temperature dependence of the
B ! 0 resistivity (left hand panel) and magnetoresistance
(right hand panel) at different densities on both sides of

FIG. 2. (a)– (d) The left hand panels show resistivity at B ! 0
versus temperature data, illustrating the transition from insulat-
ing to metallic behavior as the density increases. The right hand
panels show the corresponding magnetoresistance traces for tem-
peratures of 147, 200, 303, 510, 705, and 910 mK.

the metal-insulator transition. In Fig. 2(a) we are just on
the insulating side of the transition. The left hand panel
shows that r!T " is essentially T independent down to
300 mK and then increases by 2.5% as the temperature is
further reduced. This weak increase in the resistivity has
been previously taken as evidence for weak localization
and weak electron-electron interaction effects [9,10]. It
is, however, not possible to determine the precise origins
of this weak increase in resistivity solely from the B ! 0
data, and we therefore look at the magnetoresistance
shown in the right hand panel of Fig. 2(a). A characteris-
tic signature of weak localization is a strong temperature
dependent negative magnetoresistance, since the perpen-
dicular magnetic field breaks time reversal symmetry,
removing the phase coherent backscattering. As observed
previously there is no evidence of weak localization
for temperatures down to 300 mK in these high quality
samples [3]. However, as T is lowered below 300 mK a
strong negative magnetoresistance peak develops as phase
coherent effects become important, mirroring the small
increase in the resistivity at B ! 0.
Increasing the carrier density brings us into the metallic

regime [Fig. 2(b)] where the exponential drop in the resis-
tivity with decreasing temperature predicted from Eq. (1)
starts to become visible. The upturn in r!T "marked by the
arrow has moved to lower temperatures and the negative
magnetoresistance in the right hand panel has become less

2490

Figure 8.5: The phenomenon
of weak localization observed
in a two-dimensional electron
gas at the interface between
GaAs and AlGaAs.1 When the
carrier density is low, the resis-
tivity increases for T → 0. In
addition, a negative magneto-
resistance appears, which is
strongest at the lowest temper-
atures.

given by
δσWL

dc

σdc
= − 1

πkF`0
ln
�τφ
τ0

�
. (8.48)

Since τφ decreases rapidly in the presence of a magnetic field, systems in the weak-
localization regime show a characteristic negative magneto-resistance, i.e., the conduc-
tivity increases in the field due to the suppression of the weak localization effect (see
Fig. 8.5).

1 M. Y. Simmons, A. R. Hamilton, M. Pepper, E. H. Linfield, P. D. Rose, and D. A. Ritchie, Phys. Rev. Lett. 84,
2489 (2000).

https://doi.org/10.1103/PhysRevLett.84.2489
https://doi.org/10.1103/PhysRevLett.84.2489
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Electron tunneling

The ability for quantum particles to cross classically forbidden barriers is one of the
many spectacular effects predicted by quantum mechanics. Very early on, this tunneling
mechanism was invoked to explain the α-decay of heavy nuclei.1 In condensed-matter
physics, electron tunneling has become a very powerful tool for imaging and spec-
troscopy. This technique was the first to achieve the energy resolution needed for
a direct observation of the gap predicted by Bardeen, Cooper, and Schrieffer (BCS)
in the single-particle excitation spectrum of superconductors.2 Thanks to its high
sensitivity, this experiment revealed fine structure in the tunneling conductance which
was convincingly explained as the fingerprint of a strong electron-phonon interaction,3

providing decisive support to the BCS idea of phonon-mediated superconductivity.

The invention of the scanning tunneling microscope (STM) opened new territories for
electron tunneling.4 The extraordinary spatial resolution of this instrument suddenly
propelled the atom—an ancient concept that had remained an abstraction for centuries—
to the front-page of newspapers. In addition to being a powerful imaging technique, the
STM has become one of the predominant tools for spectroscopic studies. Thanks to the
Å-scale spatial resolution and sub-meV energy sensitivity, it can probe the spectroscopy
of individual atoms with great detail. In superconductors, the STM was used to image
the vortices and map the local density of states inside them,5 allowing one to test
predictions of the BCS theory on a local scale.6 One of the important playgrounds for
STM nowadays is the field of high-Tc superconductivity,7 where it revealed the intrinsic
inhomogeneities of the materials.

In this chapter, we first discuss the theory of electron tunneling and present in detail the
approach based on the tunneling Hamiltonian. We derive expressions for the tunneling

1 G. Gamow, Nature 122, 805 (1928).
2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). > I. Giaever, Phys. Rev. Lett.

5, 147 (1960). > I. Giaever, H. R. Hart Jr, and K. Megerle, Phys. Rev. 126, 941 (1962).
3 W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).
4 G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982); Rev. Mod. Phys. 59, 615 (1987).
5 H. F. Hess, R. B. Robinson, and J. V. Waszczak, Phys. Rev. Lett. 64, 2711 (1990).
6 C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964). > F. Gygi and M. Schlüter, Phys.

Rev. B 43, 7609 (1991).
7 For a review, see Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and Ch. Renner, Rev. Mod. Phys. 79,

353 (2007).
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https://doi.org/10.1103/PhysRev.126.941
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https://doi.org/10.1103/RevModPhys.59.615
https://doi.org/10.1103/PhysRevLett.64.2711
https://doi.org/10.1016/0031-9163(64)90375-0
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(a) (b) (c)

Figure 9.1: Three approaches to the problem of electron tunneling: (a) expansion in the barrier
transparency; (b) expansion in the bias voltage; (c) out-of-equilibrium description.

matrix element and specializations to the extreme cases of planar and STM junctions.
We then briefly review the very basic ideas that relate the density of states with the
electron dispersion in translation-invariant systems and finish with examples of local
density of states measurements and calculations in conditions of broken translation
invariance.

9.1 Electron tunneling: a phenomenon out of equilibrium

A tunneling experiment can be envisioned in several ways. A first view considers two
systems that are initially isolated, each one being in contact with an infinite charge
reservoir and thus maintained at a fixed chemical potential. One then brings these two
systems in close proximity, preventing the electrical short-circuit by a thin insulating or
vacuum layer as sketched in Fig. 9.1(a). The action of bringing the electrodes together
amounts theoretically to lowering a tunnel barrier from infinity to some finite value
(or increasing the barrier “transparency” from zero). This method has the advantage
that it is based on the properties of the two isolated electrodes, which are easier to
model than the properties of the fully formed junction. The tunneling current is then
evaluated as a power series in the barrier transparency. The system responding to
this perturbation is not in thermal equilibrium, though, since it is made of two parts
maintained at different chemical potentials. This in principle is outside the realm of
the Matsubara formalism, which can only describe the response of systems that are
in thermal equilibrium as we saw in Sec. 6.1. Another problem of this approach is
that the precise shape and properties of the tunnel barrier cannot be deduced from
the knowledge of the two electrodes. Some arbitrariness necessarily results when
modelling the tunnel barrier.

In a second view, one starts with a fully formed junction and solves it in conditions
of thermal equilibrium, i.e., with the two chemical potentials aligned and no current
flowing. Although it is generally very hard, this program can be—and has been—
realized using for instance ab initio methods.1 The solution provides the shape of the
tunnel barrier and the interface wave functions for the junction [Fig. 9.1(b)]. One can

1 See e.g. W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys. 75, 1287 (2003), and references
therein.

https://doi.org/10.1103/RevModPhys.75.1287
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then use equilibrium perturbation theory and calculate the response of this system to a
difference in chemical potentials (an applied bias voltage) using the response theory
and Kubo-like formulas. Beside the difficulty of solving the full junction and calculating
its correlation functions, the drawback of this method is that it is perturbative in the
applied voltage. In many systems of interest for tunneling spectroscopy, for instance
superconductors, the current-voltage characteristics is highly non-linear, which would
require to push the response theory to high order rendering the approach impractical.

A solution to these conceptual difficulties was given by Leonid Keldysh,1 who devised a
version of many-body theory appropriate for systems that are out-of-equilibrium. The
overall structure of the theory is similar to that in equilibrium, the price to pay for non
equilibrium being that the correlation functions become 2× 2 matrices and must be
calculated in real time. The 2× 2 matrices have three independent components: the
retarded, advanced, and Keldysh functions defined in Eqs (3.4), (3.5), and (3.8). The
most convincing theoretical descriptions of electron tunneling so far—and the only ones
in which many-body effects can be implemented in a systematic way—are based on non-
equilibrium Green’s functions and the Keldysh formalism.2 These approaches synthesize
the points of view presented above: the tunnel current is calculated in the fully formed
junction under non-equilibrium conditions, such that both the “transparency” and
the bias voltage are treated non-perturbatively [Fig. 9.1(c)]. The main drawback of
the non-equilibrium tunneling theory is its complexity and unease of implementation.
Analytical calculations based on this approach are possible only for very simple models.3

For being able to perform calculations analytically, we need a formalism based on the
isolated electrodes rather than the fully formed junction. Furthermore, in order to
understand tunneling spectroscopy we need a formalism that can reliably describe
non-linear current-voltage characteristics. The best point of view for our purposes
is therefore the one shown in Fig. 9.1(a). In the following section, we discuss the
tunneling-Hamiltonian formalism, which is the simplest implementation of this ap-
proach. We will see that the problem related to non-equilibrium is “solved” by assuming
that the electron operators on both sides of the junction keep anticommuting even
when the electrodes are in contact. Consequently, the system responding to the barrier
transparency is made of two disconnected parts which can legitimately be held at
different chemical potentials such that the Matsubara formalism is applicable in each
of them. The somewhat ill-defined problem of the barrier transparency, better known
as the tunneling matrix element, will be addressed in Sec. 9.3.

9.2 Tunneling-Hamiltonian formalism

Consider two isolated systems, say the ‘left’ and ‘right’ systems, characterized by their
Hamiltonians HL and HR and their chemical potentials µL and µR, respectively (Fig. 9.2).
The one-particle wave functions that we use to represent many-body states in the left
and right systems are denoted ϕλ(l) and ϕρ(r ), respectively, c†

λ
and c†

ρ being the

1 See e.g. J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
2 C. Caroli, R. Combescot, P. Nozières and D. Saint-James, J. Phys. C: Solid St. Phys. 4, 916 (1971). > T. E.

Feuchtwang, Phys. Rev. B 10, 4121 (1974). > C. Noguera, Phys. Rev. B 42, 1629 (1990).
3 See e.g. C. Berthod and T. Giamarchi, Phys. Rev. B 84, 155414 (2011).

https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1103/PhysRevB.10.4121
https://doi.org/10.1103/PhysRevB.10.4121
https://doi.org/10.1103/PhysRevB.42.1629
https://doi.org/10.1103/PhysRevB.84.155414
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corresponding creation operators. Our basic assumption is that these two systems
remain independent when the tunnel junction is formed and a finite current flows.
Mathematically, this implies that all fermion operators in the left system anticommute
with the fermion operators in the right system: [c†

λ
, cρ]+ = 0. Thinking in terms of

the wave functions, the assumption requires that ϕλ(l) and ϕρ(r ) be orthogonal—
although, physically, the overlap of these functions in the barrier region is crucial to
make the tunneling possible. The “transparency” of the junction is implemented by
means of a term HT , the so-called tunneling Hamiltonian or transfer Hamiltonian, which
describes the transfer of electrons from one sub-system to the other:

HT =
∑
λρ

Tλρc†
ρc
λ
+ h.c.≡ X + X †. (9.1)

The matrix element Tλρ must be understood as the amplitude for an electron to jump
from the state |ϕλ〉 on the left to the state |ϕρ〉 on the right. As emphasized in the
previous section, there is no general prescription for defining this matrix element and
some kind of modeling will be necessary. This aspect of the problem is discussed in the
next section. For the time being, we just assume that Tλρ is given and we calculate the
resulting current as a function of the applied voltage eV = µR −µL .

The calculation of the current is detailed in doc–56. The main steps are the following.
(i) Define the tunneling current as the rate of change of the number of electrons in the
right system, say, multiplied by the electron charge:

I = −e〈ṄR〉. (9.2)

Our conventions are that e = −|e| and that the current is positive when electrons
flow from left to right. (ii) Use linear response in HT and Eq. (6.3) to express 〈ṄR〉 in
terms of the retarded correlation function of ṄR and HT . At this stage, we find two
contributions to the current, I = Is + IJ (t) with

Is = −
2e
ħh Im CR

X X †(eV/ħh) (9.3a)

IJ (t) = −
2e
ħh Im e2ieV t/ħhCR

X X (−eV/ħh), (9.3b)

where the operator X is defined in Eq. (9.1). The first term is the time-independent
single-particle current while the second term is the Josephson current, which vanishes

|ϕλ〉

HL

L

|ϕρ〉

HR

R

Tλρ
µL

µR

eV

(a) (b)

Figure 9.2: Representation of a tunnel junction. (a) Geometrical view. (b) Energy diagram; a
bias voltage V is applied to the junction, resulting in a relative shift of the chemical potentials.
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unless the two materials in contact are superconductors and which oscillates in time
with the characteristic and universal (i.e., model-independent) frequency 2|e|V/ħh. (iii)
Use the assumption of two independent sub-systems to express the retarded correlation
functions in terms of the spectral functions in the left and right systems. At this step, it
is convenient to move from the abstract representation of the c†

λ
and c†

ρ to the real-space

representation based on the fermion operators c†
l and c†

r . For the single-particle current
this gives [see doc–56]

y Is =
2π|e|
ħh

∫ ∞

−∞
dε [ f (ε − |e|V )− f (ε)]

∫
d l1d l2dr1dr2

× Im
�
T (l1, r1)T

∗(l2, r2)A(l1, l2,ε − |e|V ) �− 1
π

�
GR(r2, r1,ε)

�
. (9.4)

In this expression, T (l, r ) is the amplitude for an electron to tunnel from point l in the
left system to point r in the right system, A is the spectral function of the one-electron
Matsubara Green’s function in real space, i.e.,

G (x1, x2, iωn) =

∫ ∞

−∞
dε

A(x1, x2,ε)
iωn − ε

, G (x1, x2,τ) = −〈Tτcx1
(τ)c†

x2
(0)〉, (9.5)

and GR is the corresponding retarded Green’s function. The asymmetric treatments
of the left and right systems in Eq. (9.4)—the former appearing with its spectral
function and the latter with its Green’s function—is chosen on purpose anticipating
that the left system will stand for the probing electrode and the right one for the
sample to be measured. The expression of the current in the basis of the electrode’s
eigenstates is simpler and given below in Eq. (9.13). In order to illustrate the content
of Eq. (9.4), let’s consider the simplest possible situation and assume that the tunneling
is forbidden except between just two particular points, say l0 on the left and r0 on
the right. This can be seen as a highly idealized view of an STM junction in which
electrons could only tunnel from the very end of the tip to the point of the surface
immediately underneath the tip. In such a case, the tunneling matrix element would
take the form T (l, r ) = tδ(l − l0)δ(r − r0) and the current reduces to

Is =
2π|e|
ħh |t|2

∫ ∞

−∞
dε [ f (ε − |e|V )− f (ε)]A(l0, l0,ε − |e|V )A(r0, r0,ε), (9.6)

because (−1/π)Im GR(x , x ,ε) = A(x , x ,ε) [Eq. (3.47)]. As we saw in Sec. 5.1.3.2
[Eq. (5.8)], the diagonal part of the spectral function is just the local density of states
(LDOS): A(x , x ,ε) = N(x ,ε). Factors of 2 due to spins are ignored in this discussion.
For simplicity, let’s further assume that the left system is a probe that we have chosen
for its LDOS being featureless: NL(l0,ε)≈ NL(l0, 0). Hence

Is =
2π|e|
ħh |t|2NL(l0, 0)

∫ ∞

−∞
dε [ f (ε − |e|V )− f (ε)]NR(r0,ε). (9.7)

Now, since the bias voltage only enters the Fermi function, we can differentiate with
respect to V and deduce the differential tunneling conductance:

y σ(V )≡ dIs

dV
∝
∫ ∞

−∞
dε [− f ′(ε − |e|V )]NR(r0,ε). (9.8)
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At T = 0, this gives σ(V )∝ NR(r0, |e|V ) since the derivative of the Fermi function
becomes a delta function. This is the main paradigm for the interpretation of local
tunneling experiments: the bias dependence of the differential conductance measures
the energy dependence of the LDOS near the position of the tunnel junction. At finite
temperature, the tunneling spectrum is broadened (thermal smearing).

For a more realistic tunneling matrix element T (l, r ), the current is influenced by the
LDOS in a more extended region around the tunnel junction. Off-diagonal contributions
from the probe spectral function and sample Green’s function also enter and describe
interference effects in the two electrodes. In the next section, we analyze two examples
of tunneling matrix elements and their consequences on the differential conductance.

9.3 The tunneling matrix element

There is no unique prescription to define the tunneling matrix element Tλρ in Eq. (9.1).
Any model for Tλρ will necessarily rely on a number of assumptions and will therefore
not be fully satisfactory. Our goal here is to introduce the Bardeen formula for the
matrix element as well as two particular applications of this formula corresponding to
ideal planar and STM junctions.

9.3.1 Bardeen’s formula

A formula for the matrix element to be used in Eq. (9.1) was given by Bardeen in a
celebrated paper,1 which is somewhat difficult to read. We follow here an alternate
derivation due to Chen.2 Let U(x ) be the local potential of the junction when the
contact is formed and a bias is applied. Solving for the eigenfunctions in this potential is
difficult. We seek a formalism allowing us to solve the left and right systems separately
and then reconstitute the whole system using perturbation theory. We split the potential
U in two parts, UL(x ) and UR(x ), in such a way that UL(x ) = U(x ) in the left system,
i.e., to the left of a surface S separating the two electrodes, and UL(x ) = 0 to the
right of S. Inversely, UR(x ) = U(x ) to the right of S and UR(x ) = 0 to the left of S.
In this way, we have the two properties U(x ) = UL(x ) + UR(x ) and UL(x )UR(x ) = 0
everywhere in space (see Fig. 9.3). The potentials UL and UR differ from the potentials
U0

L and U0
R of the isolated left and right systems. Therefore the wave-functions on the

left and right, which we require to satisfy the Schrödinger equation
�

p2

2m
+ UL,R(x )

�
ϕλ,ρ(x ) = ελ,ρϕλ,ρ(x ), (9.9)

are also different from the wave-functions ϕ0
λ,ρ(x ) of the isolated electrodes. As

the difference between UL,R and U0
L,R is expected to be small compared to UL,R, the

difference between ϕ0
λ,ρ and ϕλ,ρ can be studied by the standard time-independent

perturbation theory.
1 J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
2 C. Julian Chen, Introduction to scanning tunneling microscopy, 2nd ed. (Oxford University Press, New York,

2007).

https://doi.org/10.1103/PhysRevLett.6.57
https://doi.org/10.1093/acprof:oso/9780199211500.001.0001
https://doi.org/10.1093/acprof:oso/9780199211500.001.0001
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UR(x)UL(x)

eV

x

0Vacuum level

µL

µR
U(x)

U0
L (x) U0

R(x)

Figure 9.3: Definitions of the potentials UL and UR in a one-dimensional case. U(x) is the exact
potential of the biased junction; UL(x) = U(x) for x < 0 and UL(x) = 0 for x > 0; UR(x) = 0
for x < 0 and UR(x) = U(x) for x > 0. U0

L (x) and U0
R(x) are the potentials of the isolated

electrodes.

We evaluate the matrix element Tλρ as follows. The two sub-systems are initially
decoupled and the left one is governed by the Hamiltonian p2/(2m) + UL . Upon
forming the junction, the potential becomes U = UL + UR, such that the perturbation
acting on the states ϕλ is simply UR. This perturbation induces three types of changes.
First, it modifies the energies ελ due to the action of UR on the tails of the states ϕλ
in the region where UR 6= 0. Following Eq. (2.43), this (small) effect, which we shall
ignore, is represented by the term

∑
λλ′〈λ|UR|λ′〉c†

λ
c
λ′ . Second, the perturbation UR

gives rise to left-right transitions through the term
∑
ρλ〈ρ|UR|λ〉c†

ρc
λ
+ h.c. In writing

this, we have assumed that the combined set of operators c†
λ

and c†
ρ constitute an

appropriate basis to represent the wave functions of the junction and we have therefore
neglected the fact that the states ϕλ and ϕρ are not orthogonal owing to their overlap
in the barrier region. Third, we would have a term

∑
ρρ′〈ρ|UR|ρ′〉c†

ρcρ′ , but the latter
is already taken into account in the definition of the functions ϕρ calculated with
the Hamiltonian p2/(2m) + UR. Comparing with Eq. (9.1), we see that the tunneling
Hamiltonian HT corresponds to the second effect, which allows us to define the matrix
element as

Tλρ = 〈ρ|UR|λ〉=
∫

R

dx ϕ∗ρ(x )UR(x )ϕλ(x ). (9.10)

We have indicated that the integration can be restricted to the region R, namely the
region where UR is nonzero. Under the additional assumption of elastic tunneling, i.e.,
ελ = ερ, we can rewrite this as [see doc–57]

y Tλρ = −
ħh2

2m

∫

S

�
ϕ∗ρ(x )∇ϕλ(x )−ϕλ(x )∇ϕ∗ρ(x )

�
· dS. (9.11)

This is Bardeen’s prescription for the tunneling matrix element. It is related to the
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single-particle current crossing a surface separating the electrodes. Due to current
conservation, the detailed choice of this surface is irrelevant. In practice, the potentials
UL and UR required to evaluate the wave functions and the matrix element are not
known. One therefore has to use either the free-surface functions ϕ0

λ,ρ or approximate
models for the potentials.

9.3.2 Planar junction: Harrison’s cancellation

The matrix element for an ideal planar junction between electrodes hosting independent
electron was calculated by Harrison1 using the Wentzel-Kramers-Brillouin (WKB) ap-
proximation for the wave functions, namelyψE(x)∝ exp

¦
−∫ x Æ

2m[U(x)− E]/ħh2
©

.
We do not reproduce this calculation here, but we discuss the main features of the
result and their implication for the tunneling current. Harrison’s matrix element has
the following structure:

|Tλρ|2∝ δk‖
λ
k‖ρ

dξ⊥
λ

dk⊥
λ

dξ⊥ρ
dk⊥ρ

e−2κd . (9.12)

The factor δk‖
λ
k‖ρ

expresses the conservation of momentum in the directions parallel to
the junction plane. The property of exact parallel-momentum conservation is sometimes
called specular transmission. The second and third factors are the group velocities in
the direction normal to the junction plane for the states ϕλ and ϕρ, respectively. ξ⊥ is
the part of the energy corresponding to the motion normal to the junction, for instance
ξ⊥ = ξk − ħh2k2

‖/(2m) for free electrons. These factors appear due to the gradients
in Eq. (9.11). Finally, the last factor results from the exponential decay of the wave
functions in the barrier. d is the barrier thickness and κ is the wave vector of electrons
inside the barrier, namely ħh2κ2/(2m) = U − ξ⊥ with U the barrier height assumed
constant.

We now want to calculate the current at a planar junction, assuming that the tunneling
matrix element is given by Eq. (9.12). In Eq. (9.4), we have the expression of the
current in the real space representation. In the present context, it is more convenient to
use the abstract representation of the functions ϕλ and ϕρ, which implies [see doc–58]

Is =
2π|e|
ħh

∑
λρ

|Tλρ|2
∫ ∞

−∞
dε [ f (ε − |e|V )− f (ε)]Aλ(ε − |e|V )Aρ(ε). (9.13)

Substituting Harrison’s matrix element, we arrive at the expression

Is ∝
∑
k‖

∑

k⊥
λ

k⊥ρ

dξ⊥
λ

dk⊥
λ

dξ⊥ρ
dk⊥ρ

e−2κd

∫ ∞

−∞
dε [ f (ε − |e|V )− f (ε)]Aλ(ε − |e|V )Aρ(ε). (9.14)

For simplicity we assume that the electrodes are simple metals that we can describe as
independent-electrons systems: this amounts to taking

Aλ(ε − |e|V )Aρ(ε) = δ(ε − |e|V − ξλ)δ(ε − ξρ). (9.15)

1 W. A. Harrison, Phys. Rev. 123, 85 (1961).

https://doi.org/10.1103/PhysRev.123.85
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It also means that each k⊥ sum can be converted into a one-dimensional integral over
the “perpendicular” energy ξ⊥, weighted by the corresponding density of states (DOS),
which is simply∝ (dξ⊥/dk⊥)−1. One sees that these DOS factors cancel the velocities
coming from the matrix element. This implies that the information about the DOS in
the direction normal to the junction is removed from the tunneling current, in contrast
to the simple result Eq. (9.8). This remarkable cancellation has become known as
Harrison’s theorem. At this step, there remains DOS factors associated with the k‖
sum; the latter turn out to be suppressed as well but for a different reason, as we shall
see now. The current becomes:

Is ∝
∑
k‖

∫ ∞

−∞
dξ⊥λ dξ⊥ρ e−2κd[ f (ξρ − |e|V )− f (ξρ)]δ(ξρ − |e|V − ξλ). (9.16)

Writing ξρ = ξ⊥ρ + ε
‖
ρ, ξλ = ξ⊥λ + ε

‖
λ
, and κ =

Ç
2m(U − ξ⊥ρ )/ħh2, we see that the ξ⊥

λ

integral simply drops with the delta function. In the remaining integral on ξ⊥ρ , we
change variable to ξρ ≡ ξ and get

Is ∝
∫ ∞

−∞
dξ [ f (ξ− |e|V )− f (ξ)]

∑
k‖

e−2d
r

2m
ħh2 (U−ξ+ε‖ρ). (9.17)

This is essentially Eq. (9) of Harrison’s paper, specialized for a square barrier of height
U . It is now clear that the k‖ sum is dominated by small momenta such that ε‖ρ is small:

high values of ε‖ρ are exponentially suppressed by the matrix element. This realizes
the physically intuitive idea that, at some energy ξ, the electrons that dominate the
current are those with a large momentum along the direction of the current, hence a
small momentum k‖. In order to see this more explicitly, let’s take a parabolic band
such that ε‖ρ = ħh

2k2
‖/(2m∗). The k‖ sum can then be performed in polar coordinates.

Let’s also take the limit of zero temperature for simplicity. This yields

Is ∝
m∗

m

∫ |e|V

0

dξ
�
1+ 2d

q
2m
ħh2 (U − ξ)

�
e−2d

Ç
2m
ħh2 (U−ξ)

≈ |e|m
∗

m

�
1+ 2d

Æ
2m
ħh2 U

�
e−2d

Ç
2m
ħh2 U × V. (9.18)

The last line holds if |e|V � U , which is usually the case. It shows that the current-
voltage characteristics of the ideal planar junction is simply and plainly ohmic, with a
slope depending mostly on the properties of the barrier, U and d. This result seems
to condemn tunneling spectroscopy: if the tunneling junction is ohmic, the tunneling
conductance is constant instead of being proportional to the sample DOS as suggested
by Eq. (9.8). Harrison’s cancellation is not as general as it might look, however, since
it relies heavily on the property of specular transmission. If the interface of the planar
junction is rough, this property is likely to break down. Furthermore, as we will
see in the next section, for junctions that are not ideally planar the current-voltage
characteristics is no longer ohmic.
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9.3.3 STM junction: local density of states

Soon after the invention of the STM, Tersoff and Hamann proposed a calculation of
the Bardeen matrix element in a geometry representing an idealized STM tip.1 The
tip was modeled as a spherical potential well. The overlap of the tip wave functions
with the Bloch waves of the sample surface was then evaluated by expanding the
spherically-symmetric tip states as a Fourier series. The result was that Tλρ∝ ϕ∗ρ(x0),
where ϕρ is a sample wave function and x0 is the center of the tip potential well. One
sees that the matrix element does not depend on the tip-state index λ. This result can
also be obtained by a more elegant and general method elaborated by Chen.2 Chen
considers the STM junction as a microscopic atom-to-atom contact such that the tip
wave-function to be inserted in Bardeen’s formula is a combination of atomic orbitals
describing the state of the “apex” atom. In the vacuum region, the wave functions
decay exponentially like free electrons inside a barrier, p2/(2m)ϕ = ħh2(iκ)2/(2m)ϕ,
and we thus have �

∇2 − κ2
λ,ρ

�
ϕλ,ρ(x ) = 0 (9.19)

with ħh2κ2
λ,ρ/(2m) = φL,R −ξλ,ρ, φL,R being the tip (L) and sample (R) work functions.

It is easiest to solve this problem in spherical coordinates by expanding the wave
functions on spherical harmonics. Let’s assume that the origin is the position of the
apex atom. The solutions that decay at infinity are

ϕlm(x ) = Clmkl(κx)Ylm(ϑ,φ), kl(u) = (−1)lul
�

d
u du

�l e−u

u
. (9.20)

Chen observes that the solutions ϕlm(x ) can also be expressed in terms of the Green’s
function g(x )—the “historical” Green’s function, not the single-particle Green’s function—
defined as �

∇2 −κ2
�

g(x ) = −δ(x ) ⇒ g(x ) =
e−κx

4πx
, (9.21)

as can be seen with the help of Eq. (12). In particular, we have for a s state:

ϕ00(x )≡ ϕs(x ) = C00 k0(κs x)︸ ︷︷ ︸
e−κs x/(κs x)

Y00(ϑ,ϕ)︸ ︷︷ ︸
1

=
4πC00

κs
g(x ). (9.22)

Thanks to this observation, the calculation of the tunneling matrix element becomes
straightforward [see doc–59] and one recovers the Tersoff-Hamann result

Ts,ρ∝ ϕ∗ρ(0), (9.23)

where 0 stands for the position of the apex atom. This result provides the theoretical
justification for interpreting the STM spectroscopy as a mapping of the local density of
states. Indeed, insertion of Eq. (9.23) into Eq. (9.13) leads to

Is ∝
∫ ∞

−∞
dε [ f (ε − |e|V )− f (ε)]

∑
λ

Aλ(ε − |e|V )
︸ ︷︷ ︸

NL(ε−|e|V )

∑
ρ

|ϕρ(0)|2Aρ(ε)

︸ ︷︷ ︸
NR(0,ε)

. (9.24)

1 J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).
2 C. Julian Chen, Phys. Rev. B 42, 8841 (1990).

https://doi.org/10.1103/PhysRevLett.50.1998
https://doi.org/10.1103/PhysRevB.42.8841
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If the density of states is structureless in the tip, NL(ε) = NL(0), we recover Eq. (9.8):
the differential conductance measures the sample LDOS at the position of the tip apex.

A few remarks are in order. First, in this interpretation the LDOS is not measured
inside the sample but a few Å outside its surface, where the tip is located. This explains
why the tunneling conductance decreases exponentially as the tip is moved away
from the surface. The LDOS is built from wave functions that all decay exponentially
outside the surface: ϕρ(0)∝ e−κρdϕ‖ρ(x , y) with d the tip-sample distance. Each
sample state decays on a different length scale κ−1

ρ : in a multi-band system, it is
possible that different bands are probed at different distances d and thus the spectrum
dIs/dV changes with the distance. Finally, one should stress that the absence of atomic
resolution on a surface does not necessarily mean that the junction quality is bad; it
can also have an intrinsic explanation, namely that the LDOS has weak corrugation
outside the sample.

To finish, we point out that Chen’s approach can also treat cases where the relevant
orbital of the apex atom is not an s state. For non-s tip states, the rule is that the matrix
element is not proportional to the wave function itself, like in Eq. (9.23), but to one of
its derivatives. For example, if the tip apex atom carries a px state, we have

Tpx ,ρ∝
∂

∂ x
ϕ∗ρ(x )

����
0

, (9.25)

as can be easily found by noting that, in this case, ϕpx
(x ) ∝ ∂ g(x )/∂ x . In this

perspective, non-s tips may be expected to provide better spatial contrast because
spatial derivatives of the LDOS are expected to vary more than the LDOS itself.

9.4 DOS and electron dispersion

Given that tunneling spectroscopy provides a way of measuring the electronic DOS, it
is useful to understand the relationship between the DOS of a system and its electron
dispersion. In this section, we recall basic facts about the DOS. By definition, the DOS
N(ε) is the number of single-electron excitations at a given energy (see Sec. 5.1.3.2).
In a translation-invariant system, the appropriate tool to describe single-electron
excitations is the Green’s function in momentum space G (k, iωn). In a paramagnetic
system, we have for the DOS per unit volume

N(ε) =
1
V
∑
kσ

A(k,ε),

A(k,ε) = − 1
π

Im GR(k,ε) = − 1
π

ImG (k, iωn→ ε + i0+). (9.26)

Let’s consider first the simplest case of independent electrons.
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9.4.1 Independent electrons

For independent electrons, the single-particle excitations are the electrons themselves
and we have (see e.g. Sec. 3.3.1):

A(k,ε) = δ(ε − ξk) =
∑
kε

δ(k − kε)
|∇ξk |kε

with ξkε = ε. (9.27)

The last equality follows from Eq. (11). In the thermodynamic limit, the kε sum must in
general be understood as a continuous integral along the shell of energy ε. Therefore,
the DOS can be put in the form

N(ε) =
2

(2π)d

∫
dd k

∑
kε

δ(k − kε)
|∇ξk |kε

=
2

(2π)d
∑
kε

1
|∇ξk |kε

. (9.28)

This expression shows that N(ε) has singularities at the energies where the gradient
of the dispersion vanishes. These singularities are known as Van Hove singularities.
Whether they correspond to divergences of the DOS or weaker singularities such as
discontinuities or discontinuities of the first derivative, depends on the dimensionality
of the system and the extension of the region in momentum space where the dispersion
gradient vanishes.

9.4.1.1 One-dimensional systems

In one dimension, there are two kinds of points at which the derivative of the dispersion
can vanish: extrema, either global or local, and inflection points. Accordingly there
are two kinds of Van Hove singularities. Close to an extremum, the dispersion can be
expanded as a power series in k and the series starts at some even power: ξk ∼ k2n

(n ¾ 1). The equation ξkε = ε then implies ε ∼ k2n. On the other hand, we have

|∇ξk| ∼ k2n−1. The DOS therefore varies as 1/k2n−1 = ε−
2n−1

2n . The most frequent case
is n= 1, leading to a square-root divergence of the DOS as 1/

p
ε at the energy of the

extremum. As an example of this, consider the tight-binding chain shown in Fig. 9.4(a).
On each site i, there are two orbitals, one for each spin, with the associated creation
operators c†

iσ. The Hamiltonian is H =
∑

iσ tc†
iσci+1,σ +h.c., such that the dispersion is

ξk = 2t cos(ka)−µ, which is shown in Fig. 9.4(b) for t < 0 and µ= 0. The gradient
of the dispersion is simply |∇ξk|= 2a|t sin(ka)| and the two solutions for ξkε = ε are
such that cos(kεa) = (ε +µ)/(2t). We therefore have

|∇ξk|kε = 2a|t|
Æ

1− cos2(kεa) = 2a|t|
√√

1−
�ε +µ

2t

�2
. (9.29)

The sum over kε in Eq. (9.28) amounts to a factor 2 if |ε +µ| < 2|t|, since there are
two solutions, and gives zero otherwise because there is no solution if ε is outside the
band. The DOS follows as:

N(ε) =
1

πa|t|Re


 1Ç

1− � ε+µ2t

�2


 . (9.30)
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Figure 9.4: DOS of the tight-binding chain. (a) Representation of the chain with lattice
parameter a and nearest-neighbor hopping energy t. (b) Band structure for t < 0 and µ= 0;
for each energy ε between −2|t| and +2|t|, there are two solutions ±kε such that ξkε = ε. (c)
Density of states given by Eq. (9.30).

The real part ensures that the DOS vanishes if ε is outside the band. This function is
displayed in Fig. 9.4(c); it diverges as 1/

p
ε at the band edges as expected, since the

dispersion varies as k2 close to the band edges. At an inflection point, the dispersion
behaves as k2n+1 with n¾ 1. Following the same reasoning as before, we see that the
DOS diverges as ε−

2n
2n+1 , that is ε−

2
3 for n = 1. Square-root divergences in the DOS have

been observed by STM, e.g. in carbon nanotubes.1

In the case of a global minimum or a global maximum of the dispersion, the DOS jumps
abruptly from zero to infinity; in the case of a local extremum, the singularity sits on
top of a background coming from the part of the band that is degenerate with the
extremum but non singular. This can happen for instance if a next-nearest neighbor
term 2t ′ cos(2ka) is added to the dispersion of the tight-binding chain. For an inflection
point, the DOS singularity is symmetric because there are states both above and below
the energy of the singularity. The five possibilities are sketched in Fig. 9.5(a). The
other panels of the figure show a fictitious dispersion tailored to display all possible
singularities together with the corresponding numerically calculated DOS.

9.4.1.2 Two- and higher-dimensional systems

In dimension d = 1, the dimensionality of the regions in momentum space where
∇ξk = 0 can only be d − 1 = 0 (isolated points). In dimension d > 1, these regions
can have dimensions 0, . . . , d − 1. Local or global extrema of the dispersion occurring
at isolated points in reciprocal space have dimension 0. Clearly, the weight of these
0-dimensional singular regions in the k-sum of Eq. (9.28) decreases as d increases and
correspondingly the associated DOS singularity becomes less pronounced. Specifically,
in two dimensions an extremum of the dispersion induces a finite discontinuity of the
DOS. In three dimensions, the DOS is continuous at an extremum but its derivative
is discontinuous. This can be generalized: in a system of dimension d, an isolated
extremum in the dispersion induces a discontinuity in the (d − 2)th derivative of the
DOS.

The case of the saddle points can be different. On 2D lattices, a particular type of

1 J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).

https://doi.org/10.1038/34139
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Figure 9.5: (a) Schematic representation of the five possible singularities in the DOS of
one-dimensional systems. Quantitative illustration with (b) a fictitious dispersion relation
and (c) the corresponding DOS featuring the five types of singularities. The dispersion is
2t cos(ka){1− exp[−8(ka+π/2)2]− 5exp[−8(ka−π/2)2]}.

divergence occurs due to saddle points. In such cases, although the dimensionality of the
singular region is zero, a divergence rather than a discontinuity is induced in the DOS,
but it is a weak divergence of logarithmic character. At a saddle point, the dispersion
behaves as ξk = ε ∼ k2

x−k2
y such that the gradient is |∇ξk | ∼ (k2

x+k2
y)

1/2 ∼ (2k2
x−ε)1/2.

The DOS behaves like the primitive of 1/|∇ξk | at the point where the gradient vanishes,

namely N(ε) ∼ ∫ kx (2k2
x − ε)−1/2

���
2k2

x→ε
∼ − ln |ε|. The simplest example is the tight-

binding square lattice with dispersion ξk = 2t[cos(kx a) + cos(ky a)]−µ. In addition
to the band extrema at k = (0,0) and (π/a,π/a), there are saddle points at (π/a, 0)
and symmetry-equivalent points. The DOS can be shown to be N(ε − µ) = θ(4|t| −
|ε|)K�1− [ε/(4t)]2

�
/(π2a2|t|) with K(x) the complete elliptic integral of the first kind

[see doc–60]. This function approaches − ln |ε/(16t)|/(π2a2|t|) close to ε = 0 and
is displayed in Fig. 9.6. One sees the two discontinuities at the band edges and the
logarithmic divergence at the band center. A feature very similar to the logarithmic Van
Hove singularity has been observed by STM in the quasi-2D cuprate Bi2Sr2CuO6+δ.1 In
3D, the saddle points induce logarithmic divergences of the DOS first derivative (see
Fig. 9.6).

To finish, let’s mention another important example of DOS singularity: the BCS co-
herence peaks. They result from the opening of the BCS superconducting gap due
to the pairing-induced change of dispersion from ξk to ±Ek = ±(ξ2

k +∆
2)1/2 (see

Sec. 5.2.2.3). It is clear that all points such that ξk = 0, i.e., the points of the Fermi sur-
face, lie at a minimum of Ek . Since the dimensionality of the Fermi surface is d − 1 for
a system of dimension d, we have a singular region of dimension d−1. As a result, the

1 A. Piriou, N. Jenkins, C. Berthod, I. Maggio-Aprile, and Ø. Fischer, Nature Commun. 2, 221 (2011).

https://doi.org/10.1038/ncomms1229
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Figure 9.6: DOS singularities in 2D and 3D. Extrema in the dispersion induce discontinuities of
the DOS in 2D and discontinuities of the DOS derivative in 3D. Saddle points induce logarithmic
divergences of the DOS in 2D and logarithmic divergences of the DOS derivative in 3D. The
illustrations show the DOS of the square (2D) and cubic (3D) nearest-neighbor tight-binding
lattices.

BCS coherence peaks are strong singularities, generally square-root singularities, in any
dimension. The situation can be different for a momentum-dependent superconducting
gap. For instance, a gap of dx2−y2 symmetry in 2D leads to logarithmic coherence peaks
because the singular regions have dimension 0 in this case [see Eq. (11.20)].

9.4.2 Interacting electrons

When interactions are present, the associated self-energy Σ(k,ε) reshapes the spectral
function [see Eq. (7.12)]. As a result, the DOS singularities generally get shifted (due
to the real part of the self-energy) and broadened (due to the imaginary part) by
interactions. An example of this can be found in doc–68, where Fig. 11.13(a) compares
the DOS with and without residual interactions between Bogoliubov quasi-particles. It
can also happen that the imaginary part of the self-energy vanishes in the energy range
of a singularity, such that the latter is not broadened. A simple example where this
happens is the Hubbard model if the self-energy is calculated in the so-called atomic
limit where t/U → 0. In this strong-interaction regime, the kinetic energy is neglected
and the problem reduces to a collection of independent one-site Hubbard “atoms”, i.e.,
a problem of size 4× 4 that can be solved analytically. At half filling (one electron
per site), the resulting self-energy is Σ(k, iωn) = U/2+ (U/2)2/iωn and the chemical
potential is µ= U/2, such that the Green’s function reduces to

Gat(k, iωn) =
1

iωn − εk − (U/2)
2

iωn

=
Zk

iωn − E+k
+

1− Zk

iωn − E−k
(9.31)

with Zk =
�
1+ εk/(ε2

k + U2)1/2
�
/2 and E±k =

�
εk ± (ε2

k + U2)1/2
�
/2. The DOS can be

calculated exactly and is

Nat(ε) = N0

�
ε − U2

4ε

�
, (9.32)
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Figure 9.7: DOS of the two-dimensional Hubbard
model for U = 10|t| in the atomic limit for the self-
energy. The Mott gap of width ∼ U separates the lower
and upper Hubbard bands. The Van Hove singularities
present in the non-interacting DOS are shifted, but not
broadened in this approximation, because the imagi-
nary part of the self-energy vanishes for ε 6= 0.
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with N0(ε) the non-interacting DOS for the dispersion εk . This model is very crude but
contains the essence of a Mott insulator. Electrons are immobile due to the quenching
of the kinetic energy by the energetic cost of having two electrons on the same site. This
is seen in the DOS as a gap at zero energy—since N0(±∞) = 0. This gap of order U is
the Mott gap, which separates the lower Hubbard band from the upper Hubbard band,
as illustrated in Fig. 9.7 for the tight-binding square lattice. At half-filling, the lower
Hubbard band is filled, the upper Hubbard band is empty, and the system is insulating at
temperatures smaller than U . Going beyond the atomic limit and obtaining a solution
of the two-dimensional Hubbard model at finite t and away from half-filling is one of
the greatest challenges in theoretical condensed-matter physics.

9.5 LDOS as seen by STM

The local DOS (LDOS) N(r ,ε) counts the number of single-electron excitations at
some energy ε and some point r in space. In a translation-invariant system, the LDOS
coincides with the DOS but in a system that breaks translation invariance, the LDOS
contains much more information than the total DOS, the latter being the spatial average
of the former. As we saw in Sec. 5.1.3.2, in a paramagnetic state the LDOS is related
to the diagonal elements of the real-space Green’s function via

N(r ,ε) = − 2
π

Im GR(r , r ,ε) = − 2
π

ImG (r , r , iωn→ ε + i0+). (9.33)

We will consider two simple examples where the LDOS can be calculated and compared
with STM measurements: local defects or impurities that scatter electrons and vortex
cores in superconductors.

9.5.1 Local impurities

Consider a system that is initially invariant by translation and characterized by the
real-space Green’s function G0(r − r ′, iωn). An impurity is introduced at the origin,
perturbing the system with the local potential V (r ). As we have seen [Eqs (5.17) and
(7.26)], the Green’s function in the presence of the potential is:

G (r , r ′, iωn) = G0(r − r ′, iωn)+

∫
dr ′′G0(r − r ′′, iωn)V (r

′′)G (r ′′, r ′, iωn). (9.34)

There exists one case in which this Dyson equation can be easily solved for G : when
the impurity is so localized that it can be represented by a delta-function potential,
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V (r ) = V0δ(r ). In this situation, the equation becomes

G (r , r ′, iωn) = G0(r − r ′, iωn) + V0G0(r , iωn)G (0, r ′, iωn). (9.35)

We can now solve for G (0, r ′, iωn) by evaluating Eq. (9.35) for r = 0,

G (0, r ′, iωn) = G0(−r ′, iωn) + V0G0(0, iωn)G (0, r ′, iωn) =
G0(−r ′, iωn)

1− V0G0(0, iωn)

and then reintroduce this into Dyson’s equation to get1

G (r , r , iωn) = G0(0, iωn) +
V0G0(r , iωn)G0(−r , iωn)

1− V0G0(0, iωn)
. (9.36)

Therefore, the change of the LDOS induced by the impurity is given by

δN(r ,ε) = − 2
π

Im

�
V0GR

0 (r ,ε)GR
0 (−r ,ε)

1− V0GR
0 (0,ε)

�
= −2V0

π
Im [GR

0 (r ,ε)]2 +O(V 2
0 ). (9.37)

Considering free electrons for simplicity, we have GR
0 (r ,ε)∝ eikr/r with ħh2k2/(2m) =

ε +µ [see doc–49] and we find at lowest order in V0:

δN(r ,ε)∝ sin[2
Æ
(2m/ħh2) (ε +µ) r]

r2
. (9.38)

The scattering of electrons off the impurity leads to Friedel-like spatial oscillations
of the LDOS whose intensity decays as 1/r2 and whose wavelength varies with the
energy ε. With an STM, one can measure the energy dependence of the LDOS at each
point by sweeping the voltage according to dI/dV ∼ N(r , |e|V ). Using this method,
the Friedel oscillations around impurities have been observed in many systems.2 Such
measurements offer the possibility of studying the dispersion relation εk by recording
the wavelength of the oscillations as a function of bias voltage. For an illustration, see
Fig. 9.8(a).

In cuprate superconductors, the LDOS oscillations around impurities have been exten-
sively studied by STM, as they provide a way of measuring the Fermi surface and the
momentum dependence of the superconducting gap.3 The principle can be understood
by considering the Fourier transform of the impurity-induced LDOS Eq. (9.37):

δN(q ,ε)∝ Im
∑

k

GR
0 (k,ε)GR

0 (k − q ,ε). (9.39)

1 The solution of 1− V0GR
0 (0,ε) = 0, if it exists, gives the energy of an impurity bound state.

2 M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature 363, 524 (1993). > K. Kanisawa, M. J. Butcher, H.
Yamaguchi, and Y. Hirayama, Phys. Rev. Lett. 86, 3384 (2001). > M. Lackinger, S. Griessl, W. M. Heckl,
and M. Hietschold, J. Phys. Chem. B 106, 4482 (2002). > T. Suzuki, Y. Hasegawa, Z.-Q. Li, K. Ohno, Y.
Kawazoe, and T. Sakurai, Phys. Rev. B 64, 081403(R) (2001).
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(2002). > K. McElroy, R. W. Simmonds, J. E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J.
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Figure 9.8: (a) STM differential conductance measured at three different biases around a point
defect on the InAs(111) surface; one can see how the wavelength decreases with increasing
bias.1 (b) Representation of the Fermi surface of cuprate superconductors (black), the d-wave
gap along the Fermi surface (green), and two vectors connecting points of the Brillouin zone with
the same quasi-particle energy Ek ; on the Fermi surface we have ξk = 0 and thus Ek = |∆k |.2
(c) Fourier transform of a conductance map in Bi2Sr2CaCu2O8+δ; the two vectors qA and qB

are visible; the peaks associated with the atomic lattice are also visible at the corners; the peak
marked by a dashed purple circle corresponds to a structural modulation.3

Now, GR
0 (k,ε) should be regarded as the Green’s function of a BCS superconductor,

Eq. (5.136), which has poles at the quasi-particle energies ε = Ek =
�
ξ2

k +∆
2
k

�1/2
. One

sees that δN(q ,ε) has peaks when both GR
0 (k,ε) and GR

0 (k − q ,ε) have poles, namely
when the condition

ε = Ek = Ek−q (9.40)

is fulfilled. This defines a set of ε-dependent q vectors that connect k points having
the same quasi-particle energy. Two such vectors are represented in Fig. 9.8(b). qA is
largest at zero energy when it connects two nodal points of the Fermi surface (points
where the d-wave superconducting gap vanishes) and it becomes shorter as ε increases.
On the contrary, qB vanishes at zero energy and increases with ε. By computing the
Fourier transform of STM differential-conductance maps, one can identify these q
vectors and measure their dispersion with ε [Fig. 9.8(c)]. From this information,
simple formula allow one to reconstruct the Fermi surface and the variation of the gap
along the Fermi surface.
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(2002).
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Nature 422, 592 (2003).
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9.5.2 Vortices in superconductors

Superconductors immersed in an external magnetic field lower than the critical field
destroying superconductivity display two types of behaviors. In type-I superconductors,
the magnetic field is expelled from the interior of the sample: this is the Meissner
effect. In type-II superconductors, the field penetrates through discrete flux lines in
the material: these are the Abrikosov vortices. Vortices form because it is energetically
less expensive for the system to nucleate them than to completely expel the field.
Each vortex carries a magnetic flux Φ0 = h/(2e) and it is surrounded by a circular
supercurrent of Cooper pairs. Within BCS theory,1 a vortex (or a distribution of vortices)
is described by a position-dependent superconducting order parameter ∆(r , r ′). The
non-locality of the order parameter stems from the possible non-locality of the pairing
interaction. It is convenient to write ∆(r , r ′) = |∆(r , r ′)|eiϕ(r ,r ′). Physically, the
modulus |∆| is related to the superfluid density (the density of Cooper pairs) and it
vanishes at the center of the vortex core where superconductivity is locally destroyed.
The phase ϕ is related to the circular supercurrent. Both quantities can be calculated
by solving the BCS gap equation Eq. (5.134) in the presence of the field.2

Once the order parameter is known, the LDOS around the vortex core can be obtained
by solving the Dyson equation for the matrix [G (iωn)]r r ′ = G (r , r ′, iωn):

G (iωn) = G0(iωn)[11−Σ(iωn)G0(iωn)]
−1, (9.41)

where the self-energy is given by (see doc–48, p. 211)

Σ(iωn) = −∆G T
0 (−iωn)∆

† (9.42)

with G T
0 the matrix transpose of G0. For an s-wave superconductor, the order param-

eter is local: ∆(r , r ′) = ∆(r )δ(r − r ′). The expression of the self-energy simplifies
accordingly:

Σ(r , r ′, iωn) = −
∫

dr1dr2∆(r , r1)G0(r2 − r1,−iωn)∆
∗(r ′, r2)

= −∆(r )G0(r
′ − r ,−iωn)∆

∗(r ′). (9.43)

A practical implementation of this calculation is given in doc–79. This problem was
first considered analytically in a continuum model3 and concluded to the existence of
low-energy localized states with typical inter-level spacing ∆2/εF in the vortex core,
leading to a zero-energy peak in the LDOS at the vortex center. The appearance of
these states is due to a peculiar interference induced by the supercurrent between the
electron and the hole forming the Boboliubov excitations of the superconductor.4

1 In these notes, “BCS theory” is meant in a broad sense that includes pairing not mediated by phonons, non-s
wave order parameters, as well as Gor’kov and Bogoliubov–de Gennes extensions to position-dependent
order parameters.

2 See e.g. F. Gygi and M. Schlüter, Phys. Rev. B 41, 822 (1990); > Phys. Rev. B 43, 7609 (1991). > Q. Han,
J. Phys.: Condens. Matter 22, 035702 (2010). > C. Berthod, Phys. Rev. B 94, 184510 (2016).

3 C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307 (1964). > J. Bardeen, R. Kümmel, A. E.
Jacobs, and L. Tewordt, Phys. Rev. 187, 556 (1969).

4 G. E. Volovik, JETP Lett. 57, 244 (1993). > C. Berthod, Phys. Rev. B 71, 134513 (2005).
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(a) (b) (c)NbSe2 YBa2Cu3O7−δ Bi2Sr2CaCu2O8+δ

Figure 9.9: STM tunneling conductance in the core of magnetic vortices. In NbSe2 (a), the
LDOS shows a zero-bias peak (r = 0) and dispersing peaks (r > 0), in agreement with the BCS
theory.1 In YBa2Cu3O7−δ (b) and Bi2Sr2CaCu2O8+δ (c), there is no zero-bias peak and the spatial
and energy dependencies of the LDOS do not follow the BCS predictions.2 In (a) and (b), the
spectrum corresponding to the vortex center is at the back of the figure; in (c), the vortex core is
close to the center of the figure.

Vortex-core states in close agreement with the BCS predictions were first observed by
STM in NbSe2 [see Fig. 9.9(a)],3 and later in other superconductors. The zero-energy
peak can only be seen in clean materials where the mean free path is larger than the
superconducting coherence length.4 Vortex cores have also been measured in high-Tc
cuprates,5 but in this case the observations disagree with the BCS theory [Fig. 9.9(b)
and 9.9(c)]: there is no zero-energy peak at the vortex center but two symmetric peaks
at finite energy in YBa2Cu3O7−δ and a broad gap in Bi2Sr2CaCu2O8+δ. This behavior is
believed to be a consequence of the anomalous normal-state properties of the cuprate
superconductors.6

1 F. Gygi et al., and M. Schlüter, Phys. Rev. B 43, 7609 (1991).
2 Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and Ch. Renner, Rev. Mod. Phys. 79, 353 (2007).
3 H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, and J. V.Waszczak, Phys. Rev. Lett. 62, 214 (1989); >

H. F. Hess, R. B. Robinson, and J. V.Waszczak, Phys. Rev. Lett. 64, 2711 (1990).
4 Ch. Renner, A. D. Kent, Ph. Niedermann, Ø. Fischer, and F. Lévy, Phys. Rev. Lett. 67, 1650 (1991).
5 I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, and Ø. Fischer, Phys. Rev. Lett. 75, 2754 (1995).
6 C. Berthod, I. Maggio-Aprile, J. Bruér, A. Erb, and Ch. Renner, Phys. Rev. Lett. 119, 237001 (2017).
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Details of calculations

doc–1 Fourier transform of the Heaviside function

Eq. (8) can be established by using the residue theorem, Eq. (7). It is more convenient
to prove the inverse-Fourier transform relation, namely

∫ ∞

−∞

dω
2π

e−iωt ±i
ω± i0+

= θ (±t).

Let’s consider the + sign first. The integrand has
a pole atω = −i0+ with residue i/(2π). If t < 0,
we must close the contour in the upper half of
the complex plane, so that e−iωt is zero on that
part of the contour; there is no pole inside the
contour, so that the integral vanishes. If t > 0,
we must close the contour in the lower half of
the complex plane, thus enclosing the pole, so
that the integral equals −2πi× i/(2π) = 1. Thus
we get θ(t). For the minus sign, the pole is at
ω= +i0+ with residue −i/(2π), so that we get
1 for t < 0 and 0 for t > 0, i.e., θ (−t).

� Re(ω)

Im(ω)

−i0+

t < 0

�
Re(ω)

Im(ω)

−i0+

t > 0

doc–2 Powers of the Yukawa potential and their Fourier transform

We study the Fourier transform of the function 1/(q2+ k2
0)

n in the limit of a continuous
reciprocal space, i.e., V −1

∑
q → (2π)−3

∫
d3q. The integral to evaluate is

I =

∫
d3q
(2π)3

eiq ·r

(q2 + k2
0)n

.

163



164 Details of calculations doc–2

We choose spherical coordinates with the z axis parallel to r , so that
q · r = qr cosϑ. There is no dependence on the angular variable ϕ:

I =
1

(2π)2

∫ ∞

0

dq

∫ π

0

dϑ
q2 sinϑ eiqr cosϑ

(q2 + k2
0)n

. �ϑ
z

r q

The ϑ integration poses no problem,
∫ π

0 dϑ sinϑ eiqr cosϑ = 2sin qr
qr , so that we get

I =
1

2π2r

∫ ∞

0

dq
q sin qr
(q2 + k2

0)n
=

1
4π2r

1
i

∫ +∞

−∞
dq

q eiqr

(q2 + k2
0)n

.

Since the integrand is even, we could extend the domain of integration to the whole
real axis and divide by two. Furthermore, we could replace sin qr by eiqr/i because
the added cos qr term gives a vanishing contribution to the integral. We are now in the
position to use the residue theorem, Eq. (7), by continuing q into the complex plane.
The integrand has a pole of order n at q = ik0. Thanks to the eiqr numerator, we can
close the integration contour in the upper half of the complex plane, thus enclosing
the pole. Eq. (7) gives:

I =
1

4π2r
2π

(n− 1)!
lim

q→ik0

dn−1

dqn−1

�
(q− ik0)

n q eiqr

(q2 + k2
0)n︸ ︷︷ ︸

q eiqr

(q+ik0)n

�
.

Equations (14) and (15) result by setting n= 1 and n= 2, respectively.

doc–3 Sums over Matsubara frequencies

The key observation that allows one to evaluate the sums over Matsubara frequencies is
that the distribution function d−η(z), once analytically continued to complex variables
z, has poles on the imaginary axis precisely at the Matsubara frequencies: 1/d−η(iνn) =
eiνnβ −η= 0 [see Eq. (4.9) and Fig. 4.2]. Expanding 1/d−η(z) around z = iνn gives
1/d−η(z) = βeiνnβ(z − iνn) +O[(z − iνn)2] = βη(z − iνn) +O[(z − iνn)2]. Therefore,
the residue of d−η(z) at the Matsubara frequencies is simply 1/(βη). The idea, then,
is to consider the function G(z) = −ηd−η(z)F(z). Let’s assume that G(|z| →∞) = 0:
since d−η(z) is regular at infinity, this amounts to assuming that F(z) decreases at
infinity. The contour integral of G(z) on a circle of infinite diameter in the complex
plane therefore vanishes. By the residue theorem, this integral must equal the sum of
residues of G(z) at its poles. G(z) has two types of poles: the poles at the Matsubara
frequencies originating from d−η(z), with residues −η/(βη)F(iνn), and the poles
originating from F(z). Hence

∮

�
dz G(z) = 0= − 1

β

∑
iνn

F(iνn) +
∑
z0

(−η)d−η(z0)Resz0
F(z),

where z0 are the poles of F(z). This is Eq. (16). If the function F(z) is not analytic,
for instance if it has branch cuts, one must deform the contour in the complex plane
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such as to avoid these branch cuts. Eq. (16) gets additional terms depending on the
discontinuity across the branch cuts.

doc–4 Non-interacting Green’s function in imaginary time

Eq. (17) is just the Fourier transform of the free imaginary-time Green’s function
G0(ε, iνn) = 1/(iνn − ε). The Matsubara sum in Eq. (17) cannot be performed for
τ > 0 using Eq. (16), because the integrand d−η(z)e−zτ/(z − ε) diverges as |z| →∞
for τ > 0. For τ < 0, the integrand vanishes at infinity and Eq. (16) can therefore be
directly used. In order the establish Eq. (17) for arbitrary τ, it is simplest to check the
inverse imaginary-time Fourier transform as defined in Eq. (4.10):

∫ β

0

dτ
�−[θ (τ) +ηd−η(ε)]e

−ετ	 eiνnτ =

− [1+ηd−η(ε)]
∫ β

0

dτ e(iνn−ε)τ

︸ ︷︷ ︸
e(iνn−ε)τ

iνn−ε
���
β

0
= ηe−βε−1

iνn−ε

=
1

iνn − ε
,

where we have used eiνnβ = η [Eq. (4.9)] and −[1+ηd−η(ε)](ηe−βε − 1) = 1.

doc–5 Useful commutators

The first term in the right-hand side of Eq. (25) reads

[aα, K0] =
∑
γβ

ξγβ[aα, a†
γaβ].

The commutator [aα, a†
γaβ] contains two terms and is evaluated by making use of the

commutation relations, Eq. (2.41):

[aα, a†
γaβ] = aαa†

γ︸︷︷︸
δαγ+ηa†

γaα

a
β
− a†

γaβaα = δαγaβ +ηa†
γ aαa

β︸︷︷︸
ηa

β
aα

−a†
γaβaα = δαγaβ .

Hence we obtain [aα, K0] =
∑
β ξαβaβ as shown in Eq. (25). The second term in

Eq. (25) reads

[aα, V ] =
1
2

∑
µβγδ

Vµβγδ[aα, a†
µa†
β

a
δ
aγ].

The commutator is evaluated in the same way as the previous one,

[aα, a†
µa†
β

a
δ
aγ] = aαa†

µa†
β

a
δ
aγ − a†

µa†
β

a
δ
aγaα,
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by using the commutation rules to transform the first term on the right until it cancels
the second, thereby generating additional terms. Consider the first term:

aαa†
µ︸︷︷︸

δαµ+ηa†
µaα

a†
β

a
δ
aγ = δαµa†

β
a
δ
aγ +ηa†

µaαa†
β︸︷︷︸

δαβ+ηa†
β

aα

a
δ
aγ = δαµa†

β
a
δ
aγ +ηδαβa†

µa
δ
aγ+

+ a†
µa†
β

aαa
δ︸︷︷︸

ηa
δ

aα

aγ = δαµa†
β

a
δ
aγ +ηδαβa†

µa
δ
aγ +ηa†

µa†
β

a
δ

aαaγ︸︷︷︸
ηaγaα

=

δαµa†
β

a
δ
aγ +ηδαβa†

µa
δ
aγ + a†

µa†
β

a
δ
aγaα.

We see that the last term cancels the second term in the commutator, while two
additional terms have been generated:

[aα, a†
µa†
β

a
δ
aγ] = δαµa†

β
a
δ
aγ +ηδαβa†

µa
δ
aγ.

Inserting this into the expression of [aα, V ] we get two terms which can be recast as one
single term by using the symmetry property of the interaction, namely Vαβγδ = Vβαδγ
[or, in real space, V (r1, r2) = V (r2, r1)]:

[aα, V ] =
1
2

∑
µβγδ

Vµβγδ
�
δαµa†

β
a
δ
aγ +ηδαβa†

µa
δ
aγ
�
=

1
2

∑
βγδ

Vαβγδa†
β

a
δ
aγ+

η

2

∑
µγδ

Vµαγδ︸︷︷ ︸
Vαµδγ

a†
µa
δ
aγ =

1
2

∑
βγδ

Vαβγδa†
β

a
δ
aγ+

η

2

∑
βγδ

Vαβδγa
†
β

a
δ
aγ.

In the last term, we have renamed the dummy index µ as β . To finish, we exchange
the dummy indices γ and δ, Vαβδγa

†
β

a
δ
aγ → Vαβγδa†

β
aγaδ = ηVαβγδa†

β
a
δ
aγ, and we

obtain the second term in the right-hand side of Eq. (25).

Writing the particle number N =
∑
β a†

β
a
β

and using the commutation rules Eq. (2.41),
we find

Na†
α =

∑
β

a†
β
a
β

a†
α︸︷︷︸

δαβ+ηa†
αa
β

= a†
α +η

∑
β

a†
β

a†
α︸︷︷︸

ηa†
αa†
β

a
β
= a†

α + a†
αN ,

which proves the first of Eq. (28). Taking the conjugate we have aαN = aα + Naα,
which proves the second. Eq. (29) can be derived by using Eq. (28) and the definition
of the exponential:

ezN a†
α =

∞∑
n=0

(zN)n

n!
a†
α =

∞∑
n=0

zn

n!
a†
α(N + 1)n = a†

αez(N+1).

The conjugate gives aαez∗N = ez∗(N+1)aα. Since this is valid for any z we can replace z∗

by z and, after multiplying by the number e−z , we find aαez(N−1) = ezN aα.



doc–6 Nuclear scattering rate 167

doc–6 Nuclear scattering rate

The matrix element entering the transition rate in Eq. (1.3) is

|〈k, a|V |k ′, b〉|2 = 〈a|〈k|V |k ′〉|b〉〈b|〈k ′|V †|k〉|a〉

with

〈k|V |k ′〉= V0

∫
dr e−ik·r n(r )eik ′·r = V0

∫
dr e−i(k−k ′)·r n(r )

= V0 n(k − k ′) = V0 n(q)

〈k ′|V †|k〉= V0 n(k ′ − k) = V0 n(−q),

where we have used Eq. (2b) and ignored the normalization of the plane waves, which
is inessential for the present discussion. On the other hand, we can rewrite the delta
function using Eq. (3b) as

2πδ(Ek + Ea − Ek ′ − Eb) =
1
ħh

∫ ∞

−∞
d t ei(ħhω+Ea−Eb)t/ħh

and it follows that

Γ|k〉→|k ′〉 =
V 2

0

ħh2

∫ ∞

−∞
d t eiωt

∑
ab

ρa 〈a|eiEa t/ħh
︸ ︷︷ ︸
〈a|eiH t/ħh

n(q) e−iEb t/ħh|b〉︸ ︷︷ ︸
e−iH t/ħh|b〉

〈b|n(−q)|a〉

=
V 2

0

ħh2

∫ ∞

−∞
d t eiωt

∑
ab

ρa〈a| eiH t/ħhn(q)e−iH t/ħh
︸ ︷︷ ︸

n(q ,t)

|b〉〈b|n(−q)|a〉

=
V 2

0

ħh2

∫ ∞

−∞
d t eiωt

∑
a

ρa〈a|n(q , t)n(−q , 0)|a〉

=
V 2

0

ħh2

∫ ∞

−∞
d t eiωt Trρ n(q , t)n(−q , 0)

=
V 2

0

ħh2

∫ ∞

−∞
d t eiωt〈n(q , t)n(−q , 0)〉.

We have used that the many-particle states |a〉 are by assumption eigenstates of the
target’s Hamiltonian H, and at the third line we used the closure relation

∑
b |b〉〈b| = 11.

The other ingredients of this calculation are reviewed in Chapter 2.

doc–7 Isothermal compressibility

As Ω = V$ and $ = −p, we have Ω = −V p and therefore dΩ = −V dp − pdV .
Since, on the other hand, dΩ= −SdT − pdV − Ndµ we deduce V dp = SdT + Ndµ
or equivalently

dp =
S
V dT +

N
V dµ.
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It follows that
d

dp

�

T
=

1
n

d
dµ

�

T

where n= N/V and consequently

κT = −
1
V

dV
dp

�

T
= − 1
V

1
n

d(N/n)
dµ

�

T
= −N
V

1
n

�
d

dµ
1
n

�

T
=

1
n2

dn
dµ

�

T
.

doc–8 Partition function of independent fermions and bosons

A quantum system of independent particles in thermal equilibrium is entirely char-
acterized by (i) its one-particle energy levels εα—or rather, in the grand-canonical
ensemble, its excitation energies ξα = εα −µ—and (ii) their occupation numbers nα,
which give the number of particles actually in state α. We can therefore specify any
individual state of the system by the list {n1, n2, . . . , nα, . . .} of occupation numbers
and the corresponding energy K =

∑
α nαξα. For fermions, nα is either 0 or 1 due to

the Pauli exclusion principle, while for bosons nα is any non-negative integer. The
indistinguishability of quantum particles is taken into account since we do not require
to know which particle goes into which state, but only the number of them in each
level. The partition function is obtained by summing over all possible states according
to Eq. (2.4):

Z = Tr e−βK =





∑
{nα=0, ...,∞}

e−β
∑
α nαξα Bosons

∑
{nα=0,1}

e−β
∑
α nαξα Fermions.

Let’s start with the case of fermions, which is simpler. Assume first that there exist only
one state α, say α= 1. The system can accommodate either 0 (n1 = 0) or 1 (n1 = 1)
particle, and its energy is K = 0 in the first case and K = ξ1 in the second case. Hence
we have

Z = 1︸︷︷︸
0 fermion

+ e−βξ1︸︷︷︸
1 fermion

.

If there are two levels, the system can accommodate 0, 1, or 2 particles and the four
possible states are {n1, n2}= {0,0}, {1, 0}, {0,1}, and {1,1}:

Z = 1︸︷︷︸
0 fermion

+ e−βξ1 + e−βξ2︸ ︷︷ ︸
1 fermion

+ e−βξ1 e−βξ2︸ ︷︷ ︸
2 fermions

=
�
1+ e−βξ1

� �
1+ e−βξ2

�
.

For three levels we have

Z = 1︸︷︷︸
0 fermion

+ e−βξ1 + e−βξ2 + e−βξ3︸ ︷︷ ︸
1 fermion

+ e−βξ1 e−βξ2 + e−βξ1 e−βξ3 + e−βξ2 e−βξ3︸ ︷︷ ︸
2 fermions

+ e−βξ1 e−βξ2 e−βξ3︸ ︷︷ ︸
3 fermions

=
�
1+ e−βξ1

� �
1+ e−βξ2

� �
1+ e−βξ3

�
.
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Generalizing to an arbitrary number of levels is obvious:

Z =
∏
α

�
1+ e−βξα

�
(Fermions).

For bosons we proceed along the same lines, but already in the case of only one level
there are infinitely many states:

Z = 1︸︷︷︸
0 boson

+ e−βξ1︸︷︷︸
1 boson

+ e−2βξ1︸ ︷︷ ︸
2 bosons

+ e−3βξ1︸ ︷︷ ︸
3 bosons

+ . . .

= 1+ e−βξ1 +
�
e−βξ1

�2
+
�
e−βξ1

�3
+ . . . =

1
1− e−βξ1

.

For two levels we have

Z = 1︸︷︷︸
0 boson

+ e−βξ1 + e−βξ2︸ ︷︷ ︸
1 boson

+ e−2βξ1 + e−2βξ2 + e−βξ1 e−βξ2︸ ︷︷ ︸
2 bosons

+ . . .

=
�
1+ e−βξ1 +

�
e−βξ1

�2
+ . . .

��
1+ e−βξ2 +

�
e−βξ2

�2
+ . . .

�

=
1

1− e−βξ1

1
1− e−βξ2

.

The generalization is again obvious:

Z =
∏
α

1
1− e−βξα

(Bosons).

Thus we have established Eq. (2.12).

doc–9 Evolution operator and time ordering

At orders zero and one, the two equations (2.22) and (2.23) give the same result. At
order two, Eq. (2.22) gives

Û2 =
�
− i
ħh

�2
∫ t

−∞
d t1

∫ t1

−∞
d t2 V̂ (t1)V̂ (t2) =

�
− i
ħh

�2
∫ t

−∞
d t1d t2 θ (t1−t2)V̂ (t1)V̂ (t2).

We have extended the upper bound of the second integral from t1 to t and set the
integrand to zero in this range with the Heaviside θ function. Exchanging the dummy
variables t1 and t2 in the last expression, we also have

Û2 =
�
− i
ħh

�2
∫ t

−∞
d t1d t2 θ (t2 − t1)V̂ (t2)V̂ (t1).

Finally, averaging the two equations we obtain

Û2 =
(−i/ħh)2

2!

∫ t

−∞
d t1d t2 T+{V̂ (t1)V̂ (t2)}
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with T+ defined in Eq. (5). This is the second-order term in Eq. (2.23). The trick is
readily generalized. At order n we have from Eq. (2.22):

Ûn =
�
− i
ħh

�n
∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn V̂ (t1) · · · V̂ (tn) =

�
− i
ħh

�n
∫ t

−∞
d t1 · · · d tn θ (t1 − t2) · · ·θ (tn−1 − tn)V̂ (t1) · · · V̂ (tn).

There are n! ways of shuffling the dummy variables {t1, . . . , tn} in the last expression.
In this way we generate the n! terms of T+{V̂ (t1) · · · V̂ (tn)}.

doc–10 Time evolution and the t-matrix

Using the expression Eq. (2.19b) of the evolution operator in the interaction pic-
ture, U(t) = e−iK t/ħhÛ(t), the expansion Eq. (2.22) of Û(t), and the time evolution
Eq. (2.19a), we obtain for the matrix element 〈b|Ψ(t)〉= 〈b|U(t)|a〉:

〈b|Ψ(t)〉= 〈b|e−iK t/ħh
�
11+

∞∑
n=1

�
− i
ħh

�n
∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn

× eiK t1/ħhVe−iK(t1−t2)/ħh · · · e−iK(tn−1−tn)/ħhVe−iK tn/ħh
�
|a〉.

Let’s lighten the notation by temporarily introducing K = K/ħh. Since |a〉 and |b〉 are
(orthogonal) eigenstates of K with eigenvalues Ka and Kb, respectively, we have
e−iK tn |a〉= e−iKa tn |a〉 and 〈b|e−iK t = e−iKb t〈b|. The first term of the expansion thus
reads e−iKb t〈b|a〉 = 0. In the other terms, we insert the identity 11 =

∑
a |a〉〈a| after

each interaction V except the last:

〈b|Ψ(t)〉=
∞∑
n=1

�
− i
ħh

�n∑
a1

· · ·
∑
an−1

∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn

× e−iKb(t−t1)〈b|V |a1〉〈a1|e−iK (t1−t2) · · · |an−1〉〈an−1|e−iK (tn−1−tn)V |a〉e−iKa tn .

Again, we can take advantage of the fact that the states |a〉 are eigenstates of K :

〈b|Ψ(t)〉=
∞∑
n=1

�
− i
ħh

�n∑
a1

· · ·
∑
an−1

〈b|V |a1〉〈a1|V |a2〉 · · · 〈an−1|V |a〉

×
∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn e−iKb(t−t1)e−iKa1

(t1−t2) · · · e−iKan−1
(tn−1−tn)e−iKa tn e0+ tn .

At the very end, we have added a factor e0+ tn to take into account the adiabatic switching
of the interaction. The justification is as follows. Looking at the domains of integration,
we see that −∞ < tn < tn−1 < · · · < t1 < t. Therefore, if the interaction is switched
on at time tn, it will be automatically on at all other times in the expansion. The factor
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e0+ tn ensures that Vtn→−∞ = 0, such that the interaction is switched on exponentially
from t = −∞. The tn integration can now be performed:

∫ tn−1

−∞
d tn ei(Kan−1

−Ka−i0+)tn = i
ei(Kan−1

−Ka−i0+)tn−1

Ka −Kan−1
+ i0+

.

It is seen that the factor e0+ tn−1 in the numerator carries the adiabatic switching factor
over to the integration on tn−1; furthermore, the factor eiKan−1

tn−1 cancels the e−iKan−1
tn−1

originating from V̂ (tn−1) such that, in the end, the tn−1 integration takes exactly the
same form as the above tn integration, however with n replaced by n− 1 everywhere.
Iterating the process from tn to t1, we get

∫ t

−∞
d t1 · · ·

∫ tn−1

−∞
d tn e−iKb(t−t1)e−iKa1

(t1−t2) · · · e−iKan−1
(tn−1−tn)e−iKa tn e0+ tn

= in e−i(Ka+i0+)t

Ka −Kb + i0+
1

Ka −Ka1
+ i0+

· · · 1
Ka −Kan−1

+ i0+

= (iħh)n e−i(Ka+i0+)t

Ka − Kb + i0+
1

Ka − Ka1
+ i0+

· · · 1
Ka − Kan−1

+ i0+
.

Noting that (−i)nin = 1, the matrix element becomes

〈b|Ψ(t)〉= e−i(Ka+i0+)t

Ka − Kb + i0+
〈b|V

∞∑
n=1

∑
a1

|a1〉〈a1|
Ka − Ka1

+ i0+
︸ ︷︷ ︸

(Ka−K+i0+)−1

V · · ·

×
∑
an−1

|an−1〉〈an−1|
Ka − Kan−1

+ i0+
︸ ︷︷ ︸

(Ka−K+i0+)−1

V |a〉

=
e−i(Ka+i0+)t/ħh

Ka − Kb + i0+
〈b|V

∞∑
n=1

�
(Ka − K + i0+)−1V

�n−1|a〉.

This is just Eq. (2.25) with the t-matrix defined as

T (ε) = V
∞∑
n=1

�
(ε + i0+ − K)−1V

�n−1

= V + V (ε + i0+ − K)−1V

+ V (ε + i0+ − K)−1V (ε + i0+ − K)−1V + . . .

= V + V (ε + i0+ − K)−1T (ε),

consistently with Eq. (2.26).

In order to evaluate the transition rate, we need the time derivative of |〈b|Ψ(t)〉|2. We
temporarily replace 0+ by ε and write

d
d t
|〈b|Ψ(t)〉|2 = |〈b|T (Ka)|a〉|2

(Ka − Kb)2 + ε2

d
d t

e2εt/ħh =
2
ħh |〈b|T (Ka)|a〉|2

e2εt/ħhε

(Ka − Kb)2 + ε2
.
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We thus arrive at Eq. (2.27) by noting that the Lorentzian of width ε, Lε(x) =
(ε/π)/(x2 + ε2), becomes a delta function as ε→ 0+:

Γa→b =
2π
ħh |〈b|T (Ka)|a〉|2 lim

ε→0+
e2εt/ħh ε/π

(Ka − Kb)2 + ε2︸ ︷︷ ︸
δ(Ka−Kb)

.

doc–11 The plane-wave basis set

The orthonormality of the plane waves in Eq. (2.29) is verified as follows:

〈kσ|k ′σ′〉=
∫

d1ϕ∗kσ(1)ϕk ′σ′(1) =
∑
σ1

∫
dr1

δσσ1pV e−ik·r1
δσ′σ1pV eik ′·r1

= δσσ′
1
V

∫
dr1 e−i(k−k ′)·r1 = δσσ′δkk ′ .

The completeness requires
∑
kσ

|kσ〉〈kσ|= 11⇔
∑
kσ

〈1|kσ〉〈kσ|2〉=
∑
kσ

ϕkσ(1)ϕ
∗
kσ(2) = δ(1− 2)

⇔
∑
kσ

δσσ1pV eik·r1
δσσ2pV e−ik·r2 = δσ1σ2

δ(r1 − r2)

⇔ 1
V
∑

k

eik·(r1−r2) = δ(r1 − r2).

This last condition is part of our conventions for the Fourier transforms [see Eq. (3a)].

doc–12 Commutation rules of creation and annihilation operators

Using the definitions Eq. (2.42), we calculate the action of aαa†
β

on an arbitrary state
|n1, n2, . . .〉. We must distinguish the three cases α < β , α= β , and α > β:

α < β : aαa†
β
| . . . , nα, . . . , nβ , . . .〉=

η(
∑β−1

i=α ni)pnα
Æ

1+ηnβ | . . . , nα − 1, . . . , nβ + 1, . . .〉

α= β : aαa†
α | . . . , nα, . . .〉=pnα + 1

p
1+ηnα︸ ︷︷ ︸

1+ηnα

| . . . , nα, . . .〉

α > β : aαa†
β
| . . . , nβ , . . . , nα, . . .〉=

η(
∑α−1

i=β ni)+1pnα
Æ

1+ηnβ | . . . , nβ + 1, . . . , nα − 1, . . .〉.
At the third line, we have replaced

p
nα + 1

p
1+ηnα by 1+ηnα: this is obvious for

η= +1; for η= −1 it can also be verified case by case since nα = 0 or 1. At the fifth
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line, the additional factor η stems from the fact that aα acts on a state in which the
occupation number of state β is increased by one. We now calculate the action of
a†
β

aα:

α < β : a†
β

aα | . . . , nα, . . . , nβ , . . .〉=
η(
∑β−1

i=α ni)−1
Æ

1+ηnβ
p

nα | . . . , nα − 1, . . . , nβ + 1, . . .〉

α= β : a†
αaα | . . . , nα, . . .〉=

Æ
1+η(nα − 1)

p
nα︸ ︷︷ ︸

nα

| . . . , nα, . . .〉

α > β : a†
β

aα | . . . , nβ , . . . , nα, . . .〉=
η(
∑α−1

i=β ni)
Æ

1+ηnβ
p

nα | . . . , nβ + 1, . . . , nα − 1, . . .〉.

Subtracting these two sets of equations, we obtain the action of aαa†
β
−ηa†

β
aα:

aαa†
β
−ηa†

β
aα = [aα, a†

β
]−η =





0 α < β

11 α= β
0 α > β .

This proves the first expression in Eq. (2.41). The other relations are easily established
using the same method.

From the definitions, we readily check that aα| . . . , nα = 0, . . .〉= 0. Furthermore, for
fermions, c†

α| . . . , nα = 1, . . .〉 = 0. Finally, we see above that the states in the occupation
number representation are eigenstates of a†

αaα with eigenvalue nα. Therefore we can
define the operator nα = a†

αaα as the operator measuring the number of particles in
state α.

doc–13 Change of basis

We are looking for a relation between a†
k and a†

r . We omit to write quantum numbers
other than k and r for briefness. The desired relation takes the generic form

a†
k =

∫
dr Ukr a†

r .

The commutation rules require that the matrix U be unitary. Acting on the vacuum
with both sides of the equation and multiplying on the left by 〈r1|, we find

〈r1|a†
k |∅〉= ϕk(r1) =

∫
dr Ukr 〈r1|a†

r |∅〉︸ ︷︷ ︸
δ(r−r1)

= Ukr1
,

which gives the expression of the matrix U and the relation between a†
k and a†

r :

a†
k =

1pV

∫
dr eik·r a†

r . (10.1)
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Note that this is different from our convention for Fourier transforms, Eq. (2b), both
for the sign of the phase and for the normalization coefficient. Conjugating, we obtain

ak =
1pV

∫
dr e−ik·r ar , (10.2)

which show that the creation and annihilation operators do not transform like ordinary
scalar functions. The inverse relations are

a†
r =

1pV
∑

k

e−ik·r a†
k and ar =

1pV
∑

k

eik·r ak . (10.3)

The argument is readily extended to arbitrary one-particle bases and leads to:

a†
r =

∑
α

ϕ∗α(r )a
†
α and a†

α =

∫
dr ϕα(r )a

†
r . (10.4)

With these transformation rules, we can evaluate the Fourier transform of the real-space
density operator:

n(q) =

∫
dr n(r )e−iq ·r =

∫
dr a†

r ar︸︷︷︸
1
V
∑

kk′ a†
k a

k′ e
−i(k−k′)·r

e−iq ·r

=
1
V
∑
kk ′

a†
k ak ′

∫
dr ei(k ′−k−q)·r

︸ ︷︷ ︸
V δk′ ,k+q

=
∑

k

a†
k ak+q .

doc–14 Current operator and continuity equation

As we know from analytical mechanics, the effect of an electromagnetic field on particles
is to shift their momenta by the quantity −eA(r ), where e is the charge of the particle
and A(r ) is the vector potential (assume the gauge is such that the scalar potential is
zero). The resulting change in the particle energy is the product of its velocity (i.e.,
the current) by the change in momentum. For a collection of particles, the change in
energy is therefore δH ′ =

∫
dr j(r ) · (−e)δA(r ) with H ′ the part of the Hamiltonian

that does depend on A(r ). In differential form, this becomes

j(r ) = −1
e
δH ′

δA(r )
.

The current is the functional derivative of the Hamiltonian with respect to −eA(r ). If
we can express the Hamiltonian in terms of the creation and annihilation operators,
the above relation can serve as a definition of the current operator. The effect of the
electromagnetic field can be accounted for by replacing in the unperturbed Hamiltonian
the momentum operator p = −iħh∇ by p − eA(r ). Since, in a solid, the operator p
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appears only in the kinetic energy, the energy of interaction with the electromagnetic
field is, in second-quantization notation,

H ′ =
∫

dr
∑
σ

a†
rσ

[p − eA(r )]2

2m
arσ −

∫
dr
∑
σ

a†
rσ

p2

2m
arσ

=
1

2m

∫
dr
∑
σ

a†
rσ

�
ieħh∇r · A(r ) + ieħhA(r ) ·∇r + e2A2(r )

�
arσ.

We can rearrange this into a more convenient form with the help of the relation
∫

dr a†
rσ∇r · A(r )arσ = −

∫
dr A(r ) · �∇r a†

rσ

�
arσ,

which is readily verified through integration by parts and neglect of the surface term.
We then have

H ′ = −e

∫
dr

�
iħh
2m

∑
σ

A(r ) · ��∇r a†
rσ

�
arσ − a†

rσ

�
∇r arσ

��

− e
2m

∑
σ

A2(r )a†
rσarσ

�
.

Evaluating the functional derivative, we deduce the formulas given in Eq. (2.49) for
the paramagnetic and diamagnetic current densities. It will be proven below that this
definition of the current satisfies the continuity equation.

The Fourier transform of j(r ) is easily evaluated by using the expressions of the field
operators in the plane-wave basis [see doc–13]:

j p(q) =

∫
dr e−iq ·r iħh

2m

∑
σ

1
V
∑
kk ′

a†
kσak ′σ

��
∇r e−ik·r�eik ′·r
︸ ︷︷ ︸
−ike−i(k−k′)·r

− e−ik·r�∇r eik ′·r�
︸ ︷︷ ︸

ik ′e−i(k−k′)·r

�

=
ħh

2m

∑
σ

1
V
∑
kk ′
(k + k ′)a†

kσak ′σ

∫
dr e−iq ·r e−i(k−k ′)·r

︸ ︷︷ ︸
V δk′ ,k+q

=
ħh

2m

∑
kσ

(2k + q)a†
kσak+qσ,

consistently with Eq. (2.50), and

j d(q) =

∫
dr e−iq ·r

�
− e

m

�∑
σ

A(r )
1
V
∑
kk ′

a†
kσak ′σe−ik·r eik ′·r

= − e
m

1
V
∑
kk ′σ

a†
kσak ′σ

∫
dr A(r )e−i(q+k−k ′)·r

︸ ︷︷ ︸
A(q+k−k ′)

= − e
m

1
V
∑
kk ′σ

A(k − k ′)a†
kσak ′+qσ,
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where we have introduced the Fourier transform of the vector potential.

We check now that the current operator, Eq. (2.49), satisfies the continuity equation
∇ · j(r ) + ∂t n(r ) = 0 with n(r ) =

∑
σ a†

rσarσ the particle density. The time evolution
of the density is given by Eq. (2.15), n(t) = eiK t/ħhn e−iK t/ħh, which yields ∂t n =

i
ħh [K , n].

Furthermore, the only term in the Hamiltonian which does not commute with the
density is the kinetic energy. Hence we must calculate [H, n], where H is

H =
1

2m

∫
dr
∑
σ

a†
rσ[p − eA(r )]2arσ

=
1
V
∑
kk ′σ

1
2m

�
ħh2k2V δkk ′ − eħh(k + k ′) · A(k − k ′) + e2A2(k − k ′)

�
a†

kσak ′σ.

We have performed the change of basis r → k. In the last expression, A2(q) should
be understood as the Fourier transform of A2(r ), not as the Fourier transform of
A(r ) squared. The calculations are more easily done in momentum space, where the
continuity equation reads

iq · j(q) + i
ħh [H, n(q)] = 0.

We now evaluate the commutator using Eqs (2.46) and (2.41):

[H, n(q)] =
1

2m
1
V
∑
kk ′σ

∑
k ′′σ′′
[ . . . ]

�
a†

kσak ′σ, a†
k ′′σ′′ak ′′+qσ′′

�
︸ ︷︷ ︸

δσσ′′δk′k′′ a
†
kσa

k′+qσ
−δσσ′′δk,k′′+q a†

k−qσa
k′σ

=
1

2m
1
V
∑
kk ′σ

�
ħh2k2V δkk ′ − eħh(k + k ′) · A(k − k ′)

−ħh2(k + q)2V δkk ′ + eħh(k + k ′ + 2q) · A(k − k ′)
�
a†

kσak ′+qσ.

In the second series of terms coming from the commutator, we have shifted both
momenta k and k ′ by q . Collecting the terms, we obtain

[H, n(q)] =
−ħh2

2m

∑
kσ

�
2q · k + q2

�
a†

kσak+qσ +
eħh
m

q · 1
V
∑
kk ′σ

A(k − k ′)a†
kσak ′+qσ

= −ħhq · � j p(q) + j d(q)
�

,

which proves that the current Eq. (2.49) satisfies the continuity equation.

doc–15 Hamiltonian of Bloch electrons

The Hamiltonian describing independent electrons subject to the periodic potential
Eq. (2.51) is a one-body Hamiltonian of the generic form Eq. (2.43). We work in the
plane-wave basis and thus replace α and β by (kσ) and (k ′σ′). We furthermore omit
the spin indices—the whole problem is diagonal in the spin variables—and we use
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the decomposition k → k +G with k in the first Brillouin zone. The matrix element
becomes

Tαβ −→ Tk+G,k ′+G′ =

∫
dr1

e−i(k+G)·r1

pV

�
p2

1

2m
+ V (r1)

�
ei(k ′+G′)·r1

pV

with p1 = −iħh∇r1
. Performing the integration and making use of the expansion

Eq. (2.51), we get

Tk+G,k ′+G′ =
ħh2

2m
(k ′ +G′)2δk+G,k ′+G′ +

∑
G′′

V (G′′)δk+G,k ′+G′+G′′ .

Due to the uniqueness of the decomposition k → k+G, we have δk+G,k ′+G′ = δkk ′δGG′

and δk+G,k ′+G′+G′′ = δkk ′δG,G′+G′′ . It follows that

Tk+G,k ′+G′ = δkk ′

�
ħh2

2m
(k +G)2δGG′ + V (G −G′)

�
,

which proves Eq. (2.52).

doc–16 Normal coordinates

Using the definition Eq. (2.58), the second-order term in Eq. (2.57) becomes

U2 =
1
2

∑
nm

∑
νiµ j

uνi(Rn)
Æ

MνMµWνiµ j(Rn −Rm)uµ j(Rm).

We inject the Fourier transform Wνiµ j(Rn −Rm) =
1
N
∑

k Dνiµ j(k)eik·(Rn−Rm) as well as
the displacements, Eq. (2.61), and find

U2 =
1
2

1
N 2

∑
k k1k2

∑
λ1λ2

∑
νiµ j

qk1λ1
[εk1λ1

]νi qk2λ2
[εk2λ2

]µ j Dνiµ j(k)

×
∑
nm

eik1·Rn eik·(Rn−Rm)eik2·Rm

︸ ︷︷ ︸
N 2δk1,−kδk2k

=
1
2

∑
k

∑
λ1λ2

∑
νiµ j

q−kλ1
[ε−kλ1

]νi qkλ2
[εkλ2

]µ j Dνiµ j(k).

The matrix of force constants W being real, we have the property D(−k) = D∗(k)
which also implies ε−kλ = ε∗kλ. Furthermore, the reality of the displacements uνi(Rn)
implies q−kλ = q∗kλ. Using these properties and the fact that the dynamical matrix is
diagonal in the representation of its eigenstates,

Dνiµ j(k) =
∑
λ

[εkλ]νiω
2
kλ [ε

∗
kλ]µ j ,
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we obtain

U2 =
1
2

∑
kλ

∑
λ1λ2

q∗kλ1
qkλ2

ω2
kλ

∑
νi

[ε∗kλ1
]νi[εkλ]νi

︸ ︷︷ ︸
δλλ1

∑
µ j

[ε∗kλ]µ j[εkλ2
]µ j

︸ ︷︷ ︸
δλλ2

=
1
2

∑
kλ

|qkλ|2ω2
kλ.

The kinetic energy of the lattice expressed in terms of the normal coordinates reads

1
2

∑
nνi

Mνu̇
2
νi(Rn) =

1
2

∑
nνi

1
N

∑
k1λ1

∑
k2λ2

q̇k1λ1
[εk1λ1

]νi eik1·Rn q̇k2λ2
[εk2λ2

]νi eik2·Rn .

The Rn sum yields N δk1,−k2
. Equation (2.63) follows:

1
2

∑
nνi

Mνu̇
2
νi(Rn) =

1
2

∑
k

∑
λ1λ2

q̇kλ1
q̇∗kλ2

∑
νi

[εkλ1
]νi[ε

∗
kλ2
]νi

︸ ︷︷ ︸
δλ1λ2

=
1
2

∑
kλ

|q̇kλ|2.

doc–17 Phonon density of states in the Debye model

In the model of Debye, the phonon spectrum is composed of only acoustic branches
that remain linear up to the Brillouin-zone boundary, where they reach the maximum
frequency ωD, i.e., ωkλ = ck. The phonon density of states in this model is, in three
dimensions,

Nph
D (ε) =

∑
kλ

δ(ε −ħhωkλ) = θ (ħhωD − ε)
3NatV
(2π)3

∫
d3kδ(ε −ħhck)

= θ (ħhωD − ε)
3NatV
2π2ħhc

∫ ∞

0

dk k2δ
� ε
ħhc
− k

�
= θ (ħhωD − ε)

3NatV
2π2ħhc

� ε
ħhc

�2
.

The various factors can be expressed in terms of ωD thanks to the normalization:

Nmodes =

∫ ∞

0

dεNph
D (ε) =

3NatV
2π2(ħhc)3

(ħhωD)3

3
.

In this way we get Eq. (2.68). The lowest-frequency phonons are always acoustic
modes that disperse linearly for k → 0. The ε2 behavior of the phonon DOS for
ε → 0 is therefore expected to be a robust feature and should be controlled by the
sound velocity. When relating the curvature of the phonon DOS to the sound velocity,
one must be careful that the latter is not necessarily equal to c. For a cubic crystal,
for instance, the sound velocity is vs = (v2

x + v2
y + v2

z )
1/2 =

p
3c because each of
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the three modes has a velocity c = (dω/dkx)ky=kz=0. On the other hand, we have
3NatV = 3NatN Vcell = NmodesVcell. It follows that

Nph(ε→ 0)
Nmodes

=
3

3
2Vcell

2π2(ħhvs)3
ε2.

doc–18 Hamiltonian for the electron-phonon interaction

The electron-phonon coupling Hamiltonian is obtained by inserting in the electron-ion
Hamiltonian Eq. (2.71) the second term in the right-hand side of Eq. (2.72):

Hel-ph =

∫
dr n(r )

∑
nν

e uν(Rn) ·∇Vν(r −Rn −τ0
ν).

The displacements are given by Eq. (2.66),

uν(Rn) =
∑
qλ

√√√ ħh
2MνωqλN

[εqλ]ν
�

bqλ + b†
−qλ

�
eiq ·Rn ,

and the gradient of the lattice potential is most easily evaluated in momentum space:

∇Vν(r −Rn −τ0
ν) =

1
V
∑

k

Vν(k)∇eik·(r−Rn−τ0
ν) =

1
V
∑

k

Vν(k)(ik)e
ik·(r−Rn−τ0

ν).

Inserting these two expressions in Hel-ph, we see that the Rn sum yields N δkq :

Hel-ph =
1
Vcell

∑
qλν

e

√√√ ħh
2MνωqλN

[εqλ]ν
�

bqλ + b†
−qλ

�
·Vν(q)(iq)e−iq ·τ0

ν

∫
dr n(r )eiq ·r

︸ ︷︷ ︸
n(−q)

.

The electron density operator is given by Eq. (2.46) as n(−q) =
∑

kσ c†
kσck−qσ =∑

kσ c†
k+qσckσ, which yields

Hel-ph =
∑
kσ

∑
qλ


 ie
Vcell

∑
ν

√√√ ħh
2MνωqλN

�
[εqλ]ν · q

�
Vν(q)e

−iq ·τ0
ν




× c†
k+qσckσ

�
bqλ + b†

−qλ

�
,

consistently with Eqs (2.73) and (2.74).
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doc–19 Spectral-density functions

We introduce twice the identity using Eq. (21) and write the trace as
∑

c〈c| · · · |c〉:

F±1 (t) = ∓
i
ħhθ (±t)

1
Z

∑
abc

〈c|e−βK eiK t/ħh|a〉〈a|A|b〉〈b|e−iK t/ħhB|c〉

= ∓ i
ħhθ (±t)

1
Z

∑
abc

e−βKa ei(Ka−Kb)t/ħh 〈c|a〉︸︷︷︸
δca

〈a|A|b〉〈b|B|c〉

= ∓ i
ħhθ (±t)

1
Z

∑
ab

e−βKa ei(Ka−Kb)t/ħh〈a|A|b〉〈b|B|a〉.

The time-Fourier transform is now readily performed using Eq. (8):

F±1 (ω) =
∫ ∞

−∞
d t eiωt F±1 (t) =

1
Z

∑
ab

e−βKa

ħhω+ Ka − Kb ± i0+
〈a|A|b〉〈b|B|a〉

=

∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε ± i0+

with ρ>AB(ε) given by Eq. (3.12). In the same way, the function F2 becomes:

F±2 (t) = ±
i
ħhηθ (±t)

1
Z

∑
abc

〈c|e−βK BeiK t/ħh|a〉〈a|A|b〉〈b|e−iK t/ħh|c〉

= ± i
ħhηθ (±t)

1
Z

∑
ab

e−βKb ei(Ka−Kb)t/ħh〈b|B|a〉〈a|A|b〉,

such that the Fourier transform follows as

F±2 (ω) = −η
1
Z

∑
ab

e−βKb

ħhω+ Ka − Kb ± i0+
〈a|A|b〉〈b|B|a〉

=

∫ ∞

−∞
dε

ρ<AB(ε)

ħhω− ε ± i0+

with ρ<AB(ε) given by Eq. (3.14).

doc–20 Greater and lesser spectral functions

In Fourier space, the greater and lesser functions are simply proportional to the corre-
sponding spectral functions. Indeed we have

C>AB(ω) =

∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε + i0+
−
∫ ∞

−∞
dε

ρ>AB(ε)

ħhω− ε − i0+

=

∫ ∞

−∞
dε ρ>AB(ε)

� 1
ħhω− ε + i0+

− 1
ħhω− ε − i0+︸ ︷︷ ︸

−2πiδ(ħhω−ε)

�
= −2πiρ>AB(ħhω),
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where we have used Eq. (9). Similarly,

C<AB(ω) =

∫ ∞

−∞
dε ρ<AB(ε)

� 1
ħhω− ε − i0+

− 1
ħhω− ε + i0+︸ ︷︷ ︸

2πiδ(ħhω−ε)

�
= 2πiρ<AB(ħhω).

doc–21 Spectral functions of independent fermions

For the one-electron Green’s function, we must evaluate 〈a|A|b〉〈b|B|a〉 for A = cα
and B = c†

α: this reduces to |〈a|cα|b〉|2. The many-electrons states |a〉 and |b〉 are
Slater determinants for Na and Nb electrons, respectively, constructed using the one-
particle basis ϕα(1) that corresponds to the operators cα and c†

α. In the occupation-

number representation, they take the form |a〉 = |n|a〉1 , n|a〉2 , . . . , n|a〉α , . . .〉 and |b〉 =
|n|b〉1 , n|b〉2 , . . . , n|b〉α , . . .〉, with the occupation numbers satisfying the properties

∑
i n|a〉i =

Na,
∑

i n|b〉i = Nb,
∑

i εin
|a〉
i = Ea, and

∑
i εin

|b〉
i = Eb. Using Eq. (2.42), we see that

cα|b〉= (−1)γ
q

n|b〉α | . . . , n|b〉α − 1, . . .〉

where γ=
∑

i<α n|b〉i . As a result, we find

|〈a|cα|b〉|2 = n|b〉α δn|a〉1 n|b〉1
δn|a〉2 n|b〉2

· · ·δn|a〉α n|b〉α −1 · · ·= n|b〉α δn|a〉α n|b〉α −1

∏
i 6=α
δn|a〉i n|b〉i

.

In other words, all occupation numbers except nα must be the same in the states |a〉
and |b〉 for the matrix element to be nonzero. Since, on the other hand, n|a〉α = n|b〉α − 1,
we have Ea = Eb − εα and Na = Nb − 1. In summary,

|〈a|cα|b〉|2 =
(

n|b〉α if n|a〉i = n|b〉i for i 6= α and n|a〉α = n|b〉α − 1

0 otherwise.

Thus, the spectral function Eq. (3.12) becomes

ρ>
cαc†

α

(ε) =
1
Z

∑
b

e−β(Eb−εa−µNb+µ)n|b〉α δ(ε − εα +µ).

We note that e−β(Eb−µNb)n|b〉α = 〈b|e−βK nα|b〉 and introduce ξα ≡ εα − µ as usual.
Therefore

ρ>
cαc†

α

(ε) = eβξaδ(ε − ξα)
1
Z

∑
b

〈b|e−βK nα|b〉
︸ ︷︷ ︸

Trρnα=〈nα〉= f (ξα)

= f (−ξα)δ(ε − ξα),
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like indicated in Eq. (3.24). The procedure for ρ<
cαc†

α

is similar:

ρ<
cαc†

α

(ε) =
1
Z

∑
b

e−β(Eb−µNb)n|b〉α δ(ε − εα +µ) = f (ξα)δ(ε − ξα).

The calculation is slightly more complicated for the density-density correlation function
because, even if B† = A in this case as well, the square |〈a|A|b〉|2 involves crossed terms
that in the end turn out to vanish. We write

〈a|A|b〉〈b|B|a〉= 〈a|A|b〉〈a|B†|b〉∗ =
∑
kσ

∑
k ′σ′
〈a|c†

kσck+qσ|b〉〈a|c†
k ′σ′ ck ′+qσ′ |b〉∗.

The crossed terms are those with kσ 6= k ′σ′. For convenience, we temporarily use the
notations (kσ)≡ α, (k + qσ)≡ β , (k ′σ′)≡ α′, and (k ′ + qσ′)≡ β ′. Performing the
same analysis as for the Green’s function, we see that

〈a|c†
αc
β
|b〉=





(−1)γ
q

1− n|b〉α
r

n|b〉
β

if n|a〉i = n|b〉i for i 6= α,β and

n|a〉α = n|b〉α + 1, n|a〉
β
= n|b〉

β
− 1

0 otherwise,

〈a|c†
α′ cβ ′ |b〉∗ =





(−1)γ
′
Ç

1− n|b〉α′
r

n|b〉
β ′ if n|a〉i = n|b〉i for i 6= α′,β ′ and

n|a〉α′ = n|b〉α′ + 1, n|a〉
β ′ = n|b〉

β ′ − 1

0 otherwise.

For the product of the two matrix elements to be nonzero, we must clearly have either
α′ = α and β ′ = β , or α′ = β and β ′ = α. If α′ = α and β ′ = β , the four additional
conditions n|a〉α = n|b〉α + 1, n|a〉

β
= n|b〉

β
− 1, n|a〉α′ = n|b〉α′ + 1, and n|a〉

β ′ = n|b〉
β ′ − 1 can be

satisfied together. On the contrary, they cannot be satisfied if α′ = β and β ′ = α: this
second option must be discarded, and with it all the crossed terms. The constraints
α′ = α and β ′ = β imply γ′ = γ and consequently

〈a|c†
αc
β
|b〉〈a|c†

α′ cβ ′ |b〉∗ =





(1− n|b〉α )n
|b〉
β

if α′ = α, β ′ = β , n|a〉i = n|b〉i for i 6= α,β

and n|a〉α = n|b〉α + 1, n|a〉
β
= n|b〉

β
− 1

0 otherwise.

The relation between |a〉 and |b〉 implies Ea = Eb−εk+q +εk and Na = Nb. Using these
conditions, we can finish the evaluation of the spectral function

ρ>n(q)n(−q)(ε) =
∑
kσ

1
Z

∑
b

e−β(Eb−εk+q+εk−µNb)(1− n|b〉kσ)n
|b〉
k+qσ δ(ε − εk+q + εk)

=
∑
kσ

eβ(εk+q−εk )δ(ε − εk+q + εk)
1
Z

∑
b

〈b|e−βK(1− nkσ)nk+qσ|b〉
︸ ︷︷ ︸
〈(1−nkσ)nk+qσ〉=[1− f (ξk )] f (ξk+q )

=
∑
kσ

eβξk+q f (ξk+q )︸ ︷︷ ︸
f (−ξk+q )

e−βξk f (−ξk)︸ ︷︷ ︸
f (ξk )

δ(ε − ξk+q + ξk),
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which is the first of Eqs (3.28). The second of Eqs (3.28) follows in exactly the same
way (the minus sign comes from the −η in Eq. (3.14), since we must set η = +1 here).
Finally, the retarded correlation function takes the form

χ0
nn(q ,ε) =

∫ ∞

−∞
dε′
ρ>n(q)n(−q)(ε

′) +ρ<n(q)n(−q)(ε
′)

ε − ε′ + i0+

=
∑
kσ

f (ξk) f (−ξk+q )− f (−ξk) f (ξk+q )

ε + ξk − ξk+q + i0+

=
∑
kσ

f (ξk)[1− f (ξk+q )]− [1− f (ξk)] f (ξk+q )

ε + ξk − ξk+q + i0+

=
∑
kσ

f (ξk)− f (ξk+q )

ε + ξk − ξk+q + i0+
.

doc–22 Density-density correlation function of independent electrons

Eq. (3.29) is particularly simple because the wave functions of free electrons are
simple. For electrons that are independent but not free, the wave functions carry
information about the underlying potential and this has consequences for the density-
density correlation function. In general, the Hamiltonian of independent electrons can
be written as

K =
∑
ασ

ξαγ
†
ασγασ,

where γ†
ασ is the operator that creates a spin-σ electron in the eigenstate α of the

Hamiltonian, with excitation energy ξα and wave function ϕα(r ). In order to express
the density operator, we need the relation between c†

kσ (the free-electron creation
operator) and γ†

ασ. Following Eqs (10.1) and (10.4), we get

c†
kσ =

1pV

∫
dr eik·r

∑
α

ϕ∗α(r )γ
†
ασ =

1pV
∑
α

�∫
dr ϕα(r )e

−ik·r

︸ ︷︷ ︸
ϕα(k)

�∗
γ†
ασ

=
1pV
∑
α

ϕ∗α(k)γ
†
ασ.

Inserting into Eq. (2.46) yields the expression of the density in terms of the γ’s:

n(q) =
∑
αβσ

Sαβ (q)γ
†
ασγβσ, Sαβ (q) =

1
V
∑

k

ϕ∗α(k)ϕβ (k + q).

Because the γ’s have the same commutation rules than the c’s, the calculation of the
density-density correlation function proceeds exactly like for free electrons in doc–21
with matrix elements like 〈a|c†

αc
β
|b〉 replaced by 〈a|γ†

αγβ |b〉. On thus finds

ρ>n(q)n(−q)(ε) =
∑
αβσ

Sαβ (q)Sβα(−q)︸ ︷︷ ︸
|Sαβ (q)|2

f (ξα) f (−ξβ )δ(ε + ξα − ξβ )
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and a similar result for ρ<n(q)n(−q)(ε), which finally gives

χ0
nn(q ,ε) =

∑
αβσ

|Sαβ (q)|2
f (ξα)− f (ξβ )

ε + ξα − ξβ + i0+
.

doc–23 Relations between spectral functions

Using Eqs (6), (3.12), (3.14), and (3.23), we can write

−ηd−η(ε)ρAB(ε) =
−η

eβε −η
1
Z

∑
ab

e−βKb

�
e−β(Ka−Kb) −η︸ ︷︷ ︸

eβε−η

�

× 〈a|A|b〉〈b|B|a〉δ(ε + Ka − Kb)
= ρ<AB(ε).

In the first line, we have introduced into the exponential the constraint imposed by the
delta function. In a similar fashion:

−ηd−η(−ε)ρAB(ε) =
1

e−βε −η
1
Z

∑
ab

e−βKa

�
−η+ eβ(Ka−Kb)︸ ︷︷ ︸

−η+e−βε

�

× 〈a|A|b〉〈b|B|a〉δ(ε + Ka − Kb)
= ρ>AB(ε).

This establishes Eq. (3.32).

doc–24 Elementary sum rules

doc–24.1 Spectral function

The integration over ε simply removes the delta function in Eq. (3.12):

∫ ∞

−∞
dε ρ>AB(ε) =

1
Z

∑
ab

e−βKa〈a|A|b〉〈b|B|a〉.

The b sum gives 11:

∫ ∞

−∞
dε ρ>AB(ε) =

1
Z

∑
a

e−βKa〈a|AB|a〉= 1
Z

∑
a

〈a|e−βKAB|a〉

= TrρAB = 〈AB〉.
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Similarly,

∫ ∞

−∞
dε ρ<AB(ε) = −η

1
Z

∑
ab

e−βKb〈b|B|a〉〈a|A|b〉= −η 1
Z

∑
b

〈b|e−βK BA|b〉

= −ηTrρBA= −η〈BA〉.

doc–24.2 Occupation numbers

Using Eqs (3.7) and (3.21), we can write

〈nα〉= 〈a†
αaα〉= 〈a†

α(0)aα(0)〉= iħhηC<
aαa†

α

(0) = iħhη
∫ ∞

−∞

dω
2π

C<
aαa†

α

(ω)
︸ ︷︷ ︸

2πiρ<
aαa†

α

(ħhω)

= −η
∫ ∞

−∞
dε ρ<

aαa†
α

(ε).

We can then use Eq. (3.32) and prove Eq. (3.38):

〈nα〉= −η
∫ ∞

−∞
dε ρ<

aαa†
α

(ε) = (−η)2
∫ ∞

−∞
dε d−η(ε)ρaαa†

α
(ε).

It is also interesting to derive Eq. (3.38) using the imaginary-time formalism. In this
case, the trick is to permute the operators by taking advantage of the time ordering:

〈nα〉= 〈Tτa†
α(0)aα(0

−)〉= η〈Tτaα(0
−)a†

α(0)〉= −ηCaαa†
α
(0−).

To finish, we make use of Eqs (4.8), (4.11), and (16):

〈nα〉= −η
1
β

∑
iνn

e−iνn0− Caαa†
α
(iνn)︸ ︷︷ ︸∫ ∞

−∞
dε
ρaαa†

α
(ε)

iνn − ε

= −η
∫ ∞

−∞
dε ρaαa†

α
(ε)

1
β

∑
iνn

eiνn0+

iνn − ε︸ ︷︷ ︸
−ηd−η(ε)eiε0+

.

doc–24.3 Energy

In order to prove Eq. (3.40), we start by noticing that

∑
α

a†
α[aα, K] =

∑
αν

ξανa†
αaν +

∑
ανµ1µ2

Vανµ1µ2
a†
αa†
νaµ2

aµ1
= K0 + 2V,
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where we have used Eq. (25). On the other hand, we have

〈a†
α [aα, K]︸ ︷︷ ︸

iħh∂t aα|t=0

〉= iħh∂t〈a†
α(0)aα(t)〉|t=0 = −ηħh2∂t C

<

aαa†
α

(t)|t=0

= −ηħh2∂t

∫ ∞

−∞

dω
2π

C<
aαa†

α

(ω)
︸ ︷︷ ︸

2πiρ<
aαa†

α

(ħhω)

e−iωt
���
t=0

= −ηħh2

∫ ∞

−∞
dωωρ<

aαa†
α

(ħhω) =
∫ ∞

−∞
dε ε d−η(ε)ρaαa†

α
(ε).

Combining these two results, we find

〈K0 + 2V 〉=
∑
α

∫ ∞

−∞
dε ε d−η(ε)ρaαa†

α
(ε)

and Eq. (3.40) results by noticing that 〈K〉= 1
2 〈K0 + 2V 〉+ 1

2 〈K0〉. It is interesting to
evaluate Eq. (3.40) for V = 0. In this latter case we get

〈K0〉=
∑
α

∫ ∞

−∞
dε ε d−η(ε)ρ

0
aαa†

α

(ε).

For independent fermions, we have already seen [Eq. (3.25)] that ρ0
aαa†

α
(ε) = δ(ε−ξα)

and thus Eq. (3.42) follows at once. We now show that the same expression for the
spectral function is also valid for independent bosons. Eqs (3.12) and (3.14) give in
our case

ρ0
bαb†

α

(ε) =
1
Z

∑
ab

�
e−βKa − e−βKb

� |〈a|bα|b〉|2δ(ε + Ka − Kb).

Here bα is the boson annihilation operator. Proceeding like in doc–21, we see that

|〈a|bα|b〉|2 =
(

n|b〉α if n|a〉i = n|b〉i for i 6= α and n|a〉α = n|b〉α − 1

0 otherwise,

which requires that Ea = Eb − εα and Na = Nb − 1:

ρ0
bαb†

α

(ε) =
1
Z

∑
b

�
e−β(Eb−εα−µNb+µ) − e−βKb

�
n|b〉α δ(ε − ξα)

= δ(ε − ξα)(eβξα − 1)
1
Z

∑
b

〈b|e−βK nα|b〉

= δ(ε − ξα)
1

b(ξα)
Trρ nα = δ(ε − ξα),

since Trρ nα = 〈nα〉 = b(ξα) for independent bosons, with b(ε) the Bose-Einstein
distribution function.
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doc–25 Moments of the spectral function

Here we show how the first moment of the spectral function—and the higher-order mo-
ments as well—can be evaluated using the spectral representation. We use Eqs (3.12),
(3.14), and (3.23) to arrive at:

∫ ∞

−∞
dε ε ρAB(ε) =

1
Z

∑
ab

�
e−βKa −ηe−βKb

� 〈a|A|b〉〈b|B|a〉(Kb − Ka)

=
1
Z

∑
ab

�
e−βKa Kb − e−βKa Ka −ηe−βKb Kb +ηe−βKb Ka

�

× 〈a|A|b〉〈b|B|a〉.
Each of the four terms can be rearraged in such a way that one of the sums gives the
identity. For instance, the first term becomes

1
Z

∑
ab

〈a|e−βKa AKb|b〉〈b|B|a〉=
1
Z

∑
ab

〈a|e−βKAK |b〉〈b|B|a〉

=
1
Z

∑
a

〈a|e−βKAKB|a〉= TrρAKB = 〈AKB〉.

Considering all four terms we obtain Eq. (3.46):
∫ ∞

−∞
dε ε ρAB(ε) = 〈AKB〉 − 〈KAB〉 −η〈BAK〉+η〈BKA〉

= −
�[K , A], B
�
−η
�
.

doc–26 (Anti)-periodicity of imaginary-time functions

It is sufficient to prove Eq. (4.7) in the case τ > 0. Since τ < β , this means that
τ− β < 0 and therefore

CAB(τ− β) = −〈TτA(τ− β)B(0)〉= −η〈B(0)A(τ− β)〉
= −η 1

Z
Tr e−βK Be(τ−β)KAe−(τ−β)K

= −η 1
Z

Tr e−βK eτKAe−τK eβK e−βK B

= −η 1
Z

Tr e−βK A(τ)B(0)︸ ︷︷ ︸
=TτA(τ)B(0)

= −η〈TτA(τ)B(0)〉= ηCAB(τ).

At the third line, we have used the property Tr ABC = Tr BCA called the cyclic property
of the trace and at the fourth line, we have used the fact that τ > 0 and reintroduced
the imaginary-time ordering.
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doc–27 Spectral representation of imaginary-time functions

According to Eq. (4.10), it is sufficient to know CAB(τ) at positive times in order to
calculate CAB(iνn). Using Eqs (2.2) and (4.3) we have

CAB(τ > 0) = − 1
Z

∑
a

〈a|e−βK eτKAe−τK B|a〉

= − 1
Z

∑
ab

〈a|e−βK eτKA|b〉〈b|e−τK B|a〉

= − 1
Z

∑
ab

e−βKa eτ(Ka−Kb)〈a|A|b〉〈b|B|a〉.

We now perform the time integration in Eq. (4.10):

∫ β

0

dτ e(iνn+Ka−Kb)τ =
e(iνn+Ka−Kb)τ

��β
0

iνn + Ka − Kb
=

e(iνn+Ka−Kb)β − 1
iνn + Ka − Kb

=
ηeβ(Ka−Kb) − 1
iνn + Ka − Kb

,

where we have taken into account that eiνnβ = η. Collecting the terms, we find

CAB(iνn) = −
1
Z

∑
ab

e−βKa
ηeβ(Ka−Kb) − 1
iνn + Ka − Kb

〈a|A|b〉〈b|B|a〉

=
1
Z

∑
ab

e−βKa −ηe−βKb

iνn + Ka − Kb
〈a|A|b〉〈b|B|a〉=

∫ ∞

−∞
dε
ρAB(ε)
iνn − ε

with ρAB(ε) defined by Eqs (3.12), (3.14), and (3.23).

doc–28 Expansion of correlation functions in imaginary time

The imaginary-time ordered correlation function, Eq. (4.5), reads

CAB(τ) = −〈TτA(τ)B(0)〉= − 1
Z

Tr e−βK TτeτKAe−τK B(0).

In the interaction picture, the imaginary-time evolution operator e−τK is factorized as
e−τK0 Û(τ) in complete analogy with the real-time evolution (see Sec. 2.2.1), such that
e−βK = e−βK0 Û(β). Using these expressions we find

CAB(τ) = −
1
Z

Tr e−βK0 Û(β)TτÛ−1(τ) eτK0 Ae−τK0︸ ︷︷ ︸
Â(τ)

Û(τ)B(0)

= − 1
Z

Tr e−βK0 Û(β)
�
θ (τ)Û−1(τ)Â(τ)Û(τ)B(0)

+ηθ (−τ)B(0)Û−1(τ)Â(τ)Û(τ)
�

.
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The first term in the square brackets involves the product Û−1(τ)Â(τ)Û(τ)B(0) for
a positive time τ. This term is in fact equal to Â(τ)B(0), as can be seen by taking
advantage of the time-ordering:

Û−1(τ)Â(τ)Û(τ)B(0) = TτÛ−1(τ+)Â(τ)Û(τ−)B(0)

= TτÂ(τ)Û−1(τ+)Û(τ−)B(0) = TτÂ(τ)B(0) = A(τ)B(0).

We have shifted the time arguments by infinitesimal amounts, τ+ > τ > τ− > 0, such
that the time ordering retrieves the operators in the correct order. Then, we have
used our right to permute operators under the time ordering; the sign implied by our
permutation is +1 because the evolution Û(τ) involves an even number of creation or
annihilation operators. Finally, in order to remove the time-ordering, we have used
the facts that τ > 0 and Û−1(τ+)Û(τ−) = 11 because Û(τ) is continuous. A completely
analogous manipulation shows that for the second term in the square brackets, we
also have B(0)Û−1(τ)Â(τ)Û(τ) = B(0)Â(τ). It is worthwhile to realize how crucial the
time ordering is in this step of the derivation. We have thus obtained

CAB(τ) = −
1
Z

Tr e−βK0 Û(β)TτÂ(τ)B(0) = − 1
Z

Tr e−βK0 TτÛ(β)Â(τ)B(0)

= −Tr e−βK0

Z
Tr e−βK0 TτÛ(β)Â(τ)B(0)

Tr e−βK0
= −Tr e−βK0

Z
〈TτÛ(β)Â(τ)B(0)〉0,

where the second equality holds because β > τ and where we have introduced the
notation 〈X 〉0 for the thermodynamic average of an operator X in the ensemble of
states defined by K0: 〈X 〉0 = Tr (e−βK0 X )/Tr e−βK0 . We finally rewrite the partition
function

Z = Tr e−βK = Tr e−βK0 Û(β) = Tr e−βK0
Tr e−βK0 Û(β)

Tr e−βK0
= Tr e−βK0〈Û(β)〉0

and obtain CAB(τ) = −〈TτÛ(β)Â(τ)B(0)〉0/〈Û(β)〉0. Together with Eq. (5.1), this
yields Eq. (5.3).

doc–29 One-body potential: terms of the expansion

The non-vanishing contribution of order n= 1 in Eq. (5.13) is

η

∫ β

0

dτ1

∑
α1β1

Vα1β1
〈a†
α1
(τ1)aα(τ)〉︸ ︷︷ ︸

−ηG 0
αα1
(τ−τ1)

〈a
β1
(τ1)a

†
β
(0)〉

︸ ︷︷ ︸
−G 0

β1β
(τ1)

=

∫ β

0

dτ1

∑
α1β1

G 0
αα1
(τ−τ1)Vα1β1

G 0
β1β
(τ1),



190 Details of calculations doc–29

consistently with Eq. (5.14). At order n= 2, the two terms in Eq. (5.15) yield

−η
∫ β

0

dτ1dτ2

∑
α1β1

∑
α2β2

Vα1β1
Vα2β2

× 〈a†
α1
(τ1)aα(τ)〉︸ ︷︷ ︸

−ηG 0
αα1
(τ−τ1)

〈a
β1
(τ1)a

†
α2
(τ2)〉︸ ︷︷ ︸

−G 0
β1α2

(τ1−τ2)

〈a
β2
(τ2)a

†
β
(0)〉

︸ ︷︷ ︸
−G 0

β2β
(τ2)

=

∫ β

0

dτ1dτ2

∑
α1β1

∑
α2β2

G 0
αα1
(τ−τ1)Vα1β1

G 0
β1α2
(τ1 −τ2)Vα2β2

G 0
β2β
(τ2),

which is just Eq. (5.16).

doc–30 One-body diagrams in the frequency domain

The contribution of order n to Gαβ (τ) in Eq. (5.10) is

G (n)
αβ
(τ) =

∫ β

0

dτ1 · · · dτn

∑
α1β1

· · ·
∑
αnβn

G 0
αα1
(τ−τ1)Vα1β1

G 0
β1α2
(τ1 −τ2)Vα2β2

· · ·Vαnβn
G 0
βnβ
(τn).

Performing the Fourier transform by means of Eqs (4.10) and (4.8), we get

G (n)
αβ
(iνn) =

∫ β

0

dτG (n)
αβ
(τ)eiνnτ

=
∑
α1β1

· · ·
∑
αnβn

1
β

∑
iν̄0

· · · 1
β

∑
iν̄n

G 0
αα1
(iν̄0)Vα1β1

G 0
β1α2
(iν̄1)Vα2β2

· · ·Vαnβn
G 0
βnβ
(iν̄n)

×
∫ β

0

dτdτ1 · · · dτn eiνnτe−iν̄0(τ−τ1)e−iν̄1(τ1−τ2) · · · e−iν̄nτn

︸ ︷︷ ︸
βn+1δνn ν̄0

δν̄0 ν̄1
···δν̄n−1 ν̄n

=
∑
α1β1

· · ·
∑
αnβn

G 0
αα1
(iνn)Vα1β1

G 0
β1α2
(iνn)Vα2β2

· · ·Vαnβn
G 0
βnβ
(iνn),

which proves Eq. (5.17). The notation iν̄ j used here is a short-hand for iν( j)n . iν̄ j
represents a full set of Matsubara frequencies, like iνn, and should not be confused
with the j-th frequency iν j .
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doc–31 Two-body potential: terms of the expansion

The two Hartree terms in Eq. (5.21) contribute the following to Gαβ (τ) in Eq. (5.20):

−
�
−1

2

�
2η

∫ β

0

dτ1

∑
α1β1γ1δ1

Vα1β1γ1δ1
〈a†
α1
(τ1)aα(τ)〉︸ ︷︷ ︸

−ηG 0
αα1
(τ−τ1)

〈a†
β1
(τ1)aδ1

(τ1)〉︸ ︷︷ ︸
−ηG 0

δ1β1
(τ1−τ+1 )

〈aγ1
(τ1)a

†
β
(0)〉

︸ ︷︷ ︸
−G 0

γ1β
(τ1)

= −η
∫ β

0

dτ1

∑
α1β1γ1δ1

G 0
αα1
(τ−τ1)G 0

δ1β1
(τ1 −τ+1 )Vα1β1γ1δ1

G 0
γ1β
(τ1).

In the average 〈a†
β1
(τ1)aδ1

(τ1)〉, the two operators act at the same time. We must
therefore shift one time by an infinitesimal amount to ensure that the time ordering
in G 0

δ1β1
(τ1 −τ+1 ) returns the operators in the correct order. Hence we get Eq. (5.22).

The only difference between the Hartree terms in Eq. (5.21) and the exchange terms
in Eq. (5.23) is the interchange of the indices γ1 and δ1 and the resulting factor η:

−
�
−1

2

�
2

∫ β

0

dτ1

∑
α1β1γ1δ1

Vα1β1γ1δ1
〈a†
α1
(τ1)aα(τ)〉︸ ︷︷ ︸

−ηG 0
αα1
(τ−τ1)

〈a†
β1
(τ1)aγ1

(τ1)〉︸ ︷︷ ︸
−ηG 0

γ1β1
(τ1−τ+1 )

〈a
δ1
(τ1)a

†
β
(0)〉

︸ ︷︷ ︸
−G 0

δ1β
(τ1)

= −
∫ β

0

dτ1

∑
α1β1γ1δ1

G 0
αα1
(τ−τ1)G 0

γ1β1
(τ1 −τ+1 )Vα1β1γ1δ1

G 0
δ1β
(τ1).

doc–32 Two-body diagrams in the frequency domain

Summing Eqs (5.22) and (5.24), swapping the dummy indices γ1 and δ1 in the
exchange term, and performing the Fourier transform, we get

∑
α1β1γ1δ1

1
β3

∑
iν̄0 iν̄1 iν̄2

G 0
αα1
(iν̄0)G 0

δ1β1
(iν̄1)G 0

γ1β
(iν̄2)(−ηVα1β1γ1δ1

− Vα1β1δ1γ1
)

×
∫ β

0

dτdτ1 eiνnτe−iν̄0(τ−τ1)e−iν̄1(τ1−τ+1 )e−iν̄2τ1

︸ ︷︷ ︸
β2δν̄0νnδν̄0 ν̄2

eiν̄10+

=
∑

α1β1γ1δ1

1
β

∑
iν̄1

G 0
αα1
(iνn)G 0

δ1β1
(iν̄1)e

iν̄10+G 0
γ1β
(iνn)(−ηVα1β1γ1δ1

− Vα1β1δ1γ1
).
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This expression can be recast in the form

∑
α1γ1

G 0
αα1
(iνn)


 1
β

∑
iν̄1

∑
β1δ1

G 0
δ1β1
(iν̄1)e

iν̄10+(−ηVα1β1γ1δ1
− Vα1β1δ1γ1

)


G 0

γ1β
(iνn)

=
∑
α1γ1

G 0
αα1
(iνn)Σ

(1)
α1γ1
(iνn)G 0

γ1β
(iνn)

with Σ(1)α1γ1
as in Eq. (5.25).

doc–33 Impurity average

At order n= 1, the impurity average defined by Eq. (5.35) gives:

〈V (r1)〉imp =
1
V Ni

∫
dR1 · · · dRNi

Ni∑
`=1

v(r1 −R`) =
Ni∑
`=1

1
V

∫
dR v(r1 −R)

=
Ni

V

∫
dr v(r ) = ni v(q = 0),

with ni = Ni/V the impurity concentration and v(q) the Fourier transform of the
impurity potential v(r ). Replacing V (r1) by 〈V (r1)〉imp in the first-order term on the
right-hand side of Eq. (5.34) and taking the Fourier transform, we find

∫
dr e−ik·(r−r ′)

∫
dr1G0(r − r1, iνn)ni v(0)G0(r1 − r ′, iνn)

= ni v(0)
1
V 2

∑
k1k2

G0(k1, iνn)G0(k2, iνn)

∫
dr dr1e−ik·(r−r ′)eik1·(r−r1)eik2·(r1−r ′)

︸ ︷︷ ︸
V 2δkk1

δk1k2

= ni v(0)[G0(k, iνn)]
2.
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At second order, the impurity average yields two terms:

〈V (r1)V (r2)〉imp =
1
V Ni

∫
dR1 · · · dRNi

Ni∑
`=1

v(r1 −R`)
Ni∑
`′=1

v(r2 −R`′)

=
Ni∑

`,`′=1

1
V 2

∫
dR`dR`′ v(r1 −R`)v(r2 −R`′)

=
Ni∑
6̀=`′

1
V 2

∫
dRdR′ v(r1 −R)v(r2 −R′)

+
Ni∑
`=`′

1
V

∫
dR v(r1 −R)v(r2 −R)

=
Ni(Ni − 1)
V 2

[v(q = 0)]2 + ni

∫
dr v(r )v(r + r1 − r2).

Hence two terms result by replacing V (r1)V (r2) by 〈V (r1)V (r2)〉imp in the second-
order term on the right-hand side of Eq. (5.34). In Fourier space, the first of those
terms is ni(ni−V −1)v2(0)[G0(k, iνn)]3 and the second is ni

1
V
∑

q G0(k, iνn)v(q)G0(k−
q , iνn)v(−q)G0(k, iνn), as can be readily verified by performing the Fourier transform
as we did at order n= 1.

doc–34 Full Born approximation

The full Born approximation takes into account all diagrams of order ni and can be
rewritten in a compact way by introducing an effective impurity potential, w(q ; k, iνn),
in the following way:

ΣFBA(k, iνn) =�
−q1

k−q1

q1

+�
−q1

k−q1

q1−q2

k−q2

q2

+�
−q1

k−q1 k−q2 k−q3

q3

+ . . .

= ni
1
V
∑
q1

v(−q1)G0(k − q1, iνn)
¦

v(q1)+

+
1
V
∑
q2

v(q1 − q2)G0(k − q2, iνn)
�
v(q2)+

+
1
V
∑
q3

v(q2 − q3)G0(k − q3, iνn)
�
v(q3) + . . .

��©

= ni
1
V
∑
q1

v(−q1)G0(k − q1, iνn)w(q1; k, iνn)

w(q1; k, iνn) = v(q1) +
1
V
∑
q2

v(q1 − q2)G0(k − q2, iνn)w(q2; k, iνn).
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We see that the final expression for the full Born approximation is very similar to the
first Born approximation Eq. (5.41), the only difference being that the potential v(q)
is replaced by an effective momentum and energy-dependent potential w(q ; k, iνn).

doc–35 Coulomb interaction in the plane-wave basis

The matrix elements of the Coulomb interaction are evaluated by inserting the basis
functions of Eq. (2.29) into Eq. (2.44):

〈k1σ1k2σ2|V |k3σ3k4σ4〉

=

∫
dr dr ′

∑
σσ′

δσσ1pV e−ik1·r δσ′σ2pV e−ik2·r ′ V (r − r ′)︸ ︷︷ ︸
1
V
∑

q V (q)eiq ·(r−r ′)

δσσ3pV eik3·r δσ′σ4pV eik4·r ′

= δσ1σ3
δσ2σ4

1
V
∑

q

V (q)δk1,k3+qδk2,k4−q

= δσ1σ3
δσ2σ4

δk1+k2,k3+k4

1
V V (k1 − k3),

consistently with Eq. (5.43).

doc–36 Diagrammatic rules for the Coulomb interaction

The recipe for translating a Coulomb-interaction self-energy diagram into the corre-
sponding mathematical formula is the following.

1. Label the diagram

• Attach to the external legs the variables (k,σ,ωn).

• Attach to each internal fermion line a set of variables (k j ,σ j , ω̄ j).

• Impose spin conservation at each vertex.

• Impose momentum and energy conservation for each interaction line.

2. Translate the diagram

• A factor (−1)n(−1)L , where n is the order of the diagram (number of
interaction lines), and L the number of closed fermion loops

• A factor 1
V V (k1 − k3) for each interaction line

• A factor G0(k j , iω̄ j) = 1/(iω̄ j − ξk j
) for each internal fermion line

• A sum over all k j , σ j , ω̄ j , and a factor 1
β for each Matsubara sum
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Applying these rules, we obtain for the Hartree diagram:

�
k1σ1ω̄1

kσωn kσωn

1
V V (q=0)

= (−1)1(−1)1
∑
k1σ1

1
β

∑
iω̄1

1
V V (q = 0)G0(k1, iω̄1)

= V (q = 0)
1
V
∑
k1σ1

1
β

∑
iω̄1

1
iω̄1 − ξk1︸ ︷︷ ︸

f (ξk1
)

= V (q = 0)
1
V
∑
k1σ1

f (ξk1
)

︸ ︷︷ ︸
N

= nV (q = 0).

At the second line, we have used Eq. (16) and at the last line n is the electron density
N/V . Note that we have omitted to write a factor eiω̄10+ , which has its origin in the
infinitesimal shift of time implied by the bubble (see Sec. 5.1.3.4) and is required
to ensure the convergence of the Matsubara sum—and to grant us the right to use
Eq. (16). The calculation of the exchange diagram is similar. Note the absence of spin
sum, because the spin is fixed on the internal fermion line:

�
1
V V (k1−k)

k1σω̄1
kσωn kσωn = (−1)1(−1)0

∑
k1

1
β

∑
iω̄1

1
V V (k1 − k)G0(k1, iω̄1)

= − 1
V
∑
k1

V (k1 − k) f (ξk1
).

At second order, we have the diagram

�
k1σ1ω̄1

k+k1−k2σ1
ωn+ω̄1−ω̄2

k
−k

2

k2σω̄2

k 2
−k

kσωn kσωn = (−1)2(−1)1
∑

k1k2σ1

1
β2

∑
iω̄1 iω̄2

V (k2 − k)
V

V (k − k2)
V

×G0(k1, iω̄1)G0(k2, iω̄2)
×G0(k + k1 − k2, iωn + iω̄1 − iω̄2)

= − 2
V 2

∑
k1k2

|V (k2 − k)|2 1
β2

∑
iω̄1 iω̄2

× 1
iω̄1 − ξk1

1
iω̄2 − ξk2

1
iωn + iω̄1 − iω̄2 − ξk+k1−k2

.
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We first perform the Matsubara sum on iω̄1 using Eq. (16) and we introduce temporarily
the notation k3 = k + k1 − k2:

1
β

∑
iω̄1

1
iω̄1 − ξk1

1
iω̄1 + iωn − iω̄2 − ξk3

=

f (ξk1
)

ξk1
+ iωn − iω̄2 − ξk3

+
f (ξk3

+ iω̄2 − iωn)

ξk3
+ iω̄2 − iωn − ξk1

=
f (ξk3

)− f (ξk1
)

iω̄2 − iωn − ξk1
+ ξk3

.

We could replace f (ξk3
+ iω̄2− iωn) by f (ξk3

) because iω̄2− iωn is an even Matsubara
frequency, such that in the denominator of the Fermi function we have eβ(iω̄2−iωn) = 1.
We next perform the iω̄2 sum:

1
β

∑
iω̄2

1
iω̄2 − ξk2

1
iω̄2 − iωn − ξk1

+ ξk3

=

f (ξk2
)

ξk2
− iωn − ξk1

+ ξk3

+
f (iωn + ξk1

− ξk3
)

iωn + ξk1
− ξk3

− ξk2

=
−b(ξk1

− ξk3
)− f (ξk2

)

iωn + ξk1
− ξk2

− ξk3

.

Here we have replaced f (iωn + ξ) by −b(ξ) with b the Bose-Einstein distribution,
since eβ iωn = −1. Finally we use the mathematical identity

b(ξ1 + ξ2) = −
f (ξ1) f (ξ2)

f (ξ1)− f (−ξ2)

and rearrange terms to obtain the value of the diagram as

2
V 2

∑
k1k2

|V (k2 − k)|2 f (ξk1
) f (−ξk2

) f (−ξk3
) + f (−ξk1

) f (ξk2
) f (ξk3

)

iωn + ξk1
− ξk2

− ξk3

,

in agreement with Eq. (5.48). The other diagram at second order is obtained similarly:

�
k1−k2 k2−k

k+k1−k2σ
ωn+ω̄1−ω̄2

k1σω̄1 k2σω̄2
kσωn kσωn =

∑
k1k2

1
β2

∑
iω̄1 iω̄2

V (k2 − k)
V

V (k1 − k2)
V

×G0(k1, iω̄1)G0(k2, iω̄2)
×G0(k + k1 − k2, iωn + iω̄1 − iω̄2).

Since the three Green’s functions are the same as in the first diagram, the Matsubara
sum yields the same expression and the diagram is the second term of Eq. (5.48).

doc–37 Free phonon propagator

Using the definition of the phonon operator, B†
qλ = b†

qλ+ b−qλ, the fact that correlation

functions of the kinds 〈bb〉0 and 〈b† b†〉0 vanish,1 and working in the representation

1 Without coupling to the electrons, the number of phonons is conserved, see Eq. (2.65).
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that diagonalizes the phonon Hamiltonian, we find:

C 0
Bq1λ1

B†
q2λ2

(τ) = −〈TτBq1λ1
(τ)B†

q2λ2
(0)〉0

= −〈Tτbq1λ1
(τ)b†

q2λ2
(0)〉0 − 〈Tτb†

−q1λ1
(τ)b−q2λ2

(0)〉0
= −δq1q2

δλ1λ2

�
〈Tτbq1λ1

(τ)b†
q1λ1
(0)〉0 + 〈Tτb†

−q1λ1
(τ)b−q1λ1

(0)〉0
�

= −δq1q2
δλ1λ2

〈TτBq1λ1
(τ)B†

q1λ1
(0)〉0

≡ δq1q2
δλ1λ2

D0
λ1
(q1,τ),

where we have defined Dλ(q ,τ) = −〈TτBqλ(τ)B
†
qλ(0)〉. In order to calculate the

spectral function of D0
λ
(q ,τ), we note that for independent bosons the spectral function

is ρbαb†
α
(ε) = δ(ε − ξα) with ξα the boson energies [see doc–24.3 p. 186]. Hence

ρBqλB†
qλ
(ε) = ρbqλb†

qλ
(ε) + ρb†

−qλb−qλ
(ε)

︸ ︷︷ ︸
=−ρ

b−qλ b†
−qλ
(−ε)

= δ(ε −ħhωqλ)−δ(−ε −ħhω−qλ).

We have used Eq. (3.31) and introduced the phonon energies like in Sec. 2.5.2. Since
ω−qλ = ωqλ, we thus have ρBqλB†

qλ
(ε) = δ(ε − ħhωqλ)− δ(ε + ħhωqλ). Finally, using

Eq. (4.11), the expression of the free phonon propagator is found to be

D0
λ(q , iΩn) =

1
iΩn −ħhωqλ

− 1
iΩn +ħhωqλ

.

doc–38 Effective electron-electron interaction mediated by phonons

At order n, the thermodynamic average in Eq. (5.52) is of the form (schematically)

〈Hel-ph · · ·Hel-phcc†〉0 = 〈c†
1c1B1 · · · c†

ncnBncc†〉0 = 〈B1 · · ·Bn〉0〈c†
1c1 · · · c†

ncncc†〉0.

We can average on the phonons and electrons separately because the average is to be
evaluated in the absence of coupling, i.e., in a system where the electrons and phonons
live in two different Hilbert spaces. The phonon averages 〈B1 · · ·Bn〉0 vanish if the
number of phonon operators is odd: 〈B1〉0 = 〈B1B2B3〉0 = . . . = 0. As a result, all
terms of odd order in Eq. (5.52) disappear. Writing n = 2m and introducing a modified
time-dependent electron-phonon Hamiltonian,

H ′el-ph(τ) =

∫ β

0

dτ′
∑
k1σ1

∑
q1λ1

∑
k2σ2

∑
q2λ2

gq1λ1
gq2λ2

Bq1λ1
(τ)Bq2λ2

(τ′)

× c†
k1+q1σ1

(τ)c†
k2+q2σ2

(τ′)ck2σ2
(τ′)ck1σ1

(τ),

we can rewrite Eq. (5.52) as

G (k,τ) = −
∞∑

m=0

∫ β

0

dτ1 · · · dτm〈TτH ′el-ph(τ1) · · ·H ′el-ph(τm)ckσ(τ)c
†
kσ(0)〉con-diff

0 .



198 Details of calculations doc–38

In the definition of H ′el-ph, we have shifted the operator ck1σ1
from its original position—

just after c†
k1+q1σ1

, see Eq. (2.73)—to the right, making two fermionic permutations.
This is legal because the whole formula involving H ′el-ph lies under a Tτ operator. At
this stage, we use the fact that we can perform the phonon average separately and we
make the following substitution in H ′el-ph:

Bq1λ1
(τ)Bq2λ2

(τ′) → 1
2 〈TτBq1λ1

(τ)Bq2λ2
(τ′)〉0 = 1

2 〈TτBq1λ1
(τ)B†

−q2λ2
(τ′)〉0

= − 1
2δλ1λ2

δq1,−q2
D0
λ1
(q1,τ−τ′),

where we have used Eqs (5.49) and (5.50). The factor 1/2 corrects for a complication
that we have overlooked in our derivation.1 This substitution allows one to rewrite
G (k,τ) in the form given by Eq. (5.53), where the effective phonon-mediated electron-
electron interaction is given by Eq. (5.54). In performing this last step, we pull out the
minus sign from 〈BB†〉 ∝ −D0—which appears m times in a term of order m—as a
global factor (−1)m, and we use the Kronecker delta’s above to eliminate half of the q
and λ sums.

doc–39 The electron-phonon self-energy at leading order

The first-order contribution of the electron-phonon interaction to the one-electron
self-energy is

�
qλΩn

k−qσωn−Ωn
kσωn kσωn = −

∑
qλ

|gqλ|2
1
β

∑
iΩn

D0
λ(q , iΩn)G0(k − q , iωn − iΩn)

= −
∑
qλ

|gqλ|2
1
β

∑
iΩn

�
1

iΩn −ħhωqλ
− 1

iΩn +ħhωqλ

�
1

iωn − iΩn − ξk−q
.

Note that the result is intensive despite the q sum, owing to the 1/N factor stemming
from |gqλ|2 [Eq. (2.74)]. The Matsubara sum gives, using Eq. (16):

−b(ħhωqλ)

iωn −ħhωqλ − ξk−q
− −b(−ħhωqλ)

iωn +ħhωqλ − ξk−q

+ b(iωn − ξk−q )

�
1

iωn − ξk−q −ħhωqλ
− 1

iωn − ξk−q +ħhωqλ

�
,

which, together with the relations b(−ε) = −1 − b(ε), b(iωn − ξ) = − f (−ξ), and
f (−ξ) = 1− f (ξ), yields Eq. (5.58). See also Schrieffer (1964, p. 200).
1 By replacing B1B2 by 〈B1B2〉0 in the expression of H ′el-ph, we retain only one out of the (n− 1)× (n− 3)×
· · ·×5×3 terms that are generated by Wick’s theorem from the average of n phonon operators 〈B1 · · ·Bn〉0.
On the other hand, when we rewrote the n sum of Eq. (5.52) as a sum on m = 2n, we did not correct
accordingly for the factor 1/n! coming from the expansion of the evolution operator in Eq. (5.3), that was
cancelled in Eq. (5.5) by retaining only the topologically different diagrams. In our case, the number of
topologically different diagrams will be m!, not (2m)!, such that we must correct by a factor m!/(2m)!.
It turns out that (2m− 1)× (2m− 3)× · · · × 5× 3×m!/(2m)! = 1/2m, such that we can take this into
account by inserting an additional 1/2 in front of H ′el-ph. See also Bruus & Flensberg (2004, p. 315).
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doc–40 Particle-hole bubble

The zeroth-order term in the expansion of C 0
αβγδ
(τ) in Eq. (5.59) is just

C 0
αβγδ(τ) = −〈Tτa†

α(τ)aβ (τ)a
†
γ(0)aδ(0)〉con-diff

0

= −〈Tτa†
α(τ)aδ(0)〉0︸ ︷︷ ︸
−ηG 0

δα
(−τ)

〈Tτa
β
(τ)a†

γ(0)〉0︸ ︷︷ ︸
−G 0

βγ
(τ)

= −ηG 0
βγ(τ)G 0

δα(−τ).

Graphically, this can be pictured like in Eq. (5.60): G 0
βγ
(τ) is represented by a line

going from right to left (γ to β) as required by our convention for particles. G 0
δα
(−τ)

describes the hole propagating “back in time” from left to right (α to δ). The η factor
is taken care of by the diagrammatic rules because there is one particle loop in the
diagram and the minus sign is explicitly kept in front of the diagram. The Fourier
transform of this propagator is

C 0
αβγδ(iΩn) =

∫ β

0

dτC 0
αβγδ(τ)e

iΩnτ

= −η 1
β2

∑
iν̄1 iν̄2

G 0
βγ(iν̄1)G 0

δα(iν̄2)

∫ β

0

dτ eiΩnτe−iν̄1τe−iν̄2(−τ)

︸ ︷︷ ︸
βδΩn+ν̄2,ν̄1

=
−η
β

∑
iνn

G 0
δα(iνn)G 0

βγ(iνn + iΩn).

In the representation where G 0 is diagonal, we have using Eq. (16)

C 0
αβγδ(iΩn) = δαδδβγ

−η
β

∑
iνn

1
iνn − ξα

1
iνn + iΩn − ξβ

= δαδδβγ

�
d−η(ξα)

ξα + iΩn − ξβ
+

d−η(ξβ )

ξβ − iΩn − ξα

�
,

which is just Eq. (5.61).

Along the same lines, we can derive the expression of the renormalized bubble, in which
the free-particle propagators G 0 are replaced by the exact propagators G expressed in
terms of their spectral representation [Eq. (4.11)]:

Gαβ (iνn) =

∫ ∞

−∞
dε
ρaαa†

β
(ε)

iνn − ε
.
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We get

Cαβγδ(iΩn) =
−η
β

∑
iνn

Gδα(iνn)Gβγ(iνn + iΩn)

=

∫ ∞

−∞
dε1dε2ρa

δ
a†
α
(ε1)ρa

β
a†
γ
(ε2)
−η
β

∑
iνn

1
iνn − ε1

1
iνn + iΩn − ε2

=

∫ ∞

−∞
dε1dε2ρa

δ
a†
α
(ε1)ρa

β
a†
γ
(ε2)

�
d−η(ε1)

ε1 + iΩn − ε2
+

d−η(ε2)

ε2 − iΩn − ε1

�
,

which corresponds to Eq. (5.64).

doc–41 Particle-hole bubble for free electrons at zero temperature

After performing the analytic continuation iΩn→ ε + i0+ and shifting the integration
variable k by −q in the second term of Eq. (5.76), the electron-hole bubble becomes:

χ0
nn(q ,ε) = 2

∑
k

�
f (ξk)

ε + ξk − ξk+q + i0+
− f (ξk)
ε + ξk−q − ξk + i0+

�
.

The free-electron dispersion is ξk =
ħh2

2m (k
2 − k2

F). In order to perform
the k integration, we choose spherical coordinates with the kz axis
parallel to q . We obtain ξk−ξk+q = − ħh

2

2m (q
2+2qk cosϑ). Introducing

the dimensionless parameters x = q
2kF

, z = 2mε
ħh2q2 and the integration

variable u= k/kF, we then obtain �ϑ
kz

q k

χ0
nn(q ,ε) =

N el
0 (0)

4x

∫ 1

0

du u

∫ π

0

dϑ

�
sinϑ

x(z−1)
u − cosϑ+ i0+

− sinϑ
x(z+1)

u − cosϑ+ i0+

�
.

We have replaced the k sum by an integral according to
∑

k → V
(2π)3

∫
dk, used the

Fermi functions to restrict the k integration to k < kF (u < 1), and introduced the
Fermi-level DOS of free electrons in 3D, N el

0 (0) = mkFV /(π2ħh2). We here make use of
the formula Eq. (18) and get

χ0
nn(q ,ε) =

N el
0 (0)

4x

∫ 1

0

du u
¦

ln

����
u+ x(z − 1)
u− x(z − 1)

����− ln

����
u+ x(z + 1)
u− x(z + 1)

����

− iπ
�
θ
�
u− |x(z − 1)|�− θ�u− |x(z + 1)|�

�©
.

It is not difficult to check that
∫ 1

0 du uθ(u − |a|) = 1
2 max(0,1 − a2), such that the

imaginary part is

Imχ0
nn(q ,ε) = −πN el

0 (0)

8x

�
max

�
0,1− x2(z − 1)2

�−max
�
0,1− x2(z + 1)2

�	
.
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We can see that this is an odd function of z, hence an odd function of the energy ε as
required by the general property that the spectral function of χnn(q ,ε), ρn(q)n(−q)(ε) =
− 1
π Imχnn(q ,ε), must be odd. The real part follows by virtue of the formula Eq. (19):

Reχ0
nn(q ,ε) =

N el
0 (0)

4x

¦
x(z − 1) +

1
2
[1− x2(z − 1)2] ln

����
1+ x(z − 1)
1− x(z − 1)

����

− x(z + 1)− 1
2
[1− x2(z + 1)2] ln

����
1+ x(z + 1)
1− x(z + 1)

����
©

.

In order to study this function, we find it more convenient to introduce the variable
y = zx2 = ε/(4εF). We therefore rewrite

Reχ0
nn(q ,ε) = −N el

0 (0)
¦

1
2
+

1
8x3
[x2 − (x2 − y)2] ln

����
x + x2 − y
x − x2 + y

����

+
1

8x3
[x2 − (x2 + y)2] ln

����
x + x2 + y
x − x2 − y

����
©

Imχ0
nn(q ,ε) = −πN el

0 (0)

8x

¦
max

�
0,1− 1

x2 (x2 − y)2
�−max

�
0, 1− 1

x2 (x2 + y)2
�©

.

From these expressions, we find the zero-energy behavior by setting y = 0 and noting
that the imaginary part vanishes:

χ0
nn(q , 0) = −N el

0 (0)

�
1
2
+

1
4

�
1
x
− x

�
ln

����
1+ x
1− x

����
�

.

This is known as the Lindhard function (Fig. 10.1). Since the function approaches
unity as x → 0, we find that in the static long-wavelength limit the free-electron
density-density correlation function is just minus the Fermi-level DOS:

χ0
nn(0, 0) = −N el

0 (0).

This result is in fact valid for any system of independent fermions. Indeed, the static
long-wavelength limit can be evaluated directly from the general expression Eq. (5.76)
by expanding the Fermi factor f (ξk+q ) around q = 0 as f (ξk) + f ′(ξk)(ξk+q − ξk).
The imaginary part then involves a term like xδ(x) which vanishes and the real part
becomes

χ0
nn(0, 0) = −

∑
kσ

[− f ′(ξk)] = −
∫ ∞

−∞
dεN el

0 (ε)[− f ′(ε)] T=0
= −N el

0 (0),

since − f ′(ε) becomes δ(ε) at zero temperature.

If we set x = 0 first instead of setting y = 0 first, we find χ0
nn(0,ε) = 0. The function

χ0
nn(q ,ε) is in fact discontinuous at q = ε = 0, such that the value obtained for χ0

nn(0, 0)
depends on the order in which the two limits are taken. When q and ε are both small,
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Figure 10.1: Lindhard function.
It has a logarithmic singularity at
x = 1 (q = 2kF), corresponding
to the largest momentum at which
electron-hole pairs can be excited at
ε = 0.
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2
+
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4

�
1
x
− x
�

ln

����
1+ x
1− x

����

we may develop the function along radial lines y = ζx . Doing so, we find that close to
the origin and for ζ > 1,

χ0
nn(q → 0,ε∝ q) = −N el

0 (0)

�
1− ζ

2
ln

����
1+ ζ
1− ζ

����
�

.

Finally, at high frequency we obtain by expanding around y−1 = 0: χ0
nn(q ,ε→∞) =

−N el
0 (0)(− x2

3y2 ) = 4
3 N el

0 (0)εqεF/ε
2.

doc–42 Plasmon dispersion in RPA

In the RPA approximation for the homogeneous electron gas, the equation Eq. (5.80)
defining the plasmon excitation is, retaining the two terms of lowest order in q/ε ≡
q/ħhω:

1− e2

ε0q2

N el
0 (0)

V

�
1
3

�ħhkFq
mω

�2

+
1
5

�ħhkFq
mω

�4�
= 0.

The terms in the square brackets give the expansion of the function −1+ ζ
2 ln

��� 1+ζ
1−ζ
���

in Eq. (5.77) around ζ−1 = 0. Multiplying the equation by ω4 and substituting the
Fermi-level DOS N el

0 (0) = mkFV /(π2ħh2) gives

ω4 − e2n
ε0m

�
ω2 + 3

5 v2
F q2

�
= 0

with n = k3
F/(3π

2) the electron density and vF = ħhkF/m the Fermi velocity. At q = 0,

we find the solution ω2 = e2n
ε0m ≡ω2

p, while the solution for all q is

ω2 =ω2
p

 
1
2
+

1
2

√√√
1+

12
5

v2
F

ω2
p

q2

!
.

Expanding ω(q) to order q2, we obtain Eq. (5.84).
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doc–43 Longitudinal and transverse dielectric functions

In a linear and isotropic medium, the macroscopic electric and displacement fields E
and D are colinear. In this case, the dielectric function ε(q ,ω) relates the two fields
according to

D(q ,ω) = ε0ε(q ,ω)E(q ,ω).

It is convenient to separate the fields in two components, one parallel and the other
normal to the wave vector q :

E(q ,ω) = E‖(q ,ω) + E⊥(q ,ω) with q · E⊥(q ,ω) = 0,

and similarly for D(q ,ω). Likewise, the dielectric function is split in longitudinal and
transverse components ε‖ and ε⊥, such that

D‖(q ,ω) = ε0ε‖(q ,ω)E‖(q ,ω) and D⊥(q ,ω) = ε0ε⊥(q ,ω)E⊥(q ,ω).

In the macroscopic Maxwell’s equations, the source of the displacement field D is
the external or “free” charge density, ∇ · D(r , t) = ρext(r , t), while the source of the
electric field E is the total or “bound” charge density, ε0∇ · E(r , t) = ρtot(r , t). Fourier
transforming these two relations, we find [see Eq. (2a)]

iq · D(q ,ω) = ρext(q ,ω) and ε0iq · E(q ,ω) = ρtot(q ,ω).

From the definitions of the longitudinal and transverse components, we deduce (omit-
ting the q and ω arguments for briefness) ρext = iq · D = iqD‖ and ρtot = iε0q · E =
iε0qE‖, while D‖ and E‖ are related by D‖ = ε0ε‖E‖. Comparing these three relations,
we find ρext = ε‖ρtot or

ε‖(q ,ω) =
ρext(q ,ω)
ρtot(q ,ω)

=
V ext(q ,ω)
V tot(q ,ω)

.

For the last equal sign, we have introduced the scalar potentials V ext and V tot, which are
related to the corresponding charge densities by the Poisson equation ε0∇2V (r , t) =
−ρ(r , t) or, in Fourier space, ε0q2V (q ,ω) = ρ(q ,ω).

doc–44 Longitudinal and transverse spin-spin correlation function

In order to separate the longitudinal and transverse components of the spin-spin
correlation function defined in Eq. (5.100), we use the expressions of S x and S y in
terms of S+ and S− (Sec. 2.3.2) and write:

S(q) · S(−q) = S x
q S x
−q + S y

q S y
−q + Sz

q Sz
−q

= 1
4

�
S+q + S−q

��
S+−q + S−−q

�
− 1

4

�
S+q − S−q

��
S+−q − S−−q

�
+ Sz

q Sz
−q

= Sz
q Sz
−q +

1
2

�
S+q S−−q + S−q S+−q

�
.
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Hence the longitudinal and transverse components are defined as

χss(q ,τ) =
�ħh

2

�2 �
χ‖(q ,τ) +χ⊥(q ,τ)

�
�ħh

2

�2
χ‖(q ,τ) = −〈TτSz(q ,τ)Sz(−q , 0)〉

�ħh
2

�2
χ⊥(q ,τ) = 1

2

�−〈TτS+(q ,τ)S−(−q , 0)〉 − 〈TτS−(q ,τ)S+(−q , 0)〉� .

The diagrammatic representation of these functions for electrons interacting via Coulomb
forces is most easily written down in terms of the more general propagator

χ
σ1σ2σ

′
1σ
′
2
(q ,τ) = −

∑
kk ′
〈Tτc†

kσ1
(τ)ck+qσ2

(τ)c†
k ′σ′2
(0)ck ′−qσ′1

(0)〉,

which allows us to express the longitudinal and transverse functions as follows,

χ‖ = χnn − 2(χ↑↑↓↓ +χ↓↓↑↑) and χ⊥ = 2(χ↑↓↑↓ +χ↓↑↓↑),

where we have removed the (q ,τ) arguments for briefness and χnn is the density-density
correlation function discussed in Sec. 5.1.4.5. The diagram representing χ

σ1σ2σ
′
1σ
′
2

is the same as Eq. (5.75), except that the spins indices at the vertices are free. A
Dyson-like equation on the model of Eq. (5.69) may be formulated as:

�
σ1

σ2

σ′1

σ′2

= δ
σ1σ

′
1
δ
σ2σ

′
2
�
σ1

σ2

σ′1

σ′2

+ δσ1σ2
�
σ1

σ2

σ1

σ2

σ1

σ1

σ′1

σ′2

+ δσ1σ2
�
σ1

σ2

σ1

σ2

−σ1

−σ1

σ′1

σ′2

In writing this equation, we have taken into account that the spin must be conserved on
the particle and hole lines in the polarization diagram, all interactions along these lines
being spin-conserving. For the first term on the right, this gives rise to the product of
delta functions. For the second and third terms, this fixes the value of the spin on two
of the internal lines. As a result, a delta function appears due to the spin conservation
at the vertex. One spin variable is left free on the second vertex. This spin can be either
σ1 or −σ1, which explains the two terms. We can immediately translate this into the
following formula:

−χ
σ1σ2σ

′
1σ
′
2
= δ

σ1σ
′
1
δ
σ2σ

′
2
Πσ1σ2

+δσ1σ2
Πσ1σ2

V
V (χσ1σ1σ

′
1σ
′
2
+χ−σ1−σ1σ

′
1σ
′
2
).

The definition of the various terms should be obvious by looking at the diagrams. This
relation actually defines a linear system of 16 equations for the 16 correlators χ

σ1σ2σ
′
1σ
′
2
.

It is immediately clear that χσ−σσσ = χσ−σ−σσ = χσ−σ−σ−σ = 0, since for these 6
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correlators the right-hand side of the equation vanishes due to the delta functions.
Furthermore, we also read from the equation that

χσ−σσ−σ = −Πσ−σ,

which is sufficient to determine χ⊥. We are then left with 8 unknown correlators,
namely χσσσσ, χσσσ−σ, χσσ−σσ, and χσσ−σ−σ. The diagrammatic relation leads to
two decoupled systems of two equations, namely

−χσσσσ = Πσσ +Πσσ
V
V (χσσσσ +χ−σ−σσσ)

−χ−σ−σσσ = Π−σ−σ
V
V (χ−σ−σσσ +χσσσσ)

with the solution

χσσσσ = −
Πσσ(1+

V
V Π−σ−σ)

1+ V
V Π

, χσσ−σ−σ =
V
V Π↑↑Π↓↓
1+ V

V Π

and

−χσσσ−σ = Πσσ
V
V (χσσσ−σ +χ−σ−σσ−σ)

−χ−σ−σσ−σ = Π−σ−σ
V
V (χ−σ−σσ−σ +χσσσ−σ),

with the solution χσσσ−σ = χσσ−σσ = 0. Collecting the results and using Eq. (5.79),
we find

χ‖ = −
Π+ 4 V

V Π↑↑Π↓↓
1+ V

V Π
and χ⊥ = −2(Π↑↓ +Π↓↑),

as indicated in Eq. (5.101).

doc–45 Equation of motion of the imaginary-time correlation functions

Writing explicitly the time ordering, −CAB(τ) = θ (τ)〈A(τ)B(0)〉+ηθ (−τ)〈B(0)A(τ)〉,
and noting that ∂τθ (τ) = δ(τ), we find

− ∂τCAB(τ) = δ(τ)〈A(τ)B(0)〉 −ηδ(τ)〈B(0)A(τ)〉
+ θ (τ)〈∂τA(τ)B(0)〉+ηθ (−τ)〈B(0)∂τA(τ)〉.

In the first two terms, A(τ) can be replaced by A(0) due to the delta function. This leads
to δ(τ)〈A(0)B(0)−ηB(0)A(0)〉, i.e., the first term in the right-hand side of Eq. (5.108).
The last two terms can be grouped as 〈Tτ∂τA(τ)B(0)〉. Finally, from the definition
Eq. (4.3) we see that ∂τA(τ) = [K , A]τ, hence 〈Tτ∂τA(τ)B(0)〉= −〈Tτ[A, K]τB(0)〉=
C[A,K]B(τ), giving the second term in the right-hand side of Eq. (5.108).
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doc–46 Grand potential and one-particle Green’s function

Consider the Hamiltonian K = K0 + λV , where K0 contains no interaction term and
can therefore be solved to yield the partition function Z0 = Tr e−βK0 and the grand
potential Ω0 = − 1

β ln Z0. Equation (2.5) gives the grand potential for λ > 0 as

Ω(λ) = − 1
β

lnTr e−β(K0+λV ).

Taking the derivative with respect to λ, we obtain

dΩ(λ)
dλ

= − 1
β

Tr (−βV )e−β(K0+λV )

Tr e−β(K0+λV )
=

Tr e−β(K0+λV )V
Tr e−β(K0+λV )

= 〈V 〉λ,

where 〈· · · 〉λ is the thermal average Eq. (2.2) with respect to the Hamiltonian K0 +λV .
Integrating with the boundary condition Ω(λ= 0) = Ω0 gives

Ω= Ω(1) = Ω0 +

∫ 1

0

dλ 〈V 〉λ.

We now express 〈V 〉λ in terms of the correlation function that appears in the equation
of motion of the Green’s function, Eq. (5.114):

〈V 〉λ =
1
2

∑
αγµ1µ2

Vαγµ1µ2
〈a†
αa†
γaµ2

aµ1
〉λ

=
1
2

∑
αγµ1µ2

Vαγµ1µ2
〈Tτa†

α(0)a
†
γ(0
−)aµ2

(0−)aµ1
(0−)〉λ

=
η

2

∑
αγµ1µ2

Vαγµ1µ2
〈Tτa†

γ(τ)aµ2
(τ)aµ1

(τ)a†
α(0)〉λ︸ ︷︷ ︸

−C λ
a†
γaµ2

aµ1
, a†
α

(τ)

��
τ=0−

= −η
2

∑
αγµ1µ2

Vαγµ1µ2
C λ

a†
γaµ2 aµ1 , a†

α

(τ= 0−).

On the other hand, Eq. (5.114) evaluated for β = α and the interaction λV and
summed over α yields

∑
α

�
− ∂τGλαα(τ)−

∑
γ

ξαγGλγα(τ)−δ(τ)
�
= λ

∑
αγµ1µ2

Vαγµ1µ2
C λ

a†
γaµ2 aµ1 , a†

α

(τ),

such that

〈V 〉λ = −
η

2λ

∑
α

�
− ∂τGλαα(τ)−

∑
γ

ξαγGλγα(τ)−δ(τ)
�
τ=0−

.
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This, once inserted in the expression of Ω, proves Eq. (1.9). It is more convenient to
write Eq. (1.9) in frequency space. Performing the Fourier transform, we have

〈V 〉λ = −
η

2λ
1
β

∑
iνn

∑
α

�
iνnGλαα(iνn)−

∑
γ

ξαγGλγα(iνn)− 1
�
e−iνn0−

= − η
2λ

1
β

∑
iνn

∑
α

�∑
γ

(iνnδαγ − ξαγ)Gλγα(iνn)− 1
�
eiνn0+

= − η
2λ

1
β

∑
iνn

∑
α

¦�G−1
0 (iνn)Gλ(iνn)

�
αα
− 1

©
eiνn0+

= − η
2λ

1
β

∑
iνn

Tr
�
G−1

0 (iνn)Gλ(iνn)− 11
�
eiνn0+ .

We have used Eq. (5.112) and adopted a matrix notation. Now we introduce the
self-energy by means of Dyson’s equation, Eq. (5.31), which gives G−1

0 Gλ = 11+ΣλGλ
and consequently

〈V 〉λ = −
η

2λ
1
β

∑
iνn

TrΣλ(iνn)Gλ(iνn)e
iνn0+ .

The resulting expression for the grand potential is [see also Abrikosov et al. (1975,
p. 140)]

Ω= Ω0 −
η

2

∫ 1

0

dλ
λ

1
β

∑
iνn

TrΣλ(iνn)Gλ(iνn)e
iνn0+ .

Remark that the calculations and results in the present document assume that Ω(λ) is
a continuous function of λ with a well-defined derivative. This assumption reminds
the hypothesis of adiabatic connection that underlies perturbation theory. In spite of
its apparent generality, Eq. (1.9) breaks down if a phase transition occurs between
λ= 0 and λ= 1 and induces a discontinuous derivative in Ω(λ).

doc–47 Gor’kov equations

After performing the decoupling Eq. (5.115) and reshuffling the dummy indices, the
last term in the equation of motion Eq. (5.114) of Gαβ (τ) becomes

∑
γµ1µ2

Vαγµ1µ2

�
〈a†
γaµ2
〉Gµ1β

(τ) +η〈a†
γaµ1
〉Gµ2β

(τ) + 〈aµ2
aµ1
〉F †

γβ
(τ)
�
=

∑
γ

∑
µ1µ2

Vαµ1γµ2
〈a†
µ1

aµ2
〉

︸ ︷︷ ︸
[VH]αγ

Gγβ (τ) +
∑
γ

η
∑
µ1µ2

Vαµ1µ2γ
〈a†
µ1

aµ2
〉

︸ ︷︷ ︸
[Vx]αγ

Gγβ (τ)

+
∑
γ

∑
µ1µ2

Vαγµ1µ2
〈aµ2

aµ1
〉

︸ ︷︷ ︸
∆αγ

F †
γβ
(τ).
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The mean fields VH, Vx, and ∆ are those reported in Eq. (5.119). With this, Eq. (5.114)
becomes

∑
γ

�
− ∂τδαγ − ξαγ − [VH]αγ − [Vx]αγ

�
Gγβ (τ)−

∑
γ

∆αγF †
γβ
(τ) = δ(τ)δαβ .

Moving to the frequency domain and using a matrix notation for the various quantities,
we get

(iνn11− K0 − VH − Vx)G (iνn)−∆F †(iνn) = 11.

This is the first Gor’kov equation displayed in Eq. (5.118). The notations VH and Vx
suggest that these quantities are the Hartree and exchange potentials, respectively.
Let’s see this in greater detail. From the definition of VH, the representation of a†

µ1
in

terms of the one-particle wave-function, a†
µ1
=
∫

dr ϕµ1
(r )a†

r [see Eq. (10.4)], and the
expression of the matrix element

Vαµ1βµ2
=

∫
dr dr ′ϕ∗α(r )ϕ

∗
µ1
(r ′)V (r , r ′)ϕβ (r )ϕµ2

(r ′),

[see Eq. (2.44)], we find

[VH]αβ =
∑
µ1µ2

∫
dr dr ′dr ′′dr ′′′ϕ∗α(r )ϕ

∗
µ1
(r ′)V (r , r ′)ϕβ (r )ϕµ2

(r ′)

×ϕµ1
(r ′′)ϕ∗µ2

(r ′′′)〈a†
r ′′ar ′′′〉.

The µ1 and µ2 sums yield closure relations:
∑
µ1
ϕ∗µ1
(r ′)ϕµ1

(r ′′) = δ(r ′ − r ′′) and
similarly for µ2 which gives δ(r ′ − r ′′′). Hence we find

[VH]αβ =

∫
dr dr ′ϕ∗α(r )V (r , r ′)ϕβ (r ) 〈a†

r ′ar ′〉︸ ︷︷ ︸
n(r ′)

=

∫
dr ϕ∗α(r )

�∫
dr ′ V (r , r ′)n(r ′)

�
ϕβ (r ) = 〈α|VH|β〉.

The quantity in brakets is just the classical potential produced at point r by a density
of particles n(r ′) subject to the interaction V (r , r ′). In the context of the Coulomb
interaction, this is the Hartree potential. Following the same logic, one can check that
Vx represents the exchange potential.

In order to complement the first Gor’kov equation, we must evaluate the equation of
motion of the anomalous propagator F †

αβ
(τ). The latter is written in the main text,

Eq. (5.117), as well as its decoupling by analogy with Eq. (5.115). Again, by reshuffling
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indices, we find that the last term takes the form

−
∑
γ

∑
µ1µ2

V ∗αγµ1µ2
〈a†
µ1

a†
µ2
〉

︸ ︷︷ ︸
∆∗αγ

Gγβ (τ)−
∑
γ

η
∑
µ1µ2

V ∗αµ1µ2γ
〈a†
µ2

aµ1
〉

︸ ︷︷ ︸
[Vx]∗αγ

F †
γβ
(τ)

−
∑
γ

∑
µ1µ2

V ∗αµ1γµ2
〈a†
µ2

aµ1
〉

︸ ︷︷ ︸
[VH]∗αγ

F †
γβ
(τ).

We thereby obtain in matrix form the second Gor’kov equation shown in Eq. (5.118):
�
iνn11+ K∗0 + V ∗H + V ∗x

�F †(iνn) +∆
∗G (iνn) = 0.

The mean fields can be related to the propagators G and F †. Since

〈a†
µ1

aµ2
〉= 〈Tτa†

µ1
(0)aµ2

(0−)〉= η〈Tτaµ2
(0−)a†

µ1
(0)〉= −ηGµ2µ1

(τ= 0−),

we obtain Eqs (5.119a) and (5.119b). On the other hand, we have

〈aµ2
aµ1
〉= 〈a†

µ1
a†
µ2
〉∗ = 〈Tτa†

µ1
(0)a†

µ2
(0−)〉∗ = η〈Tτa†

µ2
(0−)a†

µ1
(0)〉∗

= −η
�
F †
µ2µ1
(τ= 0−)

�∗
,

which gives Eq. (5.119c).

doc–48 Spin-singlet superconductor

In the real-space representation for fermions, the indices of the one-particle states
are pairs of coordinates (riσi) for the position and spin of the electron and the wave
functions are ϕriσi

(r ,σ) = δσσi
δ(r − ri). The interaction matrix element therefore

becomes, according to Eq. (2.44):

Vαβγδ→ Vr1σ1 r2σ2 r3σ3 r4σ4
=

∫
dr
∑
σ

∫
dr ′

∑
σ′

×δσσ1
δ(r − r1)δσ′σ2

δ(r ′ − r2)V (r , r ′)δσσ3
δ(r − r3)δσ′σ4

δ(r ′ − r4)

= δσ1σ3
δ(r1 − r3)δσ2σ4

δ(r2 − r4)V (r1, r2).

The pairing field results from Eq. (5.119c):

∆αβ →∆rσr ′σ′ =

∫
dr1

∑
σ1

∫
dr2

∑
σ2

Vrσr ′σ′r1σ1 r2σ2
〈cr2σ2

cr1σ1
〉

= V (r , r ′)〈cr ′σ′ crσ〉= −V (r , r ′)〈crσcr ′σ′〉.
The assumption of spin-singlet pairing means that only electrons of opposite spins
pair, in other words only ∆↑↓ and ∆↓↑ are nonzero. They are not independent though,
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since the anti-commutation rules of the fermions and the symmetry of the interaction
V (r , r ′) = V (r ′, r ) imply

∆(r , r ′)≡∆r↑r ′↓ = −V (r , r ′)〈cr↑cr ′↓〉= V (r ′, r )〈cr ′↓cr↑〉= −∆r ′↓ r↑.

For the same reason, only F †
↑↓ and F †

↓↑ are nonzero. The Gor’kov equations involve
matrix products in the one-particle state indices. For instance

�
K̃0G (iωn)

�
rσr ′σ′ =

∫
dr1

∑
σ1

[K̃0]rσr1σ1
Gr1σ1 r ′σ′(iωn).

Here enters our assumption of a non-magnetic system: [K̃0]rσr1σ1
= δσσ1

K̃0 and
Gr1σ1 r ′σ′ = δσ1σ′G . Hence

�
K̃0G (iωn)

�
rσr ′σ′ = δσσ′

∫
dr1 K̃0(r , r1)G (r1, r ′, iωn).

Likewise
�
∆F †(iωn)

�
rσr ′σ′ = δσσ′

∫
dr1∆rσr1−σF †

r1−σr ′σ(iωn).

The first Gor’kov equation Eq. (5.118a) for σ = σ′ = ↑ therefore becomes Eq. (5.133a).
For the second we proceed similarly:

�
K̃∗0F †(iωn)

�
rσr ′σ′ = δσ,−σ′

∫
dr1 K̃∗0(r , r1)F †

r1σr ′−σ(iωn)

�
∆∗G (iωn)

�
rσr ′σ′ = δσ,−σ′

∫
dr1∆

∗
rσr1−σG (r1, r ′, iωn)

= −δσ,−σ′
∫

dr1∆
∗
r1−σrσG (r1, r ′, iωn),

such that the second Gor’kov equation Eq. (5.118b) for σ = −σ′ = ↓ reduces to
Eq. (5.133b). Note the sign change in front of ∆∗ with respect to Eq. (5.118). The gap
equation is readily derived from the definitions:

∆(r , r ′) = −V (r , r ′)〈c†
r ′↓c

†
r↑〉∗ = −V (r , r ′)〈Tτc†

r ′↓(0
+)c†

r↑(0)〉∗

= V (r , r ′)
�
F †
↓↑(r

′, r ,τ= 0+)
�∗
= V (r , r ′)

�F †(r ′, r ,τ= 0+)
�∗

.

In the Dyson-like formulation, the self-energy is diagonal in the spin indices and reads

Σ(r , r ′, iωn) =

∫
dr1dr2∆r↑r1↓G0(r2, r1,−iωn)∆

∗
r2↓ r ′↑

= −
∫

dr1dr2∆(r , r1)G0(r2, r1,−iωn)∆
∗(r ′, r2).
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This can be recast in matrix form as Σ(iωn) = −∆G T
0 (−iωn)∆†, where G T

0 is the
transpose of G0. In the Nambu formalism, we may write down the spin structure of
the matrix explicitly:




iωn − K̃0 0 0 −∆↑↓
0 iωn − K̃0 −∆↓↑ 0
0 ∆∗↑↓ iωn + K̃∗0 0
∆∗↓↑ 0 0 iωn + K̃∗0







G 0 0 −F↑↓
0 G −F↓↑ 0
0 F †

↑↓ −G ∗ 0
F †
↓↑ 0 0 −G ∗


= 11,

and then reduce it again to a “spinless” 2 × 2 system for G , G ∗, F † ≡ F †
↓↑ and

F ≡ −F↑↓ = (F †
↓↑)
∗:

�
iωn − K̃0 −∆
−∆† iωn + K̃∗0

�� G F
F † −G ∗

�
=
�

11 0
0 11

�
.

This immediately leads us to the following Bogoliubov–de Gennes equations:
∫

dr1

�
K̃0(r , r1)uγ(r1) +∆(r , r1)vγ(r1)

�
= Eγuγ(r )

∫
dr1

�−K̃∗0(r , r1)vγ(r1) +∆
∗(r1, r )uγ(r1)

�
= Eγvγ(r ).

Our last calculation here will be the derivation of the gap equation in the particular
case where translation invariance is present. We must be careful to get the signs
right. In case of translation invariance, the gap equation Eq. (5.134) is ∆(r ) =
V (r )

�F †(−r ,τ= 0+)
�∗

. Fourier transforming, we get

∆k =

∫
dr ∆(r )e−ik·r

=

∫
dr V (r )︸︷︷︸

1
V
∑

k1
V (k1)eik1 ·r

�
F †(−r ,τ= 0+)︸ ︷︷ ︸
1
V
∑

k2
F †(k2,0+)e−ik2 ·r

�∗
e−ik·r .

The r integration yields V δk1+k2,k . Therefore

∆k =
1
V
∑
k ′

V (k − k ′)
�
F †(k ′,τ= 0+)︸ ︷︷ ︸

1
β

∑
iωn
F †(k ′,iωn)e−iωn0+

�∗

=
1
V
∑
k ′

V (k − k ′)
1
β

∑
iωn

�F †(k ′, iωn)
�∗

eiωn0+ .

The anomalous Green’s functionF †(k, iωn) is found by solving the algebraic equations
Eq. (5.135) with the additional assumption ξ−k = ξk :

F †(k, iωn) =
∆∗k

iωn + ξk
G (k, iωn) =

∆∗k
2Ek

�
1

iωn − Ek
− 1

iωn + Ek

�
.
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We get:

∆k =
1
V
∑
k ′

V (k − k ′)
∆k ′

2Ek ′

1
β

∑
iωn

�
1

iωn − Ek ′
− 1

iωn + Ek ′

�
e−iωn0− .

The last step is to perform the frequency sums with the help of Eq. (17):

1
β

∑
iωn

�
1

iωn − Ek ′
− 1

iωn + Ek ′

�
e−iωn0− = f (Ek ′)− f (−Ek ′) = − tanh

�
β

2
Ek ′

�
.

This finally leads to Eq. (5.141).

doc–49 Free-particle propagator in the vacuum

The Green’s function of a free particle in the vacuum is given in momentum space by
Gfree(k, iνn) = (iνn − ξk)−1, where ξk = ħh2k2/(2m)− E0 and E0 sets the origin on the
energy axis. We wish to derive the expression of Gfree in real space:

Gfree(r , iνn) =
1
V
∑

k

eik·r

iνn − ξk
.

In order to perform the integration, we choose the coordinate system like in doc–2:

Gfree(r , iνn) =
1

(2π)2

∫ ∞

0

dk

∫ π

0

dϑ
k2 sinϑ eikr cosϑ

iνn + E0 −ħh2k2/(2m)

=
m

π2ħh2r

∫ ∞

0

dk
k sin kr
κ2 − k2

=
m

2π2ħh2r

1
i

∫ ∞

−∞
dk

keikr

κ2 − k2
.

We have introduced κ2 = 2m
ħh2 (iνn + E0). The remaining wave vector integration is

performed by means of the residue theorem Eq. (7), by closing the integration contour
in the upper half of the complex plane, where the integral vanishes due to the factor
eikr . The integrand has two poles at k = ±κ. If Imκ > 0, the pole at +κ in enclosed in
the contour, while if Imκ < 0 it is the pole at −κ that is enclosed. Hence we obtain

Gfree(r , iνn) = −
m

2πħh2r
ei sign(Imκ)κr , κ=

√√2m

ħh2 (iνn + E0).

This propagator is often used to describe particles that are asymptotically free, i.e.,
become free at a distance R large compared with other typical length scales in the
problem. In this situation, the free propagation from a point r in the system to a distant
point R, which only depends on the distance |r −R|, can be written as

Gfree(r −R, iνn) = −
m

2πħh2R
ei sign(Imκ)κ(R−n·r ) (R� r),

where we have used the fact that |r −R|= R− n · r +O[(r/R)2] with n = R/R.
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doc–50 Photoemission intensity and spectral function

The no-loss contribution to the photoemission intensity is given by the diagram dis-
played in Fig. 7.1(b). The various approximations involved and the relation with the
sudden approximation are discussed in Sec. 7.2 and illustrated in Fig. 10.2. Translating
the diagram with the help of the standard diagrammatic rules and inserting in Eq. (7.6),
we arrive at

dJSA(n)
dΩ

=
−ie2ħh3R2

32m3

�
n · �∇R −∇R

�� ∑
σσ1σ2

∫
dr1dr2

�
A(r1) ·

�
∇r 1
−∇r1

��

�
A(r2) ·

�
∇r 2
−∇r2

��∫ β

0

dτdτ′ eiΩ̄1τeiΩ̄2τ
′
δσ1σ2

Gbulk(r1 − r 2,τ′ −τ)

δσσ1
Gfree(R− r 1,τ)δσσ2

Gfree(r2 −R,−τ′)
���

iΩ̄1→ħhω+0
iΩ̄2→−ħhω+0

+
�
ω0→−ω0

	
.

A factor of 2 for the two topologically different diagrams has been added as discussed
near the end of Sec. 7.1 and the factor −1 due to the fermion loop in the diagram is
cancelled by the fact that the correlation function is actually minus the diagram, like
in Eq. (5.59); one can check this by applying directly Wick’s theorem to Eq. (7.7). In
order to be able to perform the time integrations and the analytic continuation, we
introduce the spectral representations Eq. (4.11) of Gbulk and Gfree:

Gbulk(r ,τ) =
1
V
∑

k

1
β

∑
iωn

Gbulk(k, iωn)︸ ︷︷ ︸∫∞
−∞ dε A(k,ε)

iωn−ε

ei(k·r−ωnτ)

Gfree(r ,τ) =
1
β

∑
iωn

Gfree(r , iωn)︸ ︷︷ ︸
∫∞
−∞ dε

Afree(r ,ε)
iωn−ε

e−iωnτ.

A(k,ε) and Afree(r ,ε) are the total spectral functions of the bulk and free Green’s
functions, respectively. We shall always denote the vector potential by a bold A and
the spectral function by a roman A, which should preclude any confusion. The time
integrations can now be evaluated:

∫ β

0

dτdτ′ eiΩ̄1τeiΩ̄2τ
′
e−iωn(τ′−τ)e−iω̄1τe−iω̄2(−τ′) = β2δiω̄1,iωn+iΩ̄1

δiω̄2,iωn−iΩ̄2
.

One Matsubara sum remains to be performed before the analytic continuation:

1
β

∑
iωn

1
iωn − ε

1
iωn + iΩ̄1 − ε1

1
iωn − iΩ̄2 − ε2

=
f (ε)

(ε + iΩ̄1 − ε1)(ε − iΩ̄2 − ε2)
.

We have discarded two terms proportional to f (ε1) and f (ε2). The reason is that
ε1 and ε2 enter the spectral functions Afree(r ,ε1) and Afree(r ,ε2). Since Afree(k,ε) =
δ(ε − E) with E = ħh

2κ2

2m + φ the energy of the free photo-electron (see Fig. 10.2),
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r1

r2

RV
ǫ

φ

µ

ħhω0
ħh2κ2

2m − E0

ħh2κ2

2m

(a) (b)

Figure 10.2: The sudden approximation for photoemission. (a) The sample is treated as a
bulk material of volume V , overlooking the presence of the surface, and the propagation from
within the sample to the detector at point R is assumed to be free. (b) Energy diagram. Within
the sample, the energies ε are measured from the chemical potential µ. φ is the surface work
function and ħhω0 is the photon energy. The photo-electron is directly excited into the vacuum
and κ measures its kinetic energy above the vacuum level. In order to refer this kinetic energy
to the chemical potential µ, we must set E0 = −φ.

the spectral weight is concentrated at an energy of the order of ħhω0 which justifies
the approximation f (ε1) = f (ε2) = 0. These two terms correspond to the two time
orderings in Eq. (7.3) that are such that j p(R) acts directly on the system eigenstates.
We can now perform the analytic continuation iΩ̄1 → ħhω+0 and iΩ̄2 → −ħhω+0 and
reintroduce the retarded and advanced free correlation functions [see Eqs (3.18) and
(3.19)]:

dJSA(n)
dΩ

=
−ie2ħh3R2

16m3

�
n · �∇R −∇R

��∫
dr1dr2

�
A(r1) ·

�
∇r 1
−∇r1

��

�
A(r2) ·

�
∇r 2
−∇r2

�� 1
V
∑

k

eik·(r1−r 2)

∫ ∞

−∞
dεA(k,ε) f (ε)

∫ ∞

−∞
dε1

Afree(R− r 1,ε1)

ε +ħhω0 − ε1 + i0+︸ ︷︷ ︸
GR

free(R−r 1,ε+ħhω0)

∫ ∞

−∞
dε2

Afree(r2 −R,ε2)
ε +ħhω0 − ε2 − i0+︸ ︷︷ ︸

GA
free(r2−R,ε+ħhω0)

.

We have droped the second term with ω0 replaced by −ω0. This term involves the
free propagators at energy ε − ħhω0 < 0 [remember that ħhω0 > 0 and that ε ® 0
due to the product A(k,ε) f (ε)]. At negative energy, the free propagators GR,A

free decay
exponentially like e−|Im(κ)|r because κ is imaginary [see doc–49]: such contributions
disappear as R→∞. This represents the physically obvious fact that only electrons can
propagate to the detector, not holes. Using the relations GR

free(r ,ε) = Gfree(r ,ε + i0+),
GA

free(r ,ε) = Gfree(r ,ε− i0+), and the expansion of Gfree at large distances [see doc–49],
we are now ready to evaluate the gradients involving R and R. As we measure the
energies relative to the chemical potential and since the photo-electrons are at rest in
the vacuum if their excitation energy above the chemical potential equals the surface
work function (see the energy diagram in Fig. 10.2), we conclude that the energy E0

must be set to E0 = −φ and that κ must be taken as κ =
Æ

2m(ε +ħhω0 −φ)/ħh2 when
we use the free propagator of doc–49. After checking the identity (the limit R→ R is
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tacit)

R2
�
n · �∇R −∇R

��
GR

free(R− r 1,ε +ħhω0)G
A
free(r2 −R,ε +ħhω0) = −

im2κ

2π2ħh4 eiκn·(r2−r 1),

inserting it in the expression of the photo-current, and noting that the reality of the
vector potential implies A(−q) = A∗(q), we obtain

dJSA(n)
dΩ

= − e2

32π2mħh
1
V
∑

k

∫ ∞

−∞
dεA(k,ε) f (ε)κ(ε)

∫
dr1 A(r1) ·

�
∇r 1
−∇r1

�
eik·r1 e−iκn·r 1

︸ ︷︷ ︸
−i(κn+k)·A(κn−k)∫

dr2 A(r2) ·
�
∇r 2
−∇r2

�
e−ik·r 2 eiκn·r2

︸ ︷︷ ︸
−i(k+κn)·A(k−κn)

=
e2

32π2mħh
1
V
∑

k

∫ ∞

−∞
dεA(k,ε) f (ε)κ(ε)

��(κn + k) · A(κn − k)
��2.

The last step is to remember that we have been considering a monochromatic light of
frequency ω0; we furthermore assume that the light is linearly polarized and takes
the simple form A(r , t) = A cos(q0 · r −ω0 t) with q0 =ω0/c. The Fourier transform
is A(q ,ω) = πV A[δqq0

δ(ω−ω0) +δq ,−q0
δ(ω+ω0)]. The term with ω= −ω0 gives

no contribution as we have seen above. We therefore need only keep the first term,
i.e., we take A(q) = V Aδqq0

. This implies that κn − k = q0 or k + q0 = κn, which
is the expected momentum-conservation rule if we interpret k as the wave vector of
the electron before it is excited and κn as the wave vector of the photo-electron. This
leads us to our final result:

dJSA(n)
dΩ

=
e2V

8π2mħh

∫ ∞

−∞
dε
���A ·

�
n − q0

2κ

����
2
κ3(ε)A(κn − q0,ε) f (ε).

For a light of energy 1 keV (X-rays), the wave vector q0 = 0.51 Å−1 is similar to the
typical electron wave vectors in a crystal. Such photon energies are usually used to
extract core electrons. However, for the lights of energy ® 20 eV that are generally
used in valence-electron photoemission, the wave vector q0 ® 10−2 Å−1 is negligible
compared with the electron wave vectors and we can assume that the light induces
purely q = 0 excitations. In this latter case, taking q0 = 0, we arrive at the expression
given in Eq. (7.8).

doc–51 Kubo formula

Introducing the Fourier transforms of the conductivity tensor and of the electric field
with Eq. (2a) and performing the t ′ time integration with Eq. (3b), we rewrite Eq. (8.1)
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in the frequency domain as

e〈 jµ(r , t)〉V =
∫ ∞

−∞

dω
2π

e−iωt
∑
ν

∫
dr ′σµν(r , r ′,ω)Eν(r

′,ω). (10.5)

On the other hand, the expansion of the current in powers of the vector potential reads

〈 jµ(r , t)〉V = 〈 jp
µ(r , t)〉+ 〈 jp

µ(r , t)〉(1)V + 〈 jd
µ(r , t)〉(1)V +O(A2). (10.6)

We assume there is no current flowing in the absence of field, such that the first term
on the right-hand side vanishes. The second term is the paramagnetic current induced
by the vector potential which is, according to Eq. (6.19),

〈 jp
µ(r , t)〉(1)V = −e

∫ ∞

−∞

dω
2π

e−iωt
∑
ν

∫
dr ′C jp

µ(r ) j
p
ν (r ′)(iΩn→ ħhω+)Aν(r ′,ω)︸ ︷︷ ︸

1
iω Eν(r ′,ω)

.

The third term in Eq. (10.6) is just the average of the diamagnetic current, computed
directly from Eq. (2.49c) because j d itself is first-order in A:

〈 jd
µ(r , t)〉(1)V = −

e
m

Aµ(r , t)〈n(r , t)〉= − e
m
〈n(r )〉

∫ ∞

−∞

dω
2π

e−iωt Aµ(r ,ω)︸ ︷︷ ︸
1

iω Eµ(r ,ω)

.

Here we have used the fact that the average 〈n(r , t)〉 must be evaluated in the absence
of field and is therefore independent of time. Collecting the two terms, we find

e〈 jµ(r , t)〉V =
∫ ∞

−∞

dω
2π

e−iωt
∑
ν

∫
dr ′

�
− e2

iω
C jp

µ(r ) j
p
ν (r ′)(iΩn→ ħhω+)

−δµνδ(r − r ′)
e2

iωm
〈n(r )〉

�
Eν(r

′,ω).

Comparing with the Ohm’s law Eq. (10.5), we deduce the expression of the conductivity
tensor reported in Eq. (8.2).

In case of translational invariance, we have 〈n(r )〉 ≡ 〈n〉 and σµν(r , r ′,ω) = σµν(r −
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r ′,0,ω), such that

σµν(q ,ω) =

∫
dr e−iq ·rσµν(r ,0,ω) =

1
V

∫
dr dr ′ e−iq ·rσµν(r + r ′, r ′,ω)

=
ie2

ω

1
V

∫
dr dr ′ e−iq ·r

�
C jp

µ(r+r ′) jp
ν (r ′)(iΩn→ ħhω+) +δµνδ(r )

〈n〉
m

�

=
ie2

ω

¨
1
V 2

∑
q1q2

C jp
µ(q1) j

p
ν (q2)(ħhω

+)
1
V

∫
dr dr ′ e−iq ·r eiq1·(r+r ′)eiq2·r ′

︸ ︷︷ ︸
V δqq1

δq1,−q2

+ δµν
〈n〉
m

ª

=
ie2

ω

�
1
V C jp

µ(q) j
p
ν (−q)(iΩn→ ħhω+) +δµν

〈n〉
m

�
,

consistently with Eq. (8.3).

doc–52 Drude formula

For a momentum-independent self-energy Σ(ε), the spectral function entering Eq. (8.8)
is given by [see Eq. (7.12)]:

A(k,ε) =
−ImΣ(ε)/π

[ε − ξk −ReΣ(ε)]2 + [ImΣ(ε)]2
.

The dc conductivity resulting from Eqs (8.9) and (8.8) can be recast in the form

σdc =

∫ ∞

−∞
dε [− f ′(ε)][ImΣ(ε)]2

1
π

∫ ∞

−∞
dE

Φ(E)
{[ε −ReΣ(ε)− E]2 + [ImΣ(ε)]2}2 .

We have used
∑
µ k2

µ = k2 and introduced the material-specific transport function

Φ(E) =
e2ħh
3

1
V
∑
kσ

v2
kδ(ξk − E).

vk = ħh−1∇ξk is the group velocity, which is ħhk/m in the plane-wave basis. We see
that the transport function is proportional to the average squared velocity for all states
having energy E. Φ(E) will vary from one material to the next depending on the details
of the dispersion relation ξk , but it is expected to be a slow function of E. In order
to illustrate this, we assume a free-electron dispersion ξk = ħh2k2/(2m)− εF. Using
(ħhk/m)2 = 2(ξk + εF)/m, Φ(E) can be related to the free-electron DOS:

Φ(E) =
2e2ħh
3m

1
V
∑
kσ

(ξk + εF)δ(ξk − E) =
2e2ħh
3m

∫ ∞

−∞
dξN el

0 (ξ)(ξ+ εF)δ(ξ− E)

=
2e2ħh
3m

N el
0 (E)(E + εF).
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This is indeed a slow function of E that varies on the scale of εF. In contrast, the
denominator in the expression of σdc varies over a much smaller scale ∼ ImΣ(ε),
with ε constrained to remain of the order kBT . We can therefore take Φ(E) ≈ Φ(0).
Substituting the free-electron expressions, we find:

Φ(0) =
2e2ħh
3m

N el
0 (0)εF =

2e2ħh
3m

mkF

π2ħh2

ħh2k2
F

2m
=

e2ħh
m

k3
F

3π2
=

ne2ħh
m

.

Replacing Φ(E) by Φ(0) in the expression of σdc, we are left with an integral that can
be evaluated analytically:

1
π

∫ ∞

−∞

dE
[(a− E)2 + Γ 2]2

=
1

π|Γ |3
∫ ∞

−∞

du
(u2 + 1)2

=
1

2|Γ |3 .

Finally we get

σdc =
ne2ħh
2m

∫ ∞

−∞
dε
[− f ′(ε)]
|ImΣ(ε)| .

It is interesting to note that the real part of the self-energy disappears completely,
leaving only the imaginary part in Eq. (8.10). The real part of Σ encodes information
about the renormalization of the dispersion, like e.g. the effective mass. The observation
that the real part of the self-energy disappears underlines the fact that the bare electron
mass, not the effective mass, should be used in the Drude formula Eq. (8.10). For a
more detailed discussion of this point, see doc–76.

doc–53 Self-energy in the first Born approximation

For real energies, the self-energy Eq. (5.41) reads

Σ1BA(k,ε) = ni
1
V
∑

q

|v(q)|2
ε − ξk−q + i0+

= ni
1
V
∑

q

|v(q)|2GR
0 (k − q ,ε)

with GR
0 the free retarded Green’s function [see Eq. (3.26)]. Σ1BA is a convolution in

reciprocal space with the generic form f (k) = V −1
∑

q g(q)h(k − q). In real space,
such convolutions become simple products: f (r ) = g(r )h(r ). Hence we can write
Σ1BA in real space as

Σ1BA(r ,ε) = ni

�
Ze2

ε0

�2
e−kTF r

8πkTF
GR

0 (r ,ε).

We have used Eq. (8.13) for v(q) and Eq. (15) for the Fourier transform of |v(q)|2.
For an isotropic dispersion ξk = ħh2k2/(2mb)− εF, the real-space Green’s function was
calculated in doc–49:

GR
0 (r ,ε) = − mb

2πħh2r
eiκr with κ=

√√2mb

ħh2 (ε + εF) = kF

Æ
1+ ε/εF.
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The last step is to Fourier transform back to momentum space, using spherical coordi-
nates like in doc–2 and doc–41:

Σ1BA(k,ε) = −
�

Ze2

ε0

�2
mbni

16π2ħh2kTF

2π

∫ ∞

0

dr

∫ π

0

dϑ r2 sinϑ
e−kTF r eiκr

r
e−ikr cosϑ.

The ϑ-integration is elementary and yields 2 sin(kr)/kr. The r integration is easily
done as well:

Σ1BA(k,ε) = −
�

Ze2

ε0

�2
mbni

4πħh2kTFk

∫ ∞

0

dr sin kr e−kTF r eiκr

︸ ︷︷ ︸
− 1

2

�
1

κ−k+ikTF
− 1
κ+k+ikTF

�

=

�
Ze2

ε0

�2
mbni

8πħh2kTFk

�
1

κ− k+ ikTF
− 1
κ+ k+ ikTF

�
.

Eq. (8.14) results by introducing the expression of κ and using the isotropic-electron
gas expression k2

TF = (e
2/ε0)N el(0) = (e2/ε0)mbkF/(π2ħh2) to rewrite the prefactor.

Let’s estimate the order of magnitude of the residual resistivity in order to check
whether it can explain the data of Fig. 8.1. The residual resistivity is deduced from
Eqs (8.10) and (8.11) evaluated at T = 0:

ρ0 =
mb

ne2

2
ħh |ImΣ

1BA(kF, 0)|.
We write the impurity density as ni = (x/100)× 4/a3, where x is the impurity con-
centration in atomic percent introduced in the first paragraph of Sec. 8.3 and 4/a3

is the number of atoms per unit volume for fcc crystals like copper and silver, with a
the lattice parameter. The electronic density is expressed as n= 4Nv/a

3 with Nv the
number of valence electrons per atom. Denoting s = kTF/kF, we arrive at

α=
ρ0

x
=

1
3(10π)2

ma2
0

ε0ħh
(a/a0)3(mb/m)2

N2
v

Z2

s2(4+ s2)

= 9.23× 10−2 µΩ cm
(a/a0)3(mb/m)2

N2
v

Z2

s2(4+ s2)
.

Copper and silver have a band mass of the order of the electron mass and one valence
electron in the 4s and 5s shell, respectively. The cubic lattice parameters are a = 6.83a0
for Cu and a = 7.72a0 for Ag. The parameter s measures the efficiency of the screening
and is more difficult to estimate. The free-electron expression with Nv = 1 electron
per atom underestimates s because it ignores the screening effect of occupied d levels.
The free-electron formula give

s2 =
k2

TF

k2
F

=
24/3

31/3π5/3

(a/a0)(mb/m)

N1/3
v

,

which leads to values of s ≈ 1.5 for Cu and Ag and to somewhat too large α coefficients
αCu/Z

2 = 2.9 µΩ cm/% imp. and αAg/Z
2 = 3.5 µΩ cm/% imp. Increasing s by a factor

two relative to the free-electron result gives α coefficients in very good agreement with
the measurements: αCu/Z

2 = 0.37 µΩ cm/% imp. and αAg/Z
2 = 0.44 µΩ cm/% imp.
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doc–54 Second-order Coulomb self-energy

Performing the analytic continuation iωn→ ε+ i0+ in Eq. (5.48), taking the imaginary
part with Eq. (10), and using the notations k3 ≡ k + k1 − k2 and ξi ≡ ξki

, we get

− Im
�
� +�

�
=
π

V 2

∑
k1k2

�
2|V (k − k2)|2 − V (k1 − k2)V (k2 − k)

�

× � f (ξ1) f (−ξ2) f (−ξ3) + f (−ξ1) f (ξ2) f (ξ3)
	
δ(ε + ξ1 − ξ2 − ξ3).

Inside the braces {. . .}, we can replace ξ3 by ε+ξ1−ξ2 due to the delta function. Let’s
first remark that, at low energy ε, the Fermi factors and the delta function impose that
all momenta ki be close to the Fermi surface: indeed the combination of Fermi factors
can be rewritten as

{. . .}= f (ξ1) f (−ξ1) f (ξ2) f (−ξ2)
f (ε)[ f (ξ1)− f (ξ2)] + f (−ξ1) f (ξ2)

.

In the numerator, f (ξ1) f (−ξ1) f (ξ2) f (−ξ2) vanishes as soon as k1 and/or k2 deviates
from the vicinity of the Fermi surface. In addition, since ε + ξ1 − ξ2 is small, the
delta function also requires that ξ3 is small. The exact evaluation of the diagram
requires to perform cumbersome integrations over the angles between the vectors k,
k1, and k2. In order to ease the evaluation, we make two simplifications: (i) we replace
the Coulomb potential V (q) by a constant V0, to be interpreted as an average of the
Coulomb matrix element for wave vectors on the Fermi surface; (ii) we average the
diagram on k, assuming it has a weak momentum dependence. Since k only appears
in ξ3, the k-average can be converted into a ξ3 integral according to

1
N

∑
k

(. . .) =
V
N

1
2

1
V
∑
kσ

(. . .) =
1
2
Vcell

∫ ∞

−∞
dξ3N el

0 (ξ3)(. . .).

The ξ3 integral is trivial due to the delta function and the remaining double integration
on ξ1 and ξ2 can be done exactly for a flat DOS:

− Im
�
� +�

�
≈ π

8
VcellV

2
0 [N

el
0 (0)]

3

×
∫ ∞

−∞
dξ1dξ2

¦
f (ξ1) f (−ξ2) f (−ε − ξ1 + ξ2) + f (−ξ1) f (ξ2) f (ε + ξ1 − ξ2)

©

=
π

16
VcellV

2
0 [N

el
0 (0)]

3
�
ε2 + (πkBT )2

�
,

as indicated in Eq. (8.16). Although the two diagrams give contributions of similar
amplitudes but opposite signs, they do not cancel due to a factor of two difference.
The latter is due to the presence/absence of an internal spin sum.
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The first-order correction to the Green’s function Eq. (8.28) involves the factor

〈〈TτSµ1

d (r1,τ1)〉0〉imp =
¬¬

Tτ

Ni∑
`=1

sµ1

d (τ1)δ(r1 −R`)
¶

0

¶
imp

= 〈Tτsµ1

d (τ1)〉0
¬ Ni∑
`=1

δ(r1 −R`)
¶

imp

︸ ︷︷ ︸
ni

∫
dr δ(r )=ni

.

We have proceeded like in doc–33 for the impurity average. Now we use the fact that
the unperturbed Hamiltonian K0 [first term in Eq. (8.24)] does not depend on sµ1

d , such
that [K0, sµ1

d ] = 0 and

〈Tτsµ1

d (τ1)〉0 = 〈sµ1

d (τ1)〉0 =
Tr e−βK0 eτ1K0sµ1

d e−τ1K0

Tr e−βK0
=

Tr e−βK0sµ1

d

Tr e−βK0
= Tr sµ1

d .

The last equation holds because the Hilbert space is a tensor product of that of the
conduction electrons and that of the impurity spin and in the absence of coupling we
can write Tr e−βK0sµ1

d = Tr e−βK0Tr sµ1

d . We thus find, using the definition sd = (ħh/2)τ
of the impurity spin as well as Eq. (23):

〈〈TτSµ1

d (r1,τ1)〉0〉imp = ni
ħh
2

Trτµ1 = 0.

This result is expected: since nothing in the Hamiltonian K0 breaks spin-rotation
invariance, the average value of the impurity spin must be zero. At second order, the
spin-spin correlation function does not vanish:

〈〈TτSµ1

d (r1,τ1)S
µ2

d (r2,τ2)〉0〉imp =

〈Tτsµ1

d (τ1)s
µ2

d (τ2)〉0
¬ Ni∑
`=1

δ(r1 −R`)
Ni∑
`′=1

δ(r2 −R`′)
¶

imp

︸ ︷︷ ︸
niδ(r1−r2)+O(n2

i )

.

Developing the time-ordering operator and using Eq. (23), we find

〈Tτsµ1

d (τ1)s
µ2

d (τ2)〉0 =
ħh2

4
[θ (τ1 −τ2)Trτµ1τµ2 + θ (τ2 −τ1)Trτµ2τµ1] =

ħh2

2
δµ1µ2

,

so that finally

〈〈TτSµ1

d (r1,τ1)S
µ2

d (r2,τ2)〉0〉imp = ni
ħh2

2
δµ1µ2

δ(r1 − r2).
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We insert this result in Eq. (8.28), move from the real-space to the momentum-space
electron operators, perform the spatial integrations, and finally use Wick’s theorem to
arrive at the following second-order contribution to the Green’s function:1

G (2)σσ′(k,τ) = ni
ħh4J2

8

∫ β

0

dτ1dτ2

∑
µ1σ2

τµ1
σσ2
τ
µ1
σ2σ′

× 1
V
∑

q

G0(k,τ−τ1)G0(q ,τ1 −τ2)G0(k,τ2) = ni ×�qτ 0τ1 τ2

〈sµ1
d sµ2

d 〉

kσ kσ′σ1 σ
′
1 σ2 σ

′
2

.

In the diagram, each dashed line carries a factor ħhJ/2, the gray circles represent
the Pauli-matrix coefficients, and the constraint on spin indices (σ1 = σ, σ′1 = σ2,
σ′2 = σ

′) is enforced by the free propagators. Thanks to Eq. (24), we can evaluate∑
µ1σ2

τµ1
σσ2
τ
µ1
σ2σ′

= (
∑
µ1
τµ1τµ1)σσ′ = 3δσσ′ . The result is diagonal in the spin indices

as imposed by the spin-rotation invariance. After a time Fourier transform we obtain:

G (2)σσ′(k, iωn) = G0(k, iωn)

�
δσσ′ni

3ħh4J2

8
1
V
∑

q

G0(q , iωn)

�
G0(k, iωn).

In this form, it is clear that what we have found is the first term of a Dyson equation, with
the part in the square brackets being the self-energy Eq. (8.29). From the diagram, the
self-energyΣ(2)σσ′(k,τ1−τ2) is obtained by removing the two external legs corresponding
to the free propagators G0(k,τ−τ1) and G0(k,τ2). The simple structure of the result
without mixing of k with other wave vectors is a consequence of the factor δ(r1 − r2)
from the impurity average, which itself reflects the fact that the impurity spins are local
objects.

At order n= 3, the three-spin correlation function reads

〈〈TτSµ1

d (r1,τ1)S
µ2

d (r2,τ2)S
µ3

d (r3,τ3)〉0〉imp

= 〈Tτsµ1

d (τ1)s
µ2

d (τ2)s
µ3

d (τ3)〉0 × niδ(r1 − r2)δ(r2 − r3) +O(n2
i )

and also yields delta functions of the real-space coordinates. Hence the self-energy has
the same simple structure as for n= 2 and is given by the diagram

Σ
(3)
σσ′(k,τ1 −τ3) = ni ×�q1 q2

σ σ′
τ1 τ2 τ3

〈sµ1
d sµ2

d sµ3
d 〉

σ1 σ
′
1 σ2 σ

′
2 σ3 σ

′
3

.

The three-spin correlation function now has a time dependence because spin operators

1 The Wick theorem yields two topologically equivalent terms, only one of which must be counted.



doc–54 Self-energy up to third order for the Kondo Hamiltonian 223

do not commute:

〈Tτsµ1

d (τ1)s
µ2

d (τ2)s
µ3

d (τ3)〉0 =θ (τ1 −τ2)θ (τ2 −τ3)〈sµ1

d sµ2

d sµ3

d 〉0+
θ (τ1 −τ3)θ (τ3 −τ2)〈sµ1

d sµ3

d sµ2

d 〉0+
θ (τ2 −τ1)θ (τ1 −τ3)〈sµ2

d sµ1

d sµ3

d 〉0+
θ (τ2 −τ3)θ (τ3 −τ1)〈sµ2

d sµ3

d sµ1

d 〉0+
θ (τ3 −τ1)θ (τ1 −τ2)〈sµ3

d sµ1

d sµ2

d 〉0+
θ (τ3 −τ2)θ (τ2 −τ1)〈sµ3

d sµ2

d sµ1

d 〉0.

From Eq. (23), we see that

〈sµ1

d sµ2

d sµ3

d 〉0 =
�ħh

2

�3

Trτµ1τµ2τµ3 =
iħh3

4
εµ1µ2µ3

,

and since εµ1µ2µ3
= −εµ2µ1µ3

, etc., we can rewrite

〈Tτsµ1

d (τ1)s
µ2

d (τ2)s
µ3

d (τ3)〉0 =
iħh3

4
εµ1µ2µ3

�
θ (τ1 −τ2)θ (τ2 −τ3)

− θ (τ1 −τ3)θ (τ3 −τ2)− θ (τ2 −τ1)θ (τ1 −τ3) + θ (τ2 −τ3)θ (τ3 −τ1)

+ θ (τ3 −τ1)θ (τ1 −τ2)− θ (τ3 −τ2)θ (τ2 −τ1)
�
.

The value of the diagram becomes, taking into account the constraints on spin indices,

Σ
(3)
σσ′(k,τ1 −τ3) = ni

�ħhJ
2

�3 iħh3

4
1
V 2

∑
q1q2

∑
µ1µ2µ3

∑
σ2σ3

τµ1
σσ2
τµ2
σ2σ3

τ
µ3
σ3σ′
εµ1µ2µ3

×
∫ β

0

dτ2

�
. . .
�G0(q1,τ1 −τ2)G0(q2,τ2 −τ3),

where the square brackets contain the complicated time dependence due to the time
ordering. Eq. (24) tells us that

∑
µ1µ2µ3

∑
σ2σ3

τµ1
σσ2
τµ2
σ2σ3

τ
µ3
σ3σ′
εµ1µ2µ3

=
� ∑
µ1µ2µ3

τµ1τµ2τµ3εµ1µ2µ3

�
σσ′
= 6iδσσ′ .

Furthermore, since the self-energy is a function of the time difference τ1 −τ3, we can
set τ3 = 0 and redefine τ1 ≡ τ. In doing so, most of the theta functions in [. . .] either
vanish or equal one and we are left with [. . .] = θ (τ−τ2)− θ (τ2 −τ) = sign(τ−τ2):

Σ
(3)
σσ′(k,τ) = −δσσ′ni

3ħh6J3

16
1
V 2

∑
q1q2

∫ β

0

dτ2 sign(τ−τ2)G0(q1,τ−τ2)G0(q2,τ2).

In order to perform the time integration, we need the expression of the free Green’s
function in imaginary time. This can be directly read from Eq. (17): G0(k,τ) =
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−[θ (τ)− f (ξk)]e−ξkτ. We then have for the τ2 integral, using the notation ξi ≡ ξqi
,

∫ τ

0

dτ2 [θ (τ−τ2)− f (ξ1)]e
−ξ1(τ−τ2)[θ (τ2)− f (ξ2)]e

−ξ2τ2

−
∫ β

τ

dτ2 [θ (τ−τ2)− f (ξ1)]e
−ξ1(τ−τ2)[θ (τ2)− f (ξ2)]e

−ξ2τ2

= [1− f (ξ1)][1− f (ξ2)]e
−ξ1τ

∫ τ

0

dτ2 e(ξ1−ξ2)τ2

− [− f (ξ1)][1− f (ξ2)]e
−ξ1τ

∫ β

τ

dτ2 e(ξ1−ξ2)τ2

= f (−ξ1) f (−ξ2)e
−ξ1τ

e(ξ1−ξ2)τ − 1
ξ1 − ξ2

+ f (ξ1) f (−ξ2)e
−ξ1τ

e(ξ1−ξ2)β − e(ξ1−ξ2)τ

ξ1 − ξ2

=
1

ξ1 − ξ2

�
f (−ξ1) f (−ξ2)

�
e−ξ2τ − e−ξ1τ

�
+ f (ξ1)e

βξ1︸ ︷︷ ︸
f (−ξ1)

f (−ξ2)e
−βξ2︸ ︷︷ ︸

f (ξ2)

e−ξ1τ

− f (ξ1) f (−ξ2)e
−ξ2τ

�

=
1

ξ1 − ξ2

¦
− [1− 2 f (ξ2)] f (−ξ1)e

−ξ1τ + [1− 2 f (ξ1)] f (−ξ2)e
−ξ2τ

©

=
1

ξ1 − ξ2

¦
[1− 2 f (ξ2)]G0(q1,τ)− [1− 2 f (ξ1)]G0(q2,τ)

©

=
1− 2 f (ξq2

)

ξq1
− ξq2

G0(q1,τ) +
1− 2 f (ξq1

)

ξq2
− ξq1

G0(q2,τ).

The last line shows that the two terms are equal with the roles of q1 and q2 exchanged.
Since the τ dependence of Σ(3)σσ′(k,τ) only comes from G0(q1,τ), we can directly
perform the time Fourier transform and write

Σ
(3)
σσ′(k, iωn) = −δσσ′ni

3ħh6J3

8
1
V 2

∑
q1q2

1− 2 f (ξq2
)

ξq1
− ξq2

G0(q1, iωn)

= δσσ′ni
3ħh6J3

8
1
4

∫ ∞

−∞
dξ1dξ2 N el

0 (ξ1)N
el
0 (ξ2)

1− 2 f (ξ2)
ξ2 − ξ1

1
iωn − ξ1

.

We finally evaluate the scattering rate given by −ImΣ(3) on the real-energy axis iωn→
ε + i0+ using Eq. (10) and we thus obtain Eq. (8.30).

doc–56 Calculation of the tunneling current

In a tunneling experiment, electrons disappear on one side of the junction and appear
on the other side by quantum mechanical tunneling. It is therefore natural to evaluate
the current by counting how many electrons appear or disappear from, say, the right
system per unit time: I = −e〈ṄR〉. Here NR =

∑
ρ c†
ρcρ is the total number of electrons
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in the right system and ṄR its time derivative. Our convention is that the current is
positive when electrons flow from left to right (remembering that e = −|e|). Since
〈ṄR〉 vanishes if the tunneling Hamiltonian HT [Eq. (9.1)] is ignored, the strategy is to
calculate 〈ṄR〉 using the linear-response theory for the perturbation HT . We must tackle
the difficulty that, in the absence of perturbation, we have two systems with different
chemical potentials µL and µR. Therefore, the time evolution of the operators cannot
be written in terms of K = H −µN since there is no well-defined µ. We temporarily
revert to the canonical description in which the time evolution is controlled by H and
we use the notation Ã(t)≡ eiH t/ħhAe−iH t/ħh. Later in the calculation, we shall reintroduce
the grand-canonical description A(t) = eiK t/ħhAe−iK t/ħh in term of a modified grand
Hamiltonian K = HL +HR −µLNL −µRNR.

From the general linear-response formula Eq. (6.3), we deduce

〈ṄR(t)〉(1)HT
= − i
ħh

∫ t

−∞
d t1


� ˙̃NR(t), H̃T (t1)
��

and, consequently, for the current at first order in HT :

I(t) =
e
ħh

∫ ∞

−∞
d t1 θ (t − t1)


�
i ˙̃NR(t), H̃T (t1)

��
.

In the canonical description, we have

iħhṄR = [NR, HL +HR +HT ] = [NR, HL]︸ ︷︷ ︸
=0

+[NR, HR]︸ ︷︷ ︸
=0

+[NR, HT ]

=
∑
ρ′

∑
λρ

Tλρ [c
†
ρ′ cρ′ , c†

ρc
λ
]︸ ︷︷ ︸

δρρ′ c
†
ρ c
λ

+
∑
ρ′

∑
λρ

T ∗λρ [c
†
ρ′ cρ′ , c†

λ
cρ]︸ ︷︷ ︸

−δρρ′ c†
λ

cρ

=
∑
λρ

Tλρc†
ρc
λ
−
∑
λρ

T ∗λρc†
λ
cρ = X − X †.

We have used our assumption that fermion operators in the left and right systems
anticommute, the expression Eq. (9.1) of HT , and the standard commutation rules
Eq. (2.41). Note that the tildes are not required here: we use them to specify that the
internal time evolution is governed by H rather than H −µN , but there is no internal
time evolution involved here. Note also that the internal time evolution of the operators
is governed by the full Hamiltonian H, including HT ; however, the correlation functions
which give the linear response must be calculated with HT set to zero, as usual in
perturbation theory. The current becomes

I(t) =
e

ħh2

∫ ∞

−∞
d t1 θ (t − t1)


�
X̃ (t)− X̃ †(t), X̃ (t1) + X̃ †(t1)

��
.
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Using the property −〈[A†, B†]〉= 〈[A, B]〉∗, this can be put in the form

I(t) =
e

ħh2

∫ ∞

−∞
d t1 θ (t − t1)

�
�
X̃ (t), X̃ †(t1)

��
+

�

X̃ (t), X̃ (t1)
��
+ c.c.

	

=
2e

ħh2 Re

∫ ∞

−∞
d t1 θ (t − t1)

�
�
X̃ (t), X̃ †(t1)

��
+

�

X̃ (t), X̃ (t1)
��	

= −2e
ħh Im

∫ ∞

−∞
d t1

�
(−i/ħh)θ (t − t1)


�
X̃ (t), X̃ †(t1)

��

+(−i/ħh)θ (t − t1)

�

X̃ (t), X̃ (t1)
��	

.

We see that the current is given by two retarded correlation functions of the form
(−i/ħh)θ(t)〈[Ã(t), B̃(0)]〉. The time evolution and the thermal average are governed
by HL + HR as pointed out above. We would prefer to have functions of the kind of
Eq. (3.4), i.e., (−i/ħh)θ (t)〈[A(t), B(0)]〉 with the time evolution governed by the grand
Hamiltonian. To this end, we introduce K = HL +HR −µLNL −µRNR and we note that

X̃ (t) =
∑
λρ

Tλρ ei(HL+HR)t/ħhc†
ρc
λ
e−i(HL+HR)t/ħh

=
∑
λρ

Tλρ eiK t/ħh ei(µL NL+µRNR)t/ħhc†
ρc
λ
e−i(µL NL+µRNR)t/ħh

︸ ︷︷ ︸
eiµRNR t/ħhc†

ρe−iµRNR t/ħh eiµL NL t/ħhc
λ
e−iµL NL t/ħh

e−iK t/ħh.

Considering Eq. (29), we have eiµRNR t/ħhc†
ρ = c†

ρeiµR(NR+1)t/ħh and eiµL NL t/ħhcλ = cλeiµL(NL−1)t/ħh,
which gives

X̃ (t) =
∑
λρ

Tλρ eiK t/ħhc†
ρeiµR t/ħhc

λ
e−iµL t/ħhe−iK t/ħh = eieV t/ħheiK t/ħhX e−iK t/ħh

= eieV t/ħhX (t),

where we have used the relation µR −µL = eV and the general definition Eq. (2.15).
Hence we can rewrite the current in terms of the retarded correlation functions that
we are used to manipulate:

I(t) = −2e
ħh Im

� ∫ ∞

−∞
d t1 eieV (t−t1)/ħh (−i/ħh)θ (t − t1)


�
X (t), X †(t1)

��
︸ ︷︷ ︸

CR
X X† (t−t1)

+

∫ ∞

−∞
d t1 eieV (t+t1)/ħh (−i/ħh)θ (t − t1)


�
X (t), X (t1)

��
︸ ︷︷ ︸

CR
X X (t−t1)

�

= −2e
ħh Im

¦
CR

X X †(eV/ħh) + e2ieV t/ħhCR
X X (−eV/ħh)

©
.

This is just Eq. (9.3). The next step of the calculation is to express the two correlation
functions in terms of the Green’s functions in the left and right systems. This is possible,
because the correlation functions must be evaluated without HT , i.e., with the two
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systems disconnected. We deduce the retarded function from the imaginary-time
equivalent:

CX X †(τ) = −〈TτX (τ)X †(0)〉
= −

∑
λ1ρ1

∑
λ2ρ2

Tλ1ρ1
T ∗λ2ρ2

〈Tτc†
ρ1
(τ)c

λ1
(τ)c†

λ2
(0)cρ2

(0)〉K︸ ︷︷ ︸
〈Tτc†

ρ1
(τ)cρ2

(0)〉KR
〈Tτc

λ1
(τ)c†

λ2
(0)〉KL

=
∑
λ1ρ1

∑
λ2ρ2

Tλ1ρ1
T ∗λ2ρ2

Gλ1λ2
(τ)Gρ2ρ1

(−τ).

A tunnel junction is not invariant by translation. Hence the calculation of the tunneling
current is not optimally done in the plane-wave basis or the momentum representation.
Until now, we have worked in the unspecified representation of the c†

λ
and c†

ρ operators
introduced in Sec. 9.2. The last step of our calculation is to move to the real-space
representation in terms of the operators c†

l and c†
r (the spin is irrelevant in the tunneling

problem—unless magnetic materials are involved—and thus spin indices are omitted).
According to Eq. (10.4), the relation between c†

l and c†
λ

is c†
λ
=
∫

d lϕλ(l)c
†
l . In other

words, creating an electron in state |ϕλ〉 is like creating an electron at every point l of
space with an amplitude equal to the wave function ϕλ(l). The relation between the
Green’s function Gλ1λ2

(τ) and G (l1, l2,τ) is thus

Gλ1λ2
(τ) = −〈Tτc

λ1
(τ)c†

λ2
(0)〉= −

∫
d l1d l2ϕ

∗
λ1
(l1)ϕλ2

(l2)〈Tτcl1
(τ)c†

l2
(0)〉

=

∫
d l1d l2ϕ

∗
λ1
(l1)ϕλ2

(l2)G (l1, l2,τ).

Collecting all factors, we obtain

CX X †(τ) =

∫
d l1d l2dr1dr2

∑
λ1ρ1

ϕ∗λ1
(l1)Tλ1ρ1

ϕρ1
(r1)

︸ ︷︷ ︸
T (l1, r1)

∑
λ2ρ2

ϕλ2
(l2)T

∗
λ2ρ2
ϕ∗ρ2
(r2)

︸ ︷︷ ︸
T ∗(l2, r2)

×G (l1, l2,τ)G (r2, r1,−τ).

The quantity T (l, r ) is the amplitude for an electron to tunnel from the point l in the
left system to the point r in the right system. In order to evaluate the current, we need
the Fourier transform of the retarded function at frequency eV/ħh. We therefore Fourier
transform from τ to iΩn, use the spectral representation of the real-space Green’s
functions like in doc–50, as defined in Eq. (9.5), evaluate the sum over Matsubara
frequencies using the standard routine, and finally perform the analytic continuation.
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We get

CR
X X †(eV/ħh) =

∫ β

0

dτ eiΩnτCX X †(τ)
���
iΩn→eV+i0+

=

∫ ∞

−∞
dε1dε2

f (ε2)− f (ε1)
eV + ε2 − ε1 + i0+

×
∫

d l1d l2dr1dr2 T (l1, r1)T
∗(l2, r2)A(l1, l2,ε1)A(r2, r1,ε2).

The spectral function A(x1, x2,ε) is in general a complex quantity, if not for the diagonal
part A(x , x ,ε), which is equal to the LDOS. We can relate the spectral function to the
retarded Green’s function by A(x1, x2,ε) = i

2π{GR(x1, x2,ε)− [GR(x2, x1,ε)]∗}, as can
be readily checked using the spectral representation of Sec. 3.2 or directly via Eq. (4.15).
Using this to replace A(r2, r1,ε2) and exchanging the dummy variables (l1, r1) and
(l2, r2) in the second term, we arrive at

CR
X X †(eV/ħh) =

∫ ∞

−∞
dε1dε2

f (ε2)− f (ε1)
eV + ε2 − ε1 + i0+

×
∫

d l1d l2dr1dr2 Im
�
T (l1, r1)T

∗(l2, r2)A(l1, l2,ε1)
�− 1

π

�
GR(r2, r1,ε2)

�
.

Taking the imaginary part with Eq. (10) and inserting in the formula for the current,
we obtain Eq. (9.4).

The calculation of the Josephson current is in every respect similar, with the important
difference that the anomalous Green’s function F † will replace the Green’s functions
G (see Sec. 5.2.2.3). The final result is

CR
X X (−eV/ħh) =

∫
d l1d l2dr1dr2 T (l1, r1)T (l2, r2)

×
∫ ∞

−∞
dε1dε2 B(r1, r2,ε1)B

∗(l2, l1,ε2)
f (ε1)− f (−ε2)

−eV − ε1 − ε2 + i0+
,

with B the spectral function of F †.

doc–57 Bardeen’s formula for the matrix element

The matrix element Eq. (9.10) reads:

Tλρ =

∫

R

dx ϕλ(x )UR(x )ϕ
∗
ρ(x )︸ ︷︷ ︸�

ερ− p2
2m

�
ϕ∗ρ(x )

=

∫

R

dx

�
ϕλ(x )ερϕ

∗
ρ(x )−ϕλ(x )

p2

2m
ϕ∗ρ(x )

�
.

We assume that the tunneling process is elastic, in other words the matrix element
is nonzero only for states that have the same energy: ερ = ελ. In the integrand, the
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quantity ϕλ(x )ερ = ελϕλ(x ) can then be replaced by
� p2

2m + UL(x )
�
ϕλ(x ). But, since

UL(x ) vanishes in the region of integration, this is simply p2

2mϕλ(x ). We obtain

Tλρ =

∫

R

dx

�
ϕ∗ρ(x )

p2

2m
ϕλ(x )−ϕλ(x )

p2

2m
ϕ∗ρ(x )

�

= − ħh
2

2m

∫

R

dx
�
ϕ∗ρ(x )∇

2ϕλ(x )−ϕλ(x )∇2ϕ∗ρ(x )
�

= − ħh
2

2m

∫

R

dx ∇ ·
�
ϕ∗ρ(x )∇ϕλ(x )−ϕλ(x )∇ϕ∗ρ(x )

�

= − ħh
2

2m

∫

S

�
ϕ∗ρ(x )∇ϕλ(x )−ϕλ(x )∇ϕ∗ρ(x )

�
· dS.

The third line uses an identity of vector analysis and the last line uses the divergence
theorem, namely

∫
V (∇ · F)dV =

∫
S F ·dS. We have thus obtained Bardeen’s expression

Eq. (9.11).

doc–58 Single-particle current in the basis of electrode’s eigenstates

Here, we rewrite Eq. (9.4), which is written in the real-space basis, in the abstract
representation of the eigenstates of the left and right electrodes ϕλ and ϕρ, respectively.
The first step is to express the matrix element T (l, r ) in terms of Tλρ:

T (l, r ) = 〈r |T |l〉=
∑
λρ

〈r |ρ〉〈ρ|T |λ〉〈λ|l〉=
∑
λρ

ϕρ(r )Tλρϕ
∗
λ(l).

We then rewrite the real-space Green’s function G (l1, l2,τ) using the transformation
Eq. (10.4): c†

l =
∑
λϕ
∗
λ
(l)c†

λ
:

G (l1, l2,τ) = −〈Tτcl1
(τ)c†

l2
(0)〉= −

∑
λλ′
ϕλ(l1)ϕ

∗
λ′(l2)〈Tτc

λ
(τ)c†

λ′(0)〉

=
∑
λλ′
ϕλ(l1)ϕ

∗
λ′(l2)Gλλ′(τ).

If the functions ϕλ are the ones that diagonalize the left electrode, we have Gλλ′(τ) =
δλλ′Gλ(τ) and we therefore obtain, for the real-space spectral function,

A(l1, l2,ε) =
∑
λ

ϕλ(l1)ϕ
∗
λ(l2)Aλ(ε).

As usual, Aλ(ε) = (−1/π)ImGλ(iωn → ε + i0+). With this, we have all ingredients
to replace T(l1, r1), T ∗(l2, r2), A(l1, l2,ε − |e|V ), and GR(r2, r1,ε) in Eq. (9.4). All
real-space integrations are elementary, for instance

∫
d l1ϕ

∗
λ(l1)ϕλ′(l1) = δλλ′ ,

which leads directly to Eq. (9.13).
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doc–59 Tunneling matrix element for the STM

The tunneling matrix element Eq. (9.11) can also be written in the form

Tλρ = −
ħh2

2m

∫

R

dx
�
ϕ∗ρ(x )∇

2ϕλ(x )−ϕλ(x )∇2ϕ∗ρ(x )
�

using the divergence theorem [see doc–57]. We calculate this matrix element in the
case where the tip state ϕλ is a s state. Using the correspondence between ϕs(x ) and
g(x ), we have

∇2ϕλ(x ) =
4πC00

κs
∇2 g(x ) =

4πC00

κs

�
κ2

s g(x )−δ(x )�= κ2
sϕs(x )−

4πC00

κs
δ(x ).

Furthermore, we have seen [Eq. (9.19)] that ∇2ϕ∗ρ(x ) = κ
2
ρϕ
∗
ρ(x ). Hence

Ts,ρ =
ħh2

2m
4πC00

κs
ϕ∗ρ(0)−

ħh2

2m

∫

R

dx
�
κ2

s −κ2
ρ

�
ϕ∗ρ(x )ϕs (x ).

The second term on the right-hand side vanishes if the tunneling is elastic.

doc–60 DOS of the hypercubic lattice

The hypercubic lattice is the generalization of the non-interacting one-dimensional
nearest-neighbor tight-binding chain to arbitrary dimension d ¾ 1. In d = 2, it
corresponds to the square lattice and in d = 3 to the cubic lattice. The dispersion takes
the form

ξk = 2t
d∑

i=1

cos(kia)−µ.

In order to evaluate the corresponding DOS, we replace the delta function by an
exponential with the help of Eq. (3b):

Nd(ε) =
2

(2π)d

∫ + πa

− πa
dd kδ(ε − ξk) =

2
(2π)d

∫ + πa

− πa
dd k

1
2π

∫ ∞

−∞
du eiu(ε−ξk ).

Once the expression of ξk is introduced, the integrals along all directions in momentum
space decouple and become equivalent:

Nd(ε) =
2

2π

∫ ∞

−∞
du eiu(ε+µ)

d∏
i=1

∫ + πa

− πa

dki

2π
e−iu2t cos(ki a).

The ki integration can be performed thanks to the expansion Eq. (13):
∫ + πa

− πa

dki

2π
e−iu2t cos(ki a) =

+∞∑
n=−∞

inJn(−u2t)
1
a

∫ π

−π

dϑ
2π

einϑ

︸ ︷︷ ︸
δn,0

=
1
a

J0(2|tu|).
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We have used the fact that J0(x) is an even function of x . Hence

Nd(ε −µ) =
1
πad

∫ ∞

−∞
du eiuε [J0 (2|tu|)]d =

2
πad

∫ ∞

0

du cos(εu) [J0 (2|t|u)]d

=
1

πad |t|

∫ ∞

0

d x cos
�
εx
2|t|

�
J d

0 (x).

For d = 1, the integral yields the result Eq. (9.30). We can also finish the calculation
for d = 2: integrating by parts, we find

N2(ε −µ) =
4

πa2ε

∫ ∞

0

d x sin
�
εx
2|t|

�
J0(x)J1(x)

=
1

π2a2|t|K
�
1− [ε/(4t)]2

�
θ (4|t| − |ε|),

where K(x) is the complete elliptic integral of the first kind.





11

Bonus material

«Science is what we understand well enough to
explain to a computer. Art is everything else we do.»

Donald Knuth

doc–61 Thermodynamics of free quantum particles

The equation of state of a many-particle system in equilibrium is p/(kBT ) = ∂
∂ V ln Z , as

we saw in Sec. 2.1.2. We consider here free spin-S particles, for which the equation of
state can be worked out in closed form by means of special functions called polyloga-
rithms. This will also give us the opportunity to encounter other special functions: the
Euler gamma and Riemann zeta functions. For independent particles (Sec. 2.1.3), the
partition function is Z =

∏
α(1−ηe−βξα)−η. The single-particle energies ξα = εα −µ

with εα ≡ ħh2k2/(2m) are independent of the volume but the number of these levels is
proportional to the volume, such that ln Z is an extensive function proportional to the
volume. We introduce the fugacity z = ηeβµ and we convert the sum to an integral:

p
kBT

=
∂

∂ V V
1
V
∑
α

(−η) ln �1− ze−βεα
�

︸ ︷︷ ︸
independent of V

= −η(2S + 1)

∫ ∞

0

dε Ñ0(ε) ln
�
1− ze−βε

�
. (11.1)

2S+1 is the spin degeneracy and Ñ0(ε) is the DOS per unit volume for each spin species.
On writing the sum as an integral, we have implicitly assumed that the logarithm varies
slowly over energies corresponding to the typical inter-level spacing. This assumption
breaks down when ze−βε approaches unity, as occurs in the Bose-Einstein condensate.
We shall keep this in mind but ignore it for the time being. For fermions, z < 0 and
there is no concern. The DOS can be readily evaluated in dimension d using Eq. (11):

Ñ0(ε) =

∫
dd k
(2π)d

δ

�
ε − ħh

2k2

2m

�

︸ ︷︷ ︸
m
ħh2k
δ
�
k−
Ç

2mε
ħh2

�

=
m

ħh2

sd

(2π)d

∫ ∞

0

dk
kd−1

k
δ

�
k−

√√2mε

ħh2

�
.
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sd is the surface of the d-dimensional unit sphere, given in terms of the Euler gamma
function by sd = 2πd/2/Γ (d/2). The free-particle DOS in dimension d is therefore

Ñ0(ε) = Ñdε
d/2−1, Ñd =

1
Γ (d/2)

�
m

2πħh2

�d/2

. (11.2)

Performing the energy integration by parts, we get for the pressure:

p
kBT

= η(2S + 1)Ñd
2β
d

∫ ∞

0

dε
εd/2

eβε/z − 1
. (11.3)

The chemical potential entering the fugacity must be eliminated in favor of the particle
density n which, starting from Eq. (2.14), can be recast into

n= (2S + 1)

∫ ∞

0

dε
Ñ0(ε)

eβε/(z/η)−η = η(2S + 1)Ñd

∫ ∞

0

dε
εd/2−1

eβε/z − 1
. (11.4)

Again, special care must be taken when the distribution function varies rapidly, as it
does for bosons at low temperature. We see that both equations (11.3) and (11.4)
involve analogous integrals. The internal energy density U/V is obtained similarly:
it is the same expression as the density except for one additional factor of ε in the
integrand, such that the resulting integral is the same as the one for the pressure. This
allows us to readily establish the relation

U
V =

d
2

p, (11.5)

that will be useful below to compute the specific heat. It is a good time for a little
mathematical digression, for getting in touch with the polylogarithms and establish
the relation ∫ ∞

0

dε
εp−1

eβε/z − 1
=
Γ (p)
β p

Lip(z).

Lip(x) is the polylogarithm, which may be defined by its Taylor expansion as Lip(x) =∑∞
q=1 xq/qp with the useful property dLip(x)/d x = Lip−1(x)/x . For the proof, we

simply use the expansion 1/(x−1 − 1) =
∑∞

q=1 xq in order to split the integral and let
the expansion of the polylogarithm appear:

∫ ∞

0

dε
εp−1

eβε/z − 1
=
∞∑

q=1

zq

∫ ∞

0

dε
εp−1

eqβε
︸ ︷︷ ︸
Γ (p)/(qβ)p

=
Γ (p)
β p

∞∑
q=1

zq

qp
.

We can thus obtain the relation between the fugacity and the density:

Lid/2(z) = η
n

2S + 1

�
2πħh2

mkBT

�d/2

. (11.6)
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Finally, introducing the reciprocal function of the polylogarithm to solve Eq. (11.6) for
z and using the relation Γ (d/2+ 1) = (d/2)Γ (d/2), we find the equation of state

p
kBT

= (2S + 1)
�

mkBT

2πħh2

�d/2

ηLid/2+1

¨
Li−1

d/2

�
η

n
2S + 1

�
2πħh2

mkBT

�d/2�«
. (11.7)

Equation (11.7) is not quite transparent in this form, but has the merit of being the
solution of our problem, valid both for bosons (above the condensation temperature)
and for fermions, and in any dimension d. Knowing the pressure, we can deduce
all thermodynamic functions by differentiation of the free-energy density $ = −p,
see Eq. (2.8). Since we know the pressure as a function of the variables T and z,
p = p(T, z)∝ T d/2+1Lid/2+1(z), and z = z(T,µ), the entropy density can be readily
shown to be [see Eq. (2.7)]

S
V =

dp
dT

�
µ

=
∂ p
∂ T
+
∂ p
∂ z
∂ z
∂ T
=
�

d
2
+ 1

�
p
T
− nkB ln(ηz), (11.8)

where we have used the relation (11.6) between n and Lid/2(z) to eliminate the latter.
Alternatively, we could obtain the same result using Eq. (2.10):

n=
dp
dµ

�

T
=
∂ p
∂ z
∂ z
∂ µ

,
∂ z
∂ µ
=

z
kBT

,
∂ z
∂ T
= − zµ

kBT 2
= − z

T
ln(ηz),

which yields (∂ p/∂ z)(∂ z/∂ T) = −nkB ln(ηz). The specific heat can be calculated
from Eq. (2.9), but it is easier and equivalent to deduce it from the internal energy
(11.5):

CV
V =

d(U/V )
dT

�
V
=

d
2

�
∂ p
∂ T
+
∂ p
∂ z

�
∂ z
∂ T
+
∂ z
∂ µ

dµ
dT

��
=

d
2

�
S
V + n

dµ
dT

�
.

We can express dµ/dT in terms of the isothermal compressibility given by Eq. (2.11).
From the relation µ= kBT ln(ηz) we deduce

dµ
dT
= kB ln(ηz) +

kBT
z

dz
dT

.

We now differentiate Eq. (11.6) with respect to T and get:

Lid/2−1(z)

z
dz
dT
= η

n
2S + 1

�
2πħh2

mkBT

�d/2 −d/2
T

.

We then eliminate Lid/2−1(z) in favor of the compressibility. Using the expression of
the density n= n(T, z) given by Eq. (11.6), we have

κT =
1
n2

dn
dµ

�

T
=

1
n2

∂ n
∂ z
∂ z
∂ µ
=

2S + 1
n2kBT

�
mkBT

2πħh2

�d/2

ηLid/2−1(z). (11.9)

Injecting this in the previous relation, we see that (kBT/z)dz/dT = −d/(2nκT T ), such
that the specific heat, like the entropy (11.8) and the compressibility (11.9), becomes
an explicit function of T and z:

CV
V =

d
2

�
S
V + nkB ln(ηz)− d

2κT T

�
. (11.10)
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We are now in a good position to plot the thermodynamic quantities as a function of
temperature for a given density n. We first solve Eq. (11.6) to get z, and we can then
compute the pressure with Eq. (11.7), the isothermal compressibility with Eq. (11.9),
the entropy with Eq. (11.8), and the isochoric specific heat with Eq. (11.10). We will
see below that all these quantities can be plotted as universal curves independent of the
density and spin if we use the proper normalization. We will also add the correction
required in order to describe the Bose-Einstein condensation.

Before doing so, let’s derive a few asymptotic results. To this end, we rewrite Eq. (11.7)
in the form

p
kBT

= τL η

d

� n
τ

�
, τ= (2S + 1)

�
mkBT

2πħh2

�d/2

, L η

d (x) = ηLid/2+1

�
Li−1

d/2(ηx)
�

.

We expect the gas to be classical at high temperature, that is, pV = NkBT should be
recovered irrespective of the particle statistics and spin. Indeed, because Lip(x) = x
for x → 0, we have L η

d (x → 0) = x and for large T we get p/(kBT ) = n. Corrections
to this high-T classical behavior can be obtained by including higher-order terms
in the expansion of Lip(x). The leading correction turns out to be L η

d (x → 0) =
x −ηx2/2d/2+1, yielding the high-T expansion

pV = NkBT

�
1− η

2
N/V

2S + 1

�
πħh2

mkBT

�d/2

+ . . .

�
.

For bosons, the effect of quantum statistics is to decrease the pressure with respect to a
classical gas, while for fermions the pressure is increased due to Pauli exclusion. The
formula nicely illustrates the general principle that quantum particles behave more
classically at high temperature, high dimensionality, high mass, and high spin. In the
high-T classical regime, the behavior of the compressibility is simply κT = 1/p, as can
be deduced from Eq. (2.11) using V = NkBT/p. For the entropy, we can replace p/T
in Eq. (11.8) by nkB and use the fact that Lid/2(z)→ 0 [see Eq. (11.6)]—which implies
z→ 0 and therefore Lid/2(z) = z—to deduce

S
NkB

=
d
2
+ 1+ ln

�
2S + 1

n

�
mkBT

2πħh2

�d/2�
. (11.11)

This generalizes the Sackur-Tetrode equation, which gives the entropy of an ideal
classical gas, to any dimension and to the case where the particles have a spin degree
of freedom. Using Eq. (2.9), we can check that the classical equipartition result
CV = (d/2)NkB is reached at high T .

The low-T regime of a degenerate gas is much more interesting, and allows one to
explore the richness of quantum assemblies captured by that of polylogarithms. At low
temperature, we are interested in the function L η

d (x) at large x . This requires us to
study Li−1

d/2(x) at large positive x for bosons and at large negative x for fermions. We
have to treat bosons and fermions separately from here on: let us start with fermions.

We can use the asymptotic form Lip(−ex) = −x p/Γ (p+ 1) valid for x →∞ in order
to deduce Li−1

d/2(−x) = −exp{[Γ (d/2+ 1)x]2/d} in the same limit. Making use of the
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asymptotic expansion once more, we readily find

L −d (x →∞) =
[Γ (d/2+ 1)]2/d

d/2+ 1
x2/d+1,

such that the equation of state becomes independent of temperature:

pV = NkBT0, T0 =
[Γ (d/2+ 1)]2/d

d/2+ 1
2πħh2

mkB

� n
2S + 1

�2/d
=

TF

d/2+ 1
.

Here we have defined some degeneracy temperature T0 and introduced the Fermi
temperature TF = εF/kB, with εF =

2πħh2

m [Γ (d/2 + 1)n/(2S + 1)]2/d the value of the
chemical potential at T = 0. While the pressure of a classical gas vanishes at zero
temperature, in a gas of fermions the Pauli exclusion maintains a finite pressure even
at T = 0. This “Pauli pressure”∝ n2/d+1 disappears when the density approaches zero,
as one understands, or for a large spin as the fermions can circumvent the exclusion
principle thanks to the additional spin degrees of freedom. The Pauli pressure is
responsible for stabilizing the neutron stars against gravitational collapse. The low-T
expansions are difficult to perform rigorously,1 because the behavior of Lip(−ex) is
unknown beyond the asymptotic form used above. Approximations schemes such as
the Sommerfeld expansion allow one to obtain asymptotic results that are correct up to
a contribution that is exponentially small in kBT/εF. For example, Eq. (2.56) obtained
by neglecting the temperature dependence of the chemical potential is correct to linear
order in T , because the variation of µ is second-order in T apart from this exponentially
small term. Eq. (2.56) can be recast as

CV
NkB

=
d

d + 2
π2

3
T
T0

.

Since this expression also neglects the energy-dependence of the DOS, it is accurate
for d = 2 where the DOS is constant, but deviations from linearity at low-T are clearly
visible in Fig. 11.2 for d = 1 and d = 3.

Let us now turn to bosons. The function Lip(x) is monotonic and has the sign of
its argument. It diverges at x = 1 for p ¶ 1, such that Li−1

p (x) is well-defined for
any positive x if p ¶ 1, that is, in dimensions one and two. If p > 1, however,
Lip(1) = ζ(p), where ζ(x) is the Riemann zeta function, and Lip(x > 1) is imaginary.
Therefore, in three dimensions Li−1

3/2(x) is not defined for x > ζ(3/2). This signals the
Bose-Einstein condensation. For n/τ > ζ(3/2), we can no longer ignore—as we did
with the continuous approximation—that the occupation of the lowest-energy state
becomes large, that is, of order N . Solving the equation n/τ= ζ(3/2) for T yields the
well-known expression for the condensation temperature:

Tc =
1

[ζ(3/2)]2/3
2πħh2

mkB

� n
2S + 1

�2/3
= 1.09T0.

In dimensions one and two, this criterion gives a vanishing Tc for the Bose-Einstein
condensation.
1 See R. Weinstock, Am. J. Phys. 37, 1273 (1969).

https://doi.org/10.1119/1.1975299


238 Bonus material doc–61

1 A[d_]:= Gamma[d/2+1]/(d/2+1)^(d/2)

2 z[eta_ ,d_,t_,N0_ :10^6] :=Re[x/. FindRoot[1-A[d]*t^(d/2)* eta*PolyLog[d/2,x]

3 -If[eta >0,1/N0*x/(1-x),0],{x,If[eta >0,1-1/N0 , -2]}]]

4 p[eta_ ,d_,t_,N0_:10^6 ,z_]:=A[d]*t^(d/2+1)* eta*PolyLog[d/2+1,z]-If[eta >0,t/N0*Log[1-z],0]

5 p[eta_ ,d_,t_,N0_ :10^6] := Module [{z=z[eta ,d,t,N0]},p[eta ,d,t,N0,z]]

6 k[eta_ ,d_,t_,N0_:10^6 ,z_]:=A[d]*t^(d/2 -1)*eta*PolyLog[d/2-1,z]+If[eta >0,1/N0*1/t*z/(1-z)^2,0]

7 k[eta_ ,d_,t_,N0_ :10^6] := Module [{z=z[eta ,d,t,N0]},k[eta ,d,t,N0,z]]

8 s[eta_ ,d_,t_,N0_:10^6 ,z_]:=(d/2+1)*p[eta ,d,t,N0,z]/t-Log[eta*z]+If[eta >0,1/N0*d/2*Log[1-z],0]

9 s[eta_ ,d_,t_,N0_ :10^6] := Module [{z=z[eta ,d,t,N0]},s[eta ,d,t,N0,z]]

10 c[eta_ ,d_,t_,N0_ :10^6] := Module [{z=z[eta ,d,t,N0]},d/2*(s[eta ,d,t,N0,z]+Log[eta*z]

11 -d/(2*k[eta ,d,t,N0 ,z]*t)*(1-If[eta >0,1/N0*z/(1-z) ,0]))]

12 Export[NotebookDirectory []<>" fermions.dat",Union[N[{{0,1,1,1,1/3,1/2,3/5,0,0,0,0,0,0}}],

13 Chop[Table [{t,p[-1,1,t],p[-1,2,t],p[-1,3,t],k[-1,1,t],k[-1,2,t],k[-1,3,t],

14 s[-1,1,t],s[-1,2,t],s[-1,3,t],c[-1,1,t],c[-1,2,t],c[-1,3,t]},{t ,0.02 ,4 ,0.02}]]]];

15 Export[NotebookDirectory []<>"bosons.dat",Union[N[{{0,0,0,0,0,0,0,0,0,0,0,0,0,0}}],

16 Chop[Table [{t,p[1,1,t],p[1,2,t],p[1,3,t],1/k[1,1,t],1/k[1,2,t],1/k[1,3,t],

17 s[1,1,t],s[1,2,t],s[1,3,t],c[1,1,t],c[1,2,t],c[1,3,t],c[1,3,t,10^2]} ,{t ,0.02 ,4 ,0.02}]]]];

Figure 11.1: Plotting the thermodynamic functions of free particles with Mathematica.

We now wish to plot the various thermodynamic quantities and compare with the
asymptotic results. We must correct our expressions in order to take into account the
macroscopic occupation of the ground state. The contribution of the state with εα = 0
to the pressure is [see Eq. (11.1)]

p0

kBT
= −2S + 1

V η ln(1− z).

This contribution disappears in the thermodynamic limit, unless z becomes unity.
Because µ¶ 0 for bosons (z ¶ 1), the factor ln(1− ze−βεα) can only diverge if εα = 0,
justifying to treat this level as discrete while using a continuous description for all other
levels. The contribution p0 was altogether discarded in dimension d = 3 on converting
the sum over states to an integral, because the DOS Ñ0(0) = 0. We must therefore
reintroduce it explicitly. For d = 2 and d = 1, the correction is in principle not needed,
but adding it is harmless. Hence we add the term p0 to the pressure in what follows. It
is convenient to measure the temperatures in units of the degeneracy temperature, so
we introduce

t =
T
T0

, T0 = A2/d
d

2πħh2

mkB

� n
2S + 1

�2/d
, Ad =

Γ (d/2+ 1)
(d/2+ 1)d/2

. (11.12)

It is then easy to check that the pressure measured in units of nkBT0 is a function that
depends on the density only implicitly through t:

pV
NkBT0

= Ad td/2+1ηLid/2+1(z)−
2S + 1

N
tη ln(1− z). (11.13)

The last term is p0, that of course depends explicitly on the number of particles.
Evaluating the density n= (∂ p/∂ z)(∂ z/∂ µ), we find the equation giving the fugacity
as a function of the reduced temperature:

1= Ad td/2ηLid/2(z) +
2S + 1

N
ηz

1− z
. (11.14)

The compressibility κT = (1/n2)(∂ n/∂ z)(∂ z/∂ µ) is also a universal function of t and
z if measured in units of (nkBT0)−1:

κT nkBT0 = Ad td/2−1ηLid/2−1(z) +
2S + 1

N
1
t

ηz
(1− z)2

. (11.15)
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Figure 11.2: Thermodynamic functions of free fermions, (a)–(d), and free bosons, (e)–(h), in
dimensions one (blue), two (green), and three (red). The thick dashed lines show the results
for the ideal classical gas. In (b), the zero-temperature value of the compressibility is d/(d + 2)
shown by the horizontal rules. The inset in (d) shows CV /(NkB)× T0/T and the limiting values
d/(d + 2)×π2/3. Note that (f) shows the inverse of the compressibility. All results in (e)–(h)
are calculated for N/(2S + 1) = 106, except the thin red line in (h) for which N/(2S + 1) = 102.

The entropy (11.8), including the correction due to p0 and measured in units of NkB,
becomes

S
NkB

=
d/2+ 1

t
pV

NkBT0
− ln(ηz) +

d
2

2S + 1
N

η ln(1− z). (11.16)

The specific heat is finally obtained following the same logic:

CV
NkB

= d/2
�

S
NkB

+ ln(ηz)− d
2κT nkBT0

1
t

�
1− 2S + 1

N
ηz

1− z

��
. (11.17)

The Mathematica program displayed in Fig. 11.1 implements these equations and
outputs the data represented in Fig. 11.2 for the pressure, compressibility, entropy, and
specific heat of fermions and bosons in dimensions one, two, and three. The known
T = 0 results and high-T asymptotic behaviors are also shown for comparison.
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Figure 11.3: Left: zinc-blende crystal structure. The two fcc sublattices are shown with
different colors. The basis of the elementary cell and the fcc lattice parameter are also indicated.
Right: Brillouin zone of the fcc lattice. The high-symmetry points are Γ = (0, 0, 0), X= (0, 1, 0),
L= ( 1

2 , 1
2 , 1

2 ), and K= ( 3
4 , 3

4 , 0), in units of 2π/a.

doc–62 Empirical pseudopotentials for semiconductors

In semiconductors, the potential felt by valence and conduction electrons varies rela-
tively slowly in space, in contrast to the potential felt by core electrons: the potential
for valence and conduction electrons can be represented by a small number of compo-
nents in the expansion Eq. (2.51). The idea of the empirical pseudopotential method
is to determine these few components V (G) of the potential in such a way that the
resulting bands fit some prominent experimental features like the band gap. This
procedure has been applied by Cohen & Bergstresser1 to fourteen semiconductors of
the IV-IV (Si, Ge, Sn), III-V (AlSb, GaAs, GaP, GaSb, InAs, InP, InSb), and II-VI (CdTe,
ZnS, ZnSe, ZnTe) families. The result is a very easy method to calculate the bands in
these semiconductors.

These semiconductors crystallize in the zinc-blende structure shown in Fig. 11.3. There
are two inequivalent atomic sites in the unit cell, each forming an fcc sublattice. The
two fcc sublattices are a vector τ = a( 1

4 , 1
4 , 1

4 ) apart, with a the fcc lattice parameter.
Denoting V1(G) and V2(G) the potentials originating from the two atomic sites and
locating the origin between the two atoms, we have

V (r ) = V1(r +τ/2) + V2(r −τ/2) =
∑

G

�
V1(G)e

iG·(r+τ/2)+ V2(G)e
iG·(r−τ/2)�

=
∑

G

�
V1(G)e

iG·τ/2 + V2(G)e
−iG·τ/2� eiG·r

=
∑

G

[Vs(G) cos(G ·τ/2) + iVa(G) sin(G ·τ/2)] eiG·r .

We have introduced the symmetric and antisymmetric parts of the potential, Vs(G) =
[V1(G)+ V2(G)]/2 and Va(G) = [V1(G)− V2(G)]/2. Clearly Va(G) = 0 for the nonpolar
IV-IV compounds. Following Cohen & Bergstresser, we assume spherical symmetry for
the potential such that Vs(G)≡ Vs(G2) and Va(G)≡ Va(G2). The Fourier components

1 M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966).

https://doi.org/10.1103/PhysRev.141.789
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of the potential therefore read:

V (G) = Vs(G
2) cos(G ·τ/2) + iVa(G

2) sin(G ·τ/2).

As illustrated in Fig. 11.3, the elementary cell of the direct lattice is defined by the vec-
tors a1 = a(0, 1

2 , 1
2 ), a2 = a( 1

2 , 0, 1
2 ), and a3 = a( 1

2 , 1
2 , 0). The corresponding reciprocal-

lattice vectors are b1 =
2π
a (−1,1,1), b2 =

2π
a (1,−1,1), and b3 =

2π
a (1,1,−1). Thus

the G vectors take the form

G =
2π
a
(−i + j + l, i − j + l, i + j − l), {i, j, l} ∈ N.

In units of (2π/a)2, the squares of these vectors are G2 = 0, 3, 4, 8, 11, 12 . . . The Fourier
component V (G2 = 0) sets a global shift in energy and can be put to zero without loss
of generality. It turns out that, for all vectors such that G2 = 4, we have cos(G ·τ/2) = 0
and for all vectors such that G2 = 8, we have sin(G ·τ/2) = 0. Hence we retain only
the following six Fourier components to represent the potential: Vs(3), Vs(8), Vs(11),
Va(3), Va(4), and Va(11).

The Mathematica program reproduced in Fig. 11.4 implements the band-structure
calculation for the fourteen semiconductors. Lines 1–14 define the parameters for
each semiconductor. The first parameter is the quantity (2π/a)2ħh2/(2m) expressed in
electron-volts (eV). The subsequent 6 parameters are the symmetric and antisymmetric
Fourier components of the potential as given in Table II of Cohen & Bergstresser,
which we have converted from Rydbergs to eV. Line 15 defines default values for the
parameters: the same lattice parameter as Si and a vanishing potential; this is useful for

1 P[AlSb ]:={4.003 , -2.86 ,+0.27 ,+0.82 ,+0.82 ,+0.54 ,+0.27}

2 P[CdTe ]:={3.661 , -2.72 , 0.00 ,+0.54 ,+2.04 ,+1.22 ,+0.54}

3 P[GaAs ]:={4.729 , -3.13 ,+0.14 ,+0.82 ,+0.95 ,+0.68 ,+0.14}

4 P[GaP] :={5.083 , -2.99 ,+0.41 ,+0.95 ,+1.63 ,+0.95 ,+0.27}

5 P[GaSb ]:={4.016 , -2.99 , 0.00 ,+0.68 ,+0.82 ,+0.68 ,+0.14}

6 P[Ge] :={4.695 , -3.13 ,+0.14 ,+0.82 , 0.00, 0.00, 0.00}

7 P[InAs ]:={4.123 , -2.99 , 0.00 ,+0.68 ,+1.09 ,+0.68 ,+0.41}

8 P[InP] :={4.380 , -3.13 ,+0.14 ,+0.82 ,+0.95 ,+0.68 ,+0.14}

9 P[InSb ]:={3.582 , -2.72 , 0.00 ,+0.54 ,+0.82 ,+0.68 ,+0.14}

10 P[Si] :={5.101 , -2.86 ,+0.54 ,+1.09 , 0.00, 0.00, 0.00}

11 P[Sn] :={3.571 , -2.72 , 0.00 ,+0.54 , 0.00, 0.00, 0.00}

12 P[ZnS] :={5.139 , -2.99 ,+0.41 ,+0.95 ,+3.27 ,+1.90 ,+0.54}

13 P[ZnSe ]:={4.712 , -3.13 ,+0.14 ,+0.82 ,+2.45 ,+1.63 ,+0.41}

14 P[ZnTe ]:={4.082 , -2.99 , 0.00 ,+0.68 ,+1.77 ,+1.36 ,+0.14}

15 P[S_] :={5.101 , 0.00, 0.00, 0.00, 0.00, 0.00, 0.00}

16 V[S_,G_]:=Vs[S,G.G]Cos[G.{1,1,1}Pi/4]+I*Va[S,G.G]Sin[G.{1,1,1}Pi/4]

17 Vs[S_ ,3]:=P[S][[2]]; Vs[S_ ,8]:=P[S][[3]]; Vs[S_ ,11]:=P[S][[4]]; Vs[S_ ,G_]:=0

18 Va[S_ ,3]:=P[S][[5]]; Va[S_ ,4]:=P[S][[6]]; Va[S_ ,11]:=P[S][[7]]; Va[S_ ,G_]:=0

19 Levels[S_,k_]:= Module [{G,h},

20 G=Select[Flatten[Table[{-i+j+l,i-j+l,i+j-l},{i,-4,4},{j,-4,4},{l,-4,4}],2],(k+#).(k+#) <21&];

21 h=Outer[If[#1==#2 ,P[S][[1]](k+#1).(k+#1),V[S,#1 -#2]]& ,G,G,1 ,1];

22 Sort[Re[Eigenvalues[h]]][[ Range [20]]]

23 ]

24 K=N[Flatten [{Table [{Sqrt [3]i/17,{1,1 ,1}(17 -i)/34} ,{i,0,17}],

25 Table[{Sqrt [3]+2*i/17,{1,0,0}i/17},{i,1,17}],

26 Table[{Sqrt [3]+2+ Sqrt [8]*i/27,{1,1,0}(1-i/27)} ,{i,1 ,27}]} ,1]];

27 S=ZnSe;EF=Levels[S,{0 ,0 ,0}][[4]];

28 Export[ToString[S]<>".dat",Join [{#[[1]]} , Levels[S,#[[2]]] -EF]&/@K];

Figure 11.4: Implementation of the empirical pseudopotential method in Mathematica.
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Figure 11.5: Band structures on the zinc-blence lattice, calculated with the code of Fig. 11.4.
Left: folded free-electron bands; the Fermi level is such that the electron density is that of Si,
i.e., n = 16/a3

Si. Middle: Si, a typical nonpolar, small-indirect-band-gap compound. Right: ZnSe,
a typical polar, wide-direct-band-gap compound.

drawing the bands that would correspond to free electrons constrained to move on the
Si lattice. Lines 16–18 define the potential V (G): the generic formula is given at line
16, while lines 17 and 18 make the assignment of the symmetric and antisymmetric
components, respectively. Unassigned components are set explicitly to zero by the
instructions Vs[S_,G_]:=0 and Va[S_,G_]:=0.

Lines 19–23 define the routine which computes the energy levels for one particular
semiconductor (argument S) and one k point (argument k). In line 20, the set of G
vectors is constructed: only vectors such that |k +G|2 < 21—in units of (2π/a)2—are
retained in the basis. This is the same cutoff as in Cohen & Bergstresser; it leads to a
basis of typically 100 G vectors. Line 21 builds the Hamiltonian given in the square
bracket of Eq. (2.52). Since we work with vectors k and G expressed in units of 2π/a,
we must multiply the kinetic part |k +G|2 by (2π/a)2ħh2/(2m). Line 22 returns the
20 lowest eigenvalues of the Hamiltonian. We take the real part in order to eliminate
any small imaginary part that could appear due to numerical inaccuracy. Thus, for
instance, the command Levels[AlSb,{1,0,0}] returns the AlSb bands in eV at
k = 2π

a (1,0, 0).

Lines 24–26 are somewhat tedious: their role is to define the path in the Brillouin
zone along which the bands are plotted. It is customary to plot the bands along
high-symmetry lines of the fcc reciprocal lattice, as illustrated in Fig. 11.3. For our
semiconductors, these lines are (i) from point L to point Γ , (ii) from Γ to X, and (iii)
from the point 2π

a (1, 1, 0)—which is outside the first Brillouin zone but has energy levels
identical to those in X—to Γ , crossing the zone boundary at point K. The list K defined
at line 24 is a series of elements {`,{kx,ky,kz}} where ` is a continuous abscissa to
be used in the band diagram (see Fig. 11.5) and (kx , ky , kz) is the corresponding k
point.

Finally, the lines 27 and 28 perform the actual calculation (for the semiconductor ZnSe
in this case). The Fermi energy is set equal to the fourth level at the Γ point, i.e., the
top of the valence band. Line 28 builds the list of levels associated with each abscissa
`i , and saves it to file “ZnSe.dat”. Executing this code on modern computers will take
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typically a few seconds.

In Fig. 11.5, we display the result for free electrons, Si, and ZnSe. The free-electron
diagram shows the quadratic free-electron band folded to fit into the fcc Brillouin
zone. Comparing with Si, one sees that much of the actual band structure of the
small-band-gap semiconductors resembles the free-electron result. Si has an indirect
band gap, the bottom of the conduction band being somewhere between Γ and X, while
the top of the valence band is at Γ . In contrast, ZnSe has a direct band gap at Γ . One
also sees that Si, being nonpolar, has additional degeneracies (in particular at the X
point) as compared to the polar ZnSe.

doc–63 Spring models for phonons

Like for electronic bands, much of the apparently complicated phonon dispersion
curves in real materials can be understood with the help of simple models that include
the crystal symmetry. The simplest of these models envisions atoms connected by a
network of classical springs. Each spring of constant K contributes a term (1/2)K x2

to the elastic energy, where x is the change in spring length. This model can offer
a qualitatively correct approximation to the phonon spectrum based on just a small
number of spring constants. We provide here a small code that solves any spring model
in dimension d and we apply it to Si. According to Eqs (2.59) and (2.58), the dynamical
matrix is:

Dνiµ j(k) =
1p

MνMµ

∑
m

∂ 2U
∂ uνi(0)∂ uµ j(Rm)

����
0

eik·Rm .

The elastic energy is a sum of pairwise terms involving the displacements of two atoms
connected by a spring. Only the terms including the displacement uν(0) contribute to
the dynamical matrix as written above. These terms are

∑
m′µ′

1
2

K|τν−Rm′−τµ′ |
�|τν + uν(0)−Rm′ −τµ′ − uµ′(Rm′)| − |τν −Rm′ −τµ′ |

�2
.

The sum runs over all atoms connected by a spring to the atom located at τν in the
central unit cell, K|···| is the corresponding spring constant which only depends on
the rest length of the bond, and the quantity in parentheses is the change in bond
length. When evaluating the derivatives, we must distinguish cases. If µ = ν and
Rm = 0, we get contributions from all atoms connected to our central atom at τν.
These contributions are

∑
m′µ′

K|τν−Rm′−τµ′ |
(τνi − Rm′ i −τµ′ i)(τν j − Rm′ j −τµ′ j)

|τν −Rm′ −τµ′ |2
.

If µ = ν and Rm 6= 0, the only bond that contributes is the one involving uν(Rm): it gives
a term −K|Rm|RmiRmj/|Rm|2. The coefficients of the dynamical matrix corresponding to
the atom ν are therefore



244 Bonus material doc–63

1 L2[x_]:=x.x

2 R[n_]:= Plus@@(n[[#]]a[#]&/ @Range[d])

3 Dynamical[k_]:= ArrayFlatten[Table [1/ Sqrt[M[mu]*M[nu]]* Plus@@(

4 K[L2[tau[nu] -#[[1]] -tau [#[[2]]]]]

5 *( KroneckerDelta[mu ,nu]-KroneckerDelta[mu ,#[[2]]]* Exp[I*k.#[[1]]])

6 *(tau[nu][[i]] -#[[1]][[i]]-tau [#[[2]]][[i]])

7 *(tau[nu][[j]] -#[[1]][[j]]-tau [#[[2]]][[j]])

8 /L2[tau[nu] -#[[1]] -tau [#[[2]]]]&/@

9 Select [{R[#[[1]]] ,#[[2]]}&/@

10 Tuples [{ Tuples[Range[-Shells ,Shells],d],Range[Nat ]}]

11 ,tau[nu]-#[[1]]- tau [#[[2]]]!=0* Range[d]&])

12 ,{nu ,1,Nat},{mu ,1,Nat},{i,1,d},{j,1,d}]]

13 d=3; a[1]={0 ,1 ,1}/2; a[2]={1 ,0 ,1}/2; a[3]={1 ,1 ,0}/2;

14 Nat =2; M[1]=28; M[2]=28; tau [1]={0 ,0 ,0}; tau [2]={1 ,1 ,1}/4;

15 Shells =1; K[3/16]=1870; K[1/2]=214; K[L2_ ]:=0

16 DN[kx_ ,ky_ ,kz_]=N[Dynamical [{kx*2*Pi ,ky*2*Pi ,kz*2*Pi}]];

17 Phonons[kx_ ,ky_ ,kz_ ]:= Sort[Re[Sqrt[Eigenvalues[DN[kx ,ky ,kz ]]]]]

18 BZ=N[Flatten [{ Table[{Sqrt [3]i/17 ,{1 ,1,1}(17-i)/34} ,{i,0,17}],

19 Table [{Sqrt [3]+2*i/17,{1,0,0}i/17},{i,1,17}],

20 Table [{Sqrt [3]+2+ Sqrt [8]*i/27,{1,1,0}(1-i/27)} ,{i,1 ,27}]} ,1]];

21 Export ["Si.dat",Join [{#[[1]]} , Phonons [#[[2 ,1]] ,#[[2 ,2]] ,#[[2 ,3]]]]&/ @BZ];

Figure 11.6: Solving spring models with Mathematica. The lines 1–12 can provide the
dynamical matrix analytically in any dimension d. The lines 13–21 calculate and save the
phonon spectrum for Si.

Dνiν j(k) =
1

Mν

�∑
mµ

K|τν−Rm−τµ|
(τνi − Rmi −τµi)(τν j − Rmj −τµ j)

|τν −Rm −τµ|2

−
∑

m

K|Rm|
RmiRmj

|Rm|2
eik·Rm

�
.

If µ 6= ν, we are again considering two different atoms such that only one bond
contributes. The “off-diagonal” dynamical matrix results as

Dνiµ j(k) = −
1p

MνMµ

∑
m

K|τν−Rm−τµ|
(τνi − Rmi −τµi)(τν j − Rmj −τµ j)

|τν −Rm −τµ|2
eik·Rm .

These formula for D(k) depend on the atomic masses, spring constants, and equilibrium
atomic positions and they fully determine the model. We can gather both of them
again into the single expression

Dνiµ j(k) =
1p

MνMµ

∑
mµ′

K|τν−Rm−τµ′ |
�
δµν −δµµ′ eik·Rm

�

× (τνi − Rmi −τµ′ i)(τν j − Rmj −τµ′ j)
|τν −Rm −τµ′ |2

. (11.18)

The code printed in Fig. 11.6 implements this expression. The code does not maximize
readability because it was meant to minimize length. The parameters are d for the
dimensionality, a[1] to a[d] the d-dimensional basis vectors of the lattice, Nat the
number of atoms in the unit cell, M[1] to M[Nat] the masses of the atoms, tau[1]
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Figure 11.7: Left: Spring model for the non-polar zinc-blende structure with atoms of mass
M . The strong covalent bonds with spring constant K1 and the weaker springs of strength K2

are indicated. Right: Phonon dispersion curves calculated with the code of Fig. 11.6 (orange)
compared with experimental neutron-scattering data.1

to tau[Nat] the d-dimensional vectors giving the positions of the atoms in the unit
cell, and K[] a function giving the spring constants. The function L2[] defined at
line 1 takes a vector and returns the square of its length. The function R[] at line 2
takes a list of integers {n1, . . . , nd} and returns R = n1a1 + . . .+ nd ad . The function
Table at line 3, closed at line 12, builds the dynamical matrix. On the lines 4–8, one
recognizes the function that must be summed. This function is applied to a list of
pairs {Rm,µ′}—each pair being addressed by #, such that #[[1]] stands for Rm and
#[[2]] stands for µ′. The list is build at lines 9–11 using the functions Tuples and
Range. This list must contain all atoms connected to the central unit cell. The integer
Shells specifies how many layers of neighboring cells are included when building
the list: Shells=1 means that the various springs connect the central unit cell to its
first neighbors at most. Finally, the Select at lines 9 and 11 removes the element
{0,ν} from the list, which would be suppressed anyway because K|0| = 0, but produces
a division by zero if left in place. All in all, the function Dynamical[{k1, . . . , kd}]
returns the dynamical matrix at the given wave vector.

The application to Si is done at lines 13–21. Note that the spring constant function K[]
defined at line 15 takes as argument the square of the equilibrium length rather than
the length; by default K[] returns zero, except for l2 = 3/16 and l2 = 1/2. The values
K1 and K2 for these two cases are chosen in order to produce a good-looking result.
The lines 18–20 define a path in the Brillouin zone like in Fig. 11.4. Figure 11.7 shows
the resulting phonon dispersion curves, compared with experimental data measured
by inelastic neutron scattering.1 The agreement is of course not perfect; given the
simplicity of a model with just two parameters, one can hardly expect more. The
eigenvectors of D(k) provide the displacements associated with each mode and allow
one, in particular, to visualize the difference between acoustic and optical phonons.

1 G. Nilsson and G. Nelin, Phys. Rev. B 6, 3777 (1972).

https://doi.org/10.1103/PhysRevB.6.3777
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doc–64 Double occupancy

The double occupancy D measures the average occupation of the same point in space
by two electrons of opposite spins:

D =
1
V

∫
dr 〈n↑(r )n↓(r )〉=

1
V

∫
dr 〈n↓(r )n↑(r )〉.

This quantity plays an important role in strongly correlated materials, where it is
suppressed by the Coulomb repulsion. With the help of Eq. (3.35), we can relate D to
the density-density and longitudinal spin-spin greater correlation functions. Eq. (3.35)
tells us that

∫ ∞

−∞
dε ρ>n(q)n(−q)(ε) = 〈n(q)n(−q)〉 and

∫ ∞

−∞
dε ρ>Sz(q)Sz(−q)(ε) = 〈Sz(q)Sz(−q)〉.

Summing over q and moving to real space, we get

1
V
∑

q

〈n(q)n(−q)〉=
∫

dr 〈n(r )n(r )〉=
∫

dr 〈[n↑(r ) + n↓(r )][n↑(r ) + n↓(r )]〉,

and similarly for 〈Sz(q)Sz(−q)〉,

1
V
∑

q

〈Sz(q)Sz(−q)〉=
∫

dr 〈Sz(r )Sz(r )〉

=
�ħh

2

�2
∫

dr 〈[n↑(r )− n↓(r )][n↑(r )− n↓(r )]〉.

Combined together, these relations lead to

D =
1
V 2

∑
q

∫ ∞

−∞
dε

1
4

�
ρ>n(q)n(−q)(ε)−

�
2
ħh

�2

ρ>Sz(q)Sz(−q)(ε)

�
.

doc–65 Analyticity, causality, and the Kramers-Kronig relations

Consider a complex function F of a complex variable z and denote FR(ω) with ω ∈ R
the function just above the real axis: FR(ω)≡ F(z =ω+ i0+). Assume now that the
function is analytic in the upper half of the complex plane and vanishes in the upper
half at least as 1/z for |z| →∞. These two conditions are sufficient for the function to
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obey Kramers-Kronig relations. Indeed, using Eq. (9) we have

∫ ∞

−∞
dω′

FR(ω′)
ω−ω′ + i0+

=

∫ ∞

−∞
dω′

�
Re FR(ω′) + i Im FR(ω′)

�

×
�
P 1
ω−ω′ − iπδ(ω−ω′)

�

= P
∫ ∞

−∞
dω′

Re FR(ω′)
ω−ω′ +π Im FR(ω)

+ i

�
P
∫ ∞

−∞
dω′

Im FR(ω′)
ω−ω′ −πRe FR(ω)

�
.

The same integral can also be evaluated by closing the contour in the upper half:

∫ ∞

−∞
dω′

FR(ω′)
ω−ω′ + i0+

=

∮

C

dz
F(z)

ω− z + i0+
= −

∮

C

dz
F(z)

z − (ω+ i0+)

= −2πi F(ω+ i0+) = −2πi FR(ω)

= 2π Im FR(ω)− 2πi Re FR(ω).

We have used Eq. (7) and our assumptions of analyticity and behavior at infinity.
Comparing the real and imaginary parts in the two results for the integral, we deduce
the Kramers-Kronig relations:

Im FR(ω) =
1
π
P
∫ ∞

−∞
dω′

Re FR(ω′)
ω−ω′

Re FR(ω) = − 1
π
P
∫ ∞

−∞
dω′

Im FR(ω′)
ω−ω′ .

Kramers-Kronig consistency is tightly related to causality and sufficient to imply that
the function FR(t) is proportional to θ(t). The two Kramers-Kronig relations can be
recast into

FR(ω) =
i
π
P
∫ ∞

−∞
dω′

Re FR(ω′) + i Im FR(ω′)
ω−ω′ =

i
π
P
∫ ∞

−∞
dω′

FR(ω′)
ω−ω′

=
i
π

∫ ∞

−∞
dω′ FR(ω′)

�
1

ω−ω′ + i0+
+ iπδ(ω−ω′)

�

=
i
π

∫ ∞

−∞
dω′

FR(ω′)
ω−ω′ + i0+

− FR(ω),

from where it follows that

FR(ω) =

∫ ∞

−∞

dω′

2π
FR(ω′)

i
ω−ω′ + i0+

.
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Take the Fourier transform with the help of Eq. (8) [see doc–1]:

FR(t) =

∫ ∞

−∞

dω
2π

FR(ω)e−iωt =

∫ ∞

−∞

dω′

2π
FR(ω′)

∫ ∞

−∞

dω
2π

e−iωt i
ω−ω′ + i0+

=

∫ ∞

−∞

dω′

2π
FR(ω′)e−iω′ t

∫ ∞

−∞

dω
2π

e−iωt i
ω+ i0+︸ ︷︷ ︸

θ (t)

= θ (t)

∫ ∞

−∞

dω
2π

FR(ω)e−iωt .

Here we have made implicit regularity assumptions about the function FR(ω), such
that the two integrals can be exchanged. Hence a Kramers-Kronig consistent function
is causal. The converse is also true: given a causal function FR(t) and its Fourier
transform FR(ω), the continuation F(z) of FR(ω) in the upper half of the complex
plane is analytic and decays at infinity, therefore Kramers-Kronig consistent. To see this,
we note that, if FR(t) = θ (t)F̃(t), the following property holds because θ 2(t) = θ (t):
FR(t) = FR(t)θ (t). As the Fourier transform of a product is a convolution, we have

FR(ω) =

∫ ∞

−∞

dω′

2π
FR(ω′)θ (ω−ω′) =

∫ ∞

−∞

dω′

2π
FR(ω′)

i
ω−ω′ + i0+

,

were we have again used Eq. (8). The continuation in the complex plane is

F(z) =
i

2π

∫ ∞

−∞
dω′

FR(ω′)
z −ω′ + i0+

.

The poles of this function are at z =ω′− i0+, which is in the lower half of the complex
plane. Hence the function is analytic in the upper half. It also clearly decays as 1/z at
infinity.

doc–66 One-dimensional electrons in a potential

The purpose of this document is to illustrate how the Green’s function formalism
can be put in action to painlessly solve the problem of non-interacting electrons in a
local potential. Let’s consider electrons in one dimension with the dispersion ξk =
2t cos(ka)−µ. This corresponds to a tight-binding model with only nearest-neighbor
hopping. We shall use the hopping energy as our unit of energy (t ≡ 1) and the lattice
parameter as our unit of length (a ≡ 1). Furthermore, we shall assume that the system
is initially half-filled (one electron per site), which is equivalent to setting µ= 0 such
that the chemical potential lies at the center of the band; the band extends from −2t
to +2t. The density of states (DOS) of such a system is easily deduced from Eq. (2.55)
or equivalently Eq. (5.7), see also Sec. 9.4.1.1:

N(ε) =
1
πt

Re


 1Ç

1− � ε+µ2t

�2


 .
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To this uniform one-dimensional electron gas, we add a local potential V (r). The
translation invariance gets destroyed and the above uniform DOS becomes a spatially-
varying local density of states (LDOS) N(r,ε) given by Eq. (5.8). In order to calculate
the LDOS, we must obtain the Green’s function in real space using Eq. (5.18a). The
first step is to build the unperturbed retarded Green’s function GR

0 (r, r ′,ε), which is the
analytic continuation of G0(r, r ′, iωn). For this we exploit the translation invariance of
the system in the absence of potential, which means that

GR
0 (r, r ′,ε) = GR

0 (r − r ′,ε) =
1
V
∑

k

eik(r−r ′)

ε + i0+ − ξk
.

Hence by Fourier transforming 1/(ε + i0+ − ξk) we immediately get GR
0 (r,ε), which

we can then use to build the matrix GR
0 (r, r ′,ε). The matrix Vr r ′ , on the other hand, is

just the diagonal matrix with V (r) on the diagonal: Vr r ′ = δr r ′V (r). With this we have
all ingredients needed in order to evaluate N(r,ε).

The calculation is in fact very easily implemented, as shown in Fig. 11.8 (we used
MATLAB® in this case). We consider a system of N = 512 sites closed with periodic
boundary conditions. The line 1 defines the dispersion ξk as a vector of length N built
from the discrete momenta k j = 2π j/N . In MATLAB®, the syntax [0:N-1] returns the
vector (0, 1, . . . , N −1). At line 2 we define the potential: we use a Gaussian of strength
V0=-3 and width r0=0.05/N with its minimum in the middle of the system. At line 3
we initialize a vector w containing the energies at which the LDOS is to be calculated
and we start the loop over the energies w(l), a loop which is closed at line 7. Inside
the loop, the first step is to calculate GR

0 (r,ε) by Fourier transforming 1/(ε + i0+ − ξk).
In order to obtain a smooth LDOS (as a function of ε), the value used for 0+ must be
somewhat larger than the typical spacing of the levels ξk. In our case, we have N/2
levels (since ξ−k = ξk) distributed over a bandwidth of 4t, hence the typical inter-level
spacing is 8t/N . We use the value 12t/N for 0+. At line 5 the matrix GR

0 (r, r ′,ε)
is built and stored in g(r,s). At line 6 the Green’s function is calculated following
Eq. (5.18a); instead of G = (G−1

0 −V )−1, we use the equivalent form G = G0(11−V G0)−1

that requires only one matrix inversion. In MATLAB®, inv(...) is the function to
invert a matrix and eye(N) is the N × N identity matrix. The second instruction on
line 6 evaluates the LDOS following Eq. (5.8) and stores it in the array LDOS. At line 8

1 N=512; xi=2*cos(2*pi*(0:N-1)/N);

2 V0=-3; r0 =0.05; V=V0*exp(-((-N/2:N/2-1)/N/r0 ).^2/2);

3 w=( -5.1:0.01:2.1) ’; for l=1: size(w)

4 g0=fft (1./(w(l)+i*12/N-xi))/N;

5 for r=1:N; for s=1:N; g(r,s)=g0(abs(r-s)+1); end; end

6 g=g*inv(eye(N)-diag(V)*g); LDOS(l,:)= -2* imag(diag(g))/pi;

7 end

8 for r=1:N; density(r)=sum(LDOS(:,r).*(w <=0)); end; density =0.01* density ’;

9 save LDOS.dat LDOS -ascii; save n.dat density -ascii

Figure 11.8: Calculation of the local density of states N(r,ε) and electron density n(r) for
one-dimensional electrons in a local potential, using MATLAB®.
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Figure 11.9: (a) Local density of states (LDOS) for one-dimensional electrons in a local potential
(intensity-map, left scale). Darker regions denote larger values of the LDOS. Corresponding
electron density (black line, right scale). (b) Same quantities calculated within the Thomas–Fermi
approximation (see text).

we also calculate the zero-temperature density using Eq. (3.38):

n(r) =

∫ ∞

−∞
dε ρar a†

r
(ε) f (ε) =

∫ ∞

−∞
dεN(r,ε) f (ε).

In MATLAB®, the syntax (w<=0) returns a vector with the same length as the length
of the vector w whose elements are either one or zero, depending on whether the
corresponding element of w satisfies the inequality w(l)<=0 or not: thus (w<=0)
simply returns f (ε) at zero temperature. Finally, at line 9 we save the LDOS and
the density in the files LDOS.dat and n.dat. Running this code requires ∼ 200 Mb
of memory (including MATLAB’s own memory), and takes a couple of minutes on a
laptop.

The resulting LDOS is displayed in Fig. 11.9(a). The main effect of the potential is
to shift locally the whole electronic spectrum by the value of the potential V (r). This
effect is the essence of the Thomas–Fermi approximation shown in Fig. 11.9(b):

NTF(r,ε) = N
�
ε − V (r)

�
=

1
πt

Re


 1È

1−
�
ε+µ−V (r)

2t

�2


 .

In addition to this “macroscopic” effect, we see the formation of bound states in the
potential well. As expected, the lowest bound state is nodeless with the maximum
at the center of the well, the second has one node at the center, etc. We also see the
quantum interferences between waves incoming and reflected, either outside or inside
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the well. Bound states and interferences are of course absent in the Thomas–Fermi
approximation. The strength of the Green’s function formalism appears very clearly
here, as we could obtain these well-known quantum effects without using the wave-
function machinery and solving the Schrödinger equation. Note also that the spectrum
is “less dense” inside the potential well due to the presence of bound states and the
resulting electron density is lower than the value expected from the Thomas–Fermi
approximation, namely n(r) = 1− (2/π)Re{sin−1[(V (r)−µ)/(2t)]}.

doc–67 Density of states of BCS superconductors

Combining Eqs (5.7) and (5.136), we see that the DOS per unit volume of a BCS super-
conductor characterized by a normal-state dispersion ξk = ξ−k and a superconducting
gap ∆k is

NBCS(ε) =
1
V
∑
kσ

�
− 1
π

�
Im




1

ε + i0+ − ξk −
|∆k |2

ε + i0+ + ξk


 .

Replacing 0+ by a phenomenological constant scattering rate Γ leads to the so-called
“Dynes formula”.1 For a numerical evaluation, one can directly use this equation, taking
advantage of the symmetries in ξk and |∆k | for a better performance. Figure 11.10
gives a minimal implementation in MATLAB®—not exploiting these symmetries. The
case considered is a two-dimensional tight-binding band, ξk = 2t(cos kx + cos ky)−µ
with t = −1 and µ = 1, the value of µ being arbitrarily chosen in order to break
particle-hole symmetry. Line 2 builds the mesh of k points and the band ξk using the
MATLAB® command meshgrid. We use a dense 2048×2048 mesh in order to achieve
a good energy resolution. Lines 3–5 set up the array |∆k |2 for three possible gap
symmetries: s symmetry with ∆k =∆; dx2−y2 symmetry with ∆k =

∆
2 (cos kx − cos ky);

dx y symmetry with ∆k =∆ sin ky sin ky . Line 6 defines the vector of energies ε as well
as the quantity i0 representing i0+. We use the value 8/N for 0+: smaller values lead
to spurious oscillations in the DOS while higher values broaden the DOS more than
necessary. Lines 7–9 perform the loop over ε and the k-sum for each ε. Finally, line 10
saves the data to file DOS.dat.

Results for the three gap symmetries are displayed in Fig. 11.11. For the s-wave
symmetry there is a true gap of width 2∆ surrounded by two coherence peaks, which
are square-root singularities (see below). The slight rounding at the gap edges reflects
the finite value used for 0+. The two additional peaks correspond to the Van Hove
singularity of the normal-state DOS and are logarithmic singularities, weaker than the
coherence peaks. The Van Hove singularity is due to the saddle point at k = (π/a, 0) and
therefore appears at energy ξ(π/a,0) = −µ, i.e., −1 in our case. In the superconducting
state, this is pushed to −[ξ2

(π/a,0) +∆
2]1/2 = −1.25; furthermore, an “echo” appears at

+1.25 due to the particle-hole mixing of the Bogoliubov excitations (see Sec. 5.2.2.3.5).

1 R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).

https://doi.org/10.1103/PhysRevLett.41.1509
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1 t=-1; mu=1; D=0.75; N=2048;

2 [kx ky]= meshgrid (2*pi*(0:N-1)/N); xi=2*t*(cos(kx)+cos(ky))-mu;

3 D2=abs(D)^2; % use this for s-wave

4 D2=abs(D/2*( cos(kx)-cos(ky ))).^2; % use this for d-wave (x^2-y^2)

5 D2=abs(D*(sin(kx).* sin(ky ))).^2; % use this for d-wave (xy)

6 e=(-3*D:6*D/1000:3*D)’; i0=i*8/N;

7 for l=1: size(e,1);

8 e(l,2)=-sum(sum(imag (1./(e(l,1)+i0-xi-D2./(e(l,1)+i0+xi )))))/( pi*N*N);

9 end

10 save DOS.dat e -ascii

Figure 11.10: Calculation of the density of states (DOS) for two-dimensional BCS supercon-
ductors with s, dx2−y2 , and dx y gap symmetries, using MATLAB®.

The relative weights of the main Van Hove peak and the echo peak are controlled by
the coherence factors u2

k and v2
k appearing in Eq. (5.139).

For d-wave pairing three main differences can be seen. First, there is no gap in the
DOS but N(ε) vanishes linearly like |ε|, showing that the gap has nodes on the Fermi
surface, i.e., points where∆kF

= 0; since, by definition of the Fermi surface ξkF
= 0, the

excitation energy Ek vanishes at these points. As the insets show, the nodes are located
along the zone diagonal for the dx2−y2 symmetry and along the zone boundary for the
dx y symmetry. The linear increase of the DOS close to ε = 0 is due to the linear increase
of |∆k | near the nodes. Second, the coherence peaks—which are now weak logarithmic
rather than strong square-root singularities—are not located at ±∆. They appear at the
energy corresponding to the largest value of |∆k | along the Fermi surface. As illustrated
in the insets, this maximum is always smaller than ∆. Third, the renormalization of
the Van Hove singularity, which is controlled by the gap value at k = (π/a, 0), depends
on the symmetry. For dx2−y2 symmetry, the gap is maximum at this point and the
renormalization is therefore the same as for the s symmetry. In contrast, the gap
vanishes at (π/a, 0) for the dx y symmetry and there is no renormalization. For the
same reason, there is no echo of the Van Hove peak in the dx y case, as the coherence
factor v2

k vanishes at (π/a, 0).

For s-wave pairing symmetry, ∆k ≡ ∆, the BCS DOS can be related exactly to the
normal-state DOS N el

0 (ε). To show this, we define the even and odd parts N+0 (ε) and
N−0 (ε) of the normal DOS,

N±0 (ε) =
1
2

�
N el

0 (ε)± N el
0 (−ε)

�

and we use Eq. (5.140):

NBCS(ε) =
1
V
∑
kσ

�
1
2

�
1+

ξk

Ek

�
δ(ε − Ek) +

1
2

�
1− ξk

Ek

�
δ(ε + Ek)

�
.

Since Ek =
q
ξ2

k +∆
2 is a function of ξk and not of k alone, we can rewrite the k sum
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Figure 11.11: Density of states N(ε) for two-dimensional superconductors with s, dx2−y2 , and
dx y pairing gaps. The dashed lines show the normal-state DOS with its Van Hove singularity
at ε/t = −µ/t = −1. The vertical lines indicate the maximum gap ±∆ and do not coincide
with the coherence peaks for d-wave pairing (see text). The insets show |∆k | in the Brillouin
zone (green surface) together with the Fermi surface (brown lines on the basal plane) and the
value of |∆k | along the Fermi surface (dark green lines). The red dots show k = (π/a, 0) and
symmetry-equivalent points.

as an energy integral:

N (s-wave)
BCS (ε) =

∫ ∞

−∞
dξN el

0 (ξ)

�
1
2

�
1+

ξ

Eξ

�
δ(ε − Eξ) +

1
2

�
1− ξ

Eξ

�
δ(ε + Eξ)

�

with Eξ =
p
ξ2 +∆2. Now, since N el

0 (ξ) = N+0 (ξ) + N−0 (ξ), the integral can be split
into

N (s-wave)
BCS (ε) =

∫ ∞

0

dξN+0 (ξ)
�
δ(ε − Eξ) +δ(ε + Eξ)

�

+

∫ ∞

0

dξN−0 (ξ)
ξ

Eξ

�
δ(ε − Eξ)−δ(ε + Eξ)

�
.

When evaluating the delta functions with the help of Eq. (11), we can use the fact that
ξ > 0: δ(ε− Eξ) = δ(ξ−ξ0)/|E′ξ0

| with ξ0 the positive solution of ε− Eξ0
= 0, namely

ξ0 =
p
ε2 −∆2. Clearly |E′

ξ0
| = ξ0/|ε| and the delta function cannot be satisfied if

ε <∆. Hence

δ(ε − Eξ) = θ (ε −∆)
|ε|
ξ0
δ(ξ− ξ0).

Similarly

δ(ε + Eξ) = θ (−ε −∆)
|ε|
ξ0
δ(ξ− ξ0).

Summing the two delta functions, we can write

δ(ε − Eξ) +δ(ε + Eξ) = Re
� |ε|p
ε2 −∆2

�
δ(ξ− ξ0)
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because taking the real part has the same effect as the sum of the two step functions.
The difference, on the other hand, reads

ξ

Eξ

�
δ(ε − Eξ)−δ(ε + Eξ)

�
= θ (ε −∆) |ε|

ε
δ(ξ− ξ0)− θ (−ε −∆)

|ε|
−εδ(ξ− ξ0)

= [θ (ε −∆)− θ (−ε −∆)]δ(ξ− ξ0).

Collecting the particle-hole symmetric and anti-symmetric contributions, we find:

N (s-wave)
BCS (ε) = N+0

�p
ε2 −∆2

�
Re
� |ε|p
ε2 −∆2

�

+ N−0
�p
ε2 −∆2

�
[θ (ε −∆)− θ (−ε −∆)] . (11.19)

The DOS vanishes for |ε| < ∆ and diverges as 1/
p
ε2 −∆2 at the gap edges. For

a constant normal-state DOS N el
0 (ε) = N el

0 (0), this reduces to Eq. (5.137) because
N−0 (ε) = 0 and N+0 (ε) = N el

0 (ε) = N el
0 (0).

For d-wave pairing symmetry, analytical calculations are less easy because Ek depends
on k through both ξk and ∆k . Progress is possible for example in two dimensions
if one assumes cylindrical symmetry, i.e., ξk = ξk and ∆k = ∆ cos2ϑ, where k =
k(cosϑ, sinϑ). This defines a generic model with dx2−y2 gap symmetry. The DOS
follows from Eqs (5.7) and (5.136) after rewriting the sum as an integral:

N (d-wave)
BCS (ε) =

�
− 1
π

�
Im

2
(2π)2

∫ ∞

0

dk k

∫ 2π

0

dϑ
ε + i0+ + ξk

(ε + i0+)2 − ξ2
k − (∆ cos 2ϑ)2︸ ︷︷ ︸

2π
ε+i0++ξkp

(ε+i0+)2−ξ2
k

p
(ε+i0+)2−ξ2

k−∆2

.

We see that after performing the angle integration we fall back to an expression that
only depends on k through ξk, such that it is again possible to relate it exactly to the
normal-state DOS as we did for s-wave symmetry:

N (d-wave)
BCS (ε) =

∫ ∞

−∞
dξN el

0 (ξ)
�
− 1
π

�
Im

ε + i0+ + ξp
(ε + i0+)2 − ξ2

p
(ε + i0+)2 − ξ2 −∆2

.

For a flat DOS N el
0 (ξ) = N el

0 (0), the term proportional to ξ in the integrand is odd and
does not contribute. The remaining term may be evaluated thanks to the following
identity, valid in the complex plane where Im z 6= 0:

∫ ∞

−∞
dξ

zp
z2 − ξ2

p
z2 − ξ2 −∆2

= −2i sign(Im z)K

�
∆2

z2

�
.

K(z) is the complete elliptic integral of the fist kind. We deduce the DOS model first
obtained by Won and Maki:1

N (d-wave)
BCS (ε) = N el

0 (0)
2
π

Re K

�
∆2

ε2

�
. (11.20)

This function is displayed in Fig. 5.11(c).
1 H. Won and K. Maki, Phys. Rev. B 49, 1397 (1994).

https://doi.org/10.1103/PhysRevB.49.1397
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doc–68 Eliashberg equations

Perturbation about the BCS ground state The Eliashberg formalism is a self-
consistent theory of pairing in superconductors which, unlike the BCS theory, can
take into account retardation effects implied by the time dependence of the pairing
interaction. It is well known that the phenomenon of pairing cannot be explained by a
perturbation expansion around the non-interacting Fermi sea. This is manifested for
instance in Eq. (5.143), which shows that the BCS gap cannot be expanded as a power
series at the non-interacting point V0 = 0. The reason is that the Fermi sea and the
BCS ground state are not adiabatically connected. From the perspective of the low-
lying excitations, it means that the electrons—or the Landau quasi-particles—are not
well-defined excitations in a superconductor. In contrast, the pairing problem becomes
a simple non-interacting problem once formulated in terms of the good excitations,
which are the Bogoliubov quasi-particles of the superconductor. Therefore the latter
formulation in terms of Bogoliubov quasi-particles is the good starting point in order
to investigate retardation effects using perturbation theory. The Nambu formalism1

is a neat way to implement the Bogoliubov transformation that brings out these new
quasi-particles. The trick is to introduce Nambu spinors, which are pairs of an up-spin
electron and a down-spin hole in the same orbital state |α〉: γ†

α =
�
c†
α↑ c

α↓
�
. One then

introduces the corresponding 2× 2 Nambu matrix Green’s function:

Ĝαβ (τ) = −〈Tτγα(τ)γ†
β
(0)〉= −〈Tτ

�
c
α↑(τ)

c†
α↓(τ)

��
c†
β↑(0) cβ↓(0)

�
〉

=

 −〈Tτc
α↑(τ)c

†
β↑(0)〉 −〈Tτc

α↑(τ)cβ↓(0)〉
−〈Tτc†

α↓(τ)c
†
β↑(0)〉 −〈Tτc†

α↓(τ)cβ↓(0)〉

!
. (11.21)

Note that the matrix Ĝ introduced here is the same object as the one introduced in
Eq. (5.122), but specialized here to the case of a spin-singlet superconductor. The fact
that in the usual BCS theory—often called “weak-coupling BCS theory”—the excitations
are independent Bogoliubov quasi-particles is manifested by the fact that the Nambu
matrix Ĝ has the same form as the Green’s function of free fermions [see Eq. (5.124)],
except for its 2× 2 structure. Thus the 2× 2 Nambu structure is the price to pay in
order to move us from the part of the Hilbert space surrounding the Fermi sea to the
part surrounding the BCS ground state.

A crucial property of the Nambu matrix Ĝ is that it has a diagrammatic expansion
identical to that of the usual electron Green’s function G , except that the electron
propagators in the diagrams must be understood as 2× 2 Nambu matrices and the
interaction vertices carry additional Pauli matrices. One verifies this by extending the
perturbation theory developed in Sec. 5.1.3.4 in order to include diagrams involving
propagators of the kind 〈a†a†〉 and 〈aa〉. This implies working with both the usual
fermion propagator G and the anomalous propagator F † of Eq. (5.116), which are
both nonzero in the superconducting state.2 The two expansions for G and F † can
then be recast in the 2×2 Nambu matrix form. Clearly, there are only two independent

1 Y. Nambu, Phys. Rev. 117, 648 (1960).
2 L. P. Gorkov, Sov. Phys. JETP 7, 505 (1958).

https://doi.org/10.1103/PhysRev.117.648
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objects in this theory, G and F †; therefore there are only two independent elements
in the Nambu matrix Ĝ . One sees that the component 11 of the matrix Eq. (11.21) is
just Gαβ(τ) for up spins, while the component 21 is F †

αβ
(τ) as defined for instance

in Eq. (5.132). In a paramagnetic state, the two remaining components are simply
related to the two first. We indeed have

�Ĝαβ (τ)
�

11 ≡ Gαβ (τ) = −
�Ĝαβ (−τ)

�∗
22 = −

�Ĝαβ (−τ)
�

22 (11.22a)
�Ĝαβ (τ)

�
21 ≡F †

αβ
(τ) =

�Ĝβα(τ)
�∗

12 =
�Ĝβα(τ)

�
12. (11.22b)

For checking these relations, one has to remember that Ĝαβ(τ) is real. This results
directly from the definition of the correlation function and from the fact that creation
and annihilation operators can be represented by real-valued matrices. Furthermore,
one has to be careful that [cα(τ)]† = c†

α(−τ), as is clear from the definition of the
imaginary-time evolution in Eq. (4.3). In frequency space, these relations become

�Ĝαβ (iωn)
�

11 = −
�Ĝαβ (iωn)

�∗
22 = −

�Ĝαβ (−iωn)
�

22 (11.23a)
�Ĝαβ (iωn)

�
21 =

�Ĝβα(−iωn)
�∗

12 =
�Ĝβα(iωn)

�
12. (11.23b)

Consider now that the electrons interact via a generic retarded potential V (q , iΩn). In
conventional superconductors, this interaction is the sum of the screened Coulomb
interaction Eq. (5.90) and the phonon-mediated interaction Eq. (5.54):

V (q , iΩn) =W (q , iΩn) +
∑
λ

|gqλ|2D0
λ(q , iΩn). (11.24)

Both contain retardation effects. In other situations, the interaction could be due
to the exchange of spin waves. This interaction leads to pairing, an effect that is
automatically taken into account at the mean-field level via the Nambu formalism. The
time dependence of the interaction furthermore leads to renormalization and damping
of the Bogoliubov quasi-particles: this effect will be treated by perturbation theory. We
specialize to a translation-invariant case, such that all matrices become diagonal in
the αβ indices, the latter being replaced by a wave vector k. The matrix Ĝ satisfies a
Dyson equation in Nambu space:

Ĝ−1(k, iωn) = Ĝ−1
0 (k, iωn)︸ ︷︷ ︸�

iωn − ξk 0
0 iωn + ξk

�
− Σ̂(k, iωn). (11.25)

In the Eliashberg approximation, the self-energy is given by the self-consistent exchange
diagram:1

Σ̂(k, iωn) =� = − 1
βV

∑
q iΩn

V (q , iΩn) τ
µĜ (k − q , iωn − iΩn)τ

µ. (11.26)

The dashed line represents the effective pairing interaction V (q , iΩn), the double-
dashed line is the matrix Ĝ , and the gray circles represent Pauli matrices. For the

1 D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. 148, 263 (1966).

https://doi.org/10.1103/PhysRev.148.263
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Coulomb and phonon-mediated interactions, the appropriate Pauli matrices are τz

(µ= z), while for a spin-wave mediated interaction it is the identity matrix τ0.

From the symmetry properties of the matrix Ĝ and the fact that V (q , iΩn) is real, we
can deduce symmetry properties for the matrix Σ̂:

Σ22(k, iωn) = −Σ∗11(k, iωn), Σ12(k, iωn) = Σ21(k, iωn). (11.27)

The Dyson equation Eq. (11.25) can then be inverted to yield Ĝ , whose 11 and 12
components are

G (k, iωn) =
1

iωn − ξk −Σ11 −
Σ2

12

iωn + ξk +Σ∗11

(11.28a)

F (k, iωn) =
Σ12

(iωn − ξk −Σ11)(iωn + ξk +Σ∗11)−Σ2
12

. (11.28b)

Eqs (11.26) and (11.28) form a set of self-consistent equations known as the Eliashberg
equations, that can be solved once ξk and V (q , iΩn) are specified.1, 2

Example of solution In order to illustrate the content of the Eliashberg equations,
we solve them in the simple case where the effective interaction between electrons is
due to a single optical phonon branch and the Coulomb interaction is neglected:

V (q , iΩn)≡ V (iΩn) = g2
�

1
iΩn −ħhΩ0

− 1
iΩn +ħhΩ0

�
. (11.29)

Ω0 is the frequency of the optical phonon, assumed independent of q [see Eq. (5.51)]
and g represents the electron-phonon coupling, also assumed independent of q . As

1 The BCS “weak-coupling” limit is recovered when V is the time-independent BCS interaction: using the
BCS result Eq. (5.136) in Eq. (11.26) we find that Σ11 becomes a momentum- and energy-independent
constant (to be absorbed in the chemical potential) while the equation for Σ12 becomes the gap equation
Eq. (5.141) with the solution Σ12 =∆k .

2 Most often in the literature, the Eliashberg equations take a different form because the two unknown
self-energies Σ11 and Σ12 are rewritten in terms of two real-valued functions Z and χ, and one complex
function ∆ or Φ. From the definition Eq. (11.26), we see that ReΣ11(k, iωn) = ReΣ11(k,−iωn) and
ImΣ11(k, iωn) = −ImΣ11(k,−iωn), such that, without loss of generality, we can define

Σ11(k, iωn)≡ iωn [1− Z(k, iωn)] +χ(k, iωn)

with Z(k, iωn) and χ(k, iωn) two real functions that are even in iωn. It is also customary to write

Σ12(k, iωn)≡ Z(k, iωn)∆(k, iωn)≡ Φ(k, iωn).

Expressed in terms of these new quantities, the Green’s functions may be put in the form

G (k, iωn) =
iωnZ(k, iωn) + ξk +χ(k, iωn)

[iωnZ(k, iωn)]
2 − [ξk +χ(k, iωn)]

2 −Φ2(k, iωn)

F (k, iωn) =
Φ(k, iωn)

[iωnZ(k, iωn)]
2 − [ξk +χ(k, iωn)]

2 −Φ2(k, iωn)
.

One sees that χ describes a renormalization of the dispersion ξk while Z renormalizes the energy. ∆, on
the other hand, is known as the energy- and momentum-dependent pairing function.
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the interaction does not depend on momentum, the self-energy Eq. (11.26) becomes a
function of energy only:

Σ̂(iωn) = −
1
β

∑
iΩn

V (iΩn)N̂ (iωn − iΩn) = −
1
β

∑
iωm

V (iωn − iωm)N̂ (iωm) (11.30)

with N11(iωn) = V −1
∑

k G (k, iωn) and N12(iωn) = −V −1
∑

kF (k, iωn). Owing to
the momentum independence of the self-energy,G (k, iωn) andF (k, iωn) in Eqs (11.28)
are function of ξk only and we can therefore replace the k sums by energy integrals
according to V −1

∑
k( · · · ) =

∫
dξ Ñ el

0 (ξ)( · · · ). Ñ el
0 (ξ) is the density of states per spin

direction for the band ξk . In order to be able to proceed analytically as far as possible,
we make the simplification Ñ el

0 (ξ) = Ñ el
0 (0) for |ξ|<W and Ñ el

0 (ξ) = 0 for |ξ|>W . In
other words, we assume that in the absence of pairing the density of states is flat over
the bandwidth 2W . The ξ integration can then be performed analytically. Separating
out the real and imaginary parts of Σ11 through Σ11 = Σ′11 + iΣ′′11, we find:

N11(iωn) = Ñ el
0 (0)

��
1+

iωn − iΣ′′11(iωn)

E(iωn)

�
tanh−1

�
W

E(iωn)−Σ′11(iωn)

�

−
�

1− iωn − iΣ′′11(iωn)

E(iωn)

�
tanh−1

�
W

E(iωn) +Σ′11(iωn)

��

N12(iωn) = −Ñ el
0 (0)

Σ12(iωn)
E(iωn)

�
tanh−1

�
W

E(iωn)−Σ′11(iωn)

�

+ tanh−1

�
W

E(iωn) +Σ′11(iωn)

��

E(iωn) =
q
[iωn − iΣ′′11(iωn)]2 −Σ2

12(iωn).

Since N̂ is proportional to Ñ el
0 (0), it is convenient to measure the interaction strength in

units of 1/Ñ el
0 (0) by introducing the dimensionless parameter g̃2 ≡ 2g2Ñ el

0 (0)/ħhΩ0. We
are now in the position to perform the self-consistent loop numerically on the imaginary
axis. Starting from the BCS solution Σ11(iωn) = 0 and Σ12(iωn) = ħhΩ0/ sinh(1/ g̃2),
we compute N11 and N12 using the above relations. The latter quantities allow us to
calculate new values for the self-energies Σ11(iωn) and Σ12(iωn) using Eq. (11.30)
and the process is iterated to convergence. Since the self-energy is a convolution, it is
most efficiently evaluated using a fast Fourier transform (FFT). This procedure works,
but has one major drawback: the procedure yields numerical values for, e.g.,N11(iωn),
while we are primarily interested in the density of states on the real axis, which is
formally given by N(ε) = (−1/π)ImN11(iωn → ε + i0+). If we knew the function
N11(iωn) analytically, the continuation to the real axis would be straightforward; but
we happen to know this function only numerically for the discrete frequencies iωn. The
problem of the analytic continuation of numerical data is a very difficult one, because it
is equivalent to inverting a matrix with exponentially small eigenvalues [see doc–69].

In order to avoid this problem, we solve the Eliashberg equations directly on the real
axis. This can be done by means of the spectral representation of the Green’s functions,
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1 W0=1; W=1000; T=0.1; g2=2; max =15; n=3000;

2 de=2max/n; e=N[( Range[n]-1)de -max]; i0=I*2de; a=0.2;

3 f=Chop [1/( Exp[e/T]+1)]; b[x_ ]:=1/( Exp[x/T]-1);

4 M=g2*W0/2*de*Table [(f+b[W0])/(e[[k]]+i0+W0-e)-(f+b[-W0])/(e[[k]]+i0-W0-e),{k,1,n}];

5 dS11=g2*W0 /2(2*b[W0]( ArcTanh[W/(e+i0+W0)]+ ArcTanh[W/(e+i0 -W0)]-

6 ArcTanh[max/(e+i0+W0)]-ArcTanh[max/(e+i0 -W0)])+

7 Log[1+W/(e+i0+W0)]-Log[1-W/(e+i0 -W0)]-

8 Log[1+max/(e+i0+W0)]+Log[1-max/(e+i0 -W0)]);

9 Iteration := Module [{u,EE ,A1 ,A2 ,N12},

10 u=e+i0 -I*Im[S11]; EE=Sqrt[u^2-S12 ^2]; u=u/EE;

11 A1=ArcTanh[W/(EE -Re[S11 ])]; A2=ArcTanh[W/(EE+Re[S11 ])];

12 N11=-Im[(1+u)A1 -(1-u)A2]/Pi; N12=-Im[-S12/EE(A1+A2)]/Pi;

13 S11=(1-a)S11+a(M.N11+dS11); S12=(1-a)S12+a*M.N12;

14 ListLinePlot[Table[{e[[k]],N11[[k]]},{k,1,n}],PlotRange ->{0,All}]

15 ];

16 S11 =0; S12=W0/Sinh [1/g2]; Dynamic[Iteration]

Figure 11.12: Solution of the Eliashberg equations on the real-energy axis for an interaction
mediated by a single optical phonon, using Mathematica.

which implies

N̂ (iωn) =

∫ ∞

−∞
dε

N̂(ε)
iωn − ε

with N̂(ε) = − 1
π

Im N̂ (iωn→ ε + i0+).

The real functions N11(ε) and N12(ε) will be our unknowns. Using the spectral repre-
sentation and Eq. (16), we can perform the Matsubara sum for the self-energy:

Σ̂(iωn) = g2

∫ ∞

−∞
dε N̂(ε)

�
f (ε) + b(ħhΩ0)
iωn +ħhΩ0 − ε

− f (ε) + b(−ħhΩ0)
iωn −ħhΩ0 − ε

�
. (11.31)

This expression is analytic in iωn and allows us to evaluate Σ̂(ε + i0+) on the real axis.
From this information, we deduce N11(ε + i0+) and N12(ε + i0+) using the formula
derived previously and we can thus close the self-consistent loop by computing new
values for the functions N11(ε) and N12(ε). For a practical implementation, we must
discretize the ε-integral giving the self-energy. At high energy, we have Σ̂(ε+ i0+)→ 0,
which implies N11(|ε| →∞) = Ñ el

0 (ε) and N12(|ε| →∞) = 0. Hence the numerical
evaluation of the self-energy Σ12 can be done by cutting the integral at some cutoff
εmax, while for Σ11 we may perform analytically the integrations for |ε|> εmax, where
the Fermi functions are either one or zero.

The complete solution is implemented in the code of Fig. 11.12. Line 1 defines the
parameters. We measure energies in units of ħhΩ0 and thus set W0=1; W is the bandwidth,
T represents kBT in units of ħhΩ0, g2 is the coupling g̃2, max is the cutoff for the energy
integral, and n is the number of discretization points. Line 2 builds the energy axis
[−εmax,εmax[ in e and sets i0, which represents i0+, to twice the discretization step.
a is the mixing factor, which tells how much of the new solution is mixed with the
old solution during the self-consistent loop; it is sometimes necessary to change this
values in the course of the self-consistent loop. Lines 3 and 4 build the matrix M
whose matrix elements are the expression in brackets in Eq. (11.31): one sees that
after discretization of the integral, the calculation of the self-energy amounts to a
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Figure 11.13: (a) Density of states N(ε) = N11(ε) calculated with the code of Fig. 11.12 (solid
line) and corresponding weak-coupling BCS result (dashed line). (b) Evolution of the critical
temperature Tc with the dimensionless coupling g̃2 = 2g2Ñ el

0 (0)/ħhΩ0 as calculated with the
code of Fig. 11.14 (dots). g̃2 is equal to the electron-phonon coupling parameter λ (see text).
The solid line is the McMillan formula Eq. (11.32) with 〈ω〉= Ω0 and µ∗ = 0.

matrix-vector multiplication; since the matrix does not depend on N̂(ε), it can be
set up outside the self-consistent loop. Lines 5–8 define the correction dS11 to the
self-energy coming from the region outside [−εmax,εmax[. Lines 9–15 define a function
that performs one self-consistent iteration. At line 12, the new values of N11(ε) and
N12(ε) are computed and at line 13 the mixing of the new and old self-energies is
performed. Line 14 displays a plot of N11(ε). Finally, at line 16 the loop is started by
initializing the self-energies to their BCS values and performing the iterations. The
Mathematica function Dynamic will run the iterations indefinitely; by looking at the
plot, one can stop it at convergence. When using this code, it is better to move this
last instruction in a new cell and launch it only after the other instructions have been
executed. The calculation will take a few seconds.

Figure 11.13(a) shows the DOS N11(ε) obtained with the code of Fig. 11.12. The
corresponding BCS solution (i.e., the first step of the self-consistent loop) is also dis-
played for comparison. One sees that the strong-coupling theory leads in this case to a
gap wider than the weak-coupling BCS theory, but the gap edges are less sharp. One
also notices features at ħhΩ0, 2ħhΩ0, . . . , that denote the threshold of the one-phonon,
two-phonon, etc. . . absorption or emission processes. The self-consistency indeed
includes these many-phonon processes through the subset of rainbow diagrams:

� =� +� +� + . . .

One also sees that the most prominent signature of strong coupling is a dip-hump at
energies above the coherence peaks. This appears because the scattering rate is roughly
proportional to the shifted DOS, e.g., −ImΣ11(ε)∼ N11(ε −ħhΩ0) for ε > 0, and thus
the scattering rate is peaked at ε =∆+ħhΩ0 leading to a suppression of the DOS at this
energy. Therefore, the higher the coherence peak in the DOS, the stronger the dip. It
is clear that the analysis of the features in the DOS allows in principle to determine the
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energy of the underlying phonon. This is the background of the celebrated McMillan &
Rowell inversion procedure,1 by which the whole phonon spectrum is extracted from
tunneling spectra assumed to be proportional to the DOS.

Linearized equations at Tc In order to determine Tc in this theory, we have to find
the temperature above which the anomalous self-energy Σ12 vanishes. At Tc , where
Σ12 = 0, we can expand the Eliashberg equations to lowest order in Σ12. This means
that we can replace in Eq. (11.28) Σ2

12 by zero. Then G only depends on Σ11 and
F = −Σ12GG ∗. We thus get self-consistent equations for G andΣ11 that do not depend
on F and Σ12. Once they are solved for G , we see that the equation Eq. (11.26) for
Σ12 has the form of an eigenvalue problem, namely (schematically) Σ12 = V ⊗GG ∗Σ12
where ⊗ stands for the convolution in Matsubara frequencies, in other words Σ12 is
an eigenvector of V ⊗ GG ∗ with unity eigenvalue. The strategy to determine Tc is
therefore to watch the eigenvalues of this matrix while varying T .

With our simple interaction Eq. (11.29), the self-consistent equation for Σ11 can be
simplified and yields Σ′11(iωn) = 0 and

N11(iωn) = −2iÑ el
0 (0) tan−1

�
W

ωn −Σ′′11(iωn)

�
.

We can check this by noting that E(iωn) is purely imaginary if Σ2
12 = 0: E(iωn) =

i|ωn−Σ′′11(iωn)|. The above formula follows, since tanh−1(−i x) = −i tan−1(x). On the
other hand, since N11 is purely imaginary and V is real, the real part of the self-energy
Σ11 in Eq. (11.30) vanishes, consistently with our initial assumption. The equation for
Σ12 can be recast in the form of an eigenvalue problem, indeed:

Σ12(iωn) =
∑
iωm

�
−2Ñ el

0 (0)

β

V (iωn − iωm)
ωm −Σ′′11(iωm)

tan−1

�
W

ωm −Σ′′11(iωm)

��
Σ12(iωm),

with the term in brackets being the matrix of which we have to find the eigenvalues. At
T < Tc , the largest eigenvalue is greater than one and consequently the self-consistent
loop tends to increase the value of Σ12. Inversely, at T > Tc the self-consistency drives
Σ12 to zero and all eigenvalues of the matrix are therefore smaller than one. At T = Tc ,
the largest eigenvalue is exactly one.

The code of Fig. 11.14 implements the calculation of Tc as a function of g̃2. At line 3,
we start the loop on temperature close to T = 0; for each T , the series of 2M Matsubara
frequencies ωn is first built in w. Lines 4–7 solve for Σ11. Since Σ11 is a convolution of
V and N11 [Eq. (11.30)], we can evaluate it using Fourier transforms: schematically,
Σ11 = −(1/β)FT[FT−1(V ) ∗ FT−1(N11) ]. The quantity FT−1(V ) is prepared at line 4
and multiplied by the appropriate factors and normalization; then the convolution is
done at line 6. Lines 5 and 7 open and close the self-consistency loop for Σ11. Once
Σ11 is found, we build at lines 8 and 9 the matrix corresponding to the expression
inside the brackets in the above equation and compute its largest eigenvalue max. If
the latter is smaller than one it means that we have crossed Tc , such that we move one

1 W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).

https://doi.org/10.1103/PhysRevLett.14.108
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1 W0=1; W=1000; M=200;

2 Tc[g2_ ]:= Module [{T,dT ,w,V,S11 ,S0 ,dSA ,max},

3 dT =0.1; T=0.001 -dT; While[dT >10^-6, T=T+dT; w=(2 Range[-M,M -1]+1) Pi*T;

4 V=-2T*g2*W0^2 InverseFourier[RotateLeft [1/((2 Range[-M,M-1]Pi*T)^2+W0^2),M]]Sqrt[2M];

5 S11 =0; S0=0; dS=1; While[dS >10^-14,

6 S11=Fourier[V*InverseFourier[I*ArcTan[W/(w-Im[S11 ])]]];

7 dS=Abs[S11[[M]]-S0]; S0=S11[[M]]];

8 A=2T*g2*W0^2 ArcTan[W/(w-Im[S11 ])]/(w-Im[S11]);

9 max=Max[Re[Eigenvalues[Table[A/(((2*n+1)Pi*T-w)^2+W0^2),{n,-M,M -1}]]]];

10 If[max <1,T=T-dT; dT=dT /2]]; Max[T,0]

11 ]

12 Export ["Tc.dat",Table[{g2 ,Tc[g2]},{g2 ,0.01 ,3 ,0.1}]];

Figure 11.14: Calculation of the critical temperature Tc in the strong-coupling Eliashberg
theory, using Mathematica.

step back and decrease the temperature increment dT (line 10), continuing until the
increment is sufficiently small (10−6 in our case).

The curve Tc( g̃2) obtained with this code is displayed in Fig. 11.13(b). Also shown is
the behavior expected from the McMillan formula1

kBTc =
ħh〈ω〉
1.2

exp
�
− 1.04(1+λ)
λ−µ∗(1+ 0.62λ)

�
. (11.32)

This formula was derived by fitting numerical values of Tc for a model more elaborated
than ours. The results nevertheless match at weak coupling, while deviations occur
at strong coupling. McMillan considers a continuous phonon distribution rather than
a single phonon and the electron-phonon coupling is represented by a dimensionless
function α2F(ω). Our model corresponds to the simple case α2F(ω) = g2Ñ el

0 (0)δ(ħhω−
ħhΩ0). The overall electron-phonon coupling strength is measured by the parameter
λ = 2

∫∞
0 dωα2F(ω)/ω, which becomes simply 2g2Ñ el

0 (0)/ħhΩ0 = g̃2 in our case.
µ∗ is a parameter measuring the strength of the Coulomb repulsion, which we have
neglected. Finally, 〈ω〉 is a measure of the “center of mass” of the electron-phonon
coupling function, defined as 〈ω〉 = (2/λ)∫∞0 dωα2F(ω), i.e., simply Ω0 for our
model.

doc–69 The problem of numerical analytic continuation

The continuation of imaginary-time functions C (iνn) from the imaginary to the real
axis is a trivial task when the functional dependence of C on Matsubara frequencies
is known analytically. For instance, if C (iνn) = 1/(iνn − ξ), we immediately know
from Eq. (4.12) that CR(ε) = 1/(ε + i0+ − ξ). It is not quite that simple when the
values C (iνn) can only be obtained numerically for a finite—even if large—set of
frequencies iνn. In the latter case, we face a problem of general significance: given
a finite number of values Cn ≡ C (iνn), find the function ρ(ε) such that Eq. (4.11)
is satisfied. Rewriting the ε-integral as a discrete sum, we see that this is a linear

1 W. L. McMillan, Phys. Rev. 167, 331 (1968). > R. C. Dynes, Solid. State Commun. 10, 615 (1972). > P. B.
Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

https://doi.org/10.1103/PhysRev.167.331
https://doi.org/10.1016/0038-1098(72)90603-5
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.12.905
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problem of the kind Cn =
∑

m AnmRm, where Rm ≡ ρ(εm) are the unknowns and the
rectangular matrix A is given by Anm = dε/(iνn − εm). The formally simple solution
R= (AT A)−1AT C—where the superscript T means transposition and (AT A)−1AT is the
left-inverse of A—falls apart when it comes to the practice, because it turns out that
the square matrix AT A is badly conditioned and cannot be inverted numerically in any
reliable way. This can be seen as follows. If we keep the whole series of Matsubara
frequencies, the matrix AT A is given by

(AT A)mm′ = (dε)
2
∑

n

1
iνn − εm

1
iνn − εm′

= −η (dε)
2

kBT

d−η(εm)− d−η(εm′)

εm − εm′
,

where we have used Eq. (16). Writing εm = mdε with integer m and defining δ =
dε/(kBT ), this becomes

(AT A)mm′ =
ηδ

(emδ −η)(em′δ −η) ×



δemδ m= m′

emδ − em′δ

m−m′
m 6= m′.

The problem is most obvious for fermions at high temperature: expanding for small
δ with η= −1, we see that all matrix elements are equal to −δ2/4 at leading order,
such that the determinant of AT A is identically zero in this limit. It is not because
just one eigenvalue happens to be zero: all but one eigenvalues are actually zero.
In the opposite limit of low temperature, we see that the diagonal matrix elements
approach −δ2e−|m|δ. The off-diagonal matrix elements vanish even faster if m and
m′ have the same sign. We can assume this be-
cause the argument should not depend critically
on which domain of energy we are considering.
Hence we find that the determinant of AT A should
typically vanish as e−δM(M+1)/2 for a matrix of size
M . The figure shows ln |det(AT A)| as a function
of M for a grid of M energies εm taken symmetri-
cally around ε = 0 and confirms that the matrix
determinant plunges well below the accuracy of
computers for just a few tenths of energies.
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doc–70 Energy dissipation in an applied field

Imagine a system with rest Hamiltonian K0 subject to an external field F(t) that is
switched on adiabatically. The field couples to observable B like in Eq. (6.6). We are
interested in the total energy dissipated at leading order in the field. For any operator
that has both the internal and an external time dependencies, the equation of motion is

iħh d
d t

At(t) = U†(t)
�
[At , K] + iħh∂ At

∂ t

�
U(t), (11.33)

where the partial derivative is taken with respect to the external time. This results
from Eq. (2.15) and the equation of motion of the evolution operator. In our case,
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At ≡ K = K0+B∗ F(t) and it follows that dK/d t = B(t)∗dF(t)/d t. The instantaneous
power dissipated is P(t) = d〈K〉/d t = 〈B(t)〉 ∗ dF(t)/d t. At first order in the field,
〈B(t)〉 is given by Eq. (6.19). Considering Eqs (4.12) and (6.8), introducing the Fourier
transform of the field, and noting that B = B†, we have

P(t) =

∫ ∞

−∞

dω
2π

e−iωtχBB†(ħhω) ∗ F(ω) ∗ d
d t

∫ ∞

−∞

dω′

2π
e−iω′ t F(ω′)

=

∫ ∞

−∞

dω
2π

dω′

2π
e−i(ω+ω′)t(−iω′)χBB†(ħhω) ∗ F(ω) ∗ F(ω′).

The total energy dissipated is

∆E =

∫ ∞

−∞
d t P(t) = i

∫ ∞

−∞

dω
2π
ωχBB†(ħhω) ∗ F(ω) ∗ F(−ω).

As the field F(t) is real, we have F(−ω) = F∗(ω). ∆E is also real, therefore:

∆E = i

∫ ∞

−∞

dω
2π
ωχBB†(ħhω) ∗∗ |F(ω)|2 = −i

∫ ∞

−∞

dω
2π
ωχ∗BB†(ħhω) ∗∗ |F(ω)|2

=
i
2

∫ ∞

−∞

dω
2π
ω
�
χBB†(ħhω)−χ∗BB†(ħhω)︸ ︷︷ ︸

2i ImχBB† (ħhω)

�
∗∗ |F(ω)|2.

The last line results by averaging the two expressions at the first line and the notation
∗∗ implies summation over all cartesian and spatial indices associated with B and F .
The final result is that the energy dissipated by a field coupling to observable B is
controlled by the imaginary part of the retarded correlation function of B with itself:

∆E =
1
2

∫ ∞

−∞
dωω

�− 1
π

�
Im CR

BB†(ω) ∗∗ |F(ω)|2. (11.34)

Owing to Eq. (3.47), the energy dissipation is related to the spectral function ρBB†(ε),
which expresses the fluctuation-dissipation theorem.

doc–71 Golden-rule calculation of the photoemission intensity

The momentum-resolved photoemission process may be viewed as an absorption of a
photon that leaves the system in an excited state containing one free electron of wave
vector k. More precisely, the state of the photo-electron is a so-called time-reversed
LEED state, which is built by matching an outgoing plane wave outside the material
with a high-energy excited state inside the material; such LEED states with ingoing
plane waves are used for the description of low-energy electron diffraction. To evaluate
the absorption rate, we use the following version of the Fermi golden rule:

Γ =
2π
ħh
∑
ab

e−βKb

Z
|〈a|V |b〉|2δ(ħhω0 + Kb − Ka).
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Three modifications were brought to Eq. (2.27). First, we have replaced the t-matrix by
its first-order value, namely V . Second, instead of a single initial state, we perform a
thermal average over all possible initial states here denoted |b〉, which are eigenstates
of K, with Boltzmann weight e−βKb/Z; we also sum over all possible final states |a〉.
Third, we have generalized the golden rule to the case of an oscillating perturbation
as discussed after Eq. (2.27) and kept only the term corresponding to the photon
absorption. In the expression of Γ , the final state is unconstrained if not for the
energy conservation Ka = Kb + ħhω0. As V conserves the number of particles, the
final state has the same number of electrons as the initial state. In the photoemission
experiment, there is one additional constraint since the only final states measured
are those containing the photo-electron. In the sudden approximation, this is made
explicit by replacing in the expression of the absorption rate |a〉 by c†

k |a〉 and Ka by
Ea + εk − µ(Na + 1) = Ka + ξk , where c†

k creates the time-reversed LEED state and
εk is the energy of the photo electron. In other words, it is assumed that the photo-
excitation from the state |b〉 leaves all of a sudden the system in an eigenstate |a〉 of
energy Ea = Eb +ħhω0 − εk with one electron less than |b〉. This is an approximation,
because the photo-excitation in fact produces a superposition of eigenstates determined
by all the processes leading to the relaxation of the photo-hole. The photoemission
current dJ(n)/dΩ= eΓ in the sudden approximation is therefore

dJSA(n)
dΩ

=
2πe
ħh
∑
ab

e−βKb

Z
|〈a|ck∆|b〉|2δ(ħhω0 + Kb − Ka − ξk),

where n is the direction of k and for V we used the dipole operator [see doc–14]

∆=
−e
2m

∑
αβ

〈α|p · A+ A · p|β〉c†
αc
β
≡
∑
αβ

∆αβ c†
αc
β
.

We take the vector potential A as constant throughout space and |α〉, |β〉 are single-
electron states with c†

α and c†
β

the corresponding operators, see Eq. (2.43).

As the LEED orbital created by c†
k is not occupied in the initial state |b〉—rather, since

we sum over all states |b〉, the states such that ck |b〉 6= 0 have exponentially small
Boltzmann weight of order e−ħhω0/kB T in the sum—the only way for the matrix element
〈a|ck c†

αc
β
|b〉 to be nonzero is to have c†

α = c†
k . We thus get

〈a|ck∆|b〉=
∑
β

∆kβ 〈a|ck c†
k c
β
|b〉=

∑
β

∆kβ 〈a|cβ |b〉,

where we have used ck |b〉= 0. More formally, this can be established by means of the
commutation rules Eq. (2.41), which give ck c†

αc
β
= δkαc

β
+ c†

αc
β

ck . The photocurrent
follows as

dJSA(n)
dΩ

=
2πe
ħh
∑
αβ

∆kα∆
∗
kβ

∑
ab

e−βKb

Z
〈a|cα|b〉〈b|c†

β
|a〉δ(ħhω0 + Kb − Ka − ξk).

The relation with the spectral function is now easily seen. The occupied part of the
single-electron spectral function is [see Eqs (3.32) and (3.14)]

A<αβ (ε)≡ ρ<cαc†
β

(ε) = ρcαc†
β
(ε) f (ε) =

∑
ab

e−βKb

Z
〈a|cα|b〉〈b|c†

β
|a〉δ(ε + Ka − Kb).
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A direct comparison leads to

dJSA(n)
dΩ

=
2πe
ħh
∑
αβ

∆kα∆
∗
kβA<αβ (ξk −ħhω0).

ξk −ħhω0 is the energy of the photo-hole measured from the chemical potential, which
corresponds to ε in Eq. (7.10), as seen in Fig. 10.2. In a plane-wave basis, and taking
the LEED state as a plane wave of wave vector k for simplicity, the matrix element
of the dipole operator is ∆kk ′ = −eħh/m (A · k)δkk ′ and we get a result very similar to
Eq. (7.10):

dJSA(n)
dΩ

∝ |A · k|2A(k,ε) f (ε).

While the derivation based on the Fermi golden rule is much simpler than the response
theory of Sec. 7.1, it relies heavily on the specific form adopted for the final state.
Unlike in the response theory, there is no clear strategy for a systematic improvement
of the simplest approximation.

doc–72 Photoemission matrix element and selection rules

For understanding photoemission in real materials, it is necessary to go beyond the
idealizations of a translation-invariant sample and plane-wave final state that have
been adopted in order to arrive at the simple result Eq. (7.10). Still based on the
diagram in Fig. 7.1(b), we provide here a more general expression that takes into
account the wave functions of the initial and final states. The calculation proceed
exactly like in doc–50, however with the following replacements:

G (r1, r 2, iωn)→
∑
α

ϕα(r1)ϕ
∗
α(r 2)

∫ ∞

−∞
dε

Aα(ε)
iωn − ε

GR
free(R− r 1, ε +ħhω0)→−

m
pV

2πħh2 ψ
∗
κn(r 1)

eiκR

R

GA
free(r2 −R,ε +ħhω0)→−

m
pV

2πħh2 ψκn(r2)
e−iκR

R
.

The first expression extends Eq. (3.27) to the case of interacting particles with the
assumption that the interacting Green’s function remains diagonal in the basis ϕα(r )
of the non-interacting problem.1 The free retarded and advanced Green’s functions
are replaced by expressions in which the plane wave V −1/2eik·r at positions inside the
sample is replaced by the wave function ψk(r ) of the time-reversed LEED state [see
doc–71]. This leads us to the following total photo-electron current:

dJSA(n)
dΩ

=
e2V

8π2mħh

∫ ∞

−∞
dε
∑
α

��Mα(κn)
��2Aα(ε) f (ε) (11.35a)

Mα(κn) =
i
2

Æ
κ(ε)

∫
dr
�
A(r ) · �∇r −∇r

��
ϕα(r )ψ

∗
κn(r ). (11.35b)

1 The generalization is not difficult but involves a non-diagonal spectral function Aαβ (ε).
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The result has the same general form as Eq. (7.8), however with a more involved
expression for the matrix element. In the q → 0 limit for the electromagnetic field,
where A(r ) ≡ A, we can integrate by parts the term involving the gradient of ϕα(r )
and thus transfer the gradient to the final state. The matrix element simplifies to

Mα(κn) = i
Æ
κ(ε)

∫
dr ϕα(r ) (A ·∇r )ψ

∗
κn(r ) (11.35c)

∼ κ3/2(A · n)ϕα(κn).

Because the final state is not far from the plane wave ψ∗κn(r ) ∼ e−iκn·r , we can
remember as a rule of thumb that the matrix element is proportional to the Fourier
component of the initial wave function at the wave vector κn of the photo-electron,
corrected by a geometric factor depending on the light polarization. If the initial and
final states are expanded on a basis of angular-momentum eigenstates |n`m〉, the matrix
element becomes a superposition of matrix elements of the form 〈n`m|A · p|n′`′m′〉
which obey the standard dipole selection rules.

As a case study, let’s consider a Bloch crystal and ignore final-state and surface effects.
In order to describe this situation, we make the substitutions

ϕα(r )→ ϕkν(r ) =
1pV
∑

G

ukν(G)e
i(k+G)·r and ψκn(r )→

1pV eiκn·r ,

where k is in the first Brillouin zone and ν is a band index. We furthermore restrict to
a constant vector potential and arrive at

d2JSA(n,ε)
dΩdε

=
e2V

8π2mħhκ
3
��A · n

��2��ukν(κn − k)
��2Akν(ε) f (ε).

The wave vector k is the irreducible value of the photo-electron wave vector κn in the
first Brillouin zone. This result resembles Eq. (7.10), except that the photoemission
intensity is modulated by the Fourier component of the initial-state wave function in
the zone G = κn− k. For electrons in tight orbitals, the wave function has components
ukν(G) up to large values of G and the photoemission signal spreads over several
Brillouin zones. The more extended the Bloch states are, the more concentrated ukν(G)
is close to G = 0 and the more the signal tends to be confined to a single Brillouin
zone, the one closest to κn. Because κ increases like the square root of the photon
energy, the signal may shift from one zone to another as ħhω0 varies.

Another approach is to expand the Bloch waves on localized Wannier orbitals. The
Wannier functions are defined as |WRnν

〉 =N −1/2
∑

k e−ik·Rn |ϕkν〉 with the sum extend-
ing over the first Brillouin zone. They are localized around the cell Rn and have the
symmetry of the orbital(s) composing the band ν. The Bloch states are expanded as
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|ϕkν〉=N −1/2
∑

Rn
eik·Rn |WRnν

〉. The matrix element Eq. (11.35c) becomes

Mkν(κn) =
p
κ

∫
dr

1pN
∑
Rn

eik·RnWRnν
(r ) (A · i∇r )ψ

∗
κn(r )︸ ︷︷ ︸

1pV κ(A·n)e−iκn·r

= κ3/2(A · n) 1pN V
∑
Rn

eik·Rn

∫
dr ′ WRnν

(r ′ +Rn)︸ ︷︷ ︸
=W0ν(r ′)

e−iκn·(r ′+Rn)

= κ3/2(A · n)δk+G,κnpVcell

∫
dr W0ν(r )e

−iκn·r .

The momentum conservation expresses that κn = k+G with k in the first Brillouin zone
and G some reciprocal-space vector. We find that the matrix element is proportional to
the Fourier component of the Wannier function at wave vector κn. We can study this
Fourier component by expanding the integrand on angular-momentum eigenstates. It
is a well-known result of scattering theory that the plane wave has a representation in
terms of spherical waves,

e−ik·r = 4π
∑
`m

(−i)` j`(kr)Y m
` (ϑk ,ϕk)Y

m
` (ϑr ,ϕr )

∗,

where j`(x) are the spherical Bessel functions, Y m
`
(ϑ,ϕ) are the spherical harmonics,

k = k(sinϑk cosϕk , sinϑk sinϕk , cosϑk), and similarly for r . In general, the Wannier
function involves series of spherical waves centered on different atoms in the unit cell.
For the sake of argument, we consider a single component:

W0ν(r )∝ Rn`(r)Y
m
` (ϑr ,ϕr ).

The orthogonality of the spherical harmonics yields the Fourier transform

W0ν(κn)∝ Y m
` (ϑn ,ϕn)

∫ ∞

0

dr r2Rn`(r) j`(κr). (11.36)

The key observation here is that the dependence of the matrix element on sample
orientation follows the angular dependence of the wave function and, consequently,
the photoemission intensity in principle allows one to determine the symmetry of the
initial state. The radial integral introduces a dependence on κ—hence on ħhω0—that
is non-monotonic and can lead to extinction of the intensity at particular photon
energies. Figure 11.15 depicts the sample-orientation and photon-energy dependencies
of the matrix element for the case of a 5dx2−y2 initial state (n = 5, ` = 2, m = ±2).
The angular dependence is given by 1

2 |Y 2
2 (ϑ,ϕ) + Y −2

2 (ϑ,ϕ)|2 = 15
16π sin4(ϑ) cos2(2ϕ),

shown in the figure as a stereographic projection. For the radial wave function, we
used the hydrogen-like form

Rn`(r) =

√√√� 2Z
na0

�3 (n− `− 1)!
2n(n+ `)!

e−
Z r

na0

�
2Z r
na0

�`
L2`+1

n−`−1

�
2Z r
na0

�
,
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Figure 11.15: (a) Stereographic view of the photoemission matrix element for an initial state
of dx2−y2 symmetry. The factor |A · n|2 is not included. (b) Dependence of the matrix element
on the photo-electron kinetic energy for a 5d state with effective nuclear charge Z = 18.7.

were L are the generalized Laguerre polynomials, a0 is the Bohr radius, and we took
the value Z = 18.7, which is the effective nuclear charge for the 5d shell of iridium.
The radial integral is known analytically and yields the result

I = κ3

����
∫ ∞

0

dr r2R5,2(r) j2(κr)

����
2

=
2117 x7/2

(1+ x)12

�
1− 18

7
x + x2

�2

, x =
Ekin

(Z/5)2Ry
,

where we used κ =
Æ

2mEkin/ħh2 and Ry = ħh2/(2ma2
0) = 13.6 eV is the Rydberg.

Figure 11.15(b) shows that this function defines three energy ranges favorable for
photoemission separated by blind windows where the intensity is suppressed.

doc–73 Analytic properties of the self-energy

The self-energy is a key quantity since it encodes all effects that cannot be understood
on the basis of mean-field approximations. Obviously, this is also the reason why the
self-energy is most often impossible to calculate exactly. For checking the validity of
approximations or the consistency of self-energies derived from experiments, it is useful
to notice a few analytic properties that the self-energy must obey on general grounds.1

We restrict here to translation-invariant systems and we regard the self-energy Σ(k, z)
as a function of the complex energy z.

A first property is that the self-energy is analytic everywhere in the complex plane, except
possibly on the real axis Im z = 0. This follows directly from Dyson’s equation Σ(k, z) =
G−1

0 (k, z)−G−1(k, z) using the facts that both G0 and G are analytic everywhere except
on the real axis and that neither G0 nor G can vanish for Im z 6= 0. The analyticity of
G is obvious from the spectral representation [see Eq. (4.13)]

G (k, z) =

∫ ∞

−∞
dε

A(k,ε)
z − ε =

∫ ∞

−∞
dε (z∗ − ε) A(k,ε)

|z − ε|2 .

Clearly G (k, z) cannot be singular if Im(z) 6= 0. From the second equality, since A(k,ε)

1 J. M. Luttinger, Phys. Rev. 121, 942 (1961).

https://doi.org/10.1103/PhysRev.121.942
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is real and non-negative, we find that

ImG (k, z) = −Im(z)

∫ ∞

−∞
dε

A(k,ε)
|z − ε|2︸ ︷︷ ︸

>0

.

The inequality is strict, because for the integrand to vanish A(k,ε) must be identically
zero, which contradicts the sum rule

∫∞
−∞ dεA(k,ε) = 1. Hence ImG (k, z) and a

fortiori G (k, z) cannot vanish for Im(z) 6= 0.

The second property is Σ(k, |z| →∞) = ΣHF(k), where ΣHF(k) is the real and energy-
independent contribution coming from the mean-field decoupling of the interaction.
In the case of the Coulomb interaction, this is the sum of the Hartree and exchange
terms calculated in Sec. 5.1.3.7. This property can be established quite generally
using the equation-of-motion method. The trick is to note that the equation of motion
of the Green’s function Eq. (5.114) can be put in the form −∂τGαβ(τ) = δ(τ)δαβ +
[K0G (τ)]αβ +Λαβ (τ), with Λαβ (τ) = −〈Tτ[aα, V ](τ)a†

β
(0)〉. In the frequency domain

and in matrix notation, this reads (iωn11−K0)G (iωn) = 11+Λ(iωn). Since iωn11−K0 =
G−1

0 (iωn) [see Eq. (5.112)], this is nothing but Dyson’s equation provided that we define
the self-energy by Λ ≡ ΣG . The relation Σ(z) = Λ(z)G−1(z) allows us to investigate
the asymptotic properties of Σ(z) by studying the moment expansion of Λ(z). For
|z| →∞ we have (see Sec. 3.4.5) Λ(z) = M0/z, where [M0]αβ = 〈[[aα, V ]−, a†

β
]−η〉 is

the first moment. Evaluating the matrix element we find M0 = VH + Vx, with VH the
generic Hartree potential defined in Eq. (5.119a) and Vx the corresponding exchange
potential Eq. (5.119b). Therefore, since G−1(z) = z for |z| →∞ [see Eq. (3.45)], we
find lim|z|→∞Σ(z) = VH + Vx.

The third property results from the first two: since Σ(k, z)−ΣHF(k) vanishes at infinity
and is analytic in the upper half of the complex plane, we can deduce the Kramers-
Kronig relations for the retarded self-energy [see doc–65]:

ReΣ(k,ε + i0+) = ΣHF(k)−
1
π
P
∫ ∞

−∞
dε′

ImΣ(k,ε′ + i0+)
ε − ε′ (11.37a)

ImΣ(k,ε + i0+) =
1
π
P
∫ ∞

−∞
dε′

ReΣ(k,ε′ + i0+)−ΣHF(k)
ε − ε′ . (11.37b)

The easiest way to check this is to integrate the function [Σ(k, z)−ΣHF(k)]/(ε − z)
along a contour C passing immediately above the real axis, avoiding the pole at ε
and closing at infinity in the upper half. The contour contains no pole, such that
the integral vanishes. The contribution of the real axis avoiding ε yields a principal
value integral and the infinitesimal half-circle around the pole at ε gives −iπ (we turn
counter-clockwise) times the residue which is −[Σ(k,ε + i0+)−ΣHF(k)]:

0=

∮

C

dz
Σ(k, z)−ΣHF(k)

ε − z
=

P
∫ ∞

−∞
dε′
Σ(k,ε′ + i0+)−ΣHF(k)

ε − ε′ + iπ
�
Σ(k,ε + i0+)−ΣHF(k)

�
.
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The Kramers-Kronig relations result by taking the real and imaginary parts of the above
relation.

doc–74 Modeling the photoemission spectrum of Bi2Sr2CaCu2O8+δ

The photoemission spectrum displayed in Fig. 7.3 presents several characteristics
that are common to many systems: a linear dispersion close to the Fermi energy,
symmetric Lorentzian-like momentum distribution curves (MDC), and asymmetric
energy distribution curves (EDC) with a long tail. Our purpose here is to show how a
simple model can be constructed to reproduce these three features. Simple models
of this kind are useful for understanding how such spectra must be understood and
to help distinguishing what is expected from what is surprising. We assume that the
sudden approximation is appropriate here, such that the quantity plotted in Fig. 7.3
is proportional to A(k,ε) f (ε) as we have obtained in Eq. (7.10). Two ingredients are
needed in order to model the spectral function Eq. (7.12): the dispersion ξk and the
self-energy Σ(k,ε). We start with a tight-binding model for ξk = εk −µ.

The high-Tc cuprate superconductor Bi2Sr2CaCu2O8+δ has a layered atomic structure
illustrated in Fig. 11.16(a). Planes of bismuth oxide (BiO), strontium oxide (SrO),
copper oxide (CuO2), and calcium are superposed in a periodic sequence. A band
structure calculation1 yields the result shown in Fig. 11.16(b): only two bands cross
the Fermi energy and contribute to the photoemission signal in the narrow energy
range considered in the experiment. It turns out that these two bands originate mostly
from the 3dx2−y2 orbitals of the Cu atoms with some admixture of the 2px and 2py
orbitals of the oxygen atoms located in the CuO2 planes. The other Cu 3d orbitals are
pushed to lower energies by the crystal field and are full because Cu has 9 electrons in
the 3d shell. The atomic levels of Sr and Ca are quite far from the Fermi energy, such
that these atoms play no role close to εF. Finally, the Bi 6p states are slightly above
εF and hybridize with the oxygen 2p states in the same planes to form the band with
the minimum at (π/a, 0) near 1.5 eV, well above the ARPES measurement window.
The pair of bands crossing εF is the bonding-antibonding pair formed by the two sets
of 3dx2−y2 orbitals in the two CuO2 planes of the unit cell, which are weakly coupled
across the Ca layer. This coupling lifts the degeneracy of the two bands, except along
the (0, 0)–(π/a,π/a) line, precisely the line on which the measurement in Fig. 7.3 was
performed. Therefore, we do not need to take this bilayer splitting into account and
we can work with a one-band model.

Let |WRn
〉 be the Wannier functions built from the electronic states in this band, i.e., a

collection of orbitals localized at the Cu lattice sites Rn and having dx2−y2 symmetry.
These functions are schematically shown in Fig. 11.16(c). They are all identical if not for
a shift of their origin, such that WRn

(r ) =W0(r −Rn). Let c†
Rn

be the operator creating
an electron in the state |WRn

〉. Following Eq. (2.43), the one-electron Hamiltonian—of
which εk are the eigenvalues—takes the form

H0 =
∑
nm

¬
WRn

��� p2

2m
+ V

���WRm

¶
c†
Rn

cRm
=
∑
nm

¬
W0

��� p2

2m
+ V

���WRm

¶
c†
Rn

cRn+Rm
,

1 H. Lin, S. Sahrakorpi, R. S. Markiewicz, and A. Bansil, Phys. Rev. Lett. 96, 097001 (2006).

https://doi.org/10.1103/PhysRevLett.96.097001
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Figure 11.16: (a) Crystal structure of Bi2Sr2CaCu2O8+δ. (b) Band structure plotted along
high-symmetry lines in the two-dimensional Brillouin zone of the square CuO2 lattice. The
orange curve shows the model dispersion ξk . The orange rectangle indicates the range of the
measurement in Fig. 7.3. (c) Representation of the Cu 3dx2−y2 Wannier functions localized on
the Cu atoms and hopping amplitudes t1 and t2.

where V (r ) is the crystal potential and the discrete translation symmetry of the lattice
has been used. Because the Wannier orbitals are localized, the matrix element falls
off rapidly as |Rm| increases. For our simple model we shall assume that the matrix
element is negligible for |Rm| >

p
2a, with a the Cu–Cu distance. Hence we retain

only matrix elements between Wannier functions on nearest neighbor and next-nearest
neighbor lattice sites. The on-site matrix element 〈W0|p2/2m+ V |W0〉 sets the zero
of energy and can be absorbed in the chemical potential. We are left with only two
distinct matrix elements—or hopping amplitudes—namely t1 = 〈W0|p2/2m+ V |Wδ1

〉
with δ1 = ±ax̂ ,±a ŷ for nearest-neighbor sites and t2 = 〈W0|p2/2m+ V |Wδ2

〉 with
δ2 = a(±x̂ ± ŷ) for next-nearest neighbor sites. Explicitly, the Hamiltonian becomes

H0 =
∑

n

c†
Rn

�
t1

�
cRn+ax̂ + cRn−ax̂ + cRn+a ŷ + cRn−a ŷ

�

+t2

�
cRn+a(x̂+ ŷ) + cRn+a(x̂− ŷ) + cRn+a(−x̂+ ŷ) + cRn+a(−x̂− ŷ)

��
.

Thanks to translation symmetry, we can now diagonalize H0 by moving to momentum
space: we express the real-space operators in terms of c†

k using Eq. (10.3): c†
Rn
=

N − 1
2
∑

k e−ik·Rn c†
k and cRm

=N − 1
2
∑

k ′ e
ik ′·Rm ck ′ (V has been replaced by N because
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here the real space is discrete). This gives

H0 =
∑

n

1
N
∑
kk ′

e−ik·Rn c†
k

�
t1eik ′·Rn

�
eik ′·ax̂ + e−ik ′·ax̂ + eik ′·a ŷ + e−ik ′·a ŷ

�

+t2eik ′·Rn
�
eik ′·a(x̂+ ŷ) + eik ′·a(x̂− ŷ) + eik ′·a(−x̂+ ŷ) + eik ′·a(−x̂− ŷ)

�	
ck ′

=
∑
kk ′

c†
k ck ′

¦
t1

�
eik′x a + e−ik′x a + eik′y a + e−ik′y a

�
+ t2

�
ei(k′x+k′y )a

+ei(k′x−k′y )a + ei(−k′x+k′y )a + ei(−k′x−k′y )a
�© 1
N
∑

n

ei(k ′−k)·Rn

︸ ︷︷ ︸
δkk′

=
∑

k

εk c†
k ck with εk = 2t1(cos kx a+ cos ky a) + 4t2 cos kx a cos ky a.

Therefore our model for the dispersion ξk has three parameters and reads

ξk = 2t1(cos kx a+ cos ky a) + 4t2 cos kx a cos ky a−µ. (11.38)

To determine the parameters, we require that the model reproduces the measured Fermi
surface shown in Fig. 7.3. The Fermi surface is defined by the condition ξkF

= 0: it
cannot fix all parameters but only two ratios, for instance t2/t1 and µ/t1. The result is
t2/t1 = −0.38 and µ/t1 = 1.18. With a = 3.885 Å, this gives kF = 0.446 Å−1 along the

line (0,0)–(π/a,π/a) and kF = (π/a, 0.115 Å
−1
) along the line (π/a, 0)–(π/a,π/a).

To fix t1, we require that the model reproduces as much as possible the calculated band
shown in Fig. 11.16(b): specifically, we take t1 = −416 meV such that both agree at
(π/a,π/a). The resulting dispersion is shown on top of the calculated band structure
in Fig. 11.16(b) and the corresponding Fermi surface is displayed in Fig. 11.17(b).
Improving the model by adding more hopping amplitudes is straightforward: the
dispersion is given in general by εk =

∑
n〈W0|p2/2m+ V |WRn

〉eik·Rn . But this increases
the number of adjustable parameters, a complication which is unnecessary for the
purpose followed here.

We turn now to the self-energy. Most often the self-energy depends much more on
energy than it depends on momentum. Our phenomenological model is a momentum-
independent self-energy with the following properties. (i) The scattering on impurities
and the finite temperature give rise to a constant (energy-independent) scattering
rate, such that ImΣ(ε = 0) = −Γ . (ii) The electron-electron interaction leads to a ε2

increase of the scattering rate at low energy. (iii) The imaginary part of Σ vanishes as
ε−2 at high energy, where the effects of interactions disappear. (iv) The real part of
Σ is “Kramers-Kronig consistent” with the imaginary part, as required by the general
analytic properties of the self-energy [see doc–73]. This leads us to the following
model:

Σ(ε) = −i
Γ +αε2

1+ (ε/W )4
+

1p
2

ε

W

Γ
�
1+ (ε/W )2

�−αW 2
�
1− (ε/W )2�

1+ (ε/W )4
. (11.39)

The parameter α sets the magnitude of the ε2 term and the energy scale W controls
the crossover from ε2 to ε−2. The imaginary part is even as a function of ε and the real
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Figure 11.17: (a) Kramers-Kronig consistent model self-energy. The slope of ReΣ at ε = 0
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obtained by fitting the MDC to a Lorentzian, assuming a linear dispersion with λ = 0.5, 1.8, and
2.5, respectively. (b) Calculated Fermi surface and photoemission intensity. The dots are the
experimental results of Fig. 7.3 and the dotted line is the bare dispersion.

part is odd. As ReΣ vanishes at ε = 0, there is no renormalization of the Fermi surface:
the maximum of A(k, 0) in the Brillouin zone coincides with the bare Fermi surface.
There is a renormalization of the Fermi velocity, though (see also Sec. 7.3):

vF =
��∇ξk

��
kF
−→ v∗F =

��∇Ek

��
kF
=

vF

1+λ
with λ= −∂εReΣ(ε)

��
ε=0.

The model gives λ = (αW 2− Γ )/(p2W ) and, with our dispersion parameters, we have
vF = 3.19 eV Å at the Fermi crossing along (0,0)–(π/a,π/a). The measured velocity
v∗F = 1.14 eV Å implies λ= 1.8. We substitute this value in the model by eliminating
the parameter α = (

p
2Wλ+ Γ )/W 2. The parameter Γ can be determined by fitting

the MDC of Fig. 7.3, because the spectral function only depends on Γ at ε = 0. The
result is Γ = 39 meV. Finally, fitting the EDC at kF yields W ≈ 200 meV.

The outcome of the model is compared with the experimental data in Fig. 11.17.
Figure 11.17(a) shows the self-energy. The imaginary part increases like ε2 at low
energy, peaks at ε ≈W and then decreases. The real part goes like −λε at low energy,
has a minimum where the imaginary part changes curvature and a zero where the
imaginary part is maximal. Figure 11.17(b) displays the calculated ARPES intensity
map and the MDC and EDC cuts to be compared with the data in Fig. 7.3. One sees
that the overall behavior is crudely reproduced. In particular, the contrast between a
symmetric Lorentzian-like MDC and an asymmetric EDC is a direct consequence of the
fact that the self-energy is independent of momentum.1 This feature has an important
implication: if the experimental self-energy were indeed momentum independent and if

1 A strictly Lorentzian line-shape requires a linear dispersion in addition to the momentum-independent
self-energy. The dispersion is nonlinear in our model and the MDC is not exactly Lorentzian.
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the bare dispersion were known, the imaginary part of the self-energy could be extracted
exactly from the ARPES data by fitting the MDC at different energies. Unfortunately,
the bare dispersion is not a priori known. One can start with the linearized form
ξk = v∗F(1+λ)(k− k∗F): v∗F and k∗F are experimentally measurable quantities, but λ is
not. If one uses this form, the extracted self-energy depends on the unknown λ. This is
illustrated is Fig. 11.17(a): the model MDC for energies between 0 and −100 meV were
fitted assuming the linearized λ-dependent bare dispersion and the fitted self-energy is
shown for λ = 0.5,1.8, and 2.5. One sees that the procedure can lead to significant
errors on ImΣ, even if the correct value of λ is used. Extracting reliable self-energies
from ARPES data still requires a great deal of expertise. . .

The model is of course too crude for capturing the fine details of the Bi2Sr2CaCu2O8+δ
photoemission data. One can see, in particular, that the shape of the EDC tail is not
properly reproduced. The change of slope seen experimentally in the momentum
dependence of Ek near −70 meV also goes beyond our model: it is believed to be the
signature of the coupling to a collective mode, either a phonon or a spin excitation. In
fact, the excitations in Bi2Sr2CaCu2O8+δ are far from being completely understood.

doc–75 Electrons coupled to Einstein phonons

At lowest order in the electron-phonon coupling, the self-energy due to the interaction
of electrons with phonons is given by Eq. (5.58). Here we consider the simplest case
of a nondispersive optical-phonon branch—in other words Einstein phonons—whose
frequency is independent of wave vector: ωqλ ≡ Ω0. Likewise for the electron-phonon
coupling: gqλ ≡ g. The self-energy is independent of momentum and can be rewritten
as an energy integral because the integrand only depends on q through ξk−q :

Σ(iωn) = g2

∫ ∞

−∞
dξ Ñ el

0 (ξ)
�

1− f (ξ) + b(ħhΩ0)
iωn −ħhΩ0 − ξ

+
f (ξ) + b(ħhΩ0)
iωn +ħhΩ0 − ξ

�
. (11.40)

Ñ el
0 (ξ) is the density of states per spin direction for the dispersion ξk . We can readily

deduce the scattering rate, related to the imaginary part of Σ on the real-energy axis,
by making the analytic continuation iωn→ ε + i0+ and using Eq. (10):

− ImΣ(ε) = πg2
�
[1− f (ε −ħhΩ0) + b(ħhΩ0)]Ñ

el
0 (ε −ħhΩ0)+

[ f (ε +ħhΩ0) + b(ħhΩ0)]Ñ
el
0 (ε +ħhΩ0)

	
. (11.41)

−ImΣ(ε) gives the scattering rate for an electron or a hole of energy ε. We see two
terms, one corresponding to relaxation of electrons above the Fermi energy and one for
holes below the Fermi energy. An electron of energy ε > ħhΩ0 > 0 can relax to a lower
energy ε − ħhΩ0 by emitting a phonon of frequency Ω0 at a rate proportional to the
number of final states available at the final energy—hence a factor Ñ el

0 (ε −ħhΩ0)—and
provided that the final state is not already occupied—hence a factor 1− f (ε −ħhΩ0).
This relaxation rate∝ [1− f (ε − ħhΩ0)]Ñ el

0 (ε − ħhΩ0) is enhanced by b(ħhΩ0): this is
the phenomenon of stimulated emission; the probability for an electron to decay by
emitting a phonon is larger if a phonon is already present. The stimulated emission
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contributes only for temperatures similar to, or higher than the phonon energy, such
that thermally excited phonons are present. The second term in the scattering rate
corresponds to the relaxation of a hole at energy ε < −ħhΩ0 < 0. Such a hole can relax
to a lower binding energy ε +ħhΩ0 by “absorbing” a phonon,1 provided that there are
final states available—factor Ñ el

0 (ε +ħhΩ0)—and that the state at ε +ħhΩ0 is occupied
by an electron—factor f (ε +ħhΩ0).

In order to discuss the spectral function, we also need the real part of the self-energy.
One possible approach is to use the Kramers-Kronig relations [see doc–73] and the
known imaginary part. We follow another route by calculating both the real and
imaginary parts together. We take the simplest possible model for the density of
states: Ñ el

0 (ε) = Ñ el
0 (0) for |ε| < W and Ñ el

0 (ε) = 0 for |ε| > W . We assume that
the bandwidth 2W is much larger than ħhΩ0 and kBT and also much larger than the
energies ε of interest (i.e., a few times ħhΩ0). This will allow us to obtain an expression
for the self-energy that in independent of the bandwidth and only depends on three
parameters: the product g2Ñ el

0 (0) controlling the overall strength of the coupling, the
phonon frequency Ω0, and the temperature. The term proportional to b(ħhΩ0) is readily
evaluated and yields

Σb(ε) = g2Ñ el
0 (0)b(ħhΩ0)

∫ W

−W

dξ
�

1
ε −ħhΩ0 − ξ+ i0+

+
1

ε +ħhΩ0 − ξ+ i0+

�

= g2Ñ el
0 (0)b(ħhΩ0)

�
ln

����
(W + ε)2 − (ħhΩ0)2

(W − ε)2 − (ħhΩ0)2

����

− iπ [θ (W − |ε −ħhΩ0|) + θ (W − |ε +ħhΩ0|)]
�

. (11.42)

The logarithm in the real part behaves as 4ε/W at low energy and drops in the limit
W � |ε|. The imaginary part survives in that limit and gives −2πg2Ñ el

0 (0)b(ħhΩ0). This
constant term is only relevant if kBT ¦ ħhΩ0 due to the occupation b(ħhΩ0): we drop it
as well in the following since we are interested in the opposite regime kBT � ħhΩ0.

The contribution involving the Fermi factors is convergent at high energy and does
not require the introduction of a bandwidth. Using 1− f (ξ) = f (−ξ) and changing
variable from ξ to −ξ in the first term, we see that the integral to evaluate is

I =

∫ ∞

−∞
f (ξ)

�
1

ξ− (−iωn +ħhΩ0)
− 1
ξ− (iωn +ħhΩ0)

�

= − 1
β

∑
iωn′

∫ ∞

−∞

1
ξ− iωn′

�
1

ξ− (−iωn +ħhΩ0)
− 1
ξ− (iωn +ħhΩ0)

�
.

The first line shows why this contribution is independent of the bandwidth: the
integrand is cut by the Fermi function at ξ → ∞ and behaves as −2iωn/ξ

2 for
ξ→−∞. At the second line, we have used Eq. (16) and expressed the Fermi function

1 The actual physical process is that an electron initially at energy ε+ħhΩ0 below the Fermi level recombines
with the hole at ε by emitting a phonon, thus leaving a hole at ε+ħhΩ0; there is in fact no phonon absorption,
which would require a real phonon to be present (see Sec. 5.1.3.8).
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as a sum over a set of Matsubara frequencies iωn′ . In this form, the integral is readily
performed using the residue theorem by closing the contour in the upper or lower half
of the complex plane, where the integrand vanishes. If ωn′ < 0, we close the contour
in the upper half: the pole at ξ = iωn′ lies outside the contour and does not contribute,
the pole at ξ = −iωn + ħhΩ0 contributes if ωn < 0, and the pole at ξ = iωn + ħhΩ0
contributes if ωn > 0. If ωn′ > 0, we close the contour in the lower half instead. This
leads to [see Eq. (7)]

I = −2πi
β

∑
iωn′

θ (−ωn′)
�

θ (−ωn)
−iωn +ħhΩ0 − iωn′

− θ (ωn)
iωn +ħhΩ0 − iωn′

�

+
2πi
β

∑
iωn′

θ (ωn′)
�

θ (ωn)
−iωn +ħhΩ0 − iωn′

− θ (−ωn)
iωn +ħhΩ0 − iωn′

�

= −2πi
β

∞∑
n′=0

�
1

iωn′ + sign(ωn)(iωn −ħhΩ0)
− 1

iωn′ + sign(ωn)(iωn +ħhΩ0)

�
.

The last line results after changing variable from ωn′ to −ωn′ in the term involving
θ(−ωn′). This kind of sum over one half of the Matsubara frequencies is typically a
case for the digamma function, which is defined for z ∈ C as

ψ(z) = lim
M→∞

�
ln M −

M∑
n=0

1
n+ z

�
. (11.43)

The connection becomes clear if we substitute for iωn′ its expression Eq. (4.9) and
then rearrange our integral as:

I =
∞∑

n′=0



−

1

n′ +
�

1
2 − isign(ωn)

iωn−ħhΩ0
2πkB T

� + 1

n′ +
�

1
2 + isign(ωn)

iωn+ħhΩ0
2πkB T

�


 .

We recognize here two sums identical to those entering the digamma function, while the
logarithmically divergent terms cancel each other. Our final formula for the self-energy
follows after analytic continuation:

Σ(ε) = g2Ñ el
0 (0)

�
ψ

�
1
2
− i sign(ε)

ε−ħhΩ0

2πkBT

�
−ψ

�
1
2
+ i sign(ε)

ε+ħhΩ0

2πkBT

��
. (11.44)

As T → 0, Σ(ε) approaches g2Ñ el
0 (0)

�
ln ε−ħhΩ0
ε+ħhΩ0

− iπ
�
. It is customary to quantify the

strength of the electron-phonon coupling by a number λ corresponding to −∂εReΣ|ε=0
(see Sec. 7.3). In our case, λ = 2g2Ñ el

0 (0)/(ħhΩ0) at T = 0. The real part of Σ(ε) is
odd with a negative slope −λ at ε = 0 and peaks at |ε|= ħhΩ0. The imaginary part is
even and negative with a jump at |ε|= ħhΩ0. The peak in ReΣ and the jump in ImΣ
are strongly temperature dependent (see Fig. 11.18).

In spite of its simplicity, this model can be useful for interpreting real data. As an
illustration, we consider measurements performed on the Be(0001) surface.1 The

1 M. Hengsberger, D. Purdie, P. Segovia, M. Garnier, and Y. Baer, Phys. Rev. Lett. 83, 592 (1999); M.
Hengsberger, R. Frésard, D. Purdie, P. Segovia, and Y. Baer, Phys. Rev B 60, 10796 (1999).

https://doi.org/10.1103/PhysRevLett.83.592
https://doi.org/10.1103/PhysRevB.60.10796
https://doi.org/10.1103/PhysRevB.60.10796
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Figure 11.18: Left: self-energy Eq. (11.44) due to coupling of electrons with Einstein phonons.
The parameters are g2Ñ el
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Right: photoemission data for Be(0001) (circles) and fit (lines).

photoemission EDC curves shown in Fig. 11.18 can be nicely approximated by the
function

I(k,ε)∝− 1
π

Im
�

1
ε − vF(k− kF)−Σ(ε) + iΓ

�
1

e
ε

kB T + 1
.

We have assumed a linear dispersion ξk = vF(k− kF) using the values of k− kF given
with the experimental data and a Fermi velocity of 5756 meV Å = 8.8 × 107 cm/s.
The strength of the electron-phonon coupling is g2Ñ el

0 (0) = 12 meV and the phonon
energy is ħhΩ0 = 56 meV. The temperature is set to kBT = 1.06 meV = 12.3 K like in the
experiment. We have added to the model a phenomenological scattering rate Γ , which
can account for effects not described by our simple self-energy and was left free to adjust
independently for each EDC curve. The values of Γ are indicated on the figure. Clearly,
the model captures the main trends seen in the experiment—in particular the peculiar
double-peak line shape close to the Fermi point—and allows one to conclude that the
electrons on the Be(0001) surface interact with phonons in the 60 meV range. We find
an electron-phonon coupling strength λ = 2g2Ñ el

0 (0)/(ħhΩ0) ≈ 0.42. Hengsberger et
al. report a value of 1.18 based on a different modeling that takes into account, in
particular, the finite momentum resolution of the experiment. This relatively large
difference in the values of λ shows that extracting reliable physical information from
photoemission line shapes is delicate and that a good fit is not always the end of
the story. A better modeling of a second self-energy component is probably needed
here: one sees that the Γ values are larger than −ImΣ(ε) and increase like (k− kF)2

above a minimum at k = kF, suggesting a superposition of impurity scattering and
electron-electron interaction as assumed in the work of Hengsberger et al. (the finite
energy resolution may also contribute to Γ ). This second component should ideally be
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Kramers-Kronig consistent as well and involve a real part which also contributes to the
renormalization of the dispersion, like in the model Eq. (11.39).

doc–76 Drude formula, band mass and effective mass

Our purpose here is to generalize the expression of the Drude formula derived in
Sec. 8.2 to the case where—except for the interactions—the electrons are independent
but not free. This is an occasion for illustrating the difference between the notions
of “band effective mass” and “dynamical effective mass”. Independent electrons are
described by the Hamiltonian

K0 =
∑
ασ

ξαγ
†
ασγασ,

where γ†
ασ creates an electron in the eigenstate |ϕα〉 of K0. It is necessary to perform a

change of basis, like in doc–22, in order to move from the plane-wave representation
to the representation based on the eigenstates of K0. The resulting expression for the
paramagnetic current operator Eq. (2.50) is

j p(q) =
∑
αβσ

jαβ (q)γ
†
ασγβσ

with the matrix elements given by

jαβ (q) =
ħh
m

1
V
∑

k

�
k + q

2

�
ϕ∗α(k)ϕβ (k + q) = j∗βα(−q)

=
−iħh
2m

∫
dr

�
e−iq ·rϕ∗α(r )∇rϕβ (r ) +ϕ

∗
α(r )∇rϕβ (r )e

−iq ·r� .

As the translation invariance is in general broken, the conductivity tensor Eq. (8.2)
depends on both r and r ′ independently. We must define a spatial average of the
conductivity. Introducing the center-of-mass coordinate R and the relative coordinate
ρ, we write r = R+ρ/2 and r ′ = R−ρ/2 and we perform an average on R:

σµν(ρ,ω) =
1
V

∫
dRσ(R+ρ/2,R−ρ/2,ω)

σµν(q ,ω) =

∫
dρσµν(ρ,ω)e−iq ·ρ .

The Kubo formula then becomes

σµν(q ,ω) =
ie2

ω

�
1
V χ

µν
j j (q , iΩn→ ħhω+ i0+) +δµν

n
m

�
,

where n is the spatial average of the electron density and

χ
µν
j j (q ,τ) = −〈Tτ jp

µ(q ,τ) jp
ν (−q , 0)〉

=
∑

αβα′β ′σ

[ jαβ (q)]µ[ jα′β ′(−q)]νGβα′(τ)Gβ ′α(−τ) + vertex corrections.
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Here Gαβ(τ) = −〈Tτγα(τ)γ†
β
(0)〉 is the propagator of the independent electrons.

Without interaction, Gαβ(τ) = δαβG 0
α(τ) because the states |ϕα〉 are eigenstates,

with G 0
α(iωn) = (iωn − ξα)−1 (see Sec. 5.2.2.1). We now take the same assump-

tion as in Sec. 8.2, namely that the interactions not contained in K0 lead to a self-
energy that only depends on the energy and does not induce transitions between
states: Σαβ(iωn) = δαβΣ(iωn). The resulting Green’s function is then Gαβ(iωn) =
δαβ[iωn−ξα−Σ(iωn)]−1 and vertex corrections vanish. The expression of the current-
current correlation function simplifies to

χ
µν
j j (q , iΩn) =

∑
αβσ

[ jαβ (q)]µ[ jβα(−q)]ν

∫ ∞

−∞
dε1dε2 Aα(ε1)Aβ (ε2)

f (ε1)− f (ε2)
iΩn + ε1 − ε2

,

with the spectral function Aα(ε) =
−ImΣ(ε)/π

[ε−ξα−ReΣ(ε)]2+[ImΣ(ε)]2 . The resulting expression for
the dc conductivity tensor is

Reσµν(0, 0) = πe2ħh
∫ ∞

−∞
dε [− f ′(ε)]

1
V
∑
αβσ

[ jαβ (0)]µ[ j
∗
αβ (0)]ν Aα(ε)Aβ (ε),

where we have used the symmetry property of the matrix element. Following the same
approach as in doc–52, the dc conductivity of an isotropic (σx x = σ y y = σzz) system
can be put in the final form

σdc =

∫ ∞

−∞
dε [− f ′(ε)][ImΣ(ε)]2

× 1
π

∫ ∞

−∞

Φ(E, E′)dEdE′

{[ε − E −ReΣ(ε)]2 + [ImΣ(ε)]2}{[ε − E′ −ReΣ(ε)]2 + [ImΣ(ε)]2}

Φ(E, E′) =
e2ħh
3

1
V
∑
αβσ

| jαβ (0)|2δ(ξα − E)δ(ξβ − E′).

Bloch electrons. Let’s consider the case of electrons in a periodic potential. Their
Bloch wave functions are characterized by a wave vector k in the first Brillouin zone
and a band index n (see Sec. 2.4.1) and can be decomposed according to

ϕkn(r ) =
1pV
∑

G

ukn(G)e
i(k+G)·r .

Using these wave functions as our basis, we can evaluate the matrix elements of the
current:

jknk ′n′(0) =
−iħh
m

∫
dr ϕ∗kn(r )∇rϕk ′n′(r )

=
−iħh
m

∑
GG′

u∗kn(G)uk ′n′(G
′)

1
V

∫
dr e−i(k+G)·r∇r ei(k ′+G′)·r

︸ ︷︷ ︸
i(k+G)δkk′δGG′

= δkk ′
ħh
m

∑
G

(k +G)u∗kn(G)ukn′(G).
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The evaluation of the matrix elements seems to require the wave functions. This is
actually true for inter-band transitions, but not for intra-band transitions as we shall
see. Since the Drude response is due to intra-band scattering, we restrict now to n = n′.
We first show that the matrix elements of the current do not depend on the wave
functions, but can be expressed in term of the group velocity only as:

jknk ′n(0) = δkk ′
1
ħh∇kεkn = δkk ′ vkn,

where εkn are the band energies and vkn the group velocity. Indeed, since εkn =
〈ϕkn|h(k)|ϕkn〉 we have

∇kεkn = 〈∇kϕkn|h(k)ϕkn〉+ 〈ϕkn|∇kh(k)|ϕkn〉+ 〈ϕknh(k)|∇kϕkn〉
= 〈ϕkn|∇kh(k)|ϕkn〉+ εkn [〈∇kϕkn|ϕkn〉+ 〈ϕkn|∇kϕkn〉]︸ ︷︷ ︸

=∇k 〈ϕkn|ϕkn〉=0

.

On the other hand, the matrix elements of the Hamiltonian h(k) are given by [see
Eq. (2.52)] hGG′(k) =

ħh2

2m (k +G)2δGG′ + V (G −G′), such that the gradient is simply

[∇kh(k)]GG′ =
ħh2

m (k +G)δGG′ . As a result, we can evaluate the action of ∇kh(k) on
ϕkn as

∇kh(k)ϕkn(r ) =
1pV
∑
GG′
[∇kh(k)]GG′ukn(G

′)ei(k+G′)·r

=
1pV
∑

G

ħh2

m
(k +G)ukn(G)e

i(k+G)·r

and the gradient of the dispersion becomes

∇kεkn =
1
V

∫
dr

∑
G′

u∗kn(G
′)e−i(k+G′)·r

∑
G

ħh2

m
(k +G)ukn(G)e

i(k+G)·r

=
ħh2

m

∑
G

(k +G)u∗kn(G)ukn(G) = ħh jknkn(0).

This completes the proof that jknk ′n(0) = δkk ′ vkn.

The function Φ(E, E′) for intra-band scattering becomes

Φ(E, E′) = δ(E − E′)Φintra(E), Φintra(E) =
e2ħh
3

1
V
∑
knσ

v2
knδ(ξkn − E).

This leads to the same expression as in doc–52 for the dc conductivity, except that
the function Φ(E) must be replaced by Φintra(E) defined above. Neglecting the energy
dependence of Φintra(E), we thus arrive at

σdc = Φintra(0)

∫ ∞

−∞
dε
[− f ′(ε)]

2|ImΣ(ε)| .

As already noted in doc–52, the real part of the self-energy has disappeared from
this formula, together with any information regarding the dynamical effective mass.
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The dynamical effective mass m∗ relates to the mass renormalization induced by
the interactions not taken into account in the band structure. All interactions that
can be treated by a mean field approximation are captured by the band structure
and lead at low energy to a mass renormalization that we shall call the band mass:
ħh2k2/(2m)→ εk ∼ ħh2k2/(2mb). The latter mass is present in the Drude formula. To
see this, we can rewrite Φintra(0) by means of Eq. (11), which in the present context
reads

δ(ξkn) =

∫

Sn

dS
δ(k − kFn)
|∇ξkn|kFn

=
1
ħh

∫

Sn

dS
δ(k − kFn)
|vkFn|

.

Sn is the Fermi surface corresponding to the band n and kFn are the corresponding
Fermi wave vectors. Converting the k sum into an integral we get

Φintra(0) =
e2

3

∑
nσ

1
(2π)3

∫

Sn

dS |vkFn|.

Hence Φintra(0) is just proportional to the Fermi-surface average of the Fermi velocity.
This reduces to Φ(0) = ne2ħh/m for free electrons but becomes ne2ħh/mb for a dispersion
εk = ħh2k2/(2mb).

doc–77 Self-energy of the Coulomb gas in RPA

We have introduced the RPA in Sec. 5.1.4.4, as a general approximation scheme for the
polarization Π; see also Eq. (5.81). In Sec. 5.1.4.6, we have seen that, in the context
of the Coulomb interaction, the polarization describes the screening capability of the
electrons and is related to the dielectric function. The screened Coulomb interaction is
given by Eq. (5.90), which in RPA becomes

W RPA(q , iΩn) =
V (q)

1− 1
V V (q)χ0

nn(q , iΩn)
,

where χ0
nn is the free density-density correlation function. It is useful to rewrite this

in terms of the full density-density correlation function, which is given in RPA by
Eq. (5.82). One gets

W RPA(q , iΩn) = V (q) + V 2(q)
1
V χ

RPA
nn (q , iΩn).

Diagrammatically, this expression takes the form

�RPA =� +�RPA

=� +� +� + · · ·

W RPA(q , iΩn) is a retarded effective interaction, analogous to the one resulting from
electron-phonon coupling, Eq. (5.56). In the same way as the phonon-induced electron-
electron interaction is mediated by bosonic modes, the screened Coulomb interaction
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is mediated by bosons: these are electron-hole pairs—or density fluctuations—whose
propagation is described by χRPA

nn or more generally by χnn.

If, in the first-order exchange diagram for the self-energy Eq. (5.47), we replace the
bare Coulomb interaction V by the screened interaction W RPA, an infinite series of
diagrams is generated:

ΣRPA = � + � +	 + · · ·
The first diagram is the real exchange term Eq. (5.47), the second diagram is the first
term of Eq. (5.48), and the subsequent ones contain corrections up to infinite order.
The explicit self-energy formula results by applying the diagrammatic rules of doc–36:

ΣRPA(k, iωn) = Σ
exch(k)− 1

V
∑

q

1
β

∑
iΩn

V 2(q)
1
V χ

RPA
nn (q , iΩn)G0(k + q , iωn + iΩn).

In order to evaluate the Matsubara sum, we introduce the spectral representation

χRPA
nn (q , iΩn) =

∫ ∞

−∞
dE
(−1/π) ImχRPA

nn (q , E)

iΩn − E
,

where χRPA
nn (q , E) is the retarded function just above the real axis. We also use

G0(k, iωn) = 1/(iωn − ξk) as well as Eq. (16). The result is, after making the analytic
continuation iωn→ ε + i0+ :1

ΣRPA(k,ε) = Σexch(k) +
∑

q

V 2(q)
V 2

∫ ∞

−∞
dE
�− 1

π

�
ImχRPA

nn (q , E)
f (ξk+q ) + b(E)

ε + E − ξk+q + i0+
.

The scattering rate follows by taking the imaginary part:

− ImΣRPA(k,ε) = π

∫ ∞

−∞
dE [ f (ε + E) + b(E)]

× 1
V 2

∑
q

V 2(q)
�− 1

π

�
ImχRPA

nn (q , E)δ(ε + E − ξk+q ).

The quantity ImχRPA
nn (q , E) vanishes outside the particle-hole continuum, as illustrated

in Fig. 5.8, and is proportional to the number of particle-hole excitations with wave
vector q and energy E. The presence of a Bose factor b(E) underlines the fact that
these excitations are bosons. At low energy and temperature, the combination of Fermi
and Bose factors in the integrand vanishes as soon as |E| exceeds a few times kBT ,
which means that the scattering rate is only sensitive to particle-hole excitations close
to the Fermi surface as expected. Similarly, for k close to kF, the possible q vectors
extend from zero to approximately 2kF, covering all low-energy transitions close to the

1 Let’s point out that something was ignored here. As we saw in Sec. 5.1.4.5, the function χRPA
nn (q , E) has a

pole corresponding to the plasmon. When using Eq. (16) to perform the Matsubara sum, we have ignored
the existence of this pole and thus discarded the contribution of the plasmon to the self-energy. This
contribution accounts for processes in which the electron decays by emitting one or more plasmons. Since
plasmons have a high energy, theses processes are completely negligible for ε→ 0.
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Fermi surface. Using Eq. (5.82) and the free χ0
nn calculated in doc–41, we can see that

ImχRPA
nn (q , E) is a linear function of E for E→ 0, with some dependence on q between

0 and 2kF. Indeed we find for q < 2kF:

V 2(q)
�− 1

π

�
ImχRPA

nn (q , E) = V π
2

k3
F

F
�

q
2kF

�
E +O(E2),

where F(x) = x/
�
x + 2πkFa0 x3 + (1− x2) tanh−1(x)

�2
and a0 is the Bohr radius. We

can now perform the momentum sum:

1
V
∑

q

F
�

q
2kF

�
δ(ε + E − ξk+q )

=
1

(2π)2

∫ 2kF

0

dq q2F
�

q
2kF

�∫ π

0

dϑ sinϑδ(ε + E − ξk+q ),

with ϑ the angle between k and q . The angle integration is easy to perform for a
parabolic dispersion:

∫ π

0

dϑ sinϑδ(ε + E − ξk+q ) =
m

ħh2kq





1 if
�

k
kF
− q

kF

�2
< 1+ ε+E

εF
<
�

k
kF
+ q

kF

�2

0 otherwise.

Since |ε + E| � εF, we can neglect the energy dependence of this last expression and
note that, for k = kF, the condition (1− q/kF)2 < 1 < (1+ q/kF)2 is satisfied for all
q < 2kF. Collecting all terms, and using the identity

∫ ∞

−∞
d x x

�
1

ex+y + 1
+

1
ex − 1

�
=

1
2

�
π2 + y2

�
,

we obtain the scattering rate on the Fermi surface as

−ImΣRPA(kF,ε) =
I(kFa0)
εF

�
ε2 + (πkBT )2

�
,

where the amplitude is

I(kFa0) =
π

4

∫ 1

0

d x x2

�
x + 2πkFa0 x3 + (1− x2) tanh−1 x

�2 ≈
� π

16

� 3
2 1p

kFa0

.

The last approximation is good for kFa0 ¦ 1.

This calculation shows that the essential ingredient leading to ε2 + (πkBT )2 behavior
is that the spectrum of bosonic excitations to which the electrons are coupled increases
linearly with energy. A handwaving argument goes as follows. An electron of energy
ε can excite bosons of any energy E from zero to ε; the scattering rate is therefore
Γ ∼ ∫ ε0 dE n(E), where n(E) is the number of bosons at energy E. Hence Γ ∼ ε2 if
n(E)∝ E. Similarly, for electrons coupled to acoustic phonons which have a density
of states∝ E2 [see doc–17], we expect a scattering rate Γ ∼ ε3.
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doc–78 Pairing susceptibility and Thouless criterion

In the BCS theory, superconductivity arises due to the formation and condensation
of Cooper pairs. The interaction responsible for the formation of these pairs is the
sum of the screened Coulomb repulsion Eq. (5.90) and the effective electron-electron
interaction due to the exchange of phonons Eq. (5.54), which is attractive at low energy
(typically below the Debye energy ħhωD). If the electron-phonon coupling gqλ is large
enough, the attractive part of the interaction wins at low energy resulting in a net
attractive force between electrons close to the Fermi surface. In the weak-coupling
BCS theory, this attractive interaction is reduced to the simplest possible model: an
attractive potential −V0 acting between electrons of opposite spins within a range ħhωD
around the Fermi surface (see Fig. 5.5).

The operator giving the density of Cooper pairs (see Sec. 5.2.2.3),

p =
∑
kσ

ckσc−k−σ,

vanishes on average in the normal (non-superconducting) state, 〈p〉 = 0 for T > Tc ,
but acquires a finite value for T < Tc . Very much like a charge-density wave instability
is signaled by a divergence of the charge susceptibility—or density-density correlation
function—at zero frequency (Sec. 5.1.4.5), the superconducting instability is signaled
by a divergence of the pairing susceptibility or pair correlation function χpp, which
describes the propagation of fluctuations in the density of Cooper pairs:

χpp(τ) = −〈Tτp(τ)p†(0)〉= −�
kσ

−k−σ

k ′σ′

−k ′−σ′
.

The dominant terms in χpp are likely those where two electrons repeatedly interact
with each other to form a bound state (Cooper pair). These terms correspond to the
ladder series in the particle-particle channel:

χpp(iΩn) ≈ −�
kσ

iωn+iΩn

−k,−σ,−iωn

k′σ
iω′n+iΩn

−k′ ,−σ,−iω′n

−�
kσ

iωn+iΩn

−k,−σ,−iωn

k′σ
iω′n+iΩn

−k′ ,−σ,−iω′n

k′′σ
iω′′n+iΩn

−k′′ ,−σ,−iω′′n

− . . .

Here the zigzag line represents the BCS interaction, −V0 for wave vectors corresponding
to excitation energies within ħhωD of the chemical potential and zero for other wave
vectors. The first diagram gives −2(−1)(−V0)ζ2(iΩn), where the factor 2 comes from
the spin sum and

ζ(iΩn) =
1
V

∑
|ξk |<ħhωD

1
β

∑
iωn

G0(k, iωn + iΩn)G0(−k,−iωn).

The first minus sign is the prefactor, the second minus sign comes from the fact that
the diagram is of first order and the third minus sign is the sign of the interaction.
Note that there is no fermion loop in the diagram. Similarly, the second diagram gives
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−2(−1)2(−V0)2ζ3(iΩn) and so on at higher orders, such that the complete series can
be summed exactly:

χpp(iΩn) = −2V0ζ
2(iΩn)

�
1+ V0ζ(iΩn) + [V0ζ(iΩn)]

2 + . . .
	
=
−2V0ζ

2(iΩn)
1− V0ζ(iΩn)

.

At the superconducting transition, the pair correlation function diverges at zero energy.
The transition temperature is therefore found by solving 1− V0ζ

R(0) = 0. The function
ζ is readily evaluated assuming ξ−k = ξk (time-reversal symmetry):

ζ(iΩn) =

∫ ħhωD

−ħhωD

dξ Ñ el
0 (ξ)

1
β

∑
iωn

1
iωn + iΩn − ξ

1
−iωn − ξ︸ ︷︷ ︸

− f (ξ)− f (−ξ)
2ξ−iΩn

= tanh(βξ/2)
2ξ−iΩn

=

∫ ħhωD

−ħhωD

dξ Ñ el
0 (ξ)

tanh(βξ/2)
2ξ− iΩn

.

Ñ el
0 is the density of states per spin direction, that is, half the total DOS N el

0 . Usually Ñ el
0

can be considered constant over the energy range [−ħhωD,+ħhωD] because ħhωD� εF.
Hence we have, using Eq. (20),

ζR(0) = Ñ el
0 (0)

∫ ħhωD

−ħhωD

dξ
tanh(βξ/2)

2ξ− i0+
≈ Ñ el

0 (0) ln
�

1.134
ħhωD

kBT

�
.

The imaginary part of the integral vanishes because tanh(0) = 0 [see Eq. (9)]. Solving
1− V0ζ

R(0) = 0, we find the transition temperature

kBTc = 1.134ħhωD e−1/[V0Ñ el
0 (0)],

which is just the BCS result Eq. (5.144).

This calculation illustrates an alternate method for determining the superconducting
transition temperature, by looking for a divergence in the pair correlation function as the
temperature is lowered. This is known as the Thouless criterion for superconductivity.
The Thouless criterion is more general than the method used by BCS, since the latter
relies on the gap equation which, in turn, results from a mean-field approximation.
On the contrary, the Thouless criterion applies irrespective of the approximation used
for the pair correlation function and is very useful, for instance, when the pairing
susceptibility is calculated numerically. One should nevertheless keep in mind that,
if the Thouless criterion can determine Tc , it does not provide a description of the
properties below Tc in the ordered phase, while the mean-field approach does, at least
approximately.

doc–79 Local density of states in the vortex core

The order parameter for an isolated vortex in a two-dimensional s-wave superconductor
takes the form ∆(r ) = |∆(r)|e−iϑ, where r and ϑ are the polar coordinates, r =
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r(cosϑ, sinϑ) with the origin at the vortex center. The modulus |∆(r)| vanishes at
r = 0 and approaches the bulk order parameter ∆0 over a distance of the order of the
coherence length ξ. The functional form∆0 tanh(r/ξ) is the Ginzburg–Landau solution
and provides a good approximation to the exact self-consistent profile. The phase e−iϑ

winds by 2π and describes the flow of supercurrent around the vortex. Fig. 11.19
shows a working code for calculating the LDOS in such a vortex core. The method is
similar to the one used in doc–66. The system is a two-dimensional tight-binding lattice
with dispersion ξk = −2t(cos kx +cos ky)−µ, t = 1, µ = t, and a bulk order parameter
∆0 = 0.2t. For the modulus of the order parameter, we use |∆(r)| = ∆0 tanh(r/ξ)
with ξ= 2 in units of the lattice parameter.

This dispersion is built into the N × N array xi at line 2. For a good energy resolution,
we take N = 1024. The complex order parameter ∆(r ) is constructed at line 3. The
actual real-space system considered is not of size N × N—this would mean N2 sites
and much too large matrices of size N2 × N2 to invert for the Green’s function—but of
a smaller size M ×M . With M = 51, the matrices of size M2×M2 are still manageable.
The array D contains the order parameter at all sites (i, j) with i, j = 1, . . . M and the
vortex centered in the middle of the square. The MATLAB® function atan2(y,x)
returns the polar angle of the vector (x , y) and is thus just what we need for the phase
e−iϑ. Line 4 defines the energy axis extending from −2∆0 to +2∆0 and starts the loop
over energies, which is closed at line 13. We need two free Green’s functions G0 in
order to evaluate the Green’s function G: G0(ε + i0+) to be used in Eq. (9.41), and
G0(−ε − i0+) to be used in Eq. (9.43). The translation-invariant versions of these two
quantities (g0p and g0m) are built at line 5 by Fourier transforming the corresponding
momentum-space Green’s functions using 1/M for 0+. Since we do this on the N × N
mesh, the G0’s are not affected by the boundaries of the M × M system. Lines 6 to
10 form a double loop on the system sites (i1,j1) and (i2,j2), where the free
matrix Green’s function G0 (line 7) and self-energy S (lines 8–9) are constructed using
G0(r1, r2) = g0(r1 − r2) and Eq. (9.43), respectively. The diagonal part of the Green’s
function G(r , r ) is extracted at line 11 using Eq. (9.41). The LDOS on the (M + 1)/2
sites along the x axis to the right of the vortex center is stored in the array w at line 12.
Running this code requires ∼ 500Mb of memory and will take a couple of hours.

1 t=1; mu=t; D0=0.2*t; N=1024; M=51;

2 [x y]= meshgrid (2*pi*(0:N-1)/N); xi=-2*t*(cos(x)+cos(y))-mu;

3 [x y]= meshgrid ((1:M)-(M+1)/2); D=D0*tanh(sqrt(x.^2+y.^2)/2).* exp(-i*atan2(y,x));

4 w(: ,1)=( -2*D0:D0 /50:2* D0); for l=1: size(w)

5 g0p=fft2 (1./(w(l)+i/M-xi))/N^2; g0m=fft2 (1./( -w(l)-i/M-xi))/N^2;

6 for i1=1:M; for j1=1:M; for i2=1:M; for j2=1:M

7 G0(i1+(j1 -1)*M,i2+(j2 -1)*M)=g0p(abs(i1 -i2)+1,abs(j1 -j2 )+1);

8 S(i1+(j1 -1)*M,i2+(j2 -1)*M)=-D(i1,j1)*conj(D(i2,j2))* ...

9 g0m(abs(j1 -j2)+1,abs(i1 -i2 )+1);

10 end; end; end; end

11 G=diag(G0*inv(eye(M^2)-S*G0));

12 w(l,2:(M+3)/2)= -2* imag(G((M^2+1)/2:(M^2+M)/2))/ pi;

13 end

14 save vortex.dat w -ascii;

Figure 11.19: Calculation of the local density of states (LDOS) inside a vortex core for a
tight-binding model of two-dimensional s-wave superconductor, using MATLAB®
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Figure 11.20: (a) Representation of a vortex. The shaded surface shows the modulus of
the order parameter, while its phase −ϑ at each lattice site is represented by an arrow rotated
clockwise by an angle π/2− ϑ. The green dots indicate some of the points where the LDOS
is calculated. (b) LDOS N(r ,ε) along the x axis, calculated with the code of Fig. 11.19. The
curves are shifted vertically for clarity. Compare with Fig. 9.9(a).

The result is displayed in Fig. 11.20(b). At the core center, the LDOS shows a sharp
zero-energy peak. When moving out of the core, this peak splits in two branches and its
intensity decreases. These features show the existence of localized states in the vortex
core. One can infer from the behavior of the LDOS—and the fact, not shown in the
figure, that the LDOS has approximate cylindrical symmetry—that the wave functions
of these localized states have their maximum on a circle whose radius increases with
the energy of the state.



List of symbols
〈 · · · 〉 Thermal average, Eq. (2.2)
〈 · · · 〉0 Thermal average with respect to a quadratic Hamiltonian
〈 · · · 〉imp Impurity average
〈 · · · 〉V Thermal average in the presence of an external perturbation V
[ · , · ]± Commutator or anti-commutator, Eq. (4)
X̂ (t) Operator X in the interaction picture, Eq. (2.19a)
0+ Positive infinitesimal
|∅〉 Vacuum state
11 Identity operator
(1) Abbreviated set of coordinates: (1)≡ (r1σ1)∫

d1 Short notation for
∫

dr1

∑
σ1

∗ General scalar product: A∗ B =
∑
µ

∫
drAµ(r )Bµ(r )

A Generic operator
A(r , t) Vector potential
A(k,ε) One-electron spectral function in momentum space
|a〉 Many-particle state, eigenstate of H
aα Generic annihilation operator for single-particle state α
a†
α Generic creation operator for single-particle state α

a0 Bohr radius, a0 = 4πε0ħh2/(me2).
α General single-particle state index
B Generic operator
B†

qλ Phonon operator, Eq. (5.49)
|b〉 Many-particle state, eigenstate of H
b†
α Creation operator for single-particle bosonic state α

b†
qλ Creation operator for phonon of momentum q and polarization λ

b(ξ) Bose-Einstein distribution function, b(ξ) = (eβξ − 1)−1

β General single-particle state index
β Inverse temperature, β = (kBT )−1

CAB(t) Time-ordered correlation function of the operators A and B, Eq. (3.1)
CR

AB(t) Retarded correlation function of the operators A and B, Eq. (3.4)
CA

AB(t) Advanced correlation function of the operators A and B, Eq. (3.5)
C>AB(t) Greater correlation function of the operators A and B, Eq. (3.6)
C<AB(t) Lesser correlation function of the operators A and B, Eq. (3.7)
CAB(τ) Imaginary-time correlation function of the operators A and B, Eq. (4.5)
Cαβγδ(τ) Particle-hole propagator, Eq. (5.59)

289



290 List of symbols

CV Specific heat at constant volume, Eq. (2.9)
Cel
V Electronic specific heat

Cph
V Phononic specific heat

c†
α Creation operator for single-particle fermionic state α
χAB(t) Linear susceptibility, Eq. (6.8)
χ
(2)
AB (t, t ′) Second-order susceptibility, Eq. (6.10)
χ
µν
j j (q ,ε) Current-current correlation function
χnn(q ,ε) Density-density correlation function, or charge susceptibility
χss(q ,ε) Spin-spin correlation function, or spin susceptibility
D(r , t) Electric displacement field
D(k) Dynamical matrix
D0
λ
(q , iΩn) Free phonon propagator, Eq. (5.51)

d±(ξ) Bose-Einstein and Fermi-Dirac distribution functions, Eq. (6)
∂t Derivative with respect to t
∆ Superconducting order parameter
δαβ Kronecker symbol: δαβ = 1 if α= β , δαβ = 0 otherwise
δ(x) Dirac delta function
E(r , t) Electric field
Ea Energy of the many-body state |a〉
Ek Energy of the Bogoliubov excitations, Ek =

q
ξ2

k + |∆k |2; quasi-particle
energy

e Electron charge, e = −|e|.
ε0 Vacuum permittivity
ε‖(q ,ω) Longitudinal dielectric function, Eq. (5.91)
ε Energy variable
ε+ Short notation for ε + i0+

εα Single-particle energy level
εF Fermi energy
εkn Electronic energy level (band structure)
εαβγ Levi-Civita symbol, Eq. (23)
εqλ Vector giving the displacement of atoms for the phonon (q ,λ)
F †
αβ
(τ) Imaginary-time anomalous Green’s function, Eq. (5.116)

f (ξ) Fermi-Dirac distribution function, f (ξ) = (eβξ + 1)−1

φ Work function
φ(r , t) Electric potential
ϕα(1) Generic one-particle basis function
G Reciprocal-lattice vector, Eq. (2.51)
Gαβ (τ) Imaginary-time one-particle Green’s function, Eq. (5.6)
G(k,ε) One-particle Green’s function in momentum space
gqλ Electron-phonon coupling vertex, Eq. (2.74)
Γ (K ,Q) Renormalized current vertex
Γc(K ,Q) Renormalized density vertex
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Γa→b Transition rate between states |a〉 and |b〉
γ†
ασ Creation operator for the single-electron state ϕα

H Hamiltonian
Hel-ph Electron-phonon Hamiltonian, Eq. (2.73)
HA Anderson Hamiltonian, Eq. (8.23)
Hsd Kondo Hamiltonian, Eq. (8.24)
H(r , t) Applied magnetic field
h(k) Band Hamiltonian, Eq. (2.52)
η Specifies the particle statistics: η= +1 for bosons, η= −1 for fermions
Is Single-particle tunneling current
IJ (t) Josephson tunneling current
Im Imaginary part
i

p−1
iνn Generic Matsubara frequency iΩn or iωn

iν̄ j Short notation for iν( j)n ; see remark at the end of doc–30
iΩn Bosonic Matsubara frequency, Ωn = 2nπkBT
iωn Fermionic Matsubara frequency, ωn = (2n+ 1)πkBT
J Exchange coupling (Sec. 8.5.1)
Jn(x) Bessel function of the first kind
j(r ) Current operator, Eq. (2.49)
j p(r ) Paramagnetic current operator, Eq. (2.49)
j d(r ) Diamagnetic current operator, Eq. (2.49)
K Grand Hamiltonian, K = H −µN
K Short ‘four-vector’ notation for (k,σ, iωn)
K0 One-body part of K , Eq. (2.45)
Ka Eigenvalue of K for eigenstate |a〉: Ka = Ea −µNa

k Norm of the vector k
k Vector in reciprocal space
kB Boltzmann constant
kF Fermi wave vector
kTF Thomas–Fermi wave vector, k2

TF = (e
2/ε0)N el

0 (0)/V
κT Isothermal compressibility, Eq. (2.11)
Λ(K , K ′,Q) Vertex function, Eq. (8.37)
λ Dispersion renormalization, coupling strength, Eq. (7.22)
Mν Mass of atom ν in a crystal
m Electron mass
m∗ Dynamical effective mass
mb Band mass
µ, µi Generic index
µ Chemical potential
N Number of particles, particle-number operator
Na Number of atoms in the unit cell of a crystal
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Na Number of particles in the many-body state |a〉
Ni Number of impurities
N Number of lattice sites
N(ε) Density of states (DOS)
N(r ,ε) Local density of states (LDOS)
N el(0) Fermi-level density of states; depending upon the context, it should be

understood as the total DOS or the DOS per unit volume.
Ñ el(0) Fermi-level density of states per spin, Ñ el(0) = 1

2 N el(0)
Nph(ε) Phonon density of states
n Particle number density
n Unit vector
n(r ) Local particle number density
n(q) Fourier transform of n(r )
nα Particle number operator for single-particle state α
ni Impurity density, ni = Ni/V
ν, νi Generic index
P Cauchy principal value, Eq. (9)
P Permulation
p Pressure, Eq. (2.8)
Παβγδ(τ) Polarization, Eq. (5.68)
Π(q ,ε) Polarization in momentum space, Eq. (5.68)
Q Special q vector; nesting vector
Q Short ‘four-vector’ notation for (q , iΩn)
q Norm of the vector q
q Vector in reciprocal space
Re Real part
Rn Node of a real-space lattice
r Norm of the vector r
r Vector in real space
rs Dimensionless density parameter, (4/3)π(rsa0)3 = 1/n
ρ Statistical density matrix, Eq. (2.3)
ρ(T ) Temperature-dependent resistivity
ρ>AB(ε) Greater spectral function for operators A and B, Eq. (3.12)
ρ<AB(ε) Lesser spectral function for operators A and B, Eq. (3.14)
ρAB(ε) Total spectral function for operators A and B, ρAB = ρ>AB +ρ

<
AB

S Entropy, Eq. (2.7)
S Spin operator
Sz Spin component along quantization axis, Eq. (2.48)
S± Spin raising and lowering operators, Eq. (2.48)
Σ(k,ε) Self-energy in momentum space
σ,σi Spin index
σ(P ) Signature of the permutation P
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σµν,σµν Conductivity tensor and spatial average (for broken translational symmetry)
σdc dc conductivity
σ(V ) Differential tunneling conductance, σ(V ) = dIs/dV .
T Temperature
Tη Time-ordering operator, Eq. (5)
Tτ Imaginary-time ordering operator, Eq. (4.6)
TD Debye temperature, kBTD = ħhωD

T (ε) t-matrix, Eq. (2.26)
Tαβ Matrix element of generic one-body operator, Eq. (2.43)
Tλρ Tunneling matrix element, Eq. (9.11)
T (l, r ) Tunneling matrix element in real space
Tr Matrix trace, sum of the diagonal matrix elements
t Time
τ Imaginary-time variable
τtr Transport life-time, Eq. (8.11)
τ Vector of Pauli matrices with components (τx ,τy ,τz), Eq. (22)
τν Position of the atom ν in the elementary cell of a crystal
τ(k,ε) Quasi-particle life-time, Eq. (7.16c)
θ (x) Heaviside theta function (step function): θ (x < 0) = 0, θ (x > 0) = 1
ϑ Angle variable
U Elastic energy (Sec. 2.5.1)
U(t) Evolution operator
U(τ) Imaginary-time evolution operator
uν(Rn) Displacement of atom ν in the cell located at Rn

uk BCS electron coherence factor
V General interaction or perturbation operator
V (r ) Local potential
VH Hartree potential
Vx Exchange potential
Vν(r ) Potential generated by the atom ν in the elementary cell of a crystal
Vαβ Matrix element of generic one-body potential, Eq. (5.9)
Vαβγδ Matrix element of generic two-body potential, Eq. (2.44)
VCb Coulomb interaction, Eq. (5.55)
V ph

el-el Phonon-mediated electron-electron interaction, Eq. (5.54)
V Volume of the system, subject to periodic boundary conditions
Vcell Lattice unit-cell volume, Vcell = V /N
vF Fermi velocity vF = ħhkF/m
vk BCS hole coherence factor
vkn Group velocity, vkn =

1
ħh∇εkn

W (q , iΩn) Screened Coulomb interaction, Eq. (5.90)
W Band width
Ω Grand potential, Eq. (2.5)



294 List of symbols

ω Frequency
ωqλ Frequency of phonon with wave vector q and polarization λ
ωD Debye frequency, largest phonon frequency
ωp Plasma frequency, Eq. (5.84)
$ Free energy density, $= Ω/V
x Variable, usually meant as real
ξα Single-particle excitation energy, ξα = εα −µ
ξαβ Matrix element of a general one-particle Hamiltonian K0, Eq. (2.45)
|Ψ0〉 Ground state
Z Partition function, Eq. (2.4)
Z Atomic valence
Z(kF) Quasi-particle residue, Eq. (7.16a)
z Arbitrary complex number
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Acoustic phonon, 21, 178
Adiabatic switching, 11, 12, 89, 132,

170
Analytic continuation, 39, 94
Atomic displacement, 20, 179

Band structure, 18, 153, 242, 272, 280
Bloch electrons, 18, 267, 280
Bloch equation, 36
Bogoliubov excitations, 86, 251, 255
Bogoliubov–de Gennes, 83
Bogoliubov-de Gennes, 211
Boltzmann statistics, 2, 7
Born approximation, 57, 121
Bose-Einstein condensation, 237
Bose-Einstein distribution, 9

Change of basis, 173
Charge susceptibility

free electrons, 30
Charge-density wave, 69, 72
Collective mode, 64, 69
Commutation rules, 15
Compressibility, 9, 235
Conductivity tensor, 118, 279
Conserving approximation, 136
Continuity equation, 176
Cooperon, 137, 285
Correlation function

advanced, 25
causal, 25, 34
current-current, 94, 118, 280
density-density, 2, 68, 93, 246
greater, 25, 180, 246
imaginary time, 37
Keldysh, 25, 143
lesser, 25, 180, 185, 186, 265
pair, 285

retarded, 3, 25, 91, 226
spin-spin, 76, 93, 221, 246
three-current, 101
time ordered, 42
two-particle, 63

Coulomb interaction, 57, 61, 71, 124,
194, 220

Current
diamagnetic, 17, 118
paramagnetic, 17, 118, 279
relaxation, 126
vertex, 135

Debye model, 22, 178
Density matrix, 8, 36, 89
Density of states, 19, 44, 151

s-wave superconductor, 85
BCS superconductor, 251
free particles, 234
hypercubic lattice, 231
phonons, 22
square lattice, 154, 231
tight-binding chain, 152

Density-density correlation function, 68
free electrons, 30, 68, 200
independent electrons, 184

Detailed balance, 31
Diagrammatic rules, 194
Dielectric function, 75, 203
Diffuson, 136
Double occupancy, 32, 246
Drude formula, 120, 279
Dynamical matrix, 20
Dyson equation, 54–56, 67, 82, 256

Effective mass, 120, 218, 279, 281
Electron-phonon coupling, 23, 61, 198,

256
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Eliashberg equations, 257
Empirical pseudopotentials, 240
Entropy, 8, 235
Equation of state, 8, 233, 235
Evolution operator

definition, 10
expansion, 11
imaginary time, 41, 188

Exchange
and wave-function symmetry, 13
diagrams, 50
electron-phonon coupling, 62
potential, 82, 270
screening, 74
self-energy, 58, 195, 256

Fermi golden rule, 2, 11, 264
Fermi liquid, 109, 124, 125
Fermi-Dirac distribution, 9
Fermion loop, 52, 64, 194, 199, 213,

285
Feynman diagrams

for Coulomb interaction, 59
for electron-phonon interaction, 62
for impurity scattering, 56
for photoemission, 102

Feynman-Dyson expansion
imaginary time, 41
real time, 11

Fluctuation-dissipation theorem, 34, 264
Fourier transform

definition, vii
of Heaviside function, ix
of Yukawa potential, x

Friedel oscillations, 75, 157
Fugacity, 233

Gor’kov equations, 81
Grand potential, 4, 8, 33, 206
Green’s function, 29, 43, 79

and grand potential, 4, 206
anomalous, 81, 228, 255
BCS, 85
free particle, 212
in real space, 30, 145, 227, 229
independent electrons, 29
phonons, 60

physical interpretation, 44
quasi-particles, 110

Group velocity, 108, 281
GW approximation, 74

Hamiltonian
and vector potential, 175
Anderson, 128
Bloch electrons, 18
electron-phonon, 23
grand Hamiltonian, vii, 16
independent electrons, 279
Kondo, 129
Nambu, 83
phonons, 21
tight-binding, 271
tunneling, 144

Hartree
potential, 82, 208, 270
self-energy, 49, 58

Hartree–Fock, 82
Heaviside function, ix
Heisenberg picture, 10, 89
High-frequency expansion, 33
Hopping amplitude, 272
Hubbard model, 77

Imaginary time, 36
Impurity average, 55, 130, 192
Independent electrons, 18, 152, 183,

279
Indistinguishable particles, 13, 168
Inelastic scattering, 1, 60
Inter-band transitions, 281
Interaction picture, 10, 35, 41, 89
Intra-band scattering, 281
Irreducible diagrams, 52, 54, 56, 67

Jellium model, 58

Kadowaki–Woods ratio, 126
Kondo problem, 132
Kramers-Kronig relations, 34

for the self-energy, 270

Ladder approximation, 136, 285
Landau damping, 70
Life-time, 44, 125
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quasi-particles, 110
transport, 120, 137

Lindhard function, 201
Linear response, 2, 90, 94, 117, 144
Local density of states, 45, 145, 156

and impurity scattering, 157
and tunneling conductance, 146
in a local potential, 249
in a vortex, 159, 288
quasi-particle interference, 158

Matsubara
correlation function, 37
frequencies, 38, 52
sums, x, 164

Matsubara sums, 196
Mean-field decoupling, 80
Mixed state, 8, 89
Moment expansion, 33
Momentum distribution function, 17

Nambu
formalism, 83, 211
spinors, 255

Nesting, 72
Normal coordinates, 21, 178

Occupation number, 13, 168
operator, 173
representation, 13

Ohm’s law, 117
Operator

annihilation, 14, 172
creation, 13, 172
current, 17, 118, 174
one-body, 15, 46, 65
particle density, 16, 174
particle number, xi, 16
spin 1/2, 17
spin density, 17, 76
spin lowering, 17
spin raising, 17

Optical phonons, 21, 257, 275

Particle-hole bubble, 64, 67
renormalized, 65, 199

Particle-hole excitation, 70

Particle-hole excitations, 49, 64
Partition function, 8, 133, 168, 206
Pauli matrices, xi, 17, 129, 221
Pauli paramagnetism, 94
Pauli pressure, 237
Pauli principle, 13
Periodic potential, 18
Permutation, 13, 189
Photoemission

and spectral function, 105
current, 101
diagrams, 102
energy-distribution curve, 106
losses, 115
matrix element, 266
model for Bi-2212, 271
momentum-distribution curve, 106
response theory, 100
sudden approximation, 103, 213,

265, 271
surface barrier, 113

Plane wave, 12, 57, 172
Plasmon, 64, 69, 71, 115, 202
Pressure, 8, 235
Principal value, ix
Propagator

anomalous, 81, 208, 255
Cooper pairs, 285
particle-hole, 64
phonons, 60, 197
single-particle, 46
spin fluctuations, 204

Quadratic response, 90, 101
Quasi-particle, 109, 125, 158

Random-phase approximation, 67, 69,
75, 202, 282

Renormalization factor, 112, 262, 274,
278

Residual resistivity, 121, 219
Residue theorem, ix, 163, 212
Retarded interaction, 61, 256

Scattering rate, 44
electron-electron interaction, 125
electron-phonon interaction, 275
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impurity scattering, 123
magnetic impurities, 131
phenomenological, 251, 273

Schrieffer–Wolff transformation, 129
Schrödinger picture, 9, 89, 91
Screened interaction, 74, 282
Screening, 74, 111, 115, 121
Second quantization, 13
Self-energy, 44

analytic properties, 270
atomic limit, 155
BCS superconductor, 82, 210
definition, 54
electron-electron interaction, 59,

125
electron-phonon interaction, 62,

275
impurity scattering, 56, 121, 218
in a vortex, 159
random-phase approximation, 283
strong-coupling superconductor, 256

Semiconductor, 240
Slater determinant, 13
Spatial average, 279
Specific heat, 8, 235

independent electrons, 19
phonons, 22

Spectral function, 26, 28, 44
for density-density correlation func-

tion of free electrons, 30
for Green’s function of indepen-

dent electrons, 29
of spin-singlet superconductor, 86
one-particle, 104, 109, 119

Spectral representation, 26
Spectral weight, 32, 45, 109
Spin density wave, 77
Stimulated emission, 62, 275
Sum rule

f-sum rule, 32
for occupation numbers, 32
for the energy, 32

Superconductivity, 61, 87, 159, 285
Susceptibility, 3, 91, 92, 285

t-matrix, 12, 171
Thermionic emission, 100

Thermodynamic average, 7
Thomas–Fermi

approximation, 250
screening, 75

Thouless criterion, 286
Tight-binding model, 272
Time dependence

internal and external, 10
Time ordering, 185, 189, 221

in the evolution operator, 11
Trace

cyclic property, 187
Tunneling

Bardeen formula, 147
differential conductance, 145
Hamiltonian, 144
Josephson current, 144, 228
matrix element, 144
matrix element for planar junction,

148
matrix element for STM junction,

150
ohmic junction, 149
single-particle current, 145

Two-body operator, 15, 48, 66

Umklapp processes, 61, 126

Vacuum state, 13
Van Hove singularity, 152
Vector potential, 100, 118, 174
Vertex

corrections, 51, 66, 119, 134
Coulomb interaction, 57
current, 118, 119
electron-phonon interaction, 23,

61
renormalized, 67

Wannier function, 267, 271
Ward identity, 118, 136
Weak localization, 138
Wick’s theorem, 43, 66

Yukawa potential, x, 75, 121

Zero sound, 69, 71
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