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To Heinz





PREFACE

The best way to predict the future is to invent it.
Alan Kay

As a reader I always hated prefaces in books, finding them a loss of time and
energy and preventing you to reach the interesting material inside the book and
always skipped them. So now that I have to write one, I am in a fix, since I do
not really know what to put in it.

After all if you have this book in hand and bother to read this, it is certainly
because you already have some feeling that one-dimensional systems are quite
fascinating, and that you want to know more about them. But just in case you
are a reader who is able to browse leisurely through books,1 let me just tell you
briefly what this book is about.

One-dimensional systems of interacting particles have fascinated theorists for
more than 50 years now. They are wonderful systems in which interactions play
a very special role and whose physics is drastically different from the ‘normal’
physics of interacting particles, that is, the one known in higher dimensions.
From the theoretical point of view, here again they are quite unique. The one-
dimensional character makes the problem simple enough so that some rather
complete solutions could be obtained using specific methods, and yet complex
enough to lead to incredibly rich physics. Crucial theoretical progress were made
and new theoretical tools developed in the 1970’s which culminated in the 1980’s
with a new concept of interacting one-dimensional particles, analogous to the
Fermi liquid for interacting electrons in three dimensions: the Luttinger liquid.
From an experimental point of view, one-dimensional systems were mostly at
the beginning a theorist’s toy. Experimental realizations started to appear in
the 1970’s with polymers and organic compounds. But in the last 20 years or
so we have seen a real explosion of realization of one-dimensional systems. The
progress in material research made it possible to realize bulk materials with
one-dimensional structures inside. The most famous ones are the organic su-
perconductors, the ladder compounds, and the spin compounds. At the same
time, the tremendous progress in nanotechnology allowed to obtain realizations
of isolated one-dimensional systems such as quantum wires, Josephson junction
arrays, edge states in quantum hall systems, and nanotubes. Last but not least,
the recent progress in Bose condensation in optical traps offer great promises
for the future in realizing one-dimensional systems of fermions or bosons with
unique properties. These experimental developments have of course triggered a

1I am afraid that this is an endangered species, but I certainly hope it will never disappear!
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viii PREFACE

corresponding burst of theoretical activity and our understanding of such sys-
tems has considerably progressed during this period. New theoretical tools have
been developed and new concepts have emerged.

The book is intended to present this fascinating one-dimensional physics. On
the theoretical side, some of the tools used to treat one-dimensional systems
are quite specific and are thus not part of the standard package of many-body
physics that is usually taught. The first part of the book thus gives a step-by-step
introduction to the techniques and concepts in the field, while pushing it to the
frontier of today’s research. Given the amount of material it was of course impos-
sible to be exhaustive. I thus preferred to make a selection of techniques, choosing
the ones I knew best and that I used extensively for one-dimensional systems. I
apologize in advance to those whose pet subject or technique I could not include
in this book. To enjoy the technical sections, and although some brief summary
is given in the book, some basic knowledge of many-body physics is suitable
(corresponding roughly to the first three chapters of Mahan, 1981). For some of
the one-dimensional techniques (e.g. Bethe-ansatz or conformal invariance) only
a basic introduction is given in this book. For the readers who want to go further
than what is given in this book, many references to review papers or more spe-
cialized books have been given in the corresponding chapters. Finally, some quite
sophisticated or specialized techniques (e.g. non-abelian bosonization, Ising and
WZWN models) are not treated in this book. Given the space constraints, and
my quite limited knowledge of these methods, I felt it was impossible for me to
make a decent pedagogical introduction to them. I thus chose to skip them com-
pletely and to focus on the others, which I could hopefully explain better. For
the reader who wants to know more on these I recommend the very nice book
by Gogolin, Nersesyan and Tsvelik (Gogolin et al., 1999) where these techniques
are explained in detail. The second part of the book is devoted to a study of the
various physical realizations of one-dimensional systems. Most of the technicali-
ties have been removed in these sections to directly focus on the physics. Given
the multiplicity and importance of experimental realizations of one-dimensional
systems I have tried to cover, however briefly, all main realizations.

Although I have tried to make every effort to eradicate minus sign problems
and other factors of two in the formulas, I am sure that many mistakes remain
in this book. I will thus maintain on my web page2 a list of errors. This should
avoid a few number of persons, including me, many useless sleepless nights.

That’s all folks! Now just fasten your seat belts, turn the page and enjoy your
trip in the one-dimensional world.

2Located on the Web site: dpmc.unige.ch
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How to read this book

Let me tell briefly what each chapter contains to help the reader find his/her
way in this one-dimensional maze.3 This book can be read ‘a la carte’. Depending
on your knowledge of theory, and on what you expect to find in this book, the
chapters should not be read in the same order.

All (most of) the technology is concentrated in the first five chapters and in
the appendices. These parts do not focus on any specific physical system but give
the tools needed to tackle any4 one-dimensional problem. I have tried as much
as possible not to assume any previous theoretical knowledge from the reader
and to explain in a detailed and hopefully physical way the various theoretical
techniques used. These chapters are thus intended to teach the techniques at a
slow pace. Here are the contents in greater detail:

• Chapter 1: An introduction to the basic ideas of interacting electrons and
the peculiarities of one dimension. The first and second parts of the chapter
are simple and should be read since the basic ideas explained here (without
any fancy techniques) recur in the rest of the book. The third part explains
the fermionic techniques used to tackle one dimension. It is there for the
professional5 of standard many-body physics. If you do not known the book
by Mahan (1981) by heart, just skip this part. You will not need it for the
rest of the book, and it could seriously impair your love of one-dimensional
systems. If you do know diagrammatic theory then read it since it contains
very interesting solutions and will help you make the link with the rest of
the book.

• Chapter 2: Explains the very technique of bosonization that will be used
repeatedly in the rest of the book. It is a systematic, but step by step,
introduction to the technique. If you want to become a professional in the
field and use the technique, roll up your sleeves, take a deep breath, and
go through the chapter. If not read the next chapter first, which is less
systematic but explains the same ideas in a much more physical way. You
will then come back to this chapter when you feel ready.

• Chapter 3: This chapter explains using very low level techniques the con-
cept of Luttinger liquid. It is a must to have an idea of the physics of
one-dimensional systems. If you do not want to know the technique in de-
tail but simply the physical ideas, this chapter is enough. If you want more
you will find it in Chapter 2.

• Chapter 4: This chapter discusses more sophisticated technical and phys-
ical situations. It also presents a certain number of pitfalls into which the

3Which proves that a one-dimensional world can also be a maze.
4Well, most of them anyway...
5You know, Feynman diagrams and all that.
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bosonization beginners6 can fall. You can read this chapter at your leisure
or when you encounter the corresponding situation in one of the physical
systems you are interested in.

• Chapter 5: This chapter presents the various microscopic methods used to
tackle one-dimensional systems: the famous Bethe-ansatz and numerical
techniques. Only for theorists or for long winter nights.

The remaining chapters deal with specific class of systems and discuss some
experimental materials. They contain little technique and use the results of the
previous technical chapters for the main formulas. You can thus read them di-
rectly if you do not care how the results were obtained (I still recommend reading
the beginning of Chapter 1 and of Chapter 3 though). These chapters need not
be read in sequence since they are independent of each other (with some corre-
lations). You can probe the ones that are relevant to your own interests.

• Chapter 6: All about spin systems. Chains, frustration, spin-Peierls tran-
sition, ladders, and quasi-one-dimensional systems, and the corresponding
experimental realizations.

• Chapter 7: Single chain fermionic systems. Mostly models: Hubbard, t–J ,
extended Hubbard. The corresponding experimental systems are discussed
in Chapter 8. A discussion on transport in fermionic systems and the Mott
transition.

• Chapter 8: Coupled fermionic chains and quasi-one-dimensional fermionic
systems. Application to ladders (telephone number compounds) and to
organic conductors.

• Chapter 9: Effects of disorder in fermionic systems. Introduction to repli-
cas. Anderson localization in interacting fermionic systems. Application to
quantum wires.

• Chapter 10: Boundaries, isolated impurities, and constrictions. Discusses
mostly the mesoscopic realizations of Luttinger liquids such as carbon nan-
otubes and edge states in the quantum hall effect, for which such problems
are important.

• Chapter 11: Other examples of Luttinger liquids. A break from Fermi statis-
tics: the life of the one-dimensional bosons. Discussion of Josephson junc-
tion arrays and Bose condensates. Applications of bosonization to the study
of quantum impurities in three-dimensional Fermi liquids.7 X-ray, Kondo,
and multichannel Kondo problems.

6Also known as bozos.
7I do not know whether this moves up or down in dimension since this is in fact a zero-

dimensional problem.
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1

PECULIARITIES OF D = 1

‘Toto, I have a feeling we’re not in Kansas anymore’
Dorothy, ‘The Wizard of Oz’

Interactions among particles are what endows the one-dimensional world with its
special properties. Indeed, there are little differences between, for example, one-
dimensional free electrons and their higher-dimensional counterparts (Ziman,
1972). Before we embark on our one-dimensional journey, let me briefly recall
the effects of interactions in higher dimensions. This will allow to set the stage,
present the basic concepts and ideas of Fermi liquids, and to understand very
simply why one-dimensional systems are so different. This will serve as a useful
reference when studying their physics.

1.1 Crash course on Fermi liquids

When looking at the order of magnitude of the Coulomb interaction in solids, one
notices that for typical systems it is neither dominant nor negligible compared to
the kinetic energy. This is what makes interactions so difficult to treat: strictly
speaking one cannot really use any perturbation theory. Of course, to have a
qualitative idea of the effects of interactions the theorist usually considers models
for which the interactions can be seen as adjustable parameters. The effects of
interactions in ‘high’-dimensional systems9 has been masterfully explained by
Landau’s Fermi liquid theory (Landau, 1957a; Landau, 1957b; Landau, 1958).
This theory has been the cornerstone of our understanding of interacting Fermi
systems for the last 50 years and has been explained in detail in many textbooks
(Nozieres, 1961; Abrikosov et al., 1963; Pines and Nozières, 1966; Mahan, 1981).
I will thus give here only a caricature of this theory and refer the reader to the
aforementioned textbooks for more details.

The important characteristics of the excitations of a free electron gas are as
follows. At T = 0 all states up to the Fermi energy are occupied (see Fig. 1.1). So
the occupation nk of a state with momentum k has a discontinuity at the Fermi
surface. For free electrons the amplitude of the discontinuity is 1. The excitations
of the system, compared to the ground state, consist in adding particles with a
well-defined momentum k. These excitations have a well-defined momentum k
and energy ε(k). They have an infinite lifetime since they are eigenstates of the
Hamiltonian. To characterize these excitations one can introduce the spectral
function A(k, ω), which is the probability to find a state with a frequency ω and

9In this book anything above one will be high dimensional.

1
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Fig. 1.1. (a) Free electrons: the occupation nk has a discontinuity of ampli-
tude 1 at the Fermi surface. The spectral function A(k, ω) (see text) is a
delta function peak, showing excitations without damping and a well-defined
frequency–momentum relation ω = ξ(k). The excitations are made of the
individual particles of a given momentum. (b) Fermi liquid: it is essentially
similar to a free electron gas, with some differences. The occupation nk still
has a discontinuity at the Fermi wavevector k = kF , but with a reduced
amplitude Z < 1. The excitations become sharper when they get closer to
the Fermi surface. The total weight in these excitations (quasiparticles) is
Z. The quasi-free excitations (quasiparticles) are electrons dressed by the
particle–hole excitations of the electron gas.

a momentum k. For free electrons A(k, ω) = δ(ω−ξ(k)), where ξ(k) is the energy
relative to the chemical potential ξ(k) = ε(k) − µ.

What remains of these nice properties when interactions are switched on
in the system? The remarkable result of Fermi liquid theory is that not much
changes and that the properties of the system remain essentially similar to those
of free fermionic particles. The elementary particles are not the individual elec-
trons anymore, but electrons dressed by the density fluctuations around them.
Just as in electrodynamics an electron dresses by surrounding itself by a pho-
ton cloud, here the electrons surround themselves with particle–hole excitations
of the ground state (see Fig. 1.1). Since these excitations are made of an elec-
tron plus density fluctuations they behave as fermions. These individual objects,
called quasiparticles, can be considered as essentially free. Of course, this is only
a caricature and the situation in a Fermi liquid is more complicated. Residual
interactions exist between the quasiparticles, described by the so-called Landau
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parameters, and they have an effect in some quantities like susceptibilities. But
this caricature will be enough for our purposes. Thus, the occupation number
nk of a state with momentum k still has a discontinuity at the Fermi surface.
The amplitude of this discontinuity is not 1 anymore but a number Z that repre-
sents the ‘fraction’ of the electron that remains in this quasiparticle state (I will
give a more precise definition below). The more interacting the system is, the
more scrambled it is and thus the smaller the discontinuity (see Fig. 1.1). The
quasiparticles have a ‘well-defined’ relation between frequency ω and momentum
ω = E(k), which simply reflects the fact that the wavefunction of a quasiparticle
has a time dependence e−iE(k)t. Of course, E(k) is not the bare energy of an
electron. Since one is close to the Fermi surface one can linearize the dispersion
in powers of k − kF

E(k) � E(kF ) +
kF

m∗ (k − kF ) (1.1)

which defines the parameter m∗. For free electrons, m∗ = m is the mass of the
electron. Close to the Fermi surface, changing the dispersion from ε(k) to E(k)
simply changes the mass of the excitation from m to a new mass m∗. This is
the only change needed. The Fermi momentum is unchanged (for a spherical
Fermi surface) thanks to a conservation law known as Luttinger theorem. This
theorem states that although the shape of the Fermi surface can be affected by
interactions the volume enclosed by the Fermi surface is an invariant (Nozieres,
1961; Abrikosov et al., 1963; Pines and Nozières, 1966; Mahan, 1981). For a
system invariant by rotation symmetry (spherical Fermi surface) this imposes
that kF cannot change.

Because they are not completely free the quasiparticle excitations also have
a lifetime τ . Thus, the Fourier transform of the time dependence of the wave-
function of the excitation (t > 0)

e−iE(k)te−t/τ (1.2)

is not just a delta function but a Lorentzian of width 1/τ centered around
ω = E(k) (see Fig. 1.1). When one looks at energies closer and closer to the
Fermi level, E(k), which measure the difference in energy relative to the Fermi
level, goes to zero. If the lifetime was constant, the damping time τ would be-
come smaller than the period 1/E(k) and thus the excitations would become
overdamped. They could not be interpreted as particles similar to free electrons.
Fortunately, the lifetime is due to the scattering between quasiparticles. Since
close to the Fermi energy quasiparticles have less and less phase space to scatter,
the lifetime diverges when one goes closer to the Fermi level. Landau remarkably
has shown from simple phase space arguments that the lifetime diverges in d = 3
as 1/E(k)2. Thus, the lifetime is always larger than the period close the Fermi
level. In fact, the excitations become better and better defined when one ap-
proaches the Fermi level. For most properties one can simply ignore the lifetime.
It is only important when dealing with properties such as transport. Because it
varies as 1/E(k)2 it naturally gives a resistivity proportional to T 2.
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Having essentially free excitations is what makes Fermi liquid theory work
and the concept of quasiparticle so useful. In condensed matter, one is very of-
ten for practical purposes ‘close’ to the Fermi level. The Fermi energy is about
10000K in normal metals and one works at temperatures of the order of 1–100K
which is very small compared to the Fermi energy. At these energies the quasipar-
ticles are the correct well-defined and ‘free’ excitations, whereas the individual
electrons themselves are strongly coupled. The spectral function A(k, ω) thus
contains (Lorentzian) peaks centered at ω = E(k) that becomes sharper and
sharper when k goes to kF . The total weight of these peaks is Z and describes
the part of the excitations that is in the quasiparticle state. The rest 1−Z is in
a continuous background that has no well-defined structure, but can be safely
ignored, close to the Fermi surface compared to the well-defined peaks. Since
only the sharp excitations have a reason to give a discontinuity in n(k) at kF

(in a similar way than for free electrons), this explains why the jump in n(k) at
k = kF has an amplitude Z and not unity any more as for free electrons.

One can establish by doing perturbation in the interaction that these prop-
erties are indeed correct. But the great strength of Landau’s theory resides in
the fact that it is not restricted to weak coupling. The existence of quasiparticles,
which have fermionic nature and the above properties, is extremely robust and
relies only on a phase space argument. It can work even for extremely strong in-
teractions. Self-consistent (Landau, 1958) and renormalization (Shankar, 1994)
proofs of Fermi liquid theory have been given. To prevent the theory from ap-
plying one thus needs either exceedingly strong interactions or special conditions
such that some other instability occurs (see, e.g. Varma et al., 2002).

To complete our brief tour of Fermi liquid let us note two additional facts.
First, in addition to these individual quasiparticle excitations, other types of ex-
citations exist in an interacting system. One can define collective excitations that
describe the response of the system to a disturbance of the density or the spin
density. For example, for the charge, if only short-range interactions are present
(as is, e.g. the case in helium) this collective excitation is called zero sound, and
represents the way a density wave can propagate (with or without damping) in
the electron gas. When long-range (Coulomb) interactions are present, this is the
famous plasmon excitation (Abrikosov et al., 1963; Pines and Nozières, 1966).
The second point is more formal. One should note that the quasiparticle states
are not the exact eigenstates of the interacting problem. Indeed, for an interacting
system the number of eigenstates is exponentially large. For example, for a lat-
tice system of fermions with spin the total number of states is 4N where N = Ld

is the number of sites, L the linear dimensions of the system and d the spatial
dimension. Since quasiparticles states have an energy Ek = kF (k − kF )/m∗ the
distance between two such states is of the order of 1/L where L are the linear
dimensions of the system. This is much larger than the exponentially small10

10This is for generic interacting systems. Of course, for the free electron gas, the level sepa-
ration is 1/L and each energy level is highly degenerate. Interaction lifts in general this huge
degeneracy between exact eigenstates.
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Fig. 1.2. A quasiparticle ‘state’ is in fact made of a very large number of exact
eigenstates of the interacting system. The separation in energy of these states
is exponentially small in the system size L and thus irrelevant physically, for
reasonable systems. The cluster of all these states form the quasiparticle with
its average energy and lifetime (inverse of the broadening in energy).

separation in energy between the exact eigenstates. As shown in Fig. 1.2, in a
Fermi liquid, exact eigenstates thus cluster at given positions in energy. The
ensemble of all these exact eigenstates form a quasiparticle with its lifetime.

I have purposefully used in this chapter handwaving descriptions. One can
formalize the above concepts by introducing the standard many-body description
of such systems. Since I will need this formalism later, Appendix A contains a
brief summary of the many-body formalism that will be used in this book. I follow
the notations of Mahan (1981). In particular, the spectral function is related to
the single-particle Green’s function by

A(k, ω) =
−1
π

Im Gret(k, ω) (1.3)

where Im denotes the imaginary part and Gret(k, ω) is the retarded Green’s
function.

1.2 One dimension: Failure of perturbation theory

How much of this beautiful Fermi liquid theory survives in one dimension? With-
out any calculations it is easy to see that interactions have drastic effects com-
pared to higher dimension. Indeed, in high dimension nearly free quasiparticle
excitations exist. In one dimension, as shown in Fig. 1.3, an electron that tries
to propagate has to push its neighbors because of electron–electron interactions.
No individual motion is possible. Any individual excitation has to become a col-
lective one. This ‘collectivization’ of excitations is obviously a major difference
between the one-dimensional world and higher dimensions. It clearly invalidates
any possibility to have a Fermi liquid theory work. This proves that the physical
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(a) (b)

Fig. 1.3. (a) In high dimensions, nearly free quasiparticle excitations, that look
nearly as individual particles are possible. (b) In a one-dimensional inter-
acting system, an individual electron cannot move without pushing all the
electrons. Thus, only collective excitations can exist.

properties of the one-dimensional electron gas are drastically different from the
ones of a free electron gas. For fermions with spin this is even worse. Because
only collective excitations can exists, it implies that a single fermionic excitation
has to split into a collective excitation carrying charge (like a sound wave) and
a collective excitation carrying spin (like a spin wave). These excitations have
in general different velocities, so the electron has to ‘break’ into two elementary
excitations. These properties, quite different from the ones of a Fermi liquid, will
be the essence of the Luttinger liquid, examined in Chapter 3.

Let us be more formal. If some perturbation theory in interaction was at-
tempted, some correlations such as the density–density correlation function would
appear in the perturbation theory. Such correlation measures in linear response,
the response 〈ρ(x)〉 of the electron gas to an applied external potential.

Hdens =
∫
ddx V (x, t)ρ(x) (1.4)

The susceptibility (see A.33) that measures this response is given by (Ziman,
1972; Mahan, 1981)

χ(q, ω) =
1
Ω

∑
k

fF (ξk) − fF (ξk+q)
ω + ξ(k) − ξ(k + q) + iδ

(1.5)

where δ = 0+. Generically, I denote by Ω the volume of the system. fF is the
Fermi factor (see Appendix A for notations). For a system in d dimensions with
linear dimensions L, Ω = Ld. Let us focus on the static susceptibility χ(q, ω = 0).
Normally, it is well behaved at all wavevectors and goes to a constant for ω = 0.
One recovers from (1.5) that χ(q → 0, ω = 0) is simply proportional to the
density of states at the Fermi level (Ziman, 1972). The standard (positive) com-
pressibility is defined with V = −µ compared to (1.4), so with our conventions χ
is negative. For finite q its behavior is controlled by the way the energy ξ(k) de-
pends on k. When k is on the Fermi surface ξ(k) = 0, if one can find a wavevector
Q such that both ξ(k) and ξ(k +Q) are zero this leads to singularities. In high
dimensions, as shown in Fig 1.4, this occurs only for a very limited set of points.
Because of the integration over k in (1.5) the singularity of the denominator is
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E

Q = 2kF

Q = 2kF

Q = (p,p)

Fig. 1.4. Nesting properties of Fermi surfaces. In high dimensions, a normal
Fermi surface leads to nesting only for a very limited set of points and thus
to very weak singularities at Q = 2kF in the derivatives of the susceptibility
(a). In one dimension, the Fermi surface consists of only two points and is
thus totally nested. This leads to serious singularities at Q = 2kF (b). Nesting
can also occur for special wavevectors Q in higher dimensions, for example,
for a square Fermi surface in two dimensions (c).

smoothed out, and only surfaces as a singularity in the slope of χ(q). This is
the root of such phenomena as the Friedel oscillations (Ziman, 1972) and is also
known as Kohn anomaly. The only way to have a stronger singularity is for the
Fermi surface to satisfy a nesting property, that is, there exists a wavevector Q
such that for a finite domain of values of k the energy satisfies

ξ(k +Q) = −ξ(k) (1.6)

In the domain for which the property (1.6) is satisfied, eqn (1.5) becomes

Re χ(Q,ω = 0) = − 1
Ω

∑
k

tanh(βξ(k)/2)
2ξ(k)

(1.7)
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where Re denotes the real part and β = 1/(kBT ) is the inverse of the tempera-
ture (see Appendix A for notations). This becomes, for an infinite volume

Re χ(Q,ω = 0) = −
∫
dξ N(ξ)

tanh(βξ/2)
2ξ

(1.8)

where N(ξ) is the density of states per unit volume. If the density of states
is roughly a constant, as is usually the case close to the Fermi level, or if it
does not vanish, (1.8) is dominated by a logarithmic singularity. In (1.8), this
singularity is regularized by the temperature. A finite frequency leads to a similar
regularization. Equation (1.8) behaves as

χ(Q,ω = 0) ∼ −N(ξ = 0) log(E/T ) (1.9)

where E = vF Λ is some ultraviolet cutoff, of the order of the range in energy
over which the nesting property (1.6) holds and vF the Fermi velocity.

In high dimensions, it is in general impossible to satisfy the nesting property
(1.6), except on isolated points (see Fig. 1.4). Thus, χ itself cannot diverge, but
its derivatives are in general singular. In one dimension, however, the nesting
property is always satisfied. Indeed, close to the Fermi points one can linearize
the dispersion relation, regardless of its precise nature

ξ(k) � vF (k − kF ), k ∼ kF

ξ(k) � vF (−k − kF ), k ∼ −kF

(1.10)

because of the inversion properties of practically all systems, the Fermi velocity
at kF has to be the same as the one at −kF . It is thus easy to see from (1.10)
that

ξ(k + 2kF ) = −ξ(k) (1.11)

This is shown in Fig. 1.4. Thus, in one dimension nesting is the rule rather than
the exception, regardless of the precise dispersion relation. The nesting vector
is Q = 2kF . Since the susceptibility diverges at Q = 2kF , one can expect any
perturbation theory in the interaction to be singular at this wavevector. The fact
that a perturbation theory diverges is an indication that the ground state of the
interacting system is quite different from the one you started with (that is, the
non-interacting one). We thus recover from this more formal argument that the
physical properties of interacting electrons in one dimension, however weak the
interaction, are drastically different from the free electron ones.

However, simply having a singularity in some susceptibility is usually not a
major problem. A well-known example is the singularity that occurs in the par-
ticle pairing, leading to the Bardeen–Cooper–Schrieffer (BCS) superconducting
instability. This susceptibility measures the response 〈ψ†(x)ψ†(x′)〉 of the system
to a potential that would like to create or destroy pairs

Hpair =
∫
dx V (x, t)[ψ†(x)ψ†(x′) + h.c.] (1.12)
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Fig. 1.5. (a) The particle–hole susceptibility (density fluctuations). (b) The
particle–particle (pair fluctuations) of the electron gas (only shown for q = 0).

If the fermions have spin, one particle has spin up and the other spin down to
have a singlet pair and x′ = x. For spinless fermions, the term (1.12) is killed for
x = x′ by the Pauli principle. Thus, in that case x′ = x+a where a is the smallest
distance available on the system (typically the lattice spacing). I restrict here to
the case for which the best momentum of the pair is q = 0 and show in Fig. 1.5
the corresponding susceptibility at q = 0. This is to be compared with (1.4).
In that case the potential V (x, t) creates a particle and a hole (the destruction
of a particle), instead of creating two particles as in (1.12). In a diagrammatic
representation these two susceptibilities are shown in Fig. 1.5. The corresponding
susceptibility is given by

χpair(q = 0, ω) =
1
Ω

∑
k

f(ξk) − f(−ξ−k)
ω − ξ(k) − ξ(−k) + iδ

χpair(q = 0, ω = 0) ∼ N(ξ = 0) log(E/T )

(1.13)

In high dimension, the response to an external potential is usually treated
in a self-consistent way. The susceptibility measures the response to the local
potential seen by the electrons, which is the sum of the external one and of the
response of the electron gas. If there is an interaction in the system one can
treat the interaction in mean field, assuming some kind of order in the system.
Typically, one considers order in the density (the so-called particle–hole channel)
or order in the pair creation (the so-called particle–particle channel). Any fluc-
tuation imposed by the external potential is thus modified by the presence of the
interaction. Let us take an example with a local (Hubbard like, see Section 7.1.1)
interaction:
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H = U

∫
ddx ρ↑(x)ρ↓(x) (1.14)

where ↑, ↓ denotes the spin of the electron. If one expects some ordering of the
density, the operator ρσ(x) of the density of each spin species can be rewritten
as

ρσ(x) = 〈ρσ(x)〉 + (ρσ(x) − 〈ρσ(x)〉) (1.15)

and one can consider that the fluctuations δρσ(x) = ρσ(x) − 〈ρσ(x)〉 are small.
The interaction (1.14) can thus be expanded to linear order in the fluctuations
to give

H � U

∫
ddx[〈ρ↑(x)〉〈ρ↓(x)〉 + 〈ρ↑(x)〉δρ↓(x) + 〈ρ↓(x)〉δρ↑(x)]

= U

∫
ddx[〈ρ↑(x)〉ρ↓(x) + 〈ρ↓(x)〉ρ↑(x) − 〈ρ↑(x)〉〈ρ↓(x)〉] (1.16)

The last term in (1.16) is just a shift of the energy. The two first terms can be
seen as an effective potential seen by the electrons of a given spin created by
the electrons of the opposite spin via the interaction. For example, for the up
electrons the potential is

V (x) = U〈ρ↓(x)〉 (1.17)

This potential is dependent on the average density at a given point (here of the
density of down electrons). In the absence of such interaction the response of the
up electrons to an external potential Vext would be

〈ρ↑(q, ω)〉 = χ0(q, ω)V ↑
ext(q, ω) (1.18)

where χ0 is the susceptibility of the free electron gas (1.5). In the presence of the
interaction, one can consider that the linear response (1.18) gives the response
to the effective potential. For the up electrons

〈ρ↑(q, ω)〉 = χ0(q, ω)V ↑
eff(q, ω) (1.19)

where the effective potential is the sum of the external one and the one due to
the interaction (1.17)

V ↑
eff(q, ω) = V ↑

ext(q, ω) + U〈ρ↓(q, ω)〉 (1.20)

Of course, the average of the density should be determined from (1.19) (the down
electrons obey an identical equation). Putting the two equations together leads
to (the argument (q, ω) is understood)(

ρ↑
ρ↓

)
=
(

0 Uχ0

Uχ0 0

)(
ρ↑
ρ↓

)
+
(
χ0V ↑

ext

χ0V ↓
ext

)
(1.21)

Let us consider the response to a magnetic field V ↑
ext = −V ↓

ext to probe the
magnetic response. Using (1.21) the response to the external potential is
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Fig. 1.6. In high dimension, the divergent susceptibilities either in the parti-
cle–hole channel (ph) or in the particle–particle one (pp) can be summed up
individually, for example, in an RPA approximation, and lead to a finite tem-
perature phase transition. The solid lines are the fermion propagators and
the wiggly line is the interaction.

〈ρ↑(q, ω)〉 =
χ0(q, ω)V ↑

ext(q, ω)
1 + Uχ0(q, ω)

(1.22)

In the presence of interaction, this calculation thus allows to obtain an approxi-
mation of the spin susceptibility, which is given by

χ(q, ω) =
χ0(q, ω)

1 + Uχ0(q, ω)
(1.23)

This is the well-known RPA (random phase approximation) result that corre-
sponds to summing bubbles or ladders as is shown on Fig. 1.6. A similar calcu-
lation can be done for the pairing susceptibility. Summing the diagrams shown
in Fig. 1.6 leads to

χpair(q, ω) =
χ0

pair(q, ω)
1 + Uχ0

pair(q, ω)
(1.24)

If the denominator can be zero there is a finite temperature at which the response
diverges. This is usually the signature of a phase transition to an ordered state.
For the particle–hole channel, this is the transition to a phase where either the
charge or spin density orders. This corresponds either to an antiferromagnetic
state (spin order or spin density wave), or to a so-called charge density wave
(charge order). The singularity corresponding to a divergence of the particle–
particle susceptibility is of course the pairing or BCS superconducting transition.
The BCS susceptibility is always divergent, irrespective of the shape of the Fermi
surface. This results from the ‘nesting’ due to time reversal symmetry, that is,
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ε(k) = ε(−k). Thus, since χ0
pair is positive, provided the interaction is negative

there is always a transition at a given temperature. In the particle–hole channel in
high dimension the susceptibility is not divergent (roughly the density of states),
so one needs a finite and strongly repulsive (since χ0 is negative) interaction
to have a transition. This explains why the Fermi liquid state is generically so
useful. Since the signs of χ0

pp and χ0
ph are opposite one sees that quite generally

depending on the sign of the interaction no singularity exists at all in the other
channel.

When there is nesting one has to face a special situation, since in that case the
particle–hole susceptibility is also always divergent at the nesting wavevector. So
there is always for repulsive interactions a transition towards an ordered state
in (spin) density. However, as we saw, the particle–particle and particle–hole
instabilities in general do not compete, the presence of one usually means that
the others are completely killed. We can also expect the RPA to be roughly
correct since we know that phase transitions towards ordered states are possible
in high dimensions. One dimension is thus quite special. First, nesting always
occurs. Second, and more importantly, the RPA result can only be incorrect, since
we know that no finite temperature phase transition can exist, even for classical
systems (Landau and Lifshitz, 1986). The presence of quantum fluctuations can
only make things worse. At a technical level, it means that the simple ladder
or bubble resummation of Fig. 1.6 is not enough. There are always two types
of divergences, regardless of the shape of the Fermi surface, and both should be
considered together. Taking into account both bubbles and ladder is known in
the diagrammatic lingo as the parquet approximation. Needless to say, it is a
nightmarish method, and we will discuss it in more details in Section 1.3. Since
these instabilities compete and want to push the system towards different ordered
states, they will partly cancel each other, and we can expect some state that will
be on the verge of an instability, without ever being able to order completely.
One can thus expect the behavior of one-dimensional systems to be close to the
critical behavior of systems right at a critical temperature in higher dimension.
I will come back to this point in Section 3.4.

Finally, after all these complications, let us note a final peculiarity of one
dimension. This time, it will be a great help and in fact at the root of the solution
discussed in the next two chapters. A crucial component of the excitations of
the electron gas is the so-called particle–hole excitations where an electron is
taken from below the Fermi level and promoted above. Since one destroys a
particle with momentum k and creates some particle with momentum k + q the
momentum of the excitation is well fixed and equal to q. The energy of such an
excitation, on the contrary, depends in general on both k and q. If one looks at the
energy of the particle–hole excitations as a function of their momentum q, one
has in general a continuum of energies. In high dimensions, for q < 2kF one can
create particle–hole pairs of arbitrarily low-energy by killing a particle just below
the Fermi surface at one point and recreating the particle just above the Fermi
surface at another point, as shown in Fig. 1.7. The particle–hole excitations thus
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Fig. 1.7. Particle–hole spectrum for two- or three-dimensional systems (a) and
for one-dimensional ones (b). In one dimension, contrary to higher dimen-
sions, particle–hole excitations have both a well-defined momentum and en-
ergy, for small momentum q.

lead to a continuum extending to zero energy for all q vectors smaller than 2kF .
In one dimension, the Fermi surface is reduced to two points and one cannot
play with angles to increase the momentum q without moving away from the
Fermi surface in energy. Since the only way to get a low-energy excitation is to
destroy and recreate pairs close to the Fermi ‘surface’, the only places where the
particle–hole energy can reach zero are for q = 0 and for q = 2kF . The behavior
of the particle–hole spectrum in one dimension is shown in Fig. 1.7. Note the
difference with the one in d ≥ 2. Let us focus on the behavior close to q = 0. If
we look at excitations at small q the energy of a particle–hole excitation is

Ek(q) = ξ(k + q) − ξ(k) (1.25)

where ξ(k) should be occupied and ξ(k + q) empty. Let us look at the possible
values of Ek(q) for the standard quadratic dispersion

ξ(k) =
k2 − k2

F

2m
(1.26)

It is easy to check that for k ∈ [kF − q, kF ] the average value E(q) of Ek(q) and
the dispersion δE(q) = max(Ek(q)) − min(Ek(q)) are

E(q) =
kF q

m
= vF q

δE(q) =
q2

m
=
E(q)2

mv2
F

(1.27)
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A similar calculation can be made by expanding the energy around kF . If one
writes

ξ(k) = vF (k − kF ) +
λ

2
(k − kF )2 (1.28)

Then it is obvious that

E(q) = vF q

δE(q) = λq2 =
λ

v2
F

E(q)2
(1.29)

The results (1.27) or (1.29) are noteworthy. They show that regardless of the
dispersion relation ξ(k) provided it has a finite slope at the Fermi level: (i) the
average energy of a particle–hole excitation is only dependent on its momentum
q thus the particle–hole excitations are excitations with well-defined momentum
q and energy E(q); (ii) the dispersion in energy δE(q) goes to zero much faster
than the average energy. This is the same situation as the one we discussed for
the Fermi liquid quasiparticles. It means that in one dimension the particle–
hole excitations are well-defined ‘particles’ (that is, objects with well-defined
momentum and energy), which become longer and longer lived when the energy
tends to zero. Because these excitations are made of the destruction and creation
of a fermion they are bosonic in nature. These bosonic quasiparticles will just
be the key in solving our one-dimensional problem. This remark is at the root
of the bosonization method that will be discussed in the next two chapters.

1.3 How to solve

As we have seen in the previous section, one can expect rather peculiar physics
in one dimension. This is obvious from the various divergences that plague the
perturbation theory in the interaction. These divergences are the way the per-
turbation theory can tell that the ground state of the interacting system is quite
different from free fermions. The first attempt to solve the problem has been
made directly in the fermion language. As I hinted in the previous section, this
is extremely difficult since it implies the resummation of the various divergences
in the perturbation theory. A much more clever method is to use the last remark
in the previous section and to reformulate the Hamiltonian in a more convenient
basis. This method, known as bosonization, exposed in detail in the next two
chapters, will be the cornerstone of this book. However, before we embark on this
bosonization solution, I want to expose very briefly in this chapter two of the
methods that were put forward to tackle the problem directly in the fermion rep-
resentation. The goal of this chapter is threefold: (i) A historical interest, since
these were the first solutions of the problem and show how to deal with such
divergences; (ii) Since these solutions are directly in the fermion representation
they nicely complement the other methods. They can and have led to extensions
to higher dimensions. (iii) They illustrate some general important concepts such
as renormalization.
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As you can guess, the rest of this chapter is not for the faint of heart.11 It
requires some knowledge of the many-body theory and diagrammatic techniques.
This is the only section of this book with such requirement. Since this section
is not necessary to read and understand the rest of the book it can be safely
skipped if one wishes to.

1.3.1 Dzyaloshinskii–Larkin solution
I will first present a brute force but very elegant solution of the fermionic prob-
lem. This is a remarkable calculation (Dzyaloshinskii and Larkin, 1974), and
historically a breakthrough in this complicated problem. It also illustrates some
of the important properties of the one-dimensional electron gas. For simplicity,
this section will deal only with spinless fermions even if the method can be used
to treat fermions with spin as well.

If the interactions are much weaker than the bandwidth and if we want to
retain the low-energy properties of the system, we want to deal with excitations
close to the Fermi surface. In that case we can linearize the dispersion relation
close to each Fermi points. We thus replace the original model by one on which
the spectrum is purely linear, as shown in the next chapter in Fig. 2.1. This is
nothing but the approximation that assumes a constant density of states. Since
this approximation is crucial in most methods I will expose it in greater detail
in the next chapter, which is supposed to be for a more general readership. I
will just give here the main steps. The linearization of the spectrum forces us to
introduce two species of fermions: right and left going fermions. The Hamiltonian
of the system becomes (Tomonaga–Luttinger model)

H =
∑

k;r=R,L

vF (εrk − kF )c†r,kcr,k (1.30)

where εR = +1 for right going particles and εL = −1 for left going particles. In
order to avoid the notation εr in the following, I use the convention that r = +1
for r = R and r = −1 for r = L when used in mathematical expressions. What
happens far from the Fermi surface is not really important for low-energy pro-
cesses. Excitations way below the Fermi level are blocked by the Pauli principle
and the ones too high in energy cannot be excited anyway. In fact, this is not
totally true but I will come back to this point later. We can thus use an arbitrary
cutoff procedure to cut the spectrum at large momentum: for example, only allow
momentum between [kF −Λ, kF +Λ] (and the same thing on the opposite Fermi
point) to exist. Λ in that case can be used to mimic the original bandwidth.

We have the kinetic energy and now need to rewrite the interaction for our
new model (1.30). For spinless fermions a typical interaction is

Hint =
∫
dx dx′ V (x− x′)ρ(x)ρ(x′) (1.31)

11The presentation of these methods fulfils thus another goal. Once you have seen them, you
will realize how simple bosonization is!
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Fig. 1.8. Low-energy processes that the density operator is able to produce. The
q ∼ 0 component of this operator makes particle hole excitations on the same
branch, whereas the q ∼ 2kF one transports a particle from one side to the
other of the Fermi surface. For the linearized spectrum these two processes
correspond, respectively, to the ψ†

R(x)ψR(x) and ψ†
R(x)ψL(x) terms.

The density operator should be written using our left and right going fermions.
The single-particle Fermion operator is

ψ(x) =
1√
Ω

∑
k

eikxck � 1√
Ω

∑
k∼−kF

eikxck +
1√
Ω

∑
k∼kF

eikxck

= ψL(x) + ψR(x) (1.32)

since only the part of the single-particle operator acting close to the Fermi surface
is important for the low-energy properties. The expression (1.32) retains only
these important parts. The density operator thus becomes

ρ(x) = ψ†(x)ψ(x)

= ψ†
L(x)ψL(x) + ψ†

R(x)ψR(x) + ψ†
L(x)ψR(x) + ψ†

R(x)ψL(x) (1.33)

The two first and two last terms in the density operators are the expression,
using left and right going fermions of the low-energy processes produced by the
density operator

ρ†(q) =
∑

k

c†k+qck (1.34)

since both k and k+q have to be close to one of the Fermi points. These processes
are shown in Fig. 1.8.
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The interaction (1.31) can be rewritten (see Appendix A)

Hint =
1

2Ω

∑
k,k′,q

V (q)c†k+qc
†
k′−qck′ck (1.35)

One has to keep in mind that the most efficient processes in the interaction are
the ones that can act close to the Fermi surface. It means that all momenta in
(1.35) have to be close to the Fermi points, that is, close to −kF or +kF . The
fact that in one dimension the Fermi surface is reduced to two points thus allows
us to decompose the interaction in three different sectors. These three sectors
are shown in Fig. 1.9. The first process g4 in Fig. 1.9 only couples fermions on
the same side of the Fermi surface. The second process g2 couples fermions from
one side of the Fermi surface with fermions on the other side. However, each
species stays on the same side of the Fermi surface after the interaction (forward
scattering). Finally, the last process g1 corresponds to a ∼2kF scattering (that
is, to a backscattering) where fermions exchange sides. Note that for spinless
fermions g2 and g1 processes are identical since one can exchange the outgoing
particles (the particles are indiscernible). This is not the case if the fermions
have a spin index since in that case one wants the spin to be conserved by the
interaction and the processes g2 and g1 are different.

Let us now start with our solution. It only works if we do not have g1 pro-
cesses. For spinless fermions this is automatically achieved. For fermions with
spin this would be a brutal approximation, but there are ways to rationalize this
choice. The g2 process corresponds to a small q matrix element of the interac-
tion, whereas g1 is clearly the q ∼ 2kF component. For a local interaction the two
processes are of the same value, since the Fourier transform of a delta function
is a constant. But if the interaction is long-range, or at least non-local, the q ∼ 0
component is usually much larger. One can thus expect, at least in this case,
that keeping only g2 is a reasonable approximation. The true reason, however,
is the fact that the g1 process is a pain in the neck to treat, as we will see in the
next chapter, and one wants to start first with a soluble model. If one retains
only the g2 process then a wonderful simplification occurs. This simplification
contains interesting physics that deserves to be discussed it detail. If only g2 is
present then the chirality (that is, the right or left character of the fermions)
cannot be changed by an interaction line. Quite remarkably in that case only di-
agrams with fermion bubbles with at most two interaction lines contribute. All
the other terms cancel! This is quite extraordinary in the fermion language, and
the meaning of this miracle will only become transparent in Section 3.1 (see also
Fig. 11.9). To prove this remarkable property, let us examine the two fermionic
bubbles with three interaction lines shown in Fig. 1.10. Each time there is bubble
(a) in a diagram one has a similar diagram with bubble (b). This would not be
the case if there were only two interaction lines. In that case bubbles (a) and (b)
would be identical and appear only once in the diagrammatic expansion. Let us
evaluate bubble (a). Because the fermion cannot change chirality, the bubble is
a product of Green’s functions of, say, right going fermions.
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k,s

k',s'

k+q,s

k'−q,s'

g
4 

= V(q~0)

E

k

g
1 = V(q~2kF)

E

k

k,s

k',s'

k+q,s

k'−q,s'

g
2 = V(q~0)

E

k

k,s

k',s'

k+q−2kF,s

k'−q+2kF,s'

Fig. 1.9. The important low-energy processes of the interaction can be decom-
posed in three sectors. A full line is for a fermion with a momentum close to
+kF (right going fermion) and a dashed line for a fermion with a momentum
close to −kF (left going fermion). The notation g to designate the different
processes is historical (the so-called g-ology). For fermions with spins each
interaction can take two values (g‖, g⊥) depending on whether the spin σ and
σ′ of each fermions are equal (g‖) or opposite (g⊥).

(a) ∝
∑
ν,k

1
iν − vF k

1
i(ν + ωa) − vF (k + ka)

1
i(ν + ωa + ωb) − vF (k + ka + kb)

(1.36)
Whereas bubble (b) is

(b) ∝
∑
ν,k

1
iν − vF k

1
i(ν + ωb) − vF (k + kb)

1
i(ν + ωa + ωb) − vF (k + ka + kb)

(1.37)
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(a) (b)
k+ka+kb

inn+iwa+iwb

k+ka+kb

inn+iwa+iwb
k , inn

ka , wa kb , wbk+ka 

inn+iwa

k+kb 

inn+iwb

k, inn

ka , wa kb , wb

Fig. 1.10. Two fermionic bubbles with more than two interaction lines. These
two contributions cancel exactly due to the strictly linear dispersion relation.

Thus, normally (1.36) and (1.37) are quite different. However, because the energy
is strictly linear in the momentum and the chirality is conserved, one can rewrite
(1.36) as

(a) =
1

iωa − vF ka

∑
ν,k

[
1

iν − vF k
− 1
i(ν + ωa) − vF (k + ka)

]

× 1
i(ν + ωa + ωb) − vF (k + ka + kb)

(1.38)

performing the same operation for bubble (b) one gets

(b) =
1

iωa − vF ka

∑
ν,k

1
iν − vF k

[
1

i(ν + ωb) − vF (k + kb)

− 1
i(ν + ωa + ωb) − vF (k + ka + kb)

]
(1.39)

The second term in (1.39) is obviously cancelled by the first term in (1.38). By
shifting ν → ν + ωa and k → k + ka, which one can do unrestrictedly due to
the perfectly linear dispersion relation, the remaining term cancels as well. This,
of course, assumes that the cutoff Λ is essentially infinite. I will come back to
that point in Section 11.2. Thus, bubbles (a) and (b), which are deduced one
from the other by permuting two of the legs, cancel perfectly. If there are more
than three-legs one can show by induction that the result still holds between the
various crossings of the legs of the bubble. Note that when rewriting (1.36) as
(1.38) one has one less Green’s function depending on ν and k, thus it is similar
to a diagram with one external leg less.

As a result, a given diagram can contain bubbles and series of bubbles only.
It is as if RPA became exact. This is only true for the interaction. For a vertex
other terms do appear. Let us write in Fig. 1.11 the equations for the effective
interactions of the g4 and g2 type for our spinless fermions. For fermions with
spin the solution is essentially the same (Sólyom, 1979). The equations are

Γ4 = g4 − g4ΠRΓ4 − g2ΠLΓ2

Γ2 = g2 − g2ΠRΓ4 − g4ΠLΓ2

(1.40)
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G4

G4

G4

g4=

+

+

g4

g4

G2

G2

G2

g2

g2

g2=

+

+

Fig. 1.11. Diagrammatic equations for the effective interactions Γ4 and Γ2.
Only bubbles and string of bubbles can appear. The full line denotes a right
going fermion and a doted line a left going one.

where ΠR,L are the bubbles made of, respectively, right and left going fermions.
For example,

ΠR(iν, k) = − 1
βΩ

∑
ν′,k′

1
i(ν + ν′) − vF (k + k′)

1
iν′ − vF k′

= − 1
βΩ

∑
ν′,k′

1
iν − vF k

[
1

iν′ − vF k′
− 1
i(ν + ν′) − vF (k + k′)

]

= − 1
iν − vF k

1
Ω

∑
k′

[fF (vF k
′) − fF (vF (k + k′))]

=
−k

2π(iν − vF k)
(1.41)

Similarly, one has

ΠL(iν, k) =
k

2π(iν + vF k)
(1.42)



HOW TO SOLVE 21

Equation (1.40) is easily solved giving Γ4,Γ2 as a function of the interaction
constants g4, g2 and the Π(iνn, k). Let me give for simplicity the solution for
g4 = 0

Γ2 =
g2

1 − g2
2ΠR(iνn, k)ΠL(iνn, k)

=
g2(ν2 + v2

F k
2)

(ν2 + v2
F k

2) −
(

g2
2πvF

)2

(vF k)2
(1.43)

Note that there are now poles in the interaction for iν = ±uk where now the
velocity is

u2 = v2
F

[
1 −
(

g2
2πvF

)2
]

(1.44)

This solution has two interesting features. First, contrary to the case of free
electrons the interaction vertex has now poles for excitations with a well-defined
energy–momentum relationship. Second, the velocity of these poles is not the
free Fermi velocity but is renormalized by the interaction (compare with (2.43)).
If one had kept the spin degrees of freedom two different velocities would have
appeared, showing already that our beloved Fermi liquid is on shaky ground.
Of course, (1.43) is only the effective interaction. In order to obtain the physics
of the problem one needs to relate Γ2 to some physical quantity. To determine
such quantities one would need the exact vertex in addition to the exact in-
teraction. Fortunately, the exact vertex can be extracted using a Ward identity
(Dzyaloshinskii and Larkin, 1974; Sólyom, 1979), consequence of the conserva-
tion of particles of each chirality.

I stop here since the calculations become really intricate with little gain
compared to the simpler methods of the next chapter. This remarkable method,
which is purely fermionic, has the advantage to allow some extension to higher
dimensions (Metzner et al., 1998).

1.3.2 Renormalization solution

The Dzyaloshinskii–Larkin solution is a very nice exact solution of the model.
It suffers, however, from many limitations. The most severe one is not to be
able to be extended to fermions with spin because of the g1 processes. I thus
present another solution in the fermion representation (Anderson, 1970; Sólyom
and Zawadowski, 1974; Sólyom, 1979). This solution is not exact, but its goal is
to extract the main singularities from the perturbation theory and sum them.
Although not exact such methods have the advantage of being very flexible since
they are able to extract the dominant behavior while dropping all irrelevant
details. They illustrate the important concept of the renormalization group for
fermionic systems relatively simply.

As already pointed out, the perturbation theory in one dimension is plagued
by divergences. A very transparent way to see these divergences is to look at
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3

w4
G =

+ + (b)(a)

Fig. 1.12. Effective interaction Γ2 up to second order for spinless fermions. A
full line is a right going fermion and a dashed one a left going fermion. The
wiggly line is the bare interaction g2. All external momenta are on the Fermi
surface. The second order terms (a) and (b) correspond respectively to the
particle–particle and particle–hole channel.

the effective interaction between two particles, identical to the Γ of the previous
subsection. Let us first discuss the case of spinless fermions, taking g4 = 0 for
simplicity. In that case only the diagrams of Fig. 1.12 exist, to second order. Both
diagrams are logarithmically divergent. They can be computed by the standard
diagrammatic method and give at T = 0 ((a) and (b) refer to the two diagrams
in Fig. 1.12)

(a) =
1

2πvF
log(ωpp/E)

(b) =
−1

2πvF
log(ωph/E)

(1.45)

where E = vF Λ is the energy cutoff (the bandwidth). The frequency ωpp =
ω1 + ω2 for (a), and ωph = ω1 − ω4 for (b). We want the behavior when all
these frequencies are small compared to E and of the same order of magnitude.
Although one can perform the calculation for any frequency a simple trick is to
choose ω1 = 3ω/2, ω2 = −ω/2, ω3 = ω4 = ω/2. This satisfies the conservation of
frequencies and ensures that ωpp = ωph = ω, which simplifies some expressions.

If only type (a) diagrams were present, they could be summed up by sum-
ming the ladder type diagrams. If only type (b) diagrams were present they could
be summed by summing the bubbles. Since both diagrams are equally divergent
they should be treated on an equal footing. One should thus keep in perturbation
theory all higher-order terms where one line of interaction in (1.12) is replaced
by one of the two diagrams of Fig. 1.12. Such an approximation, which goes
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beyond the ladder and bubble summation, is known as the parquet approxima-
tion (Bychkov et al., 1966). It is a way to sum these logarithmic divergences.
Parquet leads to quite formidable integral equations. It is a pre-renormalization
group technology that I will not explore further since it has been supplanted by
a much more efficient method.

The idea of the renormalization group is quite simple and of course useful in
a host of situations. All our troubles come from the fact that we are interested in
the low -energy properties of the system. The effective interaction is of the form

Γ = g + g2 log(E/ω) (1.46)

where g is some bare coupling constant and ω the energy scale at which we are
trying to compute. Because of the log in the perturbation theory, even if we
start with a small coupling constant g, if we want the low-energy properties of
the system log(E/ω) is large and the second term (and a fortiori higher terms)
in (1.46) becomes more important than the first term. If, however, we wanted
to have high-energy properties of the system, that is, work at frequencies (or
temperatures etc.) of the order of the cutoff, the log(E/ω) would be a simple
number of order one, and provided that the coupling constant be small the per-
turbation theory would be well behaved. This remark has led to the idea of the
renormalization group. We start from a theory with some coupling constants g
and a cutoff E = vF Λ. If we could find another theory with the same low-energy
properties but with new coupling constants g′ and a lower cutoff Λ′ < Λ, then
this new theory would have a less divergent perturbation series (provided, of
course, that the new coupling constants g′ remain small) for a fixed ω. In do-
ing so we have eliminated some unimportant degrees of freedom and thus have
a new theory that is much closer to the one that describes the important de-
grees of freedom, that is, the low-energy ones. We can thus hope that the new
Hamiltonian will be simpler to understand than the original Hamiltonian. This
renormalization technique has been one of the most useful concepts in the study
of phase transitions and condensed matter in the last 30 years. It is specially
useful in condensed matter given the very large range in the typical cutoffs (a
bandwidth, typically 1 eV or 12 000K) and the energies at which one observes
the physical phenomena (typically the temperature, i.e. a few Kelvin). A com-
mon misconception is to believe that the renormalization group allows to solve
problems. All it does is help to relate one problem to another, while keeping the
low-energy physics of the two problems identical. The hope is that one of the
related problems will be easily solvable. This can happen for various reasons: (i)
One of the problems is exactly solvable. This is an incredible stroke of luck, but
not so rare in one dimension. I will discuss examples of this situation in the next
chapters. (ii) There is some approximate solution that becomes quite accurate on
one of the Hamiltonians. For example, since the cutoff is reduced, if the coupling
constants remain small, the perturbation theory is better and better behaved. It
is thus possible to use straightforward perturbation theory. But other approxi-
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mations are possible, and very often more easy to spot since in the renormalized
Hamiltonian irrelevant degrees of freedom have been eliminated.

Let us now see how it works practically. For the spinless problem the effective
interaction is

Γeff = g2 +
g2
2

2πvF
log(ωpp/E) − g2

2

2πvF
log(ωph/E) (1.47)

The effective interaction obviously controls all the low-energy properties of the
system. Thus, we want to keep Γeff invariant while changing the cutoff. If we
change E → E′

log(ωpp/E) = log(ωpp/E
′) + log(E′/E) (1.48)

and thus

Γeff = g2 +
g2
2

2πvF
log(ωpp/E

′) − g2
2

2πvF
log(ωph/E

′) (1.49)

since the logarithmic contributions log(E′/E) cancel. Note that this is obvious
if we use the special values of the frequencies that ensures ωpp = ωph. Of course,
as discussed before a different choice of frequencies will not affect the final RG
equations. The new coupling constant is simply in that case

g2(E′) = g2(E) (1.50)

since all logs vanish. If we define the cutoff as Λ(l) = Λ0e
−l (and a similar formula

for E = vF Λ) we can make the infinitesimal transformation l → l+ δl. With this
variable (1.50) can be rewritten as

dg2(l)
dl

= 0 (1.51)

We thus see that the forward scattering g2 is not renormalized but stays the same
at any lengthscale. This is consistent with the analysis of the previous section
that g2 drastically changes the properties compared to a free electron gas.

Before we analyze the physical consequences, and because of the simplicity
of the method, let us seize the occasion to go one step further and write the
interaction process for the system with spins. In that case because the density is

ρ(x) = ρ↑(x) + ρ↓(x) (1.52)

one should rewrite the processes of Fig. 1.9, with a spin index on each fermion
line. Thus, each process g can now be different depending on whether the spin
on the two fermion lines are parallel g‖ or antiparallel g⊥. For interactions that
respect spin rotation invariance g‖ = g⊥, but one might want to consider more
general processes. To illustrate the method I set g4 = 0 for simplicity. We will
examine in detail the effects of such processes in the next two chapters. We are
thus left with the g2 and g1 processes. Since we have spin, we cannot transform
the g1⊥ process into a g2 one. However, a g1‖ is identical by permutation of two
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w1,g

w2,d

w3,a

w4,b
G

Fig. 1.13. The effective interaction. α, β, γ, δ are the spin indices of the four
legs. To ensure that the frequency transfers in the particle–particle and the
particle–hole channels are identical, which simplifies expressions, one can take
ω1 = 3ω/2, ω2 = −ω/2, ω3 = ω4 = ω/2.

fermion lines to a g2‖ process. Thus, in defining the effective interaction we have
to find a way to separate these two processes. One possible way is to define the
effective interaction as

Γαβδγ = Γ1‖δαγδβδδαβ + Γ1⊥δαγδβδδα,−β − Γ2δαδδβγ (1.53)

where α, β, γ, δ denote the spins on the four fermion lines as shown in Fig. 1.13.
This definition fixes all g2 processes to be isotropic and to put all the difference
between g2‖ and g2⊥ as a g1‖ process. It is easy to check that the spinless fermion
case is recovered by taking all perpendicular interactions to zero (the two spin
species do not talk to each other). This gives g2 = 0 (since g2 should be isotropic)
and g1⊥ = 0. g1‖ plays in that case the role of −g2 in the previous analysis.

With this prescription it is possible to identify each term in the perturbation
series. At second order in the interaction the effective interaction is given by the
diagrams of Fig. 1.14. Let us write the equation for g1‖

Γ1‖ = g1‖ −
2g2

1⊥
2πvF

log(E/ω) (1.54)

and thus upon a change of the cutoff

Γ1‖ = g1‖ −
g2
1⊥
πvF

log(E/E′) − g2
1⊥
πvF

log(E′/ω) (1.55)

To keep the effective vertex invariant one has thus to change the interaction g1‖
as

g1‖(E′) = g1‖(E) − g2
1⊥(E)
πvF

log(E/E′) (1.56)

A similar equation for g1⊥ gives

g1⊥(E′) = g1⊥(E) −
g1⊥(E)g1‖(E)

πvF
log(E/E′) (1.57)
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Fig. 1.14. Diagrams entering, up to second order, into the effective interaction
between two particles. To obtain the value of the diagram one should multiply
the value given in the above table by A = − 1

2πvF
log(E/ω).

Introducing the dimensionless variables y = g/(πvF ), the full set of equations
for fermions with spins is thus

dy2(l)
dl

= −y
2
1⊥(l)
2

dy1‖(l)
dl

= −y2
1⊥(l)

dy1⊥(l)
dl

= −y1‖(l)y1⊥(l)

(1.58)

These equation will be analyzed in great detail in the next chapter. I thus inves-
tigate here some simple consequences only.

As is obvious from (1.58), the combination yρ = y1‖ − 2y2 is invariant un-
der renormalization. This combination is the equivalent of (1.51) for spinless
fermions. As we will see in the following chapters this is the combination of
interactions that controls the charge sector of the system (see (2.105)). The
interactions y1‖ and y1⊥ control the spin sector, and have non-trivial renormal-
ization. As expected, for a system with spin rotation invariance y‖ = y⊥, the
spin rotation invariance is preserved under renormalization. For a system with
such spin rotation invariance, the equation for y1 = y1‖ = y1⊥ is

dy1(l)
dl

= −y2
1(l) (1.59)

whose solution is obviously

y1(l) =
y1(l = 0)

1 + y1(l = 0)l
(1.60)
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c =
g2

+

+

g1||

+

g1⊥

Fig. 1.15. Charge susceptibility, up to first-order in the interaction. One should
add to the diagrams shown in the figure the equivalent diagrams where all
spins are reversed to get the full χ.

We thus see that if we start from an arbitrary interaction, which gives rise to
g2 and g1 terms, as we focus on the low-energy properties of the system, yρ

stays unchanged, whereas the backward scattering renormalizes to zero. The
low-energy properties of a physical system will thus be similar to the one of a
system with only forward scattering. We know how to solve such systems, for
example by using the Dzyaloshinskii–Larkin method. This is an example where
the RG allows us to simplify the original model and realize that the low-energy
properties are in fact equivalent to the ones of a simpler model that we know
how to solve.

Let us see how one can extract the physical properties of the system directly
from the RG itself. Let us compute, for example, the charge susceptibility χ(q =
2kF , ω), which we argued should be singular for the interacting system. It is
given by the diagrams of Fig. 1.15. It gives up to first-order in the interaction

χ(Q = 2kF , ω) =
1
πvF

log(ω/E)[1 +
1

2πvF
(g1‖ + g1⊥ − g2) log(ω/E)] (1.61)

As we will see in Section 4.4, χ(Q = 2kF , ω) does not obey a simple RG equation.
The correct quantity to renormalize is (Sólyom, 1973; Sólyom, 1979)

χ(ω) = πvF
dχ(Q = 2kF , ω)

d log(ω)
(1.62)

Thus, χ(ω) obeys an equation of the form
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χ(ω) = 1 + 2y log(ω/E) (1.63)

where y stands for the various dimensionless coupling constants g/(πvF ). Chang-
ing the cutoff from E = E0e

−l to E′ = E0e
−(l+dl) allows us to write the RG

equations for log(χ) at first-order in the coupling constants

d logχ(l)
dl

= y1‖(l) + y1⊥(l) − y2(l) (1.64)

Let us consider the spin isotropic case. In that case we could just substitute the
solution (1.60) in (1.64) and integrate. Let us here brutally simplify the equation
by setting y1‖ = y1⊥ = 0. A more refined treatment will be seen in Section 4.4.
Since y2 is independent of l the remaining equation can be easily solved

log(χ(l)/χ(l = 0)) = −y2l (1.65)

We want to obtain χ(l = 0), that is, the correlation function for the original
cutoff. We should just find an l such that we can compute χ(l). This is easily
achieved when the renormalized cutoff is of the order of ω, that is, for

l∗ = log(E0/ω) (1.66)

in that case χ(l) can straightforwardly be computed from the perturbation for-
mula (1.63) and χ(l∗) ∼ 1. Thus,

χ(ω) = ey2l∗ =
(
E0

ω

)y2

(1.67)

Integrating one last time, using (1.62) and the fact that for ω = E0, χ(ω) = 0
(see (1.61)) one gets

χ(Q = 2kF , ω) � 1
πvF y2

[
1 −
(
E0

ω

)y2
]

(1.68)

It is easy to see that an expansion in powers of y2 reproduces the perturbative
result (1.61) as it should. However, we now see that if one looks at the low-energy
properties ω → 0, the correlation function diverges as a power law, with non-
universal exponents depending on the interactions. This is in marked contrast
with a Fermi liquid behavior, where χ(Q = 2kF , ω) ∼ log(ω/E). We will, of
course, discuss the physics in detail in the next chapter, after having rederived
this result by more convenient methods.

It is possible to push the expansion to higher-order and thus to obtain the
exponents in (1.68) in a systematic expansion in the interaction y2. I refer the
reader to (Sólyom, 1979; Chitov and Bourbonnais, 2002) for more on this point.




