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Some bare numbers and
unsettling questions

0.1 Goal of the game

Condensed matter physics is a remarkable domain where the effects of quantum mechanics
combine with the presence of a very large (∼ 1023) coupled degrees of freedom. The interplay
between these two ingredients leads to the richness of phenomena that we observe in every-
day’s materials and which have led to things such useful in our daily life as semiconductors
(transistors, computers !), liquid crystals (flat panel displays), superconductivity (cables and
magnets used in today’s MRI equipments) and more recently giant magnetoresistance (hard
drive reading heads).

When looking at this type of problems, one important question is how should we model them.
In particular one essential question that one has to address is whether the interaction among
the particles is an important ingredient to take into account or not. The answer to that question
is not innocent. If the answer is no, then all is well (but perhaps a little bit boring) since all we
have to do is to solve the problem of one particle, and then we are done. This does not mean
that all trivial effects disappear since fermions being indistinguishable have to obey the Pauli
principle. But it means at least that the heart of the problem is a single particle problem and
excitations. This is what is routinely done in all beginner’s solid state physics course, where all
the properties of independent electrons are computed.

If the answer to the above questions is no, then we have a formidable problem, where all degrees
of freedom in the system are coupled. Solving a Schroedinger equation with 1023 variables is
completely out of the question, so one should develop tools to be able to tackle such a problem
with some chance of success.

What is the appropriate situation in most materials is thus something of importance, and one
should address in turn the following points

1. Are the quantum effects important in a solid at the one particle level. Here there is no
surprise, the answer for most metals is yes, given the ratio of the typical energy scale in
a solid (∼ 10000K) due to the Pauli principle, compared to the standard thermal energy
scale (∼ 300K)

2. From a purely empirical point of view, does the independent electron picture works to
explain the properties of many solids.

3. From a more theoretical point of view can one estimate the ratio of the interaction energy
(essentially the Coulomb interaction in a solid) to the kinetic energy and work out the
consequences of such interactions.

1



2 Introduction Chap. 0

The answer to the first question is without surprise, and can be found in all standard textbooks
on solid state physics. The answer to the second question is much more surprising, since in
practice the free electron theory works extremely well to describe most of the solids. When
one is faced with such a fact the standard reaction is to think that the interactions are indeed
negligible in most solid. Unfortunately (or rather quite fortunately), this naive interpretation
of the data does not corresponds with a naive estimate of the value of the interactions. One is
thus faced with the formidable puzzle to have to treat the interactions, and also to understand
why, by some miracle they seem to magically disappear in the physical observables. The miracle
is in fact called Fermi liquid theory and was discovered by L. D. Landau, and we will try to
understand and explain the main features of this theory in these lectures.

The first part of these lectures will thus be devoted to set up the technology to deal with
systems made of a very large number of interacting quantum particles (the so-called many
body physics). We will use this technology to understand the theory of Fermi liquids.

In the second part we will see cases where the Fermi liquid theory actually fails, and where
interaction effects leads to drastically new physics compared to the non interacting case. This
is what goes under the name of non-Fermi liquids or strongly correlated systems.

0.2 Bibliography

The material discussed in these notes can be in part found in several books. Here is a partial
bibliographical list:

• Basics of solid state physics [Zim72, Kit88, AM76]

• Many body physics: the techniques of many body are well explained in the book [Mah81]
(which is going beyond the techniques we will see in this course) The course will mostly
follow the notations of this book.

• Fermi liquid theory: The first chapters of [Noz61]. At a more advanced level [PN66] or
[AGD63].

• A good (yet to be) “book” concerning the topics discussed in this course can be found on
line at

http://www.physics.rutgers.edu/~coleman/mbody/pdf/bk.pdf

0.3 Disclaimer

Warning !!!!!!
These notes are in progress and still contains several bugs, and should not be treated as some
kind of sacro saint text. So don’t buy blindly what is in it, and in case of doubt don’t hesitate
to recheck and correct the calculations using your own notes. And of course do not hesitate
to ask if needed. This is certainly the best way to really learn the material described in these
lectures.



Part I

Electronic properties of metals:
Fermi liquids
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CHAPTER 1

Basics of basic solid state physics

The goal of this chapter is to review the salient features of noninteracting electrons. This
will useful in order to determine whether the interactions lead or not to drastic changes in
the physics. We will also estimate the order of magnitude of the interactions in a normal
metal, starting from the Coulomb interaction and recall the main differences between Coulomb
interactions in the vacuum and in a solid.

1.1 Non interacting electrons

Most of the material in this chapter is classical knowledge of solid state physics [Zim72, Kit88,
AM76]. We will however use as soon as possible the proper technology to perform the calcula-
tions.

1.1.1 Free electrons

The simple case of free electrons allows us to introduce most of the quantities we will use. Let
us consider free electrons described by the Hamiltonian

H =
P 2

2m
(1.1)

The eigenstates are the plane waves |k〉, defined by

〈r|k〉 =
1√
Ω
eikr (1.2)

where Ω is the volume of the system. The corresponding eigenvalue is

εk =
~2k2

2m
(1.3)

In addition to the above orbital part, the electron possesses a spin 1/2. A complete basis of the
spin degrees of freedom is provided by the two eigenstates of one of the spin component. One
usually takes the Sz one, and we define the corresponding basis as |↑〉 and |↓〉 The ensemble α
of quantum numbers needed to fully characterize the electrons is thus its momentum and its
spin α = (σ,k).

For a system of finite size the values of k are quantized by the boundary conditions. In
the limit of a very large size the precise boundary condition does not matter so we will take
periodic boundary conditions for simplicity. This means that for a system of linear dimensions
L (the volume being Ω = Ld for a system in d dimensions), the wavefunction ψ must satisfy

5



6 Basics of basic solid state physics Chap. 1

ψ(x + L) = ψ(x) and similar relations in all directions. This imposes that each component of
k is of the form

kl =
2πml

L
(1.4)

where the ml are integers for l = 1, . . . , d with d the dimension of the system.

At zero temperature the Pauli principle states that each quantum state is occupied by at most
one fermion. One thus starts to fill the lowest energy levels to accommodate the N electrons of
the system. One thus fills the energy level up to the Fermi energy EF and up to a momentum
kF such that εkF = EF. At finite temperature, the states are occupied with a probability that
is given by the Fermi-Dirac factor

fF(ε) =
1

eβ(ε−µ) + 1
(1.5)

where µ is the chemical potential. The total number of electrons in the system is given by

N =
∑
kσ

fF(εk) (1.6)

The sum over the integers can be simplified in the large L limit since the values of ki are nearly
continuous. Using (1.4) one gets ∑

k

→ Ω

(2π)d

∫
dk (1.7)

One has thus (the sum over the spin degrees of freedom simply giving a factor of two)

N =
Ω

(2π)3

4π

3
k3

F (1.8)

one can thus introduce the density of particles n = N/Ω and n = k3
F/(6π

2).

The existence of a Fermi level is of prime importance for the properties of solids. Let us put
some numbers on the above formulas. Some numbers for the Fermi energy and related quantities
will be worked out as an exercise.

A specially important quantity is the density of states N (ε) or the density of states per unit
volume n(ε) = N (ε)/Ω. N (ε)dε measures the number of states that have an energy between
ε and ε + dε. Its expression can be easily obtained by noting that the total number of states
with an energy lower than ε is given by

L(ε) =
∑
α

θ(ε− εα) (1.9)

where εα denotes the energy of the state with quantum numbers α. The density of states is
obviously the derivative of this quantity, leading to

N (ε) =
∑
α

δ(ε− εα) (1.10)

As an illustration we will recompute the density of states for free fermions in any dimension.

N (ε) =
∑
σ,k

δ(ε− ~2k2

2m
)

=
2Ω

(2π)d

∫
dkδ(ε− ~2k2

2m
)

(1.11)
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We now use the very convenient formula for δ functions

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi) (1.12)

where the xi are the zeros of the function f (i.e. f(xi) = 0).

Since the energy depends only on k2 it is convenient to use spherical coordinates. One has∫
dk =

∫∞
0
kd−1dkSd where Sd is the surface of the unit sphere [S1 = 2, S2 = 2π, S3 = 4π and

1/Sd = 2d−1πd/2Γ(d/2)] and thus

N (ε) =
2Ω

(2π)d
Sd

∫ ∞
0

dk kd−1 m

~2k
δ(k −

√
2mε

~
)

=
2ΩSdm

~2(2π)d

∫ ∞
0

dk kd−2δ(k −
√

2mε

~
)

=
2ΩSdm

~2(2π)d

(
2mε

~2

) d−2
2

(1.13)

for ε > 0 and zero otherwise. One thus sees that the density of states behaves in three dimensions
as n(ε) ∝ ε1/2 while it is a constant in two dimensions and has a 1/

√
ε singularity at the bottom

of the band in one dimension. In three dimensions the density of states per unit volume is (with
the factor 2 coming from the spin degrees of freedom included)

n(ε) =
m

2π2~2

(
2mEF

~2

)1/2

=
3

2

n

EF
(1.14)

Given the relative energies of EF and, say, the temperature, most of the excitations will simply
be blocked by the Pauli principle, and the ones that will play a role will be the ones close to the
Fermi level. This simple fact is what gives to most solids their unusual properties, and allow
for quantum effects to manifest themselves even at high (by human standards) temperature.

1.1.2 Electrons in periodic potentials: band theory

One of the most important features in solids is the presence of the potential imposed by the
crystalline structure of the solids. The ions, charged positively act as a periodic potential on
the electron and lead to the formation of energy bands.

There are two ways to view the formation of bands. The first one is to start from the free
electrons and add a periodic potential on them. The total Hamiltonian of the system becomes

H =
P 2

2m
+ V0 cos(QX) (1.15)

where for simplicity we have written the periodic Hamiltonian in one dimension only. As

explained in the previous section, the solutions of the P 2

2m term are plane waves with a given
momentum k. In order to understand the effect of the perturbation V0 one can use simple
perturbation theory. The perturbation is important when it couples states that have degenerate
energy, which means that the states −Q/2 and Q/2 will be strongly coupled.

We will not follow this route here but look at the second way to obtain the main features
of bands, namely to start from the opposite limit where the electrons are tightly bound to
one site. Around the atom the electron is characterized by a certain atomic wavefunction
〈r|φi〉 = φ(r− ri) that is not very important here. If the wave function is tightly bound around
the atom then the overlap between the wavefunctions is essentially zero

〈φi|φj〉 = δij (1.16)
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   Unfiled Notes Page 1    

Figure 1.1: a) independent electrons; b) small overlap between the wavefunctions which defines
the hopping integral t.

we assume in the following that the energy corresponding to this atomic wavefunction is E0.
This is shown in Fig. 1.1

In the following we will forget the notation |φi〉 and simply denote the corresponding wavefunc-
tion by |i〉 to denote that this is the wavefunction around the i-th atom (centered on point ri).
The full state of the system is thus described by the basis of all the functions |i〉 and the energy
of the problem would be

H =
∑
i

E0|i〉〈i| (1.17)

Of course the wave functions between different sites are not completely orthogonal and there
is a small overlap. The dominant one is of course the one between nearest neighbors but this
can depend also on the shape of the individual atomic functions that could also favor some
directions. This small overlap ensures that |i〉 is not an eigenstate of the Hamiltonian but that
the matrix element tij = 〈i|H|j〉 is finite. The tight binding approximation consists in keeping
this matrix element while still assuming that the direct overlap between the wavefunctions is
zero (1.16). Physically tij describes the amplitude of tunnelling of a particle from the site ri
to the site rj . It is important to note that systems such as cold atomic gases in optical lattices
are excellent realizations of such a tight binding model. The Hamiltonian becomes

H =
∑
i

E0|i〉〈i| − t
∑
〈i,j〉

|i〉〈j| (1.18)

where we have here for simplicity only retained the overlap between nearest neighbors (denoted
by 〈i, j〉). The first term is the energy of the degenerate atomic levels while the second term t
describes the tunnelling between the different sites. The particles will thus delocalize to gain
energy from the second term.

In order to solve the Hamiltonian (1.18) one notices that this Hamiltonian is invariant by
translation. This means that the momentum is a conserved quantity, and one can simultaneously
diagonalize the momentum operator and the Hamiltonian. The eigenstates of the momentum
being plane waves, it means that it will be convenient to work in the Fourier space to get a
simpler, and hopefully diagonal Hamiltonian. We use

|k〉 =
1√
Ns

Ns−1∑
j=0

eikrj |j〉

|j〉 =
1√
Ns

∑
k

e−ikrj |k〉
(1.19)
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where Ns is the number of lattice sites. For simplicity we have confined ourselves to one
dimension, the generalization being obvious.

Two conditions constraint the allowed values of k. One is the usual quantification condition
inside the box k = 2πn

L where n is a relative integer. As usual in Fourier transform large
distances give a condition on the small values of k. Contrarily to the case of the continuum
there is here a second condition coming from the fact that the space is discrete and that rj = aj
where j is an integer can only take a set of discrete values. In order to get vectors |j〉 that are
different from the second relation in (1.19) it is necessary for the coefficients in the sum to be
different. It is easy to see that translating the value of k by 2πp

a where p is an integer leaves the
exponentials unchanged and thus correspond in fact to identical |k〉. One must thus restrict
the values of k in an interval of size 2π/a. Here it is the small values of r that block the large
values of k. One can take any interval. In order to have the symmetry k → −k obvious it is
convenient to choose [−π/a,+π/a] which is known as the first Brillouin zone. All other values
of the k can be deduced by periodicity. The total number of allowed k values is

2π

a

L

2π
=
L

a
= Ns (1.20)

which is indeed the number of independent states in the original state basis.

Using this new basis we can work out the Hamiltonian. Let us first look at the term

Hµ = −µ
Ns−1∑
j=0

|j〉〈j| (1.21)

Using (1.19) this becomes

Hµ = −µ 1

Ns

Ns−1∑
j=0

∑
k1

∑
k2

ei(k1−k2)rj |k1〉〈k2| (1.22)

The sum over j can now be done

1

Ns

Ns−1∑
j=0

ei(k1−k2)rj (1.23)

If k1 = k2 the sum is obviously 1. If k1 6= k2 then one has a geometric series and the sum is

ei(k1−k2)aNs − 1

ei(k1−k2)a − 1
(1.24)

which is always zero given the quantization condition on k. One has thus that the sum is δk1,k2 .
This gives

Hµ = −µ
∑
k

|k〉〈k| (1.25)

as could be expected the Hamiltonian is diagonal. This could have been even directly written
since this is just a chemical potential term counting the total number of particle which can be
expressed in the same way regardless of the base (this is just the closure relation).

Let us now look at

H = −t
Ns−1∑
j=0

(|j〉〈j + 1|+ h.c.) (1.26)

a similar substitution now leads to

H = −t 1

Ns

Ns−1∑
j=0

∑
k1

∑
k2

ei(k1−k2)rjeik2a|k1〉〈k2|+ h.c. (1.27)
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which after the sum over j has been made leads to

H = −t
∑
k

2 cos(ka)|k〉〈k| (1.28)

The transformed Hamiltonian, known as the tight-binding Hamiltonian thus reads

H = −t
∑
k

2 cos(ka)|k〉〈k|+ E0

∑
k

|k〉〈k| (1.29)

As could be expected it is diagonal in k. This is because the initial Hamiltonian is invariant by
translation and we have here only one state per unit cell. Thus the number of eigenstates in
each k sector is only one. If one has had two atoms per unit cell, going to Fourier space would
have reduced the Ns×Ns matrix to a 2× 2 to diagonalize and so on. It is thus very important
to notice the symmetries of the Hamiltonian and to use them to find the proper base.

The Hamiltonian (1.29) contains the atomic energy E0. In the absence of hybridization the
ground state is Ns times degenerate since the electrons can be put on each site. When there
is hybridization t the electrons can gain energy by delocalizing (another expression of the
uncertainty principle), which leads to the formation of energy bands. The tight binding is thus
a very simple description that encompasses all the properties of the bands: counting the number
of states, the proper analytical properties for the energy etc.

The generalization of the above formula to a square or cubic lattice is straightforward and gives

ε(k) = −2
∑
l

tl cos(klal) (1.30)

where l denotes each coordinate axis. Close to the bottom of the band one can expand the
cosine to get an energy of the form

ε(k) = E0 − 2t+ tk2 (1.31)

this allows to define an effective mass m∗ = 1/(2t) by analogy with the energy of free electrons.
Here the “mass” has nothing to do with the real mass of the electron but simply describes the
facility with which the electron is able to move from one site to the next. The mass can (and in
general will) of course be anisotropic since there is no reason why the overlap of atomic orbital
in different directions be the same.

It is worth noticing that the filling of the band is crucial for the electronic properties of the
system. A system which has one electron per site will fill half of the allowed values of k in the
band (because of the spin one value of k can accommodate two electrons of opposite spins). One
has thus a half filled band, which usually gives a very good density of states at the Fermi level.
One can thus expect, based on independent electrons, in general systems with one electron per
site to be good metals. On the contrary a system with two electrons per site will fill all values
of k and thus correspond to an insulator, or a semiconductor if the gap to the next band is not
too large. It was a tremendous success of band theory to predict based on band filling which
elements should conduct or not.

1.1.3 Thermodynamic observables

Let us now examine some of the physical consequences for physical observables of this peculiar
features of the electron gas.

A very simple thermodynamic quantity that one can compute is the specific heat of the solid.
The specific heat is simply the change in energy (heat) of the system with respect with the
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Figure 1.2: The difference in energy between a system at T = 0 and T finite is due to the
thermal excitations of particles within a slice of kBT around the Fermi energy EF. All the
others are blocked by the Pauli principle.

temperature. The total energy per spin degree of freedom is given by

E(T ) =
∑
k

fF(ε(k)− µ(T ))ε(k), (1.32)

while the chemical potential is given by the conservation of the total number of particles

N =
∑
k

fF(ε(k)− µ(T )). (1.33)

Notice that in these equations what is fixed is the number of particles, and therefore the chemical
potential depends on temperature. Even if one normally uses the grand-canonical ensemble to
obtain Eqs. (1.32) and (1.33), they are also valid in the canonical ensemble, by fixing N .
Differentiating (1.32) with respect to T gives the specific heat. The full calculation will be done
as an exercise. We will here just give a qualitative argument, emphasizing the role of the Fermi
surface.

When going from T = 0 to the small temperature T , particle in the system will gain an energy
of the order of kBT since they can be thermally excited. However the Pauli principle will block
most of such excitations and thus only the particles that are within a slice of kBT in energy
around the Fermi energy can find the empty states in which they can be excited as indicated
in Fig. 1.2. The number of such excitations is thus

∆N(T ) = kBTN (EF) (1.34)

and the gain in energy is
∆E(T ) = k2

BT
2N (EF) (1.35)

leading to a specific heat (at constant volume)

CV (T ) ∝ k2
BN (EF)T (1.36)

The Pauli principle and the large Fermi energy compared to the temperature thus directly
imply that the specific heat of an independent electron gas is linear in temperature. The pro-
portionality coefficient γ is, up to nonimportant constants directly proportional to the density
of states at the Fermi level. This is the first illustration of something that we will encounter
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often: because of the Pauli principle, most of the states are blocked and thus useless. Only a
very small fraction of the electron, close to the Fermi level contributes to the physical observ-
ables. This is a very important point, since it means that we can essentially ignore, in most
cases, most of the precise details of the band structure and kinetic energy, provided that we
know what is the density of states at the Fermi level. In practise, because the energy scale that
we are probing (here the temperature) is usually much smaller than the typical energy scale
over which the density of state varies we can consider that this quantity is a constant.

The linear dependence of the specific heat of the fermions, is a spectacular manifestation of the
Pauli principle. Indeed let us assume instead that our electrons were classical particles. Then
we could compute the total energy using the equipartition, and the fact that this is 1

2kBT per
degree of freedom. We would have

Ccl
V (T ) =

1

2
NkB (1.37)

which using (1.14) would lead to

Cel/Ccl ≡
π2

3

(
kBT

EF

)
(1.38)

which would lead easily at temperatures of the order of 10K but even at ambient temperature
to an error of several orders of magnitude.

Let us now move to another thermodynamic quantity namely the compressibility. Normally
the compressibility (at constant temperature) of a system is the way the volume varies when
one varies the pressure, namely

κ = − 1

Ω

(
dΩ

dP

)
T

(1.39)

where the 1
Ω normalization is to define an extensive quantity independent of the volume of the

system, and the minus sign is a simple convention to get positive numbers since most systems
have a diminishing volume when the pressure increases.

This thermodynamic definition of the compressibility is quite inconvenient to work with for the
electron gas. However one can relate the compressibility to

κ =

(
dN
dµ

)
T

(1.40)

At zero temperature the compressibility can be readily computed by noting that

N =

∫ µ

−∞
dεN (ε) (1.41)

and thus
κ = N (EF) (1.42)

as is obvious from Fig. 1.3.

One notes that again, only the density of states at the Fermi level enters in the value of the
compressibility (up to non important factors, that are independent of the physical system
considered). This is again a consequence of the Pauli principle. Insulators for the which the
density of states is zero at the Fermi level are incompressible. If the chemical potential is varied
no additional electron can enter the system. A naive picture of this could be to say that if we
have already two electrons per site (a filled band) then there is no “place” where one could
squeeze an additional electron. Alternatively a metal, which has a finite density of states at
the Fermi level can accommodate additional electrons when the Fermi level is increased. The
same image would apply since in that case the band would be partly filled and one would have
places with zero or only one electro where one could insert additional particles.
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Figure 1.3: Change of number of particles for a change of chemical potential
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Figure 1.4: Cartoon of incompressibility. A system with a half filled band has many sites where
an additional electron could be added and is thus compressible (left). On the other hand a
filled band corresponds to two electron per site. No additional electron could be added even if
the chemical potential is increased. The system is incompressible.
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Figure 1.5: Cartoon of susceptibility. The energy levels of the two spin species are shifted up
and down (green curve) in the presence of a magnetic field, compared to the zero field case (blue
curve). This is equivalent in saying that the two spin species see a different chemical potential
(dashed red line) than the true chemical potential (red line). This creates an imbalance of
populations and thus a magnetization.

Finally for a solid the last simple useful thermodynamic quantity is the magnetic susceptibility.
Quite generally the magnetic susceptibility is the way the magnetization varies when an external
magnetic field is applied on the system

χ =

(
dM

dH

)
T

(1.43)

The main source of magnetization in the solid is provided by the spins of the electrons (there
are also orbital effects but let us ignore those for the moment). The magnetization per spin is
given by

m = gµBσ (1.44)

where µB is the Bohr magneton, a quantity depending on the unit system, allowing the con-
version of orbital moments into magnetic moments, and g the Lande factor is a dimensionless
number telling for each particle how the orbital moment converts into a magnetic moment
(g ' 2 for the electron in a vacuum). The energy gained by the spins when coupled with an
external magnetic field is thus

HB = −B ·
∑
i

N gµBσi (1.45)

Applying the field in the z direction and using the fact that for a spin 1/2 only two quantized
values of the spin are possible one obtains

HB = −gµB

2
B(N↑ −N↓) (1.46)

The energies for each up (resp down) spins is thus shifted by ε(k)→ ε(k)∓ (gµB)B. As shown
in Fig. 1.5 this implies, since the chemical potential remains unchanged that more spin up and
less spin downs will be present in the system. In a total similarity with the compressibility

∆N↑,↓ = ±N (EF)
gµB

2
B (1.47)

leading to a variation of magnetization due to the spins

∆Mz =
(gµB)

2
(∆N↑ −∆N↓) = B

(gµB)2

4
N (EF) (1.48)
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and thus to a spin susceptibility

χ =
(gµB)2

4
N (EF) (1.49)

We again see that only the states very close to the Fermi level contribute, which implies that
the spin susceptibility is again controlled by the density of states at the Fermi level.

This little survey of noninteracting electrons thus disclosed various important facts that consti-
tute the essence of what a non-interacting electron gas looks like, and that we can summarize
below. These properties will of course be crucial to set a frame of comparison with the case of
interacting particles.

The ground state of the system is a Fermi sea with a certain number of states occupied, the
other are empty at zero temperature. There is a sharp separation between these two set of
states and in particular a discontinuity in the occupation factor n(k) at the Fermi level kF. For
a non interacting electron gas all states below the Fermi energy are occupied with probability
one, all states above with probability zero.

The thermodynamics corresponding to this state, dominated by the Pauli principle, leads to

1. A specific heat that is linear in temperature CV ∝ γT for temperatures much smaller
than the Fermi energy (T � EF)

2. A charge compressibility that goes to a constant κ0 at zero temperature.

3. A spin susceptibility that goes to a constant χ0 at zero temperature.

For noninteracting electrons, these three constants γ, κ0 and χ0 are up to non system dependent
constants simply the density of states at the Fermi level N (EF).

Finally the excitations above the ground state are easy to identify for the case of independent
electrons. They consist is adding an electron in an eigenstate of momentum k and spin σ, or in
removing one electron from the occupied states below the Fermi level (in other words creating
a hole), again with a well defined momentum and spin.

1.2 Coulomb interaction

Let us now turn to the effects of the interactions. The dominant interaction in a solid is provided
by the Coulomb interaction between the charges. There is the interaction between the electrons
and the ions (positively charged) of the lattice, and also of course the interaction between the
electrons themselves.

The first part is already partly taken into account when one computes the bandstructure of
the material, and thus incorporated in the energy and the density of states. Of course this is
not the only effects of this interaction and many additional effects are existing, in particular
when the lattice vibrates. But the main part of the electron-ion interaction is already taken
into account.

The electron-electron interaction is a totally different matter since it directly gives an interaction
between all the 1023 particles in the what was our band for independent electrons. How much
remains of the free electron picture when this interaction is taken into account is what we need
to understand.
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1.2.1 Coulomb interaction in a solid

Let us first look what the Coulomb interaction does in a solid. One could think naively that this
is the same thing than for two charges in the vacuum, but this would be too naive since there
are plenty of mobile charges around and thus they can provide screening of the interaction.

In order to study the Coulomb interaction let us compute the potential V (r) created by a test
charge Q placed at the origin of the solid. The potential obeys the Poisson equation

∆V (r) +
ρ(r)

ε0
= 0 (1.50)

where ρ(r) is the charge density of all the charges in the solid. In the vacuum one has simply

ρ(r) = Qδ(r) (1.51)

and the solution of (1.50) is simply

V (r) =
Q

4πε0r
(1.52)

In a solid, in addition to the test charge there are the charges present of the solid. This includes
the electrons and the ions. All these charges will be affected by the presence of the test charge
Q and will try to get closer or move away from her. In order to make a simple calculation let
us assume for the moment that the ions are massive enough not to move, and besides that they
are simply providing a uniform positive potential to ensure the total charge neutrality with the
electrons. This model is known under the name of jelium model. The total density of charges
is thus

ρ(r) = Qδ(r) + [ρe(r)− ρ0] (1.53)

where ρe(r) is the electronic charge and ρ0 the uniform background provided by the ions.
Calling e the charge of the electron, n0 the density of electrons and n(r) the particle density at
point r one has

ρ(r) = Qδ(r) + e[n(r)− n0] (1.54)

Since the electrons are mobile, the density of the electrons at a given point depends on the actual
electrostatic potential at that point making (1.50) a rather complicated equation to solve. To
get a simple solution, let us make an approximation known as the Thomas-Fermi approximation.
Namely we will assume that the external potential V (r) is varying slowly enough in space so
that one can consider each little volume of electrons as an independent system, subjected to
a uniform potential V (dependent on the point). This is sketched in Fig. 1.6. Typically the
“important” electrons being the ones at the Fermi level, one can imagine that the relevant set
of wavevectors is kF and thus the corresponding lengthscales is k−1

F . For typical metals this is
a scale of the order of the thenth of nanometers. As long as V (r) varies more smoothly than
that one could expect the Thomas-Fermi approximation to be a good one. If we admit this
approximation, then each little volume of electron has, in addition to its kinetic energy, the
electrostatic contribution of the total charge eΩn in the potential V

HV = −ΩeV n (1.55)

Thus each energy level of each electron in the little volume is shifted by ε(k) → ε(k) − eV n,
which by the same reasoning as in the previous chapter leads to a variation of density which is

∆n = eV nN (EF) (1.56)

Electrons are attracted to regions of positive electrostatic potential, while they are repelled
from regions with negative ones. The essence of the Thomas-Fermi approximation is that we
can use this formula for each “point” in space and thus

∆n(r) = eV (r)N (EF) (1.57)
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Figure 1.6: In the Thomas-Fermi approximation the potential is supposed to vary sufficiently
slowly over the characteristics lengthscales of the electron gas that each little volume surround-
ing a point in space can be viewed as a whole thermodynamic system, seeing the uniform
potential V (r)→ V .

which gives us the needed equation to relate the density of charge and the electrostatic potential.
The variation of density due to the potential is exactly n(r) − n0 since in the absence of the
test charge the electron gas is homogeneous and its uniform density neutralizes exactly the one
of the ions. One thus has

∆V (r) +
Qδ(r) + e2N (EF)V (r)

ε0
= 0 (1.58)

To solve this equation it is important to recognize that this is a linear equation. This should
start a Pavlovian reflex that immediately induce the use of Fourier transform. Indeed one the
great interest of Fourier transform is to transform differentiation into simple multiplications,
and thus allowing to replace a differential equation by a simple algebraic one. In that case one
uses

V (r) =
1

Ω

∑
k

V (k)eikr (1.59)

A word on the notations. We will always denote the sums over k by a discrete sum, thus
implicitly taking into account a quantization in a large box. For the case when the volume goes
to the infinity one simply replaces

∑
k →

Ω
(2π)2

∫
dk. The direct Fourier transform is

V (k) =

∫
Ω

drV (r)e−ikr (1.60)

One can either substitute (1.59) in (1.58) or perform the Fourier transform of the equation. Let
us do the later to detail the calculation. The Fourier transform of the equation becomes∫

dre−ikr[∆V (r)] +
Q

ε0

∫
dre−ikrδ(r) +

e2N (EF)

ε0

∫
dre−ikrV (r) = 0 (1.61)

The first term corresponds to sums of the form∫
dre−ikr[∂2

xV (r)] (1.62)
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where x denotes here one of the spatial variables r = (x, y, z, . . .). One can integrate twice by
part to obtain

(−ikx)2

∫
dre−ikrV (r) = (−ikx)2V (k) (1.63)

which is of course the great advantage of having used the Fourier representation. The equation
thus becomes

k2V (k) +
e2N (EF)

ε0
V (k) =

Q

ε0
(1.64)

which immediately gives the Fourier transform of the potential created by the charge Q in the
solid

V (k) =
Q/ε0

k2 + e2N (EF)
ε0

(1.65)

We see immediately that this defines a lengthscale λ−2 = e2N (EF)
ε0

. To understand its meaning
let us perform the inverse Fourier transform.

V (r) =
1

Ω

∫
dk

Q/ε0
k2 + λ−2

(1.66)

Let us specialize to d = 3 and take the limit of an infinite volume. The integral becomes

V (r) =
1

(2π)3

∫
d3k

Q/ε0
k2 + λ−2

eikr (1.67)

The rotational symmetry of the integrand immediately suggests to use the spherical coordinates.
One gets

V (r) =
1

(2π)2

∫ ∞
0

k2dk

∫ +π

−π
sin θdθ

Q/ε0
k2 + λ−2

eikr cos θ

=
1

(2π)2

∫ ∞
0

k2dk
Q/ε0

k2 + λ−2

eikr − e−ikr

ikr

=
1

(2π)2

∫ ∞
−∞

kdk
Q/ε0

k2 + λ−2

eikr

ir

(1.68)

There are various ways to finish the calculation, using conventional integration techniques. Let
us illustrate however on this simple example the use of integration in the complex plane (see
Appendix A for a reminder). Since r is positive, we can replace the integral by an integral over
the closed contour of Fig. 1.7 without changing the value of the integral. One has thus

V (r) =
Q

irε0(2π)2

∮
C

dz
z

z2 + λ−2
eikr (1.69)

One can rewrite the fraction as

z

z2 + λ−2
=

1

2

[
1

z + iλ−1
+

1

z − iλ−1

]
(1.70)

which shows directly the two poles z = ±iλ−1. Only the upper pole is inside the contour. Using
the residue theorem one gets

V (r) =
Q

irε0(2π)2
(2iπ)

1

2
e−λr

=
Q

4πε0r
e−λr

(1.71)
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Figure 1.7: Contour for computing the integral. The circle of infinite radius gives a zero
contribution to the integral since the integrand decays fast enough with the radius. The integral
over the contour is thus equal to the integral on the real axis. Only the poles inside the contour
contribute to the residue theorem.

Before we tackle the physics of this solution, let us make some comments on the calculation
itself. One sees that the presence of the λ term in the Fourier transform V (k) which changes
the behavior at small k affects indeed the behavior of V (r) at large distance and transforms a
powerlaw decay (1/r2) into an exponential decay. This is the logical correspondence in Fourier
transform between the small k and the large r. In the absence of such a term the Fourier
transform can be evaluated by simple dimensional analysis. Indeed in∫

dk
1

k2
eikr (1.72)

the singularity in the integrand is coming from small k. One can consider roughly that the
exponential term is a constant as long as r < 1/k and will start oscillating when r > 1/k. In
that case the oscillations essentially cancel the integral. One can thus roughly replace the true
integral by ∫

k>1/r

dk
1

k2
∼
∫
k>1/r

kd−1−2dk ∼ r2−d (1.73)

by simple dimensional analysis. This is indeed the correct result [in d = 2 the power zero
gives in fact a log(r)] and one recovers in particular the 1/r behavior of the Coulomb potential.
Conversely one can see that the slow decay 1/r of the Coulomb potential means that the k = 0
Fourier component cannot be finite since∫ L

dr
1

r
∼ Ld−1 (1.74)

and thus diverge (in d = 2, 3 and even logarithmically in d = 1). This means by the same
arguments that the Fourier transform is a powerlaw of k∫

dr
1

r
e−ikr ∼

∫ 1/k

dr
1

r
∼ k1−d (1.75)
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leading back to the 1/k2 in three dimensions. For the same reasons, if the potential is now
exponentially decreasing (or with a high enough power) one sees immediately that the k = 0
Fourier component is must now be finite since

V (k = 0) =

∫
drV (r) (1.76)

will now be finite. These simple dimensional arguments, and the identification of the dominant
divergence in an integral to try to estimate its behavior can be used in several occasion and it
is worth becoming familiar with them.

Let us now go back to the physics behind (1.71). The form of the potential is known as the
Yukawa potential. One sees that the Coulomb potential in a solid is not long range anymore,
but decays extremely rapidly beyond the length λ, called the screening length. This drastic
change of behavior comes from the fact that electrons being mobile can come and surround the
external charge Q. As long as this charge produces a visible potential it will attract or repel the
electrons, until their cloud of charge exactly compensates the external charge. We thus have
the paradoxical result that in a solid the Coulomb interaction is short range, and of range λ.
This means that two charges that are beyond the length λ will essentially not see each other.
As can be expected λ is again proportional to the density of states at the Fermi level: one needs
to have electrons that can be excited to be able to screen.

Let us estimate λ. We can use the fine structure constant

α =
e2

4πε0~c
=

1

137
(1.77)

to obtain

λ−2 = 4πα~cN (EF) = 4πα~c
3n

2EF
(1.78)

using (1.14). Using EF = ~vFkF, and 6π2n = k3
F one gets

λ−2 =
1

π
α
c

vF
k2

F (1.79)

Since c/vF ∼ 102 in most systems, one sees that kFλ ∼ 1. In other words the screening length
is of the order of the inverse Fermi length, i.e. essentially the lattice spacing in normal metals.
This is a striking result, which means that not only is the Coulomb interaction screened, but
that the screening is so efficient that the interaction is practically local ! Of course one could
then question the precise approximations that we have used to establish this formula but the
order of magnitude will certainly remain.

1.3 Importance of the interactions

One could thus hope from the previous chapter that the Coulomb interaction plays a much
minor role than initially anticipated. Let us estimate what is its order of magnitude compared
to the kinetic energy. The interaction between two particles can be written as

Hint =

∫
drdr′V (r − r′)ρ(r)ρ(r′) (1.80)

Since the interaction is screened it will be convenient to replace it by a local interaction. We
will assume based on the results of the previous chapter that the screening length λ is roughly
the interparticle spacing a. Let us look at the effective potential seen at point r by one particle∫

dr′V (r − r′)ρ(r′) (1.81)
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we can consider that due to screening we can only integrate within a ball of radius a around
the point r. Assuming that the density is roughly constant one obtains∫

|r−r′|<a
dr

e2

4πε0|r − r′|
ρ0 ∼

e2ρ0Sda
d−1

4(d− 1)πε0
(1.82)

and using ρ0 ∼ 1/ad and (1.77) one gets

Sdα~c
(d− 1)a

(1.83)

Since this is the potential acting on a particle, this has to be compared with the kinetic energy
of this particle at the Fermi level which is EF = ~vFkF. Since kF ∼ a−1 one sees that one has
again to compare α and c/vF which are about the same order of magnitude ! The Coulomb
energy, even if screened, is thus of the same order than the kinetic energy even in good metals.
This means energies of the order of the electron volt.

1.4 Theoretical assumptions and experimental realities

How much of the previous estimates and calculation corresponds to the actual solids. Let us
start with measurements of the specific heat. Results are shown in Fig. 1.8 where the coefficient
of the linear term of the specific heat is given for simple elements. The first observation is that
even for the realistic systems the specific heat is still linear in temperature. This is already a
little bit surprising since the linear behavior of the temperature is coming from the existence
of a sharp discontinuity at the Fermi surface. One could have naively expected that since the
energy of the interaction is of the order of the Fermi energy, the probability of having occupied
states is now spread over energies of the order of the electron Volt, as indicated in Fig. 1.9
It is thus surprising to still have a linear T dependence of the specific heat. The independent
electron results seem to be much more robust than anticipated. One can nevertheless see from
Fig. 1.8 that although the picture of independent electrons works qualitatively it does not
work quantitatively and that the coefficient γ can be quite different from the one from the free
electron picture.

For the electron gas various factors can enter in this change of γ. First the bandstructure of
the material can lead, as we saw, to a strong change of the dispersion relation, and thus to a
quite different γ. Second to estimate the effects of the interactions is difficult given their long
range nature (with the screening) in solids. An very nice alternative to electrons is provided
by 3He. Indeed the 3He atom is a fermion, since it is made of three nucleons. It is neutral,
and since the scattering potentials of two 3He atoms are very well known the interactions are
short range and perfectly characterized. In addition the kinetic energy is simply of the form
P 2/(2M) so the density of states at the Fermi level are perfectly known. The specific heat
coefficient, compressibility and spin susceptibility are shown in Fig. 1.10 Here again one has
the surprising result that the independent fermion theory works qualitatively very well. In
addition to the specific heat that is linear in temperature, the compressibility is a constant at
low temperatures and the spin susceptibility is also a constant. Both these last properties are
also strongly dependent on the existence of a sharp discontinuity at the Fermi surface at zero
temperature, and it is thus very surprising to see the hold in the presence of interactions. But
as for the electron case, one sees that the values of these three quantities are not given by the
independent fermion theory, where these three quantities are simply the density of states at the
Fermi level. Here we have three independent numbers, which clearly vary as a function of the
interaction, as can be seen by the pressure dependence of these quantities. Indeed increasing
the pressure changes the density of particles, and thus the interaction between them (the change
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Figure 1.8: Coefficient γ of the linear term in temperature for the specific heat, both from
free electron calculations and measured for simple elements (From [AM76]). This shows that
for realistic systems, the specific heat still exhibits a linear temperature dependence at low
temperatures, just like for free electrons. The slope γ is different from the one of free electrons
and allows to define an effective mass m∗.
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Figure 1.9: Cartoon of the expected occupation factor, for an interaction energy U of the order
of the Fermi energy. One expects the occupation factor n(k) to be spread over energies of the
order of the interaction, leading to a washing out of the Fermi surface singularity.

in kinetic energy and density of states can be computed very precisely in that case). We will
thus have to understand this very puzzling experimental fact.

Let us now look at the excitations in a more microscopic way. A remarkable experimental
technique to look at the single particle excitations is provided by the photoemission technique.
We will come back in more details on this technique but a sketch is shown in Fig. 1.11 Photons
are send on the sample, and they kick out an electron from the solid. By measuring both the
energy of the outgoing electron and its momentum, one can reconstruct from the knowledge
of the energy and momentum of the initial photon, the energy and momentum of the electron
inside the solid. The measured signal gives thus directly access to the probability A(E,k) to
find in the solid an electron with the energy E and the momentum k. For free electrons this is
simply a delta function A(E,k) = δ(E−ε(k)). Since electrons can only be extracted if they are
actually in the solid, this expression is limited to the occupied states and thus for free electrons
simply cut by the Fermi function as shown in Fig. 1.12. More details and references on the
photoemission technique can be found in [DHS03]. Of course integrating over energies gives
the momentum distribution n(k) and integrating over momenta give the probability n(E) of
finding an electron at energy E, which for independent electrons is simply the Fermi function
fF(E). For the interacting case we would expect again the electrons to be able to exchange an
energy of the order of the interaction. The delta peak δ(E− ε(k)) should naively be broadened
by ∆E which is the typical energy due to the interactions. Given the value of ∆E here, this
would lead to extremely broad peaks as shown in Fig. 1.12. In the same way n(E) should be
extremely flat and loose its discontinuity.

As can be seen from the experimental data in Fig. 1.13 what really happens is completely
different from these naive expectations. There are still quite sharp peaks that are visible in the
spectral function. Moreover the width of the peaks seems to be getting smaller and smaller
and the peaks sharper and sharper when one approaches the Fermi level. The bottom part of
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Figure 1.10: Effective mass m∗ normalized to the bare mass m of the 3He atom, as extracted
from the specific heat measurements and as a function of pressure P . The notation (1 +F a0 )−1

is the ratio between the spin susceptibility and the effective mass. κ/κ0 is the normalized
(with respect to free particles) compressibility. One sees that although the basic properties of
free fermions still work (specific heat linear in temperature, constant compressibility, constant
susceptibility at low temperature), the coefficients characterizing these three quantities are three
different numbers, dependent on the pressure, hence on the interactions.
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Figure 1.11: Cartoon of the photoemission technique. Photons are sent on a solid and extract
electrons. The measurements of the momentum and energy of the extracted electrons allows to
measure the spectral function, i.e. the probability of finding an single particle state with both
a given momentum k and energy ω.
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Figure 1.12: (red) Cartoon of the spectral function for independent electrons. Since for a
free electron the energy for a given momentum is ξ(k) the spectral function is a Dirac peak
at ω = ξ(k). (green) Naively expected spectral function for interacting electrons. Since the
electrons can exchange energies of the order of the interaction U one would naively expect the
peak to be spread over energies of order U . Given the fact that the interaction is usually of the
same order than the typical energies of the peak, this would mean that the peak is practically
completely washed out.
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Figure 1.13: Photoemission data from a Mo (110) surface [VFJH99]. (Top) The spectral
function A(k, ω) is plotted as a function of ω. The zero denotes the Fermi level. Different
peaks corresponds to different values of k. One sees that the peaks in the spectral function are
becoming, contrarily to naive expectations narrower and narrower and narrower. (Bot) Width
of a peak close to the Fermi level as a function of the temperature T . One sees that the width of
the peak is controlled in a large part by the temperature, which corresponds to energies several
order of magnitude smaller than the typical energy of the interactions.
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Fig. 1.13 shows that for peaks that are very close to the Fermi level the width of the peak is
controlled by the temperature and not by the much larger energy that would correspond to the
typical interaction energy. It just looks as if a certain “fraction” of the electrons was not seeing
the interaction and was remaining free. This is of course consistent, even if unexplained, with
the results of the compressibility, susceptibility and specific heat that are qualitatively, if not
quantitatively in agreement with the free electron picture.

It is thus necessary to find the explanation for these mysterious facts.



CHAPTER 2

Linear response

Let us now see how we can compute observables for a quantum problem. Such observables
correspond always to the average of some operator. In quantum mechanics the averages are
taken in the ground state of the system. In solid state we always work at finite temperature so
one has to generalize this concept to finite temperatures, and we will see how later.

Forgetting this question for the moment computing averages is easy if we know well enough
the Hamiltonian to diagonalize it or at least if the system is in thermodynamic equilibrium.
However this is often not the case: to probe a system one exert on it small perturbations such
as the application of a small magnetic field to see how it magnetizes, a small voltage to see
whether it conducts, etc. . One is thus very often faced with the situation of trying to study a
problem which is described by an equilibrium (time independent) Hamiltonian H to which one
will add in general a time dependent perturbation Hpert. Computing the full properties of the
time dependent Hamiltonian would be a formidable task. However if the perturbation is small
(in a sense to be defined) then one can hope to compute the observable in a development in the
perturbing Hamiltonian.

This is what is called the linear response theory, and we will examine how one can make such
a calculation for a quantum system.

2.1 Brief reminder of quantum mechanics

For a quantum mechanical system in a pure state |ψ〉, any observable can be measures by
computing the average of the corresponding operator in the state |ψ〉

O = 〈ψ|O|ψ〉 (2.1)

where here O is an operator that represents the observable we want to measure and O is the
value (thus a number) corresponding to the result of the average of the operator. In what follows
we will use the same symbol for the operators and the average value, the context making it
clear whether one deals with an operator or with a number. If there is a possibility of confusion
the average value will be denoted 〈O〉
A priori the function |ψ〉 can be time dependent which we will denote as |ψ(t)〉. If this is the
case the average depends on time and this will be denoted by the various notations

O(t) = 〈O〉t = 〈ψ(t)|O|ψ(t)〉 (2.2)

This is the standard Schrödinger representation. The operators are time independent and all
the time dependence is put in the wave function that obeys the Schrödinger equation

i∂t |ψ〉 = H |ψ〉 (2.3)

29
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For and Hamiltonian that is not explicitly dependent on time, the equation has the formal
solution

|ψ(t)〉 = e−iHt |ψ(t = 0)〉 (2.4)

This allows for an alternative representation of the physical observables known as the Heisenberg
representation. An observable at time t reads

O = 〈ψ(t)|O|ψ(t)〉 = 〈ψ(t = 0)|eiHtOe−iHt|ψ(t = 0)〉 (2.5)

One can thus consider that the wavefunctions are time independent and characterize the state
of the system and that all the time dependence is due to time dependent operators. These
operators are given by

OH(t) = eiHtOSe
−iHt (2.6)

where OH(t) and OS denote respectively the operators in the Heisenberg and Schrödinger
representation. The indices H and S are here added to emphasize the two representations. In
the following, operators in the Schrödinger representation will be denoted without any special
notation, and when an explicit time dependence will be noted for an operator it will mean that
this is the operator in the Heisenberg representation.

The average of a physical quantity is thus given in the Heisenberg representation by

O(t) = 〈ψ0|OH(t)|ψ0〉 (2.7)

The definition of the operators in the Heisenberg representation (2.6) can be rewritten in a
different form.

dO(t)

dt
= (iH)eiHtOe−iHt − eiHtOe−iHt(iH)

= i[H,OH(t)]
(2.8)

Note that the Hamiltonian is time independent both in the Schrödinger and Heisenberg rep-
resentation HH = HS . This representation will be useful when we will deal with the second
quantization in the next chapter.

For systems which are not in pure states the average is a superposition of the averages in pure
states with the corresponding probabilities. Thus if pi are the probabilities of finding the system
in the state |ψi〉, a physical observable is given by

〈O〉 =
∑
i

pi〈ψi|O|ψi〉 (2.9)

It is more convenient to introduce a density matrix that describes the system. The density
matrix for the above average is given by

ρ =
∑
i

pi|ψi〉〈ψi| (2.10)

and the average of the observable is now given generally by

〈O〉 = Tr[ρ O] (2.11)

where Tr[A] denotes the trace of the operator A (see Appendix A.4). Note that the density
matrix can of course be time dependent if for example the functions |ψi(t)〉 are time dependent.

For a quantum system, with a time independent Hamiltonian H in equilibrium with a bath at
temperature T , a very natural density matrix corresponds to a superposition state where each
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level |n〉 of energy En corresponding to the eigenstates of the Hamiltonian is occupied with a
probability given by the Boltzmann factor

ρ =
∑
n

e−βEn

Z
|n〉〈n| (2.12)

where Z =
∑
n e
−βEn ensures that the probabilities are normalized, and β = 1/(kBT ) is the

inverse temperature. It is easy to check that the density matrix (2.12) can be simply rewritten
as

ρ =
e−βH

Z
(2.13)

with
Z = Tr[e−βH ] (2.14)

being the partition function of the system. All averages at finite temperature can thus be
computed as

〈O〉 =
Tr[e−βH O]

Tr[e−βH ]
(2.15)

2.2 Linear response

Let us start with a system described by an Hamiltonian H0 which is time independent and add
to the Hamiltonian of the system a perturbation, a priori time and space dependent

Hpert =

∫
drh(r, t)O(r) (2.16)

where h(r, t) is some external field (magnetic field, electric field, pressure, etc.), and O(r)
the operator to which it couples (magnetization, current, density, etc.). We consider that this
operator can depend on space. We choose O such that in the absence of perturbation its average
is zero 〈O(r)〉 = 0, since one can always subtract this average value. Since the Schrödinger
equation give the time evolution of the quantum system, we are now in a position to compute
the response to a time dependent perturbation. Let us emphasize that here H0 does designate a
totally general (interacting etc.) Hamiltonian, as long as this Hamiltonian does not contain an
explicit time dependence. Typically H0 is the full Hamiltonian of the system whose properties
one is trying to probe by the perturbation.

Let us consider an observable described by an operator A(r). As for O we choose the operator
A such that its average in the unperturbed system vanishes. We want to compute the this
observable at a given point r0 and at given time t0. As can be readily guessed computing the
full response for the complete Hamiltonian H0 +Hpert is hopeless. However if the perturbation
h(r, t) is small we can compute the average of A in a perturbation expansion in the perturbation.
By definition of A the term of order zero vanishes. The most general term of order one (linear
response) is of the form

A(r0, t0) = 〈A(r0)〉t0 '
∫
drdtχ(r0, r; t0, t)h(r, t) (2.17)

χ(r0, r; t0, t) is the susceptibility measuring the way the system responds to the perturbation
h(r, t). Because we have performed an expansion in powers of h and confined to the linear
term, χ depends only on the unperturbed Hamiltonian H0. One can thus exploit the existing
symmetries of H0 to simplify the expression for χ. First H0 does not explicitly depends on
time, thus the susceptibility that measures the response between a perturbation at time t and
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a response at time t0 can only depend on the difference between the two times. If in addition
the Hamiltonian H0 is also invariant by translation then the susceptibility will only depend on
the space difference r0 − r. The second point depends on the precise Hamiltonian H0 but the
first one is totally general.

We want now to explicitly compute the susceptibility χ. To do so we first need to know
how to compute the average for a system which is time dependent since the full Hamiltonian
H(t) = H0 +Hpert contains an explicit time dependence. Clearly we need to define what is the
density matrix of the system at time t, to be able to use (2.11).

〈A〉t = Tr[ρ(t)A] (2.18)

A naive possibility would be to assume that at each moment the density matrix is ρ = e−βH(t).
In order to know if this is the correct let us look at the time evolution of the density matrix.
Let us assume that at time t = −∞ the perturbation vanishes [h(r, t → −∞) → 0]. In that
case the system is fully determined by the time independent Hamiltonian H0 and we know
the density matrix which is simply given by ρ0 = e−βH0/Z0 or the expression (2.12). If now
we switch on the perturbation the time evolution of the functions |n〉 are easy (formally) to
compute since they simply obey the Schrödinger equation. However we have to decide how
the probabilities pn that the system can be found in the state |n〉 should evolve with time. We
will assume that the time evolution is solely given by the evolution of the wavefunctions. This
amounts to say that the coefficients cn are not changing as the system is evolving with time,
and thus the populations of the levels. The time evolution is thus supposed to be adiabatic.
In other words the thermal bath is introduced at a given time when the perturbation does not
exist (in particular t = −∞) and the levels are populated according to the (time independent)
distribution e−βEn . The thermal bath is then removed and the perturbation switched on slowly,
so that the wavefunction evolves. Using the Schrödinger equation and (2.12) it is easy to show
that

∂ρ(t)

∂t
= −i[H(t), ρ(t)] (2.19)

To obtain the linear response we consider that ρ(t) = ρ0+f(t) where f(t) is the part proportional
to perturbation h. Keeping only the linear terms, (2.19) becomes

i
∂f(t)

∂t
= [H0, ρ0] + [H0, f(t)] + [Hpert, ρ0] (2.20)

Since ρ0 = 1
Z0
e−βH0 , one has [H0, ρ0] = 0. One can transform (2.20) into

e−iH0t

[
i
∂

∂t

(
eiH0tf(t)e−iH0t

)]
eiH0t = [Hpert(t), ρ0] (2.21)

This expression becomes

i
∂

∂t

(
eiH0tf(t)e−iH0t

)
= [eiH0tHpert(t)e

−iH0t, ρ0] (2.22)

Note that the time dependence in Hpert(t) comes from the explicit dependence of h(r, t) in
time. (2.22) is easily integrated, using the fact that the perturbation is absent at time t = −∞
and thus f(−∞) = 0 to give

f(t) = −ie−iH0t

∫ t

−∞
dt′[eiH0t

′
Hpert(t

′)e−iH0t
′
, ρ0]eiH0t (2.23)

Using (2.18) we can now compute the average values

〈A〉t = Tr[(ρ0 + f(t))A] (2.24)
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The term Tr[ρ0A] vanishes since we have taken an operator with zero average value in the
absence of a perturbation. In that case

〈A〉t = Tr[Af(t)]

= −iTr[

∫ t

−∞
dt′e−iH0t[eiH0t

′
Hpert(t

′)e−iH0t
′
, ρ0]eiH0tA]

(2.25)

Using the cyclic invariance of the trace (A.18) and the explicit expression of Hpert one obtains

〈A〉t = −iTr[

∫ t

−∞
dt′[eiH0t

′
Hpert(t

′)e−iH0t
′
, ρ0]eiH0tAe−iH0t]

− iTr[

∫ t

−∞
dt′[eiH0t

′
∫
dr′h(r′, t′)O(r)e−iH0t

′
, ρ0]eiH0tAe−iH0t]

(2.26)

One can now recognize the Heisenberg expression of the operators A and O in the above formula.
We can thus rewrite it in the more compact form

〈A〉t = −i
∫ t

−∞
dt′
∫
drh(r′, t′) Tr[[O(r′, t′), ρ0]A(t)] (2.27)

Of course the operator A can (and in general will) have an explicit spatial dependence in which
case we compute 〈A(r)〉t. Using

Tr[[A,B]C] = Tr[ABC −BAC] = Tr[B[C,A]] (2.28)

one can rewrite (2.26) as

〈A(r)〉t = −i
∫ t

−∞
dt′
∫
dr′Tr[ρ0[A(r, t), O(r′, t′)]]h(r′, t′)

= −i
∫ t

−∞
dt′
∫
dr′〈[A(r, t), O(r′, t′)]〉0h(r′, t′)

(2.29)

where 〈〉0 denotes averages taken with the unperturbed Hamiltonian H0, and the time depen-
dence of the operators coming from the Heisenberg representation is also computed with the
Hamiltonian H0. Comparing with the expression (2.17) one obtains for the susceptibility

χ(r, r′; t, t′) = −iθ(t− t′)〈[A(r, t), O(r′, t′)]〉0 (2.30)

The θ function is due to the causality and expresses the fact that a measure at time t can only
depend on the perturbation at anterior times. Such form of correlations that are non zero only
when t > t′ are called retarded correlation functions. They directly correspond to physically
observable quantities.

Rather than working in space time, it is better to go to Fourier space. Indeed since H0 is time
independent the Fourier transform over time of (2.17) will be diagonal. We also assume that H0

is invariant by translation in space which ensures that the Fourier transform will be diagonal
in momentum. One thus gets

〈A(q, ω)〉 = χ(q, ω)h(q, ω) (2.31)

with

χ(q, ω) =

∫
drdte−i(qr−ωt)χ(r, t) (2.32)

Using (2.29) gives

χ(q, ω) =

∫
dr

∫
dtχ(r, t)e−i(qr−ωt)

= −i
∫
dr

∫ +∞

0

dte−i(qr−ωt)〈[A(r, t), O(0, 0)]〉0 (2.33)
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In order to perform the Fourier transform an important point has to be noticed. The response
is defined (only time dependence is indicated)

〈A〉t =

∫
dt′χ(t− t′)h(t′) (2.34)

where χ(t − t′) is the retarded correlation function. However, we also want the perturbation
h(t′) to vanish at time t′ → −∞ in order to be able to use the fact that we know the density
matrix at t′ = −∞. Although of course one can implement directly this in the functions h(t)
one considers for perturbations, it is simpler to assume that the functions h(t) are totally free
(and in particular can be of the form h(t) = eiωt, i.e. purely periodic signals) and to multiply
h(t) by a small convergence factor that ensures that the perturbation does indeed vanish. It is
thus convenient to assume that the perturbation is of the form

h(t)eδt (2.35)

where δ = 0+ is an infinitesimal positive number, and h(t) is now a function that does not
necessarily needs to vanish at time t → −∞. As a consequence the linear response formula
becomes

〈A〉t =

∫
dt′χ(t− t′)h(t′)eδt

′

= eδt
∫
dt′χ(t− t′)eδ(t

′−t)h(t′)

(2.36)

where we have extracted the term eδt which shows explicitly that the response also vanish as
it should when t → −∞. The consequence of (2.36) is that when one performs the Fourier
transform of the retarded correlation function one should in fact, to ensure to proper vanishing
of the perturbation at time t′ → −∞ the Fourier transform of χ(t − t′)eδ(t′−t). The formula
(2.33) should thus be modified into (remember that we show here only the Fourier transform
over time)

χ(ω) =

∫ +∞

0

dteiωte−δt〈[A(t), O(0)]〉0 (2.37)

The factor e−δt which is physically necessary to ensure that the perturbation vanishes in the dis-
tant past, is thus here able to ensure the convergence of the integral giving the Fourier transform
of the susceptibility at large time even in cases when the correlation function 〈[A(t), O(0)]〉0
would not decrease fast enough. Of course if this correlation decreases fast, then it simply
means that one can take simply the limit δ → 0+. But in general, and we will see examples
below, it is necessary to always keep this factor in doing the integral and taking the limit
δ → 0+ in the end. This can lead to the presence of distributions in the expression of the
Fourier transform. One can also view the presence of this convergence factor as if one was not
doing the Fourier transform with a real frequency ω but with a frequency ω+ iδ containing an
infinitesimal positive imaginary part.

2.3 Fluctuation dissipation theorem

To get a complete physical understanding of the meaning of the susceptibility χ let us examine
the change of energy of the system. In the absence of an external perturbation the energy
is conserved. This is not the case any more when the system is subject to a time dependent
external potential, and some energy is injected in the system. The energy of the system at time
t is given by

E(t) = Tr[ρ(t)H(t)] (2.38)
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and thus the change of energy is

dE(t)

dt
= Tr[ρ(t)

dH(t)

dt
] + Tr[

dρ(t)

dt
H(t)] (2.39)

Using the equation of evolution (2.19) for ρ(t) one can rewrite the second term in (2.39) as

− iTr[[H(t), ρ(t)]H(t)] = −iTr[ρ(t)[H(t), H(t)] = 0 (2.40)

using the cyclic invariance of the trace. Thus

dE(t)

dt
= Tr[ρ(t)

dH(t)

dt
] = 〈dH(t)

dt
〉 (2.41)

Let us consider a simple sinusoidal perturbation of the form

Hpert = Oheiωt +O†h∗e−iωt (2.42)

In that case
dE(t)

dt
= iω[〈O〉theiωt − 〈O†〉th∗e−iωt] (2.43)

Using linear response one has

〈O(t)〉 =

∫
dt′χOO(t− t′)heiωt

′
+ χOO†(t− t′)h∗e−iωt

′
(2.44)

Rather than compute the change in energy at a given time, since we deal here with a sinusoidal
perturbation we can average over one period (we assume ω > 0)

dE(t)

dt
=

1

T

∫ T=2π/ω

0

dt
dE(t)

dt
(2.45)

Using (2.43) and (2.44) one gets

dE(t)

dt
= iω[χOO†(ω)− χO†O(−ω)]hh∗

= ωi[χOO†(ω)− χO†O(−ω)]hh∗ (2.46)

Using the definition (2.33) one obtains

χ(ω)∗ = +i

∫ +∞

0

dt〈[O(t), O†(0)]〉∗e−iωt

= −i
∫ +∞

0

dt〈[O†(t), O(0)]〉e−iωt

= χ(−ω) (2.47)

as it should be for an hermitian operator. Thus (2.46) becomes

dE(t)

dt
= ωihh∗[χOO†(ω)− χOO†(ω)∗]

= −2ωhh∗ ImχOO†(ω) (2.48)

Thus the imaginary part of the susceptibility controls the dissipation of energy in the system.
(2.33) relates the response of the system to an external perturbation (and thus the dissipation of
the energy brought by this perturbation) to a correlation function of the system in equilibrium.
This relation is known as the fluctuation-dissipation theorem. It is a very important relation
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since it relies only on two very general assumptions: (i) that we restrict to linear response; (ii)
more importantly that the system is in thermodynamic equilibrium. The fluctuation dissipation
theorem is thus a very powerful tool since it quantify the fact that by slightly perturbing the
system we can probe the various correlations and physical properties of the unperturbed system.
In the opposite direction it provides a very practical and powerful way to compute the response
of a system to an arbitrary time and space dependent perturbation as soon as we are able to
compute the correlations of the system in equilibrium.

2.4 Spectral representation, Kramers-Kronig relations

The result (2.33) is very general. Let us now examine some of the properties of the retarded
correlation function. To do so it is very convenient to introduce a formal decomposition known
as the spectral representation. Let us again introduce a complete basis |n〉 constituted of the
eigenstates of the Hamiltonian H

H0 |n〉 = En |n〉 (2.49)

It is important to realize that except for very simple Hamiltonians determining the eigenstates
|n〉 and eigenvalues En is a formidable problem. In general we are thus not able to compute
those explicitly, but in what follows we will simply use these quantities to derive formally a
series of relations, and it is simply sufficient to know that such a basis exists without having to
know it explicitly.

Let us first rewrite the retarded correlation

χ(t) = −i θ(t)〈[A(t), O(0)]〉0 (2.50)

where the operators A and O can also depend on other quantum numbers such as the positions.
We focuss here on the time dependence of the operators. It reads

χ(t) = −i θ(t) 1

Z
Tr[e−βH0 [A(t), O(0)]] =

1

Z
Tr[e−βH0(A(t)O(0)−O(0)A(t))]

= −i θ(t) 1

Z

∑
n

〈n|e−βH0(A(t)O(0)−O(0)A(t)) |n〉

= −i θ(t) 1

Z

∑
n,m

〈n|e−βH0A(t) |m〉 〈m|O(0) |n〉 − 〈n|e−βH0O(0) |m〉 〈m|A(t) |n〉

(2.51)

where we have introduced the closure relation 1 =
∑
m |m〉〈m|. Using the definition of the

Heisenberg operators (2.6) and the fact that |n〉 is an eigenstate of the Hamiltonian H0, one
gets

χ(t) = −i θ(t) 1

Z

∑
n,m

〈n|e−βEnei(En−Em)tA |m〉 〈m|O |n〉 − e−βEn〈n|O |m〉 ei(Em−En)t〈m|A |n〉

(2.52)
It is convenient to relabel n and m in the second term using the fact that one is summing over
a complete basis, to get

χ(t) = −i θ(t) 1

Z

∑
n,m

ei(En−Em)t〈n|A |m〉 〈m|O |n〉 (e−βEn − e−βEm) (2.53)
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This allows to directly write the Fourier transform as

χ(ω) =

∫
dtei(ω+iδ)tχ(t)

= −i
∫ +∞

0

dtei(ω+iδ)t 1

Z

∑
n,m

ei(En−Em)t〈n|A |m〉 〈m|O |n〉 (e−βEn − e−βEm)

=
1

Z

∑
n,m

〈n|A |m〉 〈m|O |n〉 e−βEn − e−βEm
ω + En − Em + iδ

(2.54)

The above expression is quite remarkable since the full time dependence has now been per-
formed. We see that the frequency dependence consists in a series of poles, when the frequency
is in resonance with an energy difference between two energy levels. This is particularly trans-
parent on the imaginary part of the retarded correlation function. Using (A.10) one gets

Imχ(ω) = − π
Z

∑
n,m

〈n|A |m〉 〈m|O |n〉 (e−βEn − e−βEm)δ(ω + En − Em)

= − π
Z

(1− e−βω)
∑
n,m

〈n|A |m〉 〈m|O |n〉 e−βEnδ(ω + En − Em)
(2.55)

This last form becomes particularly transparent if we consider the absorption of energy in
presence of a perturbation O, as seen in the previous section. In that case A = O† and the
expression becomes

Imχ(ω) = − π
Z

(1− e−βω)
∑
n,m

|〈m|O |n〉 |2e−βEnδ(ω + En − Em) (2.56)

which has a very simple interpretation in terms of the Fermi golden rule. A transition to a
perturbation with the frequency ω occurs when the system can absorb the quantum of energy
~ω to make a transition between two states. Using the Fermi golden rule we see that the
probability of transition is simply given by∑

m

|〈m|O |n〉 |2δ(ω + En − Em) (2.57)

where as usual one has to sum over all possible final states the initial state |n〉 can make the
transition to. The probability of transition is proportional to the square of the matrix element
coupling the two states |〈m|O |n〉 |2. The energy must be conserved in the transition which
is ensured by the term δ(ω + En − Em). Finally because we are at finite temperature |n〉 is
not just one state but we can make the transition from any possible initial state which will be
occupied with a probability e−βEn since |n〉 is an eigenstate of H with energy En. This leads
back essentially to formula (2.56).

We see also quite generally that Imχ(ω) < 0 for ω > 0 and Imχ(ω) > 0 for ω < 0. This is
mandatory since as we saw in the previous section −ω Imχ(ω) is proportional to the energy
absorbed by the system in an oscillatory field. We also see directly that for ω = 0 one has
Imχ(ω = 0) = 0 and thus in particular no absorption or dissipation of energy is possible with
a static field.

The expression (2.54) allows to immediately generalize the correlation function to any complex
number z by

χ(z) =
1

Z

∑
n,m

〈n|A |m〉 〈m|O |n〉 e
−βEn − e−βEm
z + En − Em

(2.58)

As can be seen this function is an analytic function for any z not on the real axis. Quite
generally it will have a cut on the real axis. The (physical) retarded correlation is obtained by
χret(ω) = χ(z → ω + iδ) and thus looking at the function χ(z) just above the real axis.
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The comparison between (2.58) and (2.55) allows to immediately show the very general and
remarkable relation

χ(z) =
−1

π

∫
dω′

1

z − ω′
Imχret(ω

′) (2.59)

This equation shows that the correlation function in the whole complex plane is totally deter-
mined by the value of the imaginary part of the retarded correlation. In particular it means
that the retarded correlation, obtained by replacing z → ω + iδ obeys

χret(ω) =
−1

π

∫
dω′

1

ω − ω′ + iδ
Imχret(ω

′) (2.60)

Using (A.10) one sees that (2.60) gives and identity for the imaginary part and gives, for the
real part

Reχret(ω) =
−1

π

∫
dω′P

(
1

ω − ω′

)
Imχret(ω

′) (2.61)

This relation that related the real and imaginary parts of the response function is known as
the Kramers-Kronig relation. As we saw it is fully general ((2.59) is an even more useful and
compact form of it), and is the direct consequence of causality of the response function.

One was to physically understand this remarkable constraint on the response function and the
existence of the Kramers-Kronig relation is to realize that because of the causality the response
function obeys the identity

χret(t) = f(t)χret(t) (2.62)

where f(t) is any function of time that obeys f(t > 0) = 1. This seemingly trivial point gives
an enormous constraint on the Fourier transform, which is now a convolution product of the
two functions

χret(ω) =

∫ ∞
−∞

dω′

2π
f(ω − ω′)χret(ω

′) (2.63)

In particular one can choose for the function f(t) the step function f(t) = θ(t). Its Fourier
transform is

f(ω + iδ) =

∫
dt θ(t)ei(ω+iδ)t =

∫ +∞

0

ei(ω+iδ)t =
−1

i(ω + iδ)
(2.64)

Injecting in (2.63) one obtains

χret(ω) =

∫
dω′

2π

−1/i

ω − ω′ + iδ
χret(ω

′) (2.65)

Which using (A.10) again leads to

χret(ω) =
−1

iπ

∫
dω′P

(
1

ω − ω′

)
χret(ω

′) (2.66)

which upon separation of the real and imaginary parts leads directly to the Kramers-Kronig
relations.



CHAPTER 3

Second quantization

3.1 Why not Schrödinger

We want to deal with the case of several quantum particles. Normally this is a problem we
know very well how to treat in quantum mechanics. If we know the Hilbert space H1 of a single
particle and a complete basis |α〉, we know that for N particles we have a Hilbert space which
is

HN =

N⊗
i=1

Hi (3.1)

and that a complete basis of such a space is simply

|α, β, . . . , ω) = |α〉 ⊗ |β〉 · · · |γ〉 (3.2)

We then have to solve a Schrödinger equation with a wavefunction depending on the N variables
corresponding to the N particles ψ(r1, r2, r3, . . . , rN ) for example.

Although this is a perfectly acceptable program when the number of particles is small it is
particularly ill suited to tackle the case of many interacting quantum fermions or bosons, for
several reasons.

The first one has to do with the indiscernibility of the particles. Even if the particles are free,
not all states are acceptable for the wavefunctions of N indiscernible particles. Indeed only the
totally symmetric (for bosons) or antisymmetric (for fermions) wavefunctions are allowed. It
means that even for noninteracting particles we cannot directly use wavefunctions of the form
(3.2). In a way the fact that we have to deal with indistinguishable particles already introduces
correlations in the wavefunction even when interactions are not present in the systems.

The wavefunction become rather complicated. They should be properly (anti-)symmetrized
and normalized which make them very heavy to use. For example for two particles one has

|α, β〉 =
1√
2

[|α, β)± |β, α)] (3.3)

where the + sign is for bosons and the − one for fermions. In the above formula we denote by
|α, β〉 properly symmetrized and normalized kets for indistinguishable particles. We denote the
ordered kets by

|α, β) = |α)⊗ |β) (3.4)

where the first particles is in the state α and the second β. We will always (regardless of
whether this is a bra or a ket) number the particles from left to right.

When the number of particle grows the need to use a symmetrized wavefunction becomes more
and more heavy since the number of terms in the wavefunction grows as N !. Indeed the

39
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wavefunction reads in general

ψ(r1, r2, r3, . . . , rN ) = C
∑
P

(±1)s(P )ψ1(rP (1))ψ2(rP (2)) · · ·ψN (rP (N )) (3.5)

where P are the permutations of the set of numbers from 1 to N , s(P ) is the signature of the
permutation P (i.e. the number of transpositions in P ) and as usual the + sign is for bosons
and the − one for fermions. The constant C has to be determined such that the wavefunction
is normalized. For fermions one can rewrite the wavefunction as a determinant (known as a
Slater determinant)

ψ(r1, r2, r3, . . . , rN ) =

∣∣∣∣∣∣∣
ψ1(r1) · · · ψ1(rN )

...
...

ψN (r1) · · · ψN (rN )

∣∣∣∣∣∣∣ (3.6)

which helps a little bit for practical computations, but not very much. In fine, one would have
to deal even for noninteracting electrons with wavefunctions containing 1023! terms, which is
really unpleasant.

The second problem is linked to the way we represent the operators in the standard expression
of quantum mechanics. If we consider for example an operator measuring the total momenta of
the particles, it has to be a sum of operators acting on each particles individually. This means
that such an operator would write as

Ptot =

N∑
i=1

Pi (3.7)

where Pi is the operator acting on the i-th particle. Note that this is an abuse of notation since
in fact one should note that

Pi = 1⊗ 1⊗ . . . P ⊗ . . .⊗ 1 (3.8)

where 1 is the identity and P is inserted at the i-th position. The operator and the wavefunctions
thus depend explicitly on the particle number. One should thus completely change the whole
calculation depending on whether we look at 2 or 20000 particles, which is again singularly
unpleasant. It also prevent to take in a straightforward manner the thermodynamic limit
N →∞ when the volume of the systems is also going to infinity. Given the very large number
of particles it is clear that taking this limit is highly desirable and will simplify a lot the
calculations.

For these reasons the standard quantum mechanical representation (also known as first quan-
tization) of systems of several indistinguishable particles is not very well adapted. One would
like a system that takes care automatically of the following points

1. The antisymmetrization is taken care of in a painless manner without having to explicitly
having to deal with the N ! terms.

2. The way to describe the system is not explicitly dependent on the number of particles
present in the system. This should allow to take the thermodynamic limit easily and also
to deal to more general situations where the number of particles can change (such as e.g.
in a photoemission experiment).

This is provided by the so-called “second quantization” method that we will now describe.
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Figure 3.1: The state of a system with and arbitrary number of indistinguishable particles is
fully known if one knows how many particles are in a given quantum state.

3.2 Fock space

The idea is to turn the fact that the particles are indiscernible into an advantage. Indeed, if
this is the case it means that one does not need to know the quantum state of each individual
particle, but simply how many particles are in a given quantum state. Let us assume that one
has a complete basis |α〉 of states for a single particle. Quite generally this basis is infinite,
but if the system is put into a box one can quantize the states (for example by quantizing the
momentum) and have a finite number of states (generally proportional to the volume of the
system Ω). Let us thus denote all the states in this basis as

|α1〉 , |α2〉 , . . . , |αΩ〉 (3.9)

where we have used the notation |αΩ〉 for the last state to remind that in general the total
number of states in this basis is growing with the volume of the system. Note that the size of
the basis is unrelated to the number of particles that are present in the system. For bosons
for example one could have a complete basis of the one particle states that contain two states
only and have 10000 bosons present in the system (since several of them can go in the same
quantum state). For fermions of course the total number of particles is always smaller than the
total number of available states because of the Pauli principle. As shown in Fig. 3.1 we can
fully describe the system and reconstruct its wavefunction if we know the number of particles in
a given state |αi〉 of the complete basis of single particle states. We can thus fully characterize
the wave function of the system by the set of numbers n1, n2, . . . , nΩ. The total number of
particles in the system is of course N = n1 + n2 + · · · + nΩ, and can vary if one varies one of
the ni.

Let us thus define a space in which an arbitrary number of particles can exist. If we call HN
the Hilbert space with N particles (Hk =

⊗k
j=1Hj), we can define

F =

+∞⊕
j=0

Hj (3.10)

which is the direct sum of all Hilbert spaces with 0, 1, 2, etc. particles. Such a space is called
the Fock space. In this space let us now define the state

|n1, n2, n3, . . . , nΩ〉 (3.11)

where as shown in Fig. 3.1, the ni are the number of particles in the quantum state |αi〉. We
can fully give the expression of the wavefunction corresponding to the state (3.11). If we call
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r1, r2, . . ., rN the positions of each particles (keep in mind that N = n1 + n2 + · · · + nΩ) we
have

〈r1r2, . . . , rN |n1, n2, . . . , nΩ〉 =

√
N !√

n1! . . .
√
nΩ!

S±

 n1terms︷ ︸︸ ︷
α1(r1)α2(r2) · · ·α2(rn1)

n2terms︷ ︸︸ ︷
α2(rn1+1)α2(rn1+2) · · ·α2(rn1+n2

) . . .

nΩterms︷ ︸︸ ︷
αΩ(rn1+...+nΩ−1+1)α2(rn1+...+nΩ−1+2) · · ·α2(rn1+...+nΩ−1+nΩ)

 (3.12)

where the prefactors ensure that the wavefunction is suitably normalized. The (anti-)symmetrizer
S± is defined as

S± [φ1(r1) . . . φN (rN )] =
1

N !

∑
P

(±1)s(P )ψ1(rP (1))ψ2(rP (2)) · · ·ψN (rP (N )) (3.13)

Two states (3.11) having a different number of particles N belong to two different Hilbert
spaces and are thus obviously orthogonal in the Fock space. For systems with the same total
number of particles one can check by using the wavefunction (3.12) that the states (3.11) for
an orthogonal and normalized basis

〈n1, n2, . . . , nΩ|n′1, n′2, . . . , n′Ω〉 = δn1,n′1
δn2,n′2

· · · δnΩ,n′Ω
(3.14)

We can thus use the basis (3.11) to characterize every operator and matrix element in the Fock
space. As mentioned before this basis is extremely convenient since it relies on the minimal
amount of information needed to describe a system of indistinguishable particles. In particular
the number of “counters”, ni needed does not grow with the total number of particles.

3.3 Creation and destruction operators

Let us introduce operators that will allow us to generate all the elements of the above mentioned
basis. For each state αi of the single particle complete basis, we define a creation and destruction
operator that will increase or decrease by one the number of particles in this particular state. We
will thus be able to use these operators to modify the counter ni giving the number of particles
in a given quantum state, and thus span the whole Fock space. The practical definition of these
operators is different depending on the statistics of the particles.

3.3.1 Bosons

Let us define the creation a†i and destruction ai operators by their action on all the states of a
complete basis in the Fock space

a†i |n1, . . . , ni, . . . , nΩ〉 =
√
ni + 1 |n1, . . . , ni + 1, . . . , nΩ〉

ai |n1, . . . , ni, . . . , nΩ〉 =
√
ni |n1, . . . , ni − 1, . . . , nΩ〉

(3.15)

These definitions completely define the operators by their matrix elements between all the
elements of a complete basis. Let us check that the operators a†i and ai are indeed hermitian

conjugate. The only non-zero matrix element for a†i is

〈n1, . . . , ni + 1, . . . , nΩ|a†i |n1, . . . , ni, . . . , nΩ〉 =
√
ni + 1 (3.16)
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Taking the complex conjugate of the above expression one thus gets

〈n1, . . . , ni, . . . , nΩ|ai|n1, . . . , ni + 1, . . . , nΩ〉 =
√
ni + 1 (3.17)

which is indeed exactly the definition of the operator ai in (3.15) (with the replacement of ni
by ni + 1). Another important properties of the operators, is that they only span the Fock
space. Indeed although it seems formally from (3.15) that the operator ai could operate on a
state that has ni = 0 particles in the state αi the prefactor in the definition ensures that the
corresponding matrix element is zero

ai |n1, . . . , ni = 0, . . . , nΩ〉 = 0 (3.18)

and thus if one tries to apply the destruction operator on a state that has no particle in the
corresponding quantum state one cannot generate unphysical states.

If we define the state that contain no particles in any of the quantum states (sometimes referred
to as the vacuum)

|∅〉 = |n1 = 0, n2 = 0, . . . , nΩ = 0〉 (3.19)

it is easy to see that from this vacuum |∅〉 and the operators a†i we can construct all the vectors
of the complete basis of the Fock space, since

|n1, . . . , ni, . . . , nΩ〉 =
(a†1)n1 . . . (a†Ω)nΩ

√
n1! . . .

√
nΩ!

|∅〉 (3.20)

Thus one can completely describe the Fock space from the single state |∅〉 and the creation
(and destruction since they are hermitian conjugate) operators. Note that the vacuum verifies
the property that for any i

ai |∅〉 = 0 (3.21)

Note also that one should not mix up the vacuum |∅〉 which is a vector of the Fock space, and
one which operators can act to give other states of the Fock space with 0.

The creation and destruction operators constitute thus a very convenient way of describing the
Fock space. Rather than defining them from their matrix elements in a given basis such as
(3.15), it is more convenient do define them from an intrinsic properties. We will show that the

definition (3.15) implies that the operators a†i and ai have certain specific commutation relations.
Conversely if these commutation relations are obeyed, then the corresponding operators, and
the corresponding vacuum, defined by (3.19), will define a Fock space from (3.20) in which they
will have the matrix elements (3.15).

Let us first look at (here i 6= j)

a†ia
†
j |n1, . . . , ni, . . . , nj , . . . , nΩ〉 = a†i

√
nj + 1 |n1, . . . , ni, . . . , nj + 1, . . . , nΩ〉

=
√
ni + 1

√
nj + 1 |n1, . . . , ni + 1, . . . , nj + 1, . . . , nΩ〉

(3.22)

It is easy to see that the action of a†ja
†
i would produce exactly the same result. Thus for any

element of the basis one has

[a†i , a
†
j ] |n1, . . . , ni, . . . , nj , . . . , nΩ〉 = 0 (3.23)

which means that
[a†i , a

†
j ] = 0 (3.24)

Since an operator commutes with itself this is also true when i = j. The Hermitian conjugation
of (3.24) implies that

[ai, aj ] = 0 (3.25)



44 Second quantization Chap. 3

Let us now look at (i 6= j)

a†iaj |n1, . . . , ni, . . . , nj , . . . , nΩ〉 = a†i
√
nj |n1, . . . , ni, . . . , nj − 1, . . . , nΩ〉

=
√
ni + 1

√
nj |n1, . . . , ni + 1, . . . , nj − 1, . . . , nΩ〉

(3.26)

and in a similar way the action of aja
†
i (with i 6= j) would give the same result. One has thus

[a†i , aj ] = 0 when i 6= j. The case i = j is special. One has

a†iai |n1, . . . , ni, . . . , nΩ〉 = a†i
√
ni |n1, . . . , ni − 1, . . . , nΩ〉

=
√

(ni − 1) + 1
√
ni |n1, . . . , ni, . . . , nΩ〉

= ni |n1, . . . , ni, . . . , nΩ〉
(3.27)

On the other hand

aia
†
i |n1, . . . , ni, . . . , nΩ〉 = ai

√
ni + 1 |n1, . . . , ni + 1, . . . , nΩ〉

=
√
ni + 1

√
ni + 1 |n1, . . . , ni, . . . , nΩ〉

= (ni + 1) |n1, . . . , ni, . . . , nΩ〉
(3.28)

and thus one has
[ai, a

†
i ] |n1, . . . , ni, . . . , nΩ〉 = |n1, . . . , ni, . . . , nΩ〉 (3.29)

and thus summarizing the two results

[ai, a
†
j ] = δi,j (3.30)

One can thus summarize the properties of the creation and destruction operators by

[ai, a
†
j ] = δi,j

[a†i , a
†
j ] = 0

[ai, aj ] = 0

(3.31)

These are the fundamental properties that the operators must obey. They are equivalent to the
definition of the matrix elements (3.15).

It means that if we give ourselves

1. A complete basis αi of the single particle states (and the corresponding wavefunctions
|αi〉).

2. Creation and destruction operators ai, for each one of these states that obey the canonical
commutation relations (3.31).

3. A vacuum |∅〉 that is destroyed by the destruction operators ai |∅〉 = 0

we can fully construct a Fock space for bosons. The idea is thus to directly exploit the above
properties and use the canonical commutation relations between the bosons to compute the
physical properties. Representing properties using the above ingredients rather than the wave-
functions is known as the second quantization.

Let us give some examples. Let us take for example the following function

|ψ〉 = a†1a
†
2 |∅〉 (3.32)

Obviously the function contains two bosons. One can reconstruct the expression of the wave-
function using (3.12). One obtains

〈r1r2|ψ〉 =
1√
2

[α1(r1)α2(r2) + α1(r2)α2(r1)] (3.33)
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where αi(ri) = 〈ri|αi〉. This is the properly symmetrized function describing two bosons. The
interest of the second quantization however is to stick with the operators and avoid coming
back to the quite untractable wavefunctions. We see that we can deduce many things directly
from the commutation relations. For example since a†1a

†
2 = a†2a

†
1 from the commutation relation

we see that
a†1a
†
2 |∅〉 = a†2a

†
1 |∅〉 (3.34)

and thus the wavefunction |ψ〉 is obviously symmetric by permutation of the particles. The
creation and destruction operators are thus directly ingeniered to take properly care of the
symmetrization of the wavefunctions and the indiscernibility of the particles. One can in fact
extract a lot more directly from the commutation relations. In particular averages can be
computed easily directly.

Let us illustrate it by looking at the normalization of the function |ψ〉. We want to compute

〈ψ|ψ〉 = 〈∅|a2a1a
†
1a
†
2|∅〉 (3.35)

although this is here a specific example, we will see that quite generally all physical observables
reduce to the average in the vacuum of a certain product of creation and destruction operators,
so the method illustrated here can be applied generally. In order to compute the average, the
only thing we need to use is the fact that the vacuum is destroyed by the ai. We should thus
bring back, using the commutation relations the operator ai to act on the vacuum. Here we
use a1a

†
1 = 1 + a†1a1 from the commutation relation. One has thus

〈ψ|ψ〉 = 〈∅|a2(1 + a†1a1)a†2|∅〉

= 〈∅|a2a
†
2|∅〉+ 〈∅|a2a

†
1a1a

†
2|∅〉

(3.36)

The second term is simple. We can use the commutation relation a1a
†
2 = a†2a1 to rewrite the

second term as 〈∅|a2a
†
1a
†
2a1|∅〉 which immediately gives zero. 〈ψ|ψ〉 is thus only given by the

first term. Using again the commutation relations one obtains

〈ψ|ψ〉 = 〈∅|a2a
†
2|∅〉 = 〈∅|(1 + a†2a2)|∅〉

= 〈∅|1|∅〉
= 1

(3.37)

Although the calculations can become tedious when the number of operator grows, the me-
chanics is always the same. With a little bit of habit one can speed up the calculations as will
be seen in the exercices.

3.3.2 Fermions

Let us now turn to the creation and destruction operators for Fermions. In a similar way than
for bosons (3.15) we define

c†i |n1, . . . , ni, . . . , nΩ〉 = (1− ni)(−1)εi |n1, . . . , ni + 1, . . . , nΩ〉
ci |n1, . . . , ni, . . . , nΩ〉 = ni(−1)εi |n1, . . . , ni − 1, . . . , nΩ〉

(3.38)

where εi =
∑i−1
j=1 nj and ε1 = 0. Note that the order of the elements in the basis, has to be

fixed once and for all, but is of course arbitrary.

In the above definitions some terms are quite transparent. Since for Fermions the Pauli principle
prevents two fermions to be in the same quantum number it means that the ni are restricted
to be either 0 or 1. It is thus important that the creation operator does is not able to create
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two particles in one state. This is ensured by the factor 1− ni that ensures that if c†i acts on a
state with ni = 1 then the action of the operator will give zero. In a similar way the ni factor
ensures that the destruction operator cannot destroy a particle in the state for which ni = 0.
The physics of the strange factor (−1)εi is for the moment not obvious, and one could have
been tempted to define the operators without such a phase factor. We will see its use a little
bit later.

We now proceed exactly as with the bosons. We first can check that the operators c†i and ci are
indeed hermitian conjugate. Fermions are in fact simpler in that respect, since for each state
αi there are only two possibilities ni = 0 or ni = 1 for the corresponding state. The only non
zero matrix element for the operator c†i is

〈n1, . . . , ni = 1, . . . , nΩ|c†i |n1, . . . , ni = 0, . . . , nΩ〉 = (−1)εi (3.39)

while for ci the only non zero matrix element is

〈n1, . . . , ni = 0, . . . , nΩ|ci|n1, . . . , ni = 1, . . . , nΩ〉 = (−1)εi (3.40)

which is obviously the complex conjugate of the other one.

In order to proceed with the commutations relations, and understand the role of the coefficients
(−1)εi let us first look at the action of cic

†
i . Since this only affects state αi we can simply consider

the action on the two states with ni = 0 and ni = 1

cic
†
i |n1, . . . , ni = 0, . . . , nΩ〉 = (−1)εici |n1, . . . , ni = 1, . . . , nΩ〉

= (−1)2εi |n1, . . . , ni = 0, . . . , nΩ〉
= |n1, . . . , ni = 0, . . . , nΩ〉

(3.41)

On the contrary
c†i ci |n1, . . . , ni = 0, . . . , nΩ〉 = 0 (3.42)

Notice that in this result the terms (−1)εi do not play any role, and we could have defined the
operators without including them. In a similar way

cic
†
i |n1, . . . , ni = 1, . . . , nΩ〉 = 0

c†i ci |n1, . . . , ni = 1, . . . , nΩ〉 = |n1, . . . , ni = 1, . . . , nΩ〉
(3.43)

Thus one sees that [ci, c
†
i ] does not have any simple expression. On the contrary the anticom-

mutator
[ci, c

†
i ]+ = cic

†
i + c†i ci (3.44)

leads to
[ci, c

†
i ]+ |n1, . . . , ni, . . . , nΩ〉 = |n1, . . . , ni, . . . , nΩ〉 (3.45)

and thus
[ci, c

†
i ]+ = 1 (3.46)

On can thus guess that the anticommutator will play a major role. The role of the factor
(−1)εi , will thus be to ensure that for the other combinations one also get simple relations for

the anticommutator. Let us illustrate it on the action of cic
†
j with i 6= j. One has (assuming

that i < j),

cic
†
j |n1, . . . , ni, . . . , nj , . . . , nΩ〉 = (1− nj)(−1)εjci |n1, . . . , ni, . . . , nj + 1, . . . , nΩ〉

= (1− nj)(−1)εjni(−1)εi |n1, . . . , ni − 1, . . . , nj + 1, . . . , nΩ〉
(3.47)
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On the contrary

c†jci |n1, . . . , ni, . . . , nj , . . . , nΩ〉 = ni(−1)εic†j |n1, . . . , ni − 1, . . . , nj , . . . , nΩ〉

= (1− nj)(−1)ε
′
jni(−1)εi |n1, . . . , ni − 1, . . . , nj + 1, . . . , nΩ〉

(3.48)

The term ε′j corresponds to the phase factor with a state with ni − 1 instead of ni. Thus
ε′j = εj − 1. In the absence of such phase terms the two expressions (3.47) and (3.48) would be

identical and one would have [ci, c
†
j ] = 0. Thanks to the phase factors εj we have now a minus

sign between the two terms and the relation now becomes

[ci, c
†
j ]+ = 0 (3.49)

which will allow to define the ci operators only in terms of their anticommutators.

It is easy to check the other relations, and thus one has, in a similar way than for the bosons
(3.31)

[ci, c
†
j ]+ = δi,j

[c†i , c
†
j ]+ = 0

[ci, cj ]+ = 0

(3.50)

In the same way than for the bosons the ci and c†i can be used to construct all the states of the
Fock space from a vacuum |∅〉 which is destroyed by all the ci (ci |∅〉 = 0) using the relation
(3.20).

Wavefunctions and averages can be computed by exactly the same techniques that were given
for the bosons. As an example let us look at the function with two fermions in the states α1

and α2

|ψ〉 = c†1c
†
2 |∅〉 (3.51)

From (3.12) the wavefunction is

〈r1r2|ψ〉 =
1√
2

[α1(r1)α2(r2)− α1(r2)α2(r1)] (3.52)

which is of course the properly antisymmetrized wavefunction for Fermions. Without going to
the wavefunction one can directly see the antisymmetrization at the operator level. Using the
anticommutation relation [c1, c2]+ = 0 one sees that

c†1c
†
2 |∅〉 = −c†2c

†
1 |∅〉 (3.53)

and thus the wavefunction |ψ〉 is obviously antisymmetric by permutation of the particles.

The fact that the antisymmetrization is taken care of automatically by the operator ci makes
it very convenient to write even complicated functions. For example the Fermi sea corresponds
to a state where all states with a lower energy that the Fermi energy are occupied. To describe
the one particle state we introduce a complete basis. For the orbital part we can take the
momentum basis |k〉. The electron having a spin 1/2 we need a complete basis for the spin
sector. Let us recall that the spin in given in terms of the Pauli matrices σl by

Sl =
1

2
σl (3.54)

and the three Pauli matrices are given by

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(3.55)
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We can take the two eigenstates of Sz denoted either |↑〉 or |↓〉 or |σz = ±〉, for the complete
basis in the spin sector. The states α are thus α = (k, σz = ±). We can define the corresponding

creation operators c†k,σ which creates an electron with the momentum k and the spin σ =↑, ↓.
In terms of these operators the Fermi sea is simply

|F〉 =
∏

k,ε(k)<EF

c†k↑c
†
k↓ |∅〉 (3.56)

Averages in the void can be computed by exactly the same technique than described for the
bosons. For example, if we take |ψ〉 = c†1 |∅〉, then (using the anticommutation relations)

〈ψ|ψ〉 = 〈∅|cic†i |∅〉

= 〈∅|1− c†i ci|∅〉
= 〈∅|1|∅〉 = 1

(3.57)

Generalizing the above calculation we see that 〈F|F〉 = 1.

3.4 One body operators

Now that we have operators that allow to construct the whole Fock space, what remains to be
done is to express the physical observables we want to compute in terms of these operators.
In order to do that we have to take into account that the physical observables have to act
on indistinguishable particles, which sets some constraints on what they can be. To give the
expression of the observables in second quantization we have to sort out observables in terms of
how many particles are involved. Indeed there are physical observables that measure only the
quantum numbers of one particle at a time (such as measuring the momentum, density, etc. of
the particles) and others that need to deal with the quantum numbers of two of the particles
to determine the matrix elements. This is for example the case of the operator measuring the
interactions between the particles. The first type is called one body operators, while the second
one is two body operators. One can have in principle operators that involve more than two
particles to get the matrix elements (such as three body collisions and up) but they are of
little use in practice in solid state physics, so we will mostly discuss here the one and two body
operators. The formulas given here can be easily generalized if need be.

3.4.1 Definition

Let us first start with one body operators. Quite generally let us call O an operator which
involves only the measurement of one particle at a time. Of course if O acts in space with
N particles it must do the measurement on each particle of the system. Let us call O(1) the
operator acting in the Hilbert space of a single particle, the operator O must thus be

O = O
(1)
1 ⊗ 12 ⊗ . . .⊗ 1N + 11 ⊗O(1)

2 ⊗ . . .⊗ 1N + . . .+ 11 ⊗ . . .⊗O(1)
N (3.58)

where O
(1)
i is the operator acting on the i-th particle. The fact that in the above sum, all coeffi-

cients are identical, is the direct consequence of the fact that the particles are indistinguishable,
and we cannot now in a physical measurement if we are measuring the quantum numbers of the,
say 3-rd or 120-th particle. The form (3.58) is thus the most general form, for indistinguishable
particles, of a one body operator.

In order to express (3.58) in second quantization, we will first start to look at what happens if
we have a system with only one particle in it (if there is no particle a one body operator gives
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Figure 3.2: The one body operator in second quantization. The operator c†αcβ changes the
quantum state of any particle in the system from the state β to the state α. The amplitude
element of such process is given by the matrix elements of the single particle operator O(1):
〈α|O(1)|β〉. This ensure that the operator O(1) is operating on each particle in turn.

obviously zero). In that case O = O(1) and using the complete basis α we can write

O =
∑
α,β

|α〉〈α|O(1)|β〉〈β| (3.59)

We can now use the fact that |α〉 = c†α |∅〉 to obtain

O =
∑
α,β

〈α|O(1)|β〉c†α|∅〉〈∅|cβ (3.60)

The physical interpretation of this formula is quite simple. The operator cβ destroys a particle
in a state β. Since we have only one particle in the system we are forced to go to the vacuum,
then from the vacuum the operator c†α recreates the particle in the state α. The net result is
that we have still one particle in the system but it has changed its quantum state going from
the state β to the state α. The amplitude of such transition is given by the matrix elements of
the operator O(1) between the states β and α.

If instead of one particle we had now an arbitrary number of particles in the system, we would
have exactly the same thing to do for each one of the particles, leaving the quantum numbers of
the others invariant as is obvious from (3.58) and do the sum. An operator that accomplishes
this is the operator

O =
∑
α,β

〈α|O(1)|β〉c†αcβ (3.61)

which is identical to (3.60) except that one is not forced to go to the vacuum after the destruction
of the particle in the state β. Indeed if there are several particles the operator c†αcβ will change
the quantum number of one particle from state β to state α, and leave the quantum numbers
of all the other particles in the system untouched. However the operator cβ will operate on all
the particles in the system, and thus make such a transition for the 1-st, 2-nd etc. realizing
automatically the sum in (3.58). The interpretation of (3.61) is show in Fig. 3.2

The expression (3.61) thus allows to represent any single-body operator in second quantization,
with the sole knowledge of the operator O(1) acting in the space of one particle only. Note
that the wavefunctions coming from the choice of the complete basis α only intervene in the
calculation of the matrix elements 〈α|O(1)|β〉. Once these matrix elements are computed, the
whole operator is reduced to a linear combination of creation and destruction operators, and
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thus all physical averages can be computed by the techniques described in the previous section,
without ever having to go back to wavefunctions. Of course all the aspects of symmetrization or
antisymmetrization are automatically taken care of by the nature of the creation or destruction
operators.

3.4.2 Examples

Let us start with the operator measuring the density of particles at a point r0. The operator
giving such a density for one particle is

ρ(1)(r0) = |r0〉〈r0| (3.62)

In first quantization 〈ψ|ρ(1)(r0)|ψ〉 = |ψ(r0)|2. In second quantization the form of the operator
will depend on the choice of the complete basis α we take. Let us start by taking the basis
of the position |r〉. In that case the operator c†r is the operator creating a particle at point r.
Using this basis and the relation (3.61) one obtains

ρ(r0) =
∑
rr′

〈r|r0〉〈r0|r′〉c†rcr′

=
∑
rr′

δ(r − r0)δ(r0 − r′)c†rcr′

= c†r0
cr0

(3.63)

The expression c†r0
cr0 is particularly simple to understand. The operator c†r0

cr0 destroys and
recreate a particle in the same quantum state. Thus it has changed nothing on the system.
However the action of the operator cr0

will give zero if there is no particle in the corresponding
quantum state (here a particle at the point r0) to destroy. The operator c†r0

cr0
thus gives zero

if there is no particle in the corresponding quantum state and one if there is one particle. It
thus simply counts the number of particles at the point r0. Quite generally the operator c†αcα
simply counts the number of particles in the state α. The total number of particles in the
system is simply given by

N =

∫
dr c†rcr (3.64)

The generalization to the case of particles with spins is obvious. In that case the complete basis
will be α = (r, σ). The density operator only acts on the spatial part thus

ρ(1)(r0) = |r0〉〈r0| ⊗ 1spin (3.65)

and thus (3.61) gives

ρ(r0) =
∑

rσ,r′σ′

〈rσ|r0〉〈r0|r′σ′〉c†rσcr′σ′

=
∑

rσ,r′σ′

δ(r − r0)δ(r0 − r′)δσσ′c†rσcr′,σ′

= c†r0↑cr0↑ + c†r0↓cr0↓

(3.66)

For particles with spins we could compute the spin density along z at the point r0. In that case
the operator is

σ(1)
z (r0) = |r0〉〈r0| ⊗ Sz (3.67)
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And thus using (3.61) one gets

σz(r0) =
∑

rσ,r′σ′

〈rσ|r0〉〈r0| ⊗ Sz|r′σ′〉c†rσcr′σ′

=
∑
σσ′

〈σ|Sz|σ′〉c†r0σcr0σ′

=
1

2
(c†r0↑cr0↑ − c

†
r0↓cr0↓)

(3.68)

In a similar way the spin density along the x direction would give

σx(r0) =
∑

rσ,r′σ′

〈rσ|r0〉〈r0| ⊗ Sx|r′σ′〉c†rσcr′σ′

=
∑
σσ′

〈σ|Sx|σ′〉c†r0σcr0σ′

=
1

2
(c†r0↑cr0↓ + c†r0↓cr0↑)

(3.69)

Alternatively we could have used the basis of the eigenstates of the momentum |k〉 where

〈r|k〉 =
1√
Ω
eikr (3.70)

Since the spin and orbital part are independent in the above we will just give the expressions
for the spinless case, the addition of the spin sector being exactly as above. The operator ck
thus now destroys a particle with momentum k (i.e. in a plane wave state with momentum k).

Using (3.61) one gets

ρ(r0) =
∑
k1k2

〈k1|r0〉〈r0|k2〉c†k1
ck2

=
1

Ω

∑
k1k2

e−ik1r0eik2r0c†k1
ck2

(3.71)

The expression (3.71) is not as simple as (3.63) since the density operator is not diagonal in the
momentum basis. However both (3.71) and (3.63) represent the same operator. This gives us
a direct connection between the operators creating a particle at point r and the ones creating
a particle with momentum k. Comparing the expressions (3.71) and (3.63) one gets

cr =
1√
Ω

∑
eikrck (3.72)

Using the expression (3.71) we can also compute the total number of particles in the system

N =

∫
dr

1

Ω

∑
k1k2

e−ik1reik2rc†k1
ck2

=
∑
k1k2

δk1k2
c†k1

ck2

=
∑
k

c†kck

(3.73)

Keeping in mind that c†kck simply counts the number of particles in the quantum state k, one
gets again that the total number of particles is the sum of all numbers of particles in all possible
quantum states.
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Finally one can use (3.71) to get a simple expression of the Fourier transform of the density

ρ(q) =

∫
dre−iqrρ(r)

=

∫
dre−iqr

1

Ω

∑
k1k2

e−ik1reik2rc†k1
ck2

=
∑
k1k2

δk2,k1+qc
†
k1
ck2

=
∑
k

c†k−qck

(3.74)

Another important operator is of course the kinetic energy of the particles. For one particles

one has H(1) = P 2

2m . More generally we could have any function of the momentum H(1) = E(P ).
It is thus very convenient to use the momentum basis. The kinetic energy is thus expressed as

H =
∑
k1k2

〈k1|ε(P )|k2〉c†k1
ck2

=
∑
k1k2

δk1k2ε(k2)c†k1
ck2

=
∑
k

ε(k)c†kck

(3.75)

which has the simple interpretation that the total kinetic energy of the system is the sum of
the kinetic energy E(k) of particles with momentum k, times the number of particles in such

a state k (which is given by c†kck). The generalization for system with spin is obvious and in
general one has

H =
∑
kσ

ε(k)c†kσckσ (3.76)

assuming that the kinetic energy does not depend on spin (no spin-orbit coupling). Note that

since the total number of particles is N =
∑

k c
†
kck adding a chemical potential −µN does not

change the form of the Hamiltonian

H =
∑
kσ

ξ(k)c†kσckσ (3.77)

but simply replaces ε(k) by ξ(k) = ε(k) − µ. At zero temperature the energy ξ(k) is zero at
the Fermi level, negative below and positive above.

3.5 Two body operators

Let us now look at operators that involve two particles to define their matrix elements. This is
in particular the case of the interaction between two particles.

3.5.1 Definition

In a similar spirit than for single body operators, let us call O(2) the corresponding operator
that operates in the space of only two particles. The two body operator that will operate with
N particles must thus have the form

O =
∑
i<j

O
(2)
i,j

⊗
k 6=i,j

1k =
1

2

∑
i 6=j

O
(2)
i,j

⊗
k 6=i,j

1k (3.78)
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so that the operator O(2) can operate on each pairs of particles in the system. In a similar way
than for single body operators, the coefficients in the above sum must all be equal otherwise it
would mean that the particles could be distinguished.

To understand how to write O in second quantization let us look at the case where there are
exactly two particles in the system. We must define the operator O by its matrix elements in
the physical space of the (anti)symmetrized functions |α, β〉. It means we should know all the
elements

〈α, β|O(2)|γ, δ〉 (3.79)

Using (3.3) to express |α, β〉 in terms of the ordered kets (3.4), and the fact that the particles
are indistinguishable thus

(α, β|O(2)|γ, δ) = (β, α|O(2)|δ, γ) (3.80)

since this is simply the exchange of the two particles, we obtain that

〈α, β|O(2)|γ, δ〉 = (α, β|O(2)|γ, δ)± (α, β|O(2)|δ, γ) (3.81)

We should now find in second quantization an operator that reproduces these matrix elements,
and of course works for N instead of two. One can check that

O =
1

2

∑
α,β,γ,δ

(α, β|O(2)|γ, δ)c†αc
†
βcδcγ (3.82)

works both for fermions and bosons. We will not prove the relation in general but simply check
that it works for N = 2 particles. We compute from (3.82) the matrix elements

〈α0, β0|O|γ0, δ0〉 =
1

2

∑
α,β,γ,δ

(α, β|O(2)|γ, δ)〈α0, β0|c†αc
†
βcδcγ |γ0, δ0〉 (3.83)

Since |α0, β0〉 = c†α0
c†β0

we have to compute averages of the form

〈∅|cβ0
cα0

c†αc
†
βcδcγc

†
γ0
c†δ0 |∅〉 (3.84)

which can be easily computed by the technique consisting to bringing the destruction operators
to act on the vacuum. This gives

〈∅|cβ0cα0c
†
αc
†
βcδcγc

†
γ0
c†δ0 |∅〉 = [δα0,αδβ0,β ± δα0,βδβ0,α][δγ0,γδδ0,δ ± δγ0,δδδ0,γ ] (3.85)

The + sign is as usual for bosons and the − one for fermions. Physically it means that when
the destruction operators act

cδcγ |γ0, δ0〉 (3.86)

they have to destroy the two particles in the two possible quantum states and thus δ has to be
one of the states and γ the other with the proper sign depending on the (anti)symmetry of the
wavefunction. Using (3.85) in (3.83) we indeed recover the same matrix elements than (3.81).

Physically the formula (3.82) has a similar interpretation than the one for the single body

operators. The term c†αc
†
βcδcγ destroys two particles with the quantum numbers γ and δ. Note

that two particles must be present in the system for this operator to act, which is what it
should be for a two body operator. It then recreates the two particles with two new quantum
numbers α and β. The amplitude for the transition is the matrix elements of the operator O(2)

in a transition where the first particle goes from state γ to state α and the second from state
δ to state β. Note that the matrix element can be written for ordered kets, the creation and
destruction operators taking care of all the permutations and of doing this transition for any
pair of particles in the system.
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3.5.2 Examples

Let us show some examples, more will be seen in the exercices. The most common interaction
between the electrons is one that depends on the distance between the two particles. The two
body operators of such an interaction is thus

O(2) = V (R1 −R2) (3.87)

where R1 and R2 are the operators measuring the position of the first and the second particle.
The function V depends on the interaction. For the Coulomb interaction it is

V (r) =
e2

4πε0r
(3.88)

but other types of interactions such as a local interaction V (r) = Uδ(r) are also possible choices.
We will keep V as a general function in what follows.

To express the operator, we have again the choice for the basis. Because the operator V (R1−R2)
is diagonal in the position basis, let us start with this one. Using (3.82) and the fact that α is
the position basis we obtain

Hint =
1

2

∫
dr1dr2dr3dr4(r3r4|V (R1 −R2)|r1r2)c†r3

c†r4
cr2
cr1

=
1

2

∫
dr1dr2dr3dr4V (r1 − r2)δ(r3 − r1)δ(r4 − r2)c†r3

c†r4
cr2
cr1

1

2

∫
dr1dr2V (r1 − r2)c†r1

c†r2
cr2
cr1

(3.89)

If one includes spin the complete basis becomes α = (r, σ) and since the operator V (R1 −R2)
is the identity in the spin sector, one gets

Hint =
1

2

∑
σ1σ2

∫
dr1dr2V (r1 − r2)c†r1σ1

c†r2σ2
cr2σ2

cr1σ1
(3.90)

The expression (3.90) can be cast in a more familiar form using the (anti)commutation relations.
For fermions

c†r1σ1
c†r2σ2

cr2σ2cr1σ1 = −c†r1σ1
c†r2σ2

cr1σ1cr2σ2

= −c†r1σ1
(δr1,σ1;r2σ2

− cr1σ1
c†r2σ2

)cr2σ2

= −δr1,σ1;r2σ2
c†r1σ1

cr2σ2
+ c†r1σ1

cr1σ1
c†r2σ2

cr2σ2

= −δr1,σ1;r2σ2
ρσ1

(r1) + ρσ1
(r1)ρσ2

(r2)

(3.91)

There is a similar expression for bosons with a + sign. The second term would lead to the
interaction

Hint =
1

2

∑
σ1σ2

∫
dr1dr2V (r1 − r2)ρσ1

(r1)ρσ2
(r2) (3.92)

This is the familiar expression of the interaction between two densities of particles (or charges)
at two different points. The difference is that now the ρ are operators measuring the density
instead of classical variables. The first term gives∑

σ

∫
drV (r = 0)ρσ1

(r1) = V (r = 0)N (3.93)

is simply a chemical potential term. Notice that it can be infinite for some interactions such as
the Coulomb interaction. This first terms is there to correct that the expression (3.92) contrarily
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to (3.90) does not contain only the interaction between two different particles. Indeed (3.90)
has two destruction operators on the right, which means that the operators can only act on
states containing two particles. One the contrary (3.92) is of the form

c†r1σ1
cr1σ1c

†
r2σ2

cr2σ2 (3.94)

and can thus act even if there is only one particle in the system. It thus contains a fake “self-
interaction” of the particle with itself. It is this interaction that leads to the chemical potential
(3.93) that need to be properly included together with (3.92). Note however that if one fixes the
chemical potential by ensuring that the total number of particles is fixed, then this modification
is irrelevant since it is simply absorbed in the redefinition of the chemical potential and one can
use (3.90) or (3.92) indifferently.

Let us now rewrite the interaction in the momentum basis. Using (3.82) and a basis α = (k, σ)
one has

Hint =
1

2

∑
k1σ1,k2σ2,
k3σ3,k4σ4

(k3σ3,k4σ4|V (R1 −R2)|k1σ1,k2σ2)c†k3σ3
c†k4σ4

ck2σ2
ck1σ1

=
1

2

∑
k1k2k3k4,
σ1σ2

(k3k4|V (R1 −R2)|k1k2)c†k3σ1
c†k4σ2

ck2σ2
ck1σ1

=
1

2

∑
k1k2k3k4,
σ1σ2

∫
dr1 dr2(k3k4|V (R1 −R2)|r1r2)(r1r2|k1k2)c†k3σ1

c†k4σ2
ck2σ2ck1σ1

=
1

2Ω

∑
k1k2k3k4,
σ1σ2

∫
dr1 dr2(k3k4|V (R1 −R2)|r1r2)ei(k1r1+k2r2)c†k3σ1

c†k4σ2
ck2σ2

ck1σ1

=
1

2Ω

∑
k1k2k3k4,
σ1σ2

∫
dr1 dr2(k3k4|r1r2)V (r1 − r2)ei(k1r1+k2r2)c†k3σ1

c†k4σ2
ck2σ2ck1σ1

=
1

2Ω2

∑
k1k2k3k4,
σ1σ2

∫
dr1 dr2e

−i(k3r1+k4r2)V (r1 − r2)ei(k1r1+k2r2)c†k3σ1
c†k4σ2

ck2σ2
ck1σ1

(3.95)

One can use the new variables of center of mass R = (r1 +r2)/2 and relative motion r = r1−r2

to reexpress r1 = R+ r/2 and r2 = R− r/2, to obtain

Hint =
1

2Ω2

∑
k1k2k3k4,
σ1σ2

∫
dRdrei(k1+k2−k3−k4)RV (r)ei(k1−k3−k2+k4)r/2c†k3σ1

c†k4σ2
ck2σ2

ck1σ1

=
1

2Ω

∑
k1k2k3k4,
σ1σ2

δk1+k2,k3+k4

∫
drV (r)ei(k1−k3)rc†k3σ1

c†k4σ2
ck2σ2ck1σ1

=
1

2Ω

∑
k1k2k3k4,
σ1σ2

δk1+k2,k3+k4
V (q = k3 − k1)c†k3σ1

c†k4σ2
ck2σ2

ck1σ1

(3.96)

Let us comment this expression. The integration over R gives the term δk1+k2,k3+k4 which
expresses the conservation of the momenta of the two particles before and after the interaction.
This is the direct consequence of the fact that we have chosen an interaction term that is
translationally invariant V (R1−R2) and thus the total momentum (k1+k2 and k3+k4) should
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Figure 3.3: Pictorial visualization of the term (3.97). Each destruction operator is represented
by an incoming arrow, each creation one by an outgoing one. One sees that the interaction can
be viewed as the scattering of one particle going from state k1σ1 to k1 + q, σ1 by another one
going from state k2σ2 to state k2−q, σ2. The amplitude of such matrix elements is the Fourier
transform of the interaction potential V (q). Since the potential is invariant by translation
in space, the momentum is conserved across the interaction. Since the potential does not
depend on the spin degrees of freedom the spin of each particle is individually conserved by the
interaction. This representation is known as Feynman diagrams. It is extremely useful when
constructing the perturbation theory.

be conserved. The integral over the relative coordinates leads directly to the Fourier transform
of the interaction potential with a wavevector that corresponds to momentum transferred on
one of the particles during the interaction. One can rewrite the term taking into account the
δk1+k2,k3+k4 constraint as

Hint =
1

2Ω

∑
k1k2q,
σ1σ2

V (q)c†k1+q,σ1
c†k2−q,σ2

ck2σ2
ck1σ1

(3.97)

This term can be represented visually as shown in Fig. 3.3.

3.6 Solving with second quantization

We now have the tools to express all the operators we need, either for the Hamiltonian or
other physical observables, in second quantization. We also saw how to compute averages of
an arbitrary number of such creation and destruction operators in the vacuum. However one
important question that remains is how to solve practically a problem, in second quantization,
when we know the Hamiltonian. In the first quantization we write the Schrödinger equation,
and from that find both the eigenvalues and eigenvectors. But the very essence of the second
quantization is to avoid to ever deal with wavefunction so we want to follow another route to
obtain the eigenvalues and eigenvectors. How to do this is what we examine now.



Sect. 3.6 Solving with second quantization 57

3.6.1 Eigenvalues and Eigenstates

Let us first look if we can find the eigenvalues or eigenvector of some simple Hamiltonian. Let
us start with a general quadratic Hamiltonian

H =
∑
α

Aαc
†
αcα (3.98)

where α is some complete basis, and the coefficients Aα are arbitrary numbers. Several Hamil-
tonians are of such forms, for example the kinetic energy (3.77). For quadratic and diagonal
Hamiltonians of the form (3.98) the problem is solved. Indeed each vector of the form

c†α1
c†α2

c†α3
. . . c†αp |∅〉 (3.99)

is an eigenvector of H with an eigenvalue

E =

p∑
i=1

Ai (3.100)

To show this let us illustrate the calculation with two terms |ψ〉 = c†α1
c†α2
|∅〉 (for fermions, an

analogous calculation can be performed for bosons)

Hc†α1
c†α2
|∅〉 =

(∑
α

Aαc
†
αcα

)
c†α1

c†α2
|∅〉

=
∑
α

Aαc
†
α(δα,α1

− c†α1
cα)c†α2

|∅〉

= Aα1
|ψ〉 −

∑
α

Aαc
†
αc
†
α1
cαc
†
α2
|∅〉

= Aα1 |ψ〉 −
∑
α

Aαc
†
αc
†
α1

(δα,α2 − c†α2
cα) |∅〉

= Aα1 |ψ〉 −Aα2c
†
α2
c†α1
|∅〉

= Aα1 |ψ〉+Aα2 |ψ〉

(3.101)

The physics of this result is simple to understand. The operator c†αcα counts the particles in the
state α. Thus if in |ψ〉 there is a particle in such a state it will return 1 and the corresponding
energy will be counted in H.

We thus see that if we have an Hamiltonian that is in a diagonal quadratic form such as (3.98)
then we can get all the eigenvalues and eigenvectors of the system. At zero temperature the
ground state will simply consist (for fermions) in occupying all the states with the minimum
energy according to the number of particles in the system.

|F〉 =

N∏
i=1

c†αi |∅〉 (3.102)

if E1 ≤ E2 ≤ . . . ≤ EΩ. Note that the Fermi sea is a particular case of (3.102).

At finite temperature we can also compute the averages of many operators. One important
case is the operator giving the number of particles in the state αp

〈c†αpcαp〉 =
Tr[e−βHc†αpcαp ]

Tr[e−βH ]

=

∑
n1,...,nΩ

〈n1, . . . , nΩ|e−β
∑
α Aαc

†
αcαc†αpcαp |n1, . . . , nΩ〉∑

n1,...,nΩ
〈n1, . . . , nΩ|e−β

∑
α Aαc

†
αcα |n1, . . . , nΩ〉

(3.103)
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Using the fact that (both for fermions and bosons) [c†αcα, cγ ] = 0 if α 6= γ and a similar relation
for c†γ , we see that the term e−βH factorizes

e−βH =

Ω∏
j=1

e
−βAαj c

†
αj
cαj (3.104)

Since in the trace each term ni is independent the average factorizes. The numerator becomes∑
nαp

〈nαp |e
−βAαpc

†
αp
cαp c†αpcαp |nαp〉

∏
j 6=p

∑
nαj

〈nαj |e
−βAαj c

†
αj
cαj |nαj 〉

 (3.105)

All the terms for j 6= p are identical in the numerator and denominator and cancel each other.
The trace thus reduces to

〈c†αpcαp〉 =

∑
nαp
〈nαp |e

−βAαpc
†
αp
cαp c†αpcαp |nαp〉∑

nαp
〈nαp |e−βAαpc

†
αpcαp |nαp〉

(3.106)

which is quite obvious physically. Indeed the Hamiltonian being diagonal in α only the state
αp can contribute to the average of an operator only involving the state αp.

Since c†αpcαp |np〉 = np |np〉 one simply has

〈c†αpcαp〉 =

∑
nαp

e−βAαpnpnp∑
nαp

e−βAαpnp
(3.107)

So far all what we did is independent on having bosons or fermions. The final result however
will depend on what are the allowed values of np

For fermions only np = 0 and np = 1 are in the sum. Thus

〈c†αpcαp〉 =
e−βAαp

1 + e−βAαp
=

1

1 + eβAαp
(3.108)

and one recovers the Fermi factor. We see that this is a totally general result (not limited to
eigenstates of momentum) as soon as one has a quadratic Hamiltonian and one is in thermal
equilibrium.

For bosons np = 0, . . . ,+∞, and thus the sum becomes

〈c†αpcαp〉 = − ∂

∂β
log[

+∞∑
np=0

e−βnpAαp ]

= − ∂

∂β
log

[
1

1− e−βAαp

]
=

e−βAαp

1− e−βAαp

=
1

eβAαp − 1

(3.109)

and one recovers the Bose factor.

Se we see that with quadratic diagonal Hamiltonians we can compute essentially all the physical
quantities we need. Of course in general the Hamiltonian of the system will be neither quadratic
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nor diagonal. So solving in second quantization means essentially that we have to find a
transformation of the operators c and c† that put the Hamiltonian in a quadratic diagonal
form. Although any transformation is in principle possible not all transformations are good.
We want the new operators d and d† that are the results of the transformation to still spawn
the Fock space. It means that we can only consider transformation that preserve the canonical
commutation relations. Of course finding such transformations is in general a formidable task.
There is however a very important class of transformations when the Hamiltonian is still a
quadratic form, but is not diagonal, that we will examine in the next section.

Before doing so, let us finally remark that even without solving the Hamiltonian one can exploit
the freedom of choosing different creation and destruction operators to use a more convenient
representation. As already mentioned every transformation that preserves the canonical com-
mutation relations is allowed. Let us a simple example, more examples will be seen in the next
section and in the exercises.

The simplest transformation is the particle-hole transformation

c†α = dα

cα = d†α
(3.110)

For fermions is it easy to check, by substitution of the d operators that they verify the canonical
anticommutation relations. For example

[dα, d
†
β ]+ = [c†α, cβ ]+ = δα, β (3.111)

If the operators cα and c†α respectively destroy and create an electron in the state α, the
operator dα and d†α are also destruction and creation operators of “something else” that has
also a fermionic statistics and can thus be used to build a Fock space. In that particular case
the operator dα destroys a hole with state α (which is identical to creating an electron) and the
operator d†α creates a hole (which is the same thing than destroying an electron).

One important point when making the transformation is not to forget to modify the vacuum as
well. Indeed the vacuum for the particles d is the not same than the vacuum for the particles
c. One has thus |∅c〉 and |∅d〉. The vacuum of d particles is defined as usual by

dα |∅d〉 = 0 (3.112)

for all states α. It is easy to check using the relation (3.110) that

|∅d〉 =
∏
α

c†α |∅c〉 (3.113)

3.6.2 Bogoliubov transformation

In principle we know also how to solve Hamiltonians of the form

H =
∑
α,β

Aα,βc
†
αcβ (3.114)

Indeed in that case the Hamiltonian is quadratic but not diagonal. This is of course not the most
general form of the Hamiltonian since there are terms that can be different from a quadratic
form (such as an interaction term for example). However this class of Hamiltonian already
covers a very large number of cases. We can bring the matrix Aα,β into a diagonal form by
making the appropriate linear combination of the operators cα. The operators dα that are the
linear combinations of the cα that brings the matrix under diagonal form allow thus to get all
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the eigenvectors of the problem. Of course in general the matrix Aα,β would be of size Ω × Ω
and the diagonalization would be very difficult to perform. There are however simple cases
where the physics of the problem helps us to perform the diagonalization.

Let us illustrate it with the tight binding Hamiltonian (1.18). This will also allows us to write
this Hamiltonian in second quantized form. A complete basis is provided by the states on each
site |i〉 and we can thus define the creation and destruction operators associated with it, i.e. c†i
is the operator creating a particle on site i. Using (1.18), the second quantized form reads

H =
∑
i,j

(i|H(1)|j)c†i cj (3.115)

where H(1) is the Hamiltonian (1.18). We thus immediately get

H = E0

∑
i

c†i ci − t
∑
〈i,j〉

c†i cj (3.116)

The second term describes a process where a particle on site i to reappear on the neighboring
site j, and vice versa. This Hamiltonian is obviously quadratic but not diagonal. In the language
of (3.114) it corresponds to a tridiagonal matrix. In order to diagonalize this matrix we can use
the physical input that since the Hamiltonian is invariant by translation, momentum must be a
good quantum number. We thus have interest to deal with creation and destruction operators
that are linear combination of the ci that correspond to a Fourier transform. Of course this is
exactly the same reasoning than the one leading to (1.19) and this operators will correspond to
the state |k〉. But let us simply treat it as a linear combination of operators. We can define

d†k =
1√
Ns

Ns−1∑
j=0

eikrjc†j (3.117)

where we have used a different name d to emphasize that this is new operators (in the future
we will use the same letter the index r or k, making it clear that one is the Fourier transform
of the other. Note the analogy between (3.117) and (3.72). One can check that the operators
dk satisfy the canonical commutation rules. We will just verify one of the anticommutators and
leave the other relations as an exercise. One has

[dk1
, d†k2

]+ =
1

Ns

∑
j,l

e−ik1rjeik2rl [cj , c
†
l ]+

=
1

Ns

∑
j,l

e−ik1rjeik2rlδj,l

=
1

Ns

∑
j

ei(k2−k1)rj

= δk1,k2

(3.118)

The operators dk are thus acceptable Fermions operators. There are exactly Ns different oper-
ators (the size of the Hilbert space cannot change) and k is confined inside the first Brillouin
zone k ∈ [−π/a, π/a] as discussed for the first quantization solution. Moreover, as is obvious
from the definition (3.117), |∅d〉 = |∅c〉. The transformation (3.117) is easily inverted

c†j =
1√
Ns

∑
k

e−ikrjd†k (3.119)

and thus replacing the cj in (3.116) and after a little bit of algebra, one finds

H = E0

∑
k

d†kdk −
∑
k

2t cos(ka)d†kdk (3.120)
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Figure 3.4: A tight binding model with a periodic potential of the form (−1)i. One can still
see the problem as a system invariant by translation with a unit cell that now contains two
atoms. In this reduced scheme zone, the momentum is still a conserved quantum number and
can be used to severely reduce the size of the matrix to diagonalize.

This expression can be compared with the first quantized form (1.29). The Hamiltonian being
now diagonal we can use the operators dk to express simply the ground state and the various
averages. On the physical level we have used the fact that since momentum is conserved one can
diagonalize simultaneously the momentum operators and the Hamiltonian. The Hamiltonian is
thus block diagonal in the basis of eigenvectors of the momentum operator. Since this basis is
of size Ns (Ns different k values in the first Brillouin zone) we are left for each value of k with
a 1× 1 matrix to diagonalize. This is why we find that all the job is done.

Let us now look at the slightly more complicated problem of the tight binding Hamiltonian
(3.116) to which we have added a periodic potential, show in Fig. 3.4. The potential is in first
quantization

H
(1)
pot = V

∑
i

(−1)i|i〉〈i| (3.121)

which immediately gives us in second quantization

Hpot = V
∑
i

(−1)ic†i ci (3.122)

Since we know how to diagonalize (3.116) using the operators dk, it is natural to express Hpot

in this basis. One has, using that (−1)j = ei
π
a rj

Hpot = V
∑
j

ei
π
a rj

1

Ns

∑
k1,k2

e−ik1rje−ik2rjd†k1
dk2

(3.123)

where the two vectors k1 and k2 belong to the first Brillouin zone k ∈ [−π/a, π/a]. The sum
over j can be easily performed and gives the constraint that k1 = k2 + π/a modulo 2π/a. The
potential becomes

Hpot = V
∑
k

c†k+π(mod2π)/ack (3.124)

the momentum k + π/a has to be brought back in the first Brillouin zone by the proper
translation by ±2π/a. The potential thus couples two different k values. Thus the tight binding
Hamiltonian is diagonal in neither basis. In the real space basis the tight binding Hamiltonian
(3.116) is non diagonal while the potential is, while in the k basis the tight binding Hamiltonian
is diagonal but the potential is not.
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To diagonalize the total Hamiltonian we can notice that although a state k is coupled to a state
k + π/a the coupling stops there since the state k + π/a is coupled to k + 2π/a ≡ k and thus
linear combinations of dk and dk+π should be able to diagonalize the full Hamiltonian. We can
also use the more physical approach to use the symmetries of the problem. Even in the presence
of the potential the system is still invariant by translation provided that one considers a unit
cell with two atoms per unit cell as shown in Fig. 3.4. For such a system where the lattice
spacing is 2a the Brillouin zone Z ′B = [−π/(2a), π/(2a)]. On has thus two perfectly equivalent
ways of looking at this problem

1. The original lattice spacing: in that case one has one atom per unit cell, i.e. a single band
in the system. The set of allowed k values spans the Brillouin zone ZB = [−π/a, π/a]. In
such a representation the momentum is not a good quantum number since the potential
breaks the invariance by translation.

2. A reduced zone scheme: in that case one has two atoms per unit cell, i.e. two bands
in the system. The set of allowed k values spans the reduced Brillouin zone Z ′B =
[−π/(2a), π/(2a)] associated with a unit cell 2a. Of course we see that although the
number of allowed values of k has been divided by two the total number of states is
conserved since there are now two bands corresponding to each value of k instead of one.
In this reduced scheme, the system is invariant by translation and thus the momentum
is a good quantum number. We can thus be sure that the Hamiltonian will be block
diagonal in each value of k.

Let us use the reduced zone scheme. We need to express the operators dk with k ∈ ZB in terms
of new operators expressing the degrees of freedom in the reduced zone. This is illustrated in
Fig. 3.5. Let us consider the mapping (shown in Fig. 3.5

dk = αk k ∈ [−π/(2a), π/(2a)]

dk = βk−π/a k ∈ [π/(2a), π/a]

dk = βk+π/a k ∈ [−π/a,−π/(2a)]

(3.125)

It is easy to check that the operators αk and βk are defined for k ∈ Z ′B . They also obey the
canonical commutation rules, and are thus faithful representations of fermions. In terms of this
operator one can rewrite the Hamiltonian. Let us start with the tight binding part [we use
ξ(k) = −2t cos(ka)]

∑
k∈ZB

ξ(k)c†kck =
∑
k∈Z′B

ξ(k)c†kck +
∑

k∈[π/(2a),π/a]

ξ(k)c†kck +
∑

k∈[−π/a,−π/(2a)]

ξ(k)c†kck

=
∑
k∈Z′B

ξ(k)α†kαk +
∑

k∈[−π/(2a),0]

ξ(k + π/a)β†kβk +
∑

k∈[0,π/(2a)]

ξ(k − π/a)β†kβk

=
∑
k∈Z′B

ξ(k)(α†kαk − β
†
kβk)

(3.126)

having used ξ(k ± π/a) = −ξ(k). In the formulation (3.126) the two bands are clearly visible.
Of course since the tight binding Hamiltonian is also invariant by a one unit cell translation the
energy dispersion has no gap as the zone boundary, since folding the zone is merely an arbitrary
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Figure 3.5: One can go from the extended scheme zone to the reduced one. There are now
two species of fermions corresponding to the lower and upper band.
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choice here. We can now express the potential∑
k∈ZB

c†k+π/a(mod2π/a)ck =
∑

k∈[−π/a,−π/(2a)]

c†
k+π

a (mod 2π
a )
ck +

∑
k∈[−π/(2a),0]

c†
k+π

a (mod 2π
a )
ck

+
∑

k∈[0,π/(2a)]

c†
k+π

a (mod 2π
a )
ck +

∑
k∈[π/(2a),π/a]

c†
k+π

a (mod 2π
a )
ck

=
∑

k∈[0,π/(2a)]

α†kβk +
∑

k∈[−π/(2a),0]

β†kαk

+
∑

k∈[0,π/(2a)]

β†kαk +
∑

k∈[−π/(2a),0]

α†kβk

=
∑
k∈Z′B

(α†kβk + β†kαk)

(3.127)

The final result is remarkably simple

H =
∑
k∈Z′B

[A(k)(β†kβk − α
†
kαk) + V (α†kβk + β†kαk) (3.128)

were we have introduced A(k) = −ξ(k) which is a positive quantity for k ∈ Z ′B We see that the
Hamiltonian is diagonal in k in the reduced zone, as it should since the system is invariant by
translation. However, it is not fully diagonal since the lower band α is coupled to the upper
band β by the potential V . We can rewrite the Hamiltonian in a matrix form

H =
∑
k∈Z′B

(
α†k β†k

)( −A(k) V
V A(k)

)(
αk
βk

)
(3.129)

This structure makes it clear that the Hamiltonian is diagonal in k, but that there are two
residual degrees of freedom that are coupled by the potential making the matrix of the quadratic
form non diagonal. It also makes it obvious that all we have to do is to diagonalized the matrix
by the appropriate linear combination of the operators α and β. This type of Hamiltonian
where two degrees of freedom are coupled is specially important and arises in several occasions,
for example as a result of a mean field approximation of the real Hamiltonian as we will see.
It is thus important to see the general procedure to solve it. It is known as the Bogoliubov
transformation and is nothing but the above mentioned diagonalization of the matrix.

On the form (3.129) we can read directly the eigenvalues. They are given by the equation

(A(k)− E)(−A(k)− E)− V 2 = 0 (3.130)

and thus

E(k) = ±
√
A(k)2 + V 2 (3.131)

As can be seen on Fig. 3.6 there is now a gap 2V that opens at the reduced zone boundary. To
determine the eigenvectors we must make combination of the operators α and β.(

γk−
γk+

)
=

(
a b
c d

)(
αk
βk

)
(3.132)

which defines new operators γk+ and γk−. These operators result from the combination of the
top and bottom band or in the original language of states with momentum k and momentum
k + π/a and describe the interference effect between these two states due to the scattering
potential. Since the new operators γ must verify the canonical commutation relations, the
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Figure 3.6: The dispersion relation E(k). Because of the potential there is now a gap 2V at
the zone edge. This gap results from the interferences of states of momentum k and k + π/a
on the periodic potential.

coefficients a, b, c, d cannot be arbitrary. In order to ensure [γk+, γ
†
k−]+ = 0 and the other

commutators, one can check that is is necessary to take the coefficients as(
γk−
γk+

)
=

(
uk −vk
vk uk

)(
αk
βk

)
(3.133)

moreover one must have u2
k + v2

k = 1. Note that here we have chosen real coefficients but one
can generalize the transformation to complex ones. The last condition comes for example from

[γk−, γ
†
k−]+ = [ukαk − vkβk, ukα†k − vkβ

†
k]+

= u2
k[αk, α

†
k]+ + v2

k[βk, β
†
k]+ + ukvk([βk, α

†
k]+ + [αk, β

†
k]+)

= u2
k + v2

k

(3.134)

This quite natural since the transformation (3.133) (the Bogoliubov tranformation) is an orthog-
onal transformation with two vectors that are orthogonal and normed. It is thus a “rotation”
in the space spawned by the vectors αk and βk. Note that in general the coefficients of the
transformation depends on k. Given the constrain one often uses the parametrization

uk = cos θk , vk = sin θk (3.135)

The transformation is easily inverted(
αk
βk

)
=

(
uk vk
−vk uk

)(
γk−
γk+

)
(3.136)

Inserting (3.136) in (3.129) one gets

H =
∑
k∈Z′B

(
γ†k− γ†k+

)( −[A(k)(u2
k − v2

k) + 2V ukvk] V (u2
k − v2

k)− 2A(k)ukvk
V (u2

k − v2
k)− 2A(k)ukvk +[A(k)(u2

k − v2
k) + 2V ukvk]

)(
γk−
γk+

)
(3.137)

This leads to the condition

V (u2
k − v2

k)− 2A(k)ukvk = 0 (3.138)

to diagonalize the matrix, while

E±(k) = ±[A(k)(u2
k − v2

k) + 2V ukvk] (3.139)
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Figure 3.7: Bogoliubov parameters uk and vk as a function of the energy A(k).

are the two eigenvalues. To solve (3.138) one can use the parametrization (3.135). The solution
is

uk =

[
1

2

(
1 +

A(k)√
A(k)2 + V 2

)]1/2

vk =

[
1

2

(
1− A(k)√

A(k)2 + V 2

)]1/2
(3.140)

which also gives

E±(k) = ±[A(k)(u2
k − v2

k) + 2V ukvk] = ±[A(k)2 + V 2]1/2 (3.141)

which are of course the same values than the one we obtained by computing directly the
eigenvalues.

The expressions (3.140) and the energies (3.141) are shown in Fig. 3.7 One sees that far from
the zone boundary where A(k) = 0 one has uk ∼ 1 and vk ∼ 0. The new operators γ± are
thus practically the old ones γk− ' αk and γk+ ' βk. For these wavevectors the potential is
not able to act efficiently and produce interferences. The wavefunctions of the eigenstates are
thus essentially simply the old plane waves. One the other hand close to the zone boundary the
interferences produced by the potential will be maximal. One can look at the wavefunctions
corresponding to the new operators

〈ri|γ†k−|∅〉 = 〈ri|(ukα†k − vkβ
†
k)|∅〉

= 〈ri|(ukc†k − vkc
†
k+π/a)|∅〉

= uk
1√
Ω
eikri − vk

1√
Ω
ei(k+π/a)ri

=
1√
Ω
eikri(uk − (−1)ivk)

(3.142)
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and

〈ri|γ†k+|∅〉 = 〈ri|(vkα†k + ukβ
†
k)|∅〉

=
1√
Ω
eikri(vk + (−1)iuk)

=
1√
Ω
ei(k+π/a)ri(uk + (−1)ivk)

(3.143)

we thus see that when uk ∼ 1 and vk ∼ 0 the two operators γk− and γk+ are creating respectively
essentially a plane wave with momentum k and k + π/a, and the potential has little action.
But when the wavevector of these plane waves approaches ±π/(2a), i.e. the zone boundary in
the reduced scheme zone for which A(k) = 0, the potential that has a wavevector Q = π/a
can induce strong interferences between the two states ±π/(2a). The eigenstates are thus
transformed because of these interferences into stationary waves. The amplitude of the wave
caused by γk− is essentially zero on the even sites and maximal on the odd sites. Since the
potential is V (ri) = V (−1)i we see that such a wave gain an energy of order −V , which is
indeed what its eigenvalue is. On the contrary the stationary wave created by γk+ is maximal
on the even sites and thus looses the energy +V . The Bogoliubov transformation allows to go
beyond this cartoon and gives the full eigenstates for all values of k.

To finish let us illustrate how we can use the transformation to compute any observable. The
observables are easily expressed in terms of the original operators c, while we know the ground
state or other thermodynamic averages easily in terms of the operators γ. The strategy can
work two ways: either we express the ground state back in terms of the operators c, and then
compute the observables by the usual way, or we do the opposite and reexpress the observables
in terms of the operators γ. The second method is usually simpler, but both give of course
equivalent results. Let us illustrate it with the calculation of the average, at finite temperature,
of the density of particles at the point ri = 0. Using (3.71) the corresponding operator is

ρ(r = 0) =
1

Ω

∑
k1,k2

c†k1
ck2

(3.144)

the sum over momentum runs in ZB . We now restrict the momenta to Z ′B and express the
operators c in terms of the operators α and β. One has

ρ(r = 0) =
1

Ω

∑
(k1,k2)∈Z′B

(α†k1
αk2 + β†k1

βk2 + α†k1
βk2 + β†k1

αk2)

=
1

Ω

∑
(k1,k2)∈Z′B

(
α†k1

β†k1

)(
1 1
1 1

)(
αk2

βk2

)

=
1

Ω

∑
(k1,k2)∈Z′B

(
γ†k1− γ†k1+

)(
(uk1 − vk1)(uk2 − vk2) (uk1 − vk1)(uk2 + vk2)
(uk1

+ vk1
)(uk2

− vk2
) +(uk1

+ vk1
)(uk2

+ vk2
)

)(
γk2−
γk2+

)
(3.145)

Computing the average of the operator is now reduced to computing averages of the form
γ†k1±γk2± which we now well since the Hamiltonian is diagonal in terms of the operators γ. Let
us start with the case at T = 0. Given the eigenvalues (3.141) the ground state of the system
consists in filling first the states γk− and then the states γk+. The filling depends on the total
number of particles. For example for a case when one has one particle every two sites (i.e. and
half filled band since we did not put spin for the particles) all states γk− will be filled and all
states γk+ will be empty. The ground state is thus

|G〉 =
∏
k∈Z′B

γ†k− |∅〉 (3.146)
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In that case the only non zero average for the operators γ†k1±γk2± is

〈G|γ†k1±γk2±|G〉 = δk1,k2 (3.147)

and the average of the operator is

〈G|ρ(r = 0)|G〉 =
1

Ω

∑
k∈Z′B

(uk − vk)2

=
1

Ω

∑
k∈Z′B

[
1− V√

A(k)2 + V 2

] (3.148)

which we can compute explicitly. For V = 0, we get back that ρ(r = 0) = 1/2 as it should
since the number of k values in Z ′B is half of the ones in the total zone. We also see that when
V → ∞, ρ(r = 0) → 0 since the particles tend to avoid the site where there is the gigantic
potential +V .

Thanks to the fact that γ are eigenstates of the Hamiltonian we can even compute easily the
averages at finite temperature. In that case, using (3.108) we see that the only non zero averages
are

〈γ†k1−γk2−〉 = δk1,k2
fF(−E(k))

〈γ†k1+γk2+〉 = δk1,k2
fF(+E(k))

(3.149)

The average of the density at r = 0 thus becomes

〈ρ(r = 0)〉 =
1

Ω

∑
k∈Z′B

(uk − vk)2fF(−E(k)) + (uk + vk)2fF(+E(k))

=
1

Ω

∑
k∈Z′B

(
1− V√

A(k)2 + V 2
tanh(

βE(k)

2
)

) (3.150)

When β → 0 we obviously recover the previous result, while when β → 0 we see that 〈ρ(r =
0)〉 = 1/2 since the potential or kinetic energy do not matter any more when compared to the
thermal energies.

The Bogoliubov transformation is thus a very useful tool to solve quadratic but non diagonal
Hamiltonians in second quantization. One of its remarkable uses is that the one is not limited to
Hamiltonians of the form c†c but can treat forms that contain c†c† terms as well. For example
the Hamiltonian

HBCS =
∑
k

ξ(k)(c†k↑ck↑ + c†k↓ck↓) + ∆
∑

k(c†k↑c
†
−k↓ + c−k↓ck↑) (3.151)

is the so called Bardeen-Cooper-Schrieffer Hamiltonian which is the basis for the theory of
superconductivity. The fist term is simply the kinetic energy, the second term represents the
creation and destruction of pairs of electrons. Note that this Hamiltonian does not conserve
the number of particles and has thus no simple expression in first quantization. However, since
it is quadratic one can treat this Hamiltonian by the Bogoliubov transformation. In fact using
the canonical transformation

c†k↑ = α†k

c†−k↓ = βk
(3.152)
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Note that this transformation mixes creation and destruction operators. This is one great
advantage of the second quantization to allow easily for such operations. In the transformation
it is also important to remember that

|∅α,β〉 =
∏
k

c†k↓
∣∣∅c↑,c↓〉 (3.153)

In terms of the operators α and β the BCS Hamiltonian becomes

HBCS =
∑
k

ξ(k)α†kαk + ξ(−k)βkβ
†
k + ∆

∑
k

(α†kβk + β†kαk)

=
∑
k

ξ(k)α†kαk + ξ(−k)(1− β†kβk) + ∆
∑
k

(α†kβk + β†kαk)

=
∑
k

ξ(k)(α†kαk − β
†
kβk) + ∆

∑
k

(α†kβk + β†kαk) +
∑
k

ξ(k)

(3.154)

since for most dispersions ξ(k) = ξ(−k). This is, up to a simple constant, exactly the Hamilto-
nian we already examined, and it thus can be solved by exactly the same transformations.





CHAPTER 4

Fermi liquid theory

Now that we have the tools to tackle interacting systems, let us examine the properties of
interacting quantum particles.

4.1 Interaction Hamiltonian

Let us first write the general interaction Hamiltonian that we will use. The first term is the
kinetic energy of the system of the form

Hkin =
∑
kσ

ε(k)c†kσckσ (4.1)

where the sum over k runs in general over the first Brillouin zone. One usually incorporates
the chemical potential in the energy ξ(k) = ε(k)−EF to make sure that ξ(k) = 0 at the Fermi
level. In addition to the kinetic energy one has the standard interaction term (3.97)

Hint =
1

2Ω

∑
k1k2q,
σ1σ2

V (q)c†k1+q,σ1
c†k2−q,σ2

ck2σ2ck1σ1 (4.2)

In a solid the potential V (r) is in general the Coulomb potential

V (r) =
e2

4πεr2
(4.3)

However, both for systems such as 3He and if one wants to take simply into account the
screening of the Coulomb interaction one can consider a short range interaction. In that case
for simplicity one very often takes a contact interaction

V (r) = Uδ(r) (4.4)

Although for such an interaction one could keep the above form of the Hamiltonian it is im-
portant to notice that for a contact interaction the terms in (6.34) with equal spins become in
real space (see e.g. (3.90) :∫

dr1dr2V (r1 − r2)c†r1σ1
c†r2σ1

cr2σ1cr1σ1

= U

∫
drc†r1σ1

c†r1σ1
cr1σ1

cr1σ1

= 0

(4.5)

because of the Pauli principle that prevent to identical electrons to be at the same point. We
thus see that for a contact interaction, even if the interaction is full spin rotation invariant

71
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the terms in the interaction for which the spins are parallel disappear. It is thus natural for
such interactions to only include the interaction term for the two opposite spins. This avoids
mistakes when one treats the interaction term approximately (e.g. as we will see using a mean
field approximation in the next chapter), since in that case one may miss the subtle cancellation
due to the Pauli principe that should be obeyed in an exact treatment of the problem. It is
thus simpler to separate from the start in the interaction the components for which the two
spins are parallel and to denote the corresponding term V‖ and for which they are opposite and
to use V⊥. We will thus use the form

Hint =
1

2Ω

∑
k1k2q,
σ1

[V‖(q)c†k1+q,σ1
c†k2−q,σ1

ck2σ1ck1σ1 +V⊥(q)c†k1+q,σ1
c†k2−q,−σ1

ck2,−σ1ck1σ1 ] (4.6)

or its equivalent form in real space

Hint =
1

2

∑
σ1

∫
dr1dr2[V‖(r1 − r2)c†r1σ1

c†r2σ1
cr2σ1

cr1σ1
+ V⊥(r1 − r2)c†r1σ1

c†r2,−σ1
cr2,−σ1

cr1σ1
]

(4.7)
For the Coulomb interaction we take V‖ = V⊥ while for a contact interaction we can set V‖ = 0
without affecting the result.

One important particular case of the above Hamiltonian is the case of a contact interaction for
a system on a lattice. In that case the kinetic energy (4.1) can be represented by a tight-binding
Hamiltonian (3.116). The contact interaction (4.7) becomes simply

Hint =
U

2

∑
σ1

∑
i

c†iσ1
c†i,−σ1

ci,−σ1
ciσ1

=
U

2

∑
σ1

∑
i

c†iσ1
ciσ1

c†i,−σ1
ci,−σ1

=
U

2

∑
σ1

∑
i

ni,σ1ni,−σ1

= U
∑
i

ni,↑ni,−↓

(4.8)

the physical interpretation of this term is very simple. Since the interaction is a contact interac-
tion, the electrons of the same spin cannot feel it since they cannot be on the same sites of the
lattice. Thus only the interaction between electrons of opposite spins remains. Two electron of
opposite spins only feel the interaction when they are sitting on the same site, thus when both
the density of spin up ni↑ and the density of spin down ni↓ on this site verify ni↑ = ni↓ = 1, as
shown in Fig. 4.1 The total Hamiltonian for such a model is thus

H = −t
∑
〈i,j〉

c†i cj + U
∑
i

ni,↑ni,−↓ (4.9)

This Hamiltonian, known as the Hubbard Hamiltonian, is remarkably simple and yet contains
all the essential effect necessary to describe interacting electrons in a solid. It contains the
band via the presence of the lattice and the tight binding Hamiltonian and thus, via the filling
of the band, can describe bands insulators. The contact interaction is the simplest one can
put. Thus this model plays for interacting quantum system the same role that the Ising model
played to describe phase transitions. Despite its apparent simplicity this model is essentially
still unsolved. We will tackle the properties of this model in details in the second part of these
lectures.
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Figure 4.1: (left) A contact interaction on a lattice. The Fock space on a single state has four
possible states. The interaction only acts when a site is doubly occupied. (right) A cartoon of
the Hubbard model, where electrons hop on a lattice via a tight binding Hamiltonian and only
feel a local interaction.

4.2 Single particle excitations: photoemission

4.3 Free electron excitations

In order to understand the differences between interacting systems and free electrons, let us
recall first the salient properties of the free electron system (or any free quantum fermionic
system). We mostly focuss here on the T = 0 properties, that fully characterize the quantum
state of the system.

A free fermionic system has a ground states, that is a Fermi sea of occupied states, where the
lowest kinetic energy states are fully occupied

|F〉 =
∏

k,ε(k)≤EF

c†k,↑c
†
k↓ |∅〉 (4.10)

There is (at T = 0) a sharp separation between the occupied and non-occupied states in the
ground state and in particular n(k) the probability that a state k is occupied has a sharp
discontinuity at k = kF. The amplitude of this discontinuity is 1.

The excitations of the system above the ground state are excitations that consist either in
creating particles in a given state k above the Fermi level

|ψk1,k2,...〉 = c†k1
c†k2

. . . |F〉 (4.11)

or destroying particles (creating holes) among the states that are in the Fermi sea∣∣ψ′k1,k2,...

〉
= ck′1ck′2 . . . |F〉 (4.12)

The individual excitations are thus particles with all the quantum numbers of the electrons (or
holes), in particular with a well defined momentum k and energy ξ(k). The also carry the other
quantum numbers of the electrons (or hole), i.e. a charge ±e, and a spin 1/2. The wavefunction
of such excitations corresponds to Bloch waves with the momentum k.

In the interacting system one can expect the nature of such excitations to change. We would
thus like to have a correlation function that tells us how much such excitations look like or not
to independent particles.

4.3.1 Single particle Green’s function

One way to realize this is to construct the correlation function that would correspond to the
gedanken experiment described in Fig. 4.2. One injects a particle at point r1. If |G〉 is the
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Figure 4.2: One way to understand the nature of the excitations in an interacting system is
to inject a particle at point r1 and time t = 0. One lets the resulting system evolves, and then
one destroys a particle at time t and point r2. The amplitude of such a process indicates how
much the propagation of the excitation between the two points and times is similar to the case
of non interacting electrons or not.

ground state of the system (not necessarily the interacting Fermi sea), the wavefunction of the
system becomes

|ψ〉 = c†r1 |G〉 (4.13)

one then let this wavefunction with N + 1 particles evolve until the time t

|ψ(t)〉 = e−iHtc†r1 |G〉 (4.14)

The question is how much this function resembles the one to which one would have simply
added one free particle on the top of the ground state. For that we can define the corresponding
reference function: we let the ground state of the system evolve with time t

|ψ′(t)〉 = c†r1e
−iHt |G〉 (4.15)

the function |ψ′(t)〉 correspond to the addition of a free particle on the top of the ground state
(at time t). The overlap between |ψ(t)〉 and |ψ′(t)〉 will thus tell how much the particle that
has been injected in the system at point r1 and time t = 0 has evolved freely and still resembles
a free particle at point r2 and time t. This overlap is

〈ψ′(t)|ψ(t)〉 = 〈G|eiHtcr2e−iHtc†r1 |G〉 (4.16)

This correlation can also be viewed as

〈ψ′(t)|ψ(t)〉 = 〈G|cr2(t)c†r1(t = 0)|G〉 (4.17)

using the Heisenberg representation for the operators. It consists in the process described in
Fig. 4.2 where one creates a particle at point (r1, t = 0) and destroys it at point (r2, t) to leave
the system in the same state it started from.
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In fact in order to have a more physical correlation function one could imagine, in the same spirit
than what we did for the linear response, that one adds to the Hamiltonian a “perturbation”

Hpert =

∫
dr(λ(r, t)c†r + λ∗(r, t)cr) (4.18)

This perturbation corresponds to “source” terms λ and λ∗ that would create and destroy
particles at given points. Although such a perturbation does not conserve the number of
particles it is perfectly allowed in second quantization. One could for example on a more
physical basis imagine a Scanning Tunnelling Microscope (STM) tip that could either inject of
remove electrons from the system, but for the moment let us view it as a formal perturbation.
We could measure, in response to this perturbation the average of the operators destroying one
particle at point (r2, t)

〈cr2〉t (4.19)

This average exactly describes the physical information we are looking for and that we described
above, namely if one injects particle in the system, how much do they still resemble or not free
fermions at point r2 and time t. Based on the general theory of linear response we would thus
have

〈cr2〉t =

∫
dr1dt1G(r2 − r1, t2 − t1)λ(r1, t1) (4.20)

where
G(r2 − r1, t2 − t1) = −i θ(t2 − t1)〈[cr2,t2 , c

†
r1,t1 ]〉 (4.21)

This correlation is essentially (up to the commutator) the one we wrote above, based on physical
considerations.

In fact there is an important correction that must be made to the correlation (4.21) for it
to represent faithfully a linear response process. The problem with the expression (4.21), is
that contrarily with the perturbations we examined in Section 2 the perturbation (4.18) is not
allowed if the λ are simple numbers. Indeed in order to figure in an Hamiltonian operators must
have a well defined classical limit to give the classical energy. This means that each term in the
Hamiltonian should tend to a simple number with the appropriate ~→ 0 limit. In particular if
O1(r1) and O2(r2) are two parts in the Hamiltonian that are roughly local around the points
r1 and r2 it means that when the separation between the points r1 and r2 become large the
two operators must commute

lim
r1−r2→∞

[O1(r1), O2(r2)] = 0 (4.22)

It of course does not mean that the operators O1 and O2 commute in general but simply that
the non zero terms in their commutator should only involve the short distance (i.e.g r1 ∼ r2)
behavior. This is obviously not the case for cr1 and c†r2 that have no simple commutation relation
regardless of the distance r1 − r2. The term (4.18) is thus not something that can figure in an
Hamiltonian if the λ is a classical field. The only way to get an acceptable Hamiltonian from
(4.18) is if the fields λ in fact also anticommute. In that case

[λ(r1)cr1 , λ
∗(r2)c†r2 ] = λ(r1)λ∗(r2)[cr1 , c

†
r2 ]+ → 0 (4.23)

when r1 − r2 →∞. Such fields exists and are called Grassmann variables. Physically it means
that a fermion operator must be hidden in the field λ since one cannot simply create or destroy a
fermion. The consequence of having λ that anticommute is that when one repeats the steps that
led to the linear response formula we will now have an anticommutator instead of a commutator.
The good correlation function to consider is thus

G(r2 − r1, t2 − t1) = −i θ(t2 − t1)〈[cr2,t2 , c
†
r1,t1 ]+〉 (4.24)
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This correlation function, called the single particle Green’s function, is the one we were looking
for. It is the physical response, since it corresponds to the linear response to source terms. It
satisfies all the requirements of causality etc. that a physical correlation function must satisfy.
We will see in the following section how to relate it to well defined experimental quantities (by
opposition to gedanken ones).

Instead of using the basis of position we can of course use the momentum basis. One can rewrite
the Green’s function as

G(r2 − r1, t2 − t1) = −i θ(t2 − t1)
1

Ω

∑
k1,k2

e−ik1r1eik2r2〈[ck2,t2 , c
†
k1,t1

]+〉 (4.25)

The correlation 〈[ck2,t2 , c
†
k1,t1

]+〉 corresponds to the creation of a particle with momentum k1

and the destruction of a particle with momentum k2. If the system is invariant by translation
and G only depends on r2−r1 then it is clear that the momentum is conserved and the only non
zero correlation must be the one for which k1 = k2. Thus one can define the Green’s function
in momentum space by

G(k, t2 − t1) = −i θ(t2 − t1)〈[ck,t2 , c
†
k,t1

]+〉 (4.26)

This correlation creates a particle in a well defined momentum state k at time t1, let it propagate
and then tries to destroy a particle in a well defined momentum state k at time t2. It thus
measures how well in the interacting system the single particle excitations still resemble Bloch
waves, i.e. independent particles.

4.3.2 Properties and spectral function

Let us first compute the Green function for independent electrons. We consider the Hamiltonian

H =
∑
k

ξ(k)c†kck (4.27)

One can easily compute
ck(t) = eiHtcke

−iHt (4.28)

by looking at the action of the operator on the two states |0k〉 and |1k〉 with zero and one
particle in the state k. These two states are the complete Hilbert space for fermions.

ck(t) |0k〉 = 0

ck(t) |1k〉 = eiHtcke
−iξ(k)t |1k〉 = e−iξ(k)t |0k〉

(4.29)

which immediately leads to
ck(t) = e−iξ(k)tck (4.30)

The Green function (4.26) thus becomes

G0(k, t) = −i θ(t)〈[ck,t, c†k,0]+〉

= −i θ(t)e−iξ(k)t〈[ck, c†k]+〉
= −i θ(t)e−iξ(k)t

(4.31)

The Fourier transform is thus

G0(k, ω) =

∫
dtei(ω+iδ)tG0(k, t)

= −i
∫ +∞

0

dtei(ω+iδ)te−iξ(k)t

=
1

ω − ξ(k) + iδ

(4.32)
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The imaginary part of the Green function takes a specially simple form. Let us introduce

A(k, ω) =
−1

π
ImG(r, ω) (4.33)

The function A(k, ω) is known as the spectral function and its physical meaning will become
clear in a moment. As usual one can express the full Green function as a function of A(k, ω)
using the spectral representation (2.59). For free electrons the spectral function is

A0(k, ω) = δ(ω − ξ(k)) (4.34)

and is thus non zero only when the frequency is given by the dispersion relation of the particle
ξ(k).

In order to understand the meaning of the function A(k, ω) let us use the spectral representation
as in Section 2.4. Using again a complete basis |n〉 of the eigenstates of the Hamiltonian H,
with energies En one can rewrite the correlation function (4.26) as

G(k, ω) =
1

Z

∑
n,m

〈n|ck |m〉 〈m|c†k |n〉
e−βEn + e−βEm

ω + En − Em + iδ
(4.35)

The only difference compared to the formula (2.54) is the plus sign in the numerator instead of
the minus sign, due to the anticommutator instead of the commutator. The spectral function
is thus

A(k, ω) =
1

Z

∑
n,m

〈n|ck |m〉 〈m|c†k |n〉 (e
−βEn + e−βEm)δ(ω + En − Em) (4.36)

This can be rewritten as

A(k, ω) =
1 + e−βω

Z

∑
n,m

|〈m|c†k |n〉 |
2e−βEnδ(ω + En − Em) (4.37)

This describes all the possible transitions where one creates a particle with a well defined
momentum k from the initial state |n〉. The only allowed transitions are the ones that conserve
energy Em = ω + En. The initial state |n〉 is weighted with the proper factor e−βEn if one is
not at zero temperature to take into account all possible initial states. The spectral function
thus measures the possibility to make a transition from a state |n〉 to a state |m〉 by creating
a single particle excitation with a well definite momentum k and a well defined energy ω. The
spectral function thus measures the probability to find in the system such an excitation. It
gives the probability to find a single particle excitation with both momentum k and energy ω.
Note that the spectral function A(k, ω) is indeed a positive function as can be seen from the
expression (4.37).

Since we interpret the spectral function as a probability to find a single particle excitation with
the frequency ω and the momentum k, one would expect the sum rule∫ +∞

−∞
dωA(k, ω) = 1 (4.38)

to be obeyed irrespective of the Hamiltonian H. From (4.36) one has∫
−∞+∞dωA(k, ω) =

1

Z

∑
n,m

〈n|ck |m〉 〈m|c†k |n〉 (e
−βEn + e−βEm)

=
1

Z

∑
n

e−βEn〈n|ckc†k|n〉+
1

Z

∑
m

e−βEm〈m|c†kck|m〉

=
1

Z

∑
n

e−βEn〈n|[ck, c†k]+|n〉

= 1

(4.39)
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and the sum rule is indeed satisfied.

This interpretation of the spectral function is perfectly consistent with the result (4.34) for
free fermions. Indeed in that case the only possibility to find a single particle excitation is
when the energy ω is equal to the energy of the particle with the fixed momentum ξ(k), hence
the δ function in (4.34). In the presence of interactions one would expect that even when the
momentum k is well fixed, the particle can exchange energy with the other particles due to the
interaction. One would thus expect a spread of the δ peak for free particles, over a width in
energy of the order of the typical energy that can be exchanged due to the interactions. This
is schematically represented in Fig. 1.12.

4.3.3 Connection with photoemission

We saw in Section 1.4 the photoemission technique where one can use photons to kick out
electrons out of a system. One measures the energy and momenta of the outgoing electron. Let
us now show that the photoemission technique is (in an idealized world) a direct measure of
the spectral function A(k, ω).

In the experiment one starts with the system in the state |m〉. If one is at T = 0 |m〉 is the
ground state, at finite temperature |m〉 is as usual distributed with the probability e−βEm . The
photon removes one particle with momentum k (directly measured) from the system, and thus
induces a transition to the state |n〉 (which contains N − 1 electrons). Using the Fermi Golden
rule the probability of transition from state |m〉 to |n〉 is thus

Pm→n =
∑
n

|〈n|ck|m〉|2δ(En − Em − E) (4.40)

where E is the energy of the outgoing particle. If one considers all possible transitions from all
possible initial states, the total probability of transition is thus

P =
1

Z
sumn,m|〈n|ck|m〉|2e−βEmδ(En − Em − E) (4.41)

This probability of transition is the one measured in photoemission since it will directly give
the number of outgoing electrons with a momentum k and the energy E for a fixed influx of
photons.

This expression is to be compared with (4.36). Using the δ function (4.36) can be rewritten as

A(k, ω) =
eβω + 1

Z

∑
n,m

|〈n|ck |m〉 |2e−βEmδ(ω + En − Em)

=
1

fF(ω)

1

Z

∑
n,m

|〈n|ck |m〉 |2e−βEmδ(ω + En − Em)

(4.42)

Thus, up to a factor fF(ω), that can be easily taken into account since one works at fixed energy
ω, the photoemission experiment directly measures the spectral function A(k, ω). It will thus
be an invaluable tool to analyze the nature of the single particle excitations.

Note in addition that one has

fF(ω)A(k, ω) =
1

Z

∑
n,m

|〈n|ck |m〉 |2e−βEmδ(ω + En − Em) (4.43)
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and integrating over ω gives∫
dωfF(ω)A(k, ω) =

1

Z

∑
n,m

|〈n|ck |m〉 |2e−βEm∫
dωfF(ω)A(k, ω) =

1

Z

∑
m

〈m|c†kck|m〉e
−βEm

∫
dωfF(ω)A(k, ω) = 〈c†kck〉

(4.44)

which directly relates the spectral function to the occupation factor n(k). Of course for free
electrons A(k, ω) = δ(ω − ξ(k)) and one recovers

n(k) = fF(ξ(k)) (4.45)

4.4 Phenomenology of the spectral function

We now have to analyze the single particle Green function (as well as other physical properties)
for the interacting problem. This is clearly a a very difficult question. The time evolution of the
operators such as in (4.30) becomes highly non trivial since there is no simple commutator of
H and the operators ck anymore. In the same vein since in general the interaction Hamiltonian
is non quadratic, there is no simple transformation, analogous to a Bogoliubov transformation,
that can bring is to a diagonal form.

We thus have to rely to different approximate techniques to tackle this problem. Indeed even
if one takes an Hamiltonian as simple as the Hubbard model there is despite about 50 years of
research no exact solution except in dimension d = 1 and d = ∞. Contrarily to other models
such as the Ising model, there is still no agreement on what the physics of the model is for
intermediate dimensions, specially for d = 2.

One method that could be used to tackle the interacting problem is to perform perturbation in
the interaction term Hint. Indeed we know how to compute the free Green function and other
observable so this is a quite logical approach. Even if in real solids, as we saw the interaction
is not effectively small, one can still expect the perturbation theory to give us information on
the qualitative effects of the interactions. However performing such a perturbation is in itself
a formidable task. Indeed the perturbation must be made at two places: both in the time
evolution eiHt and in the Bolzmann factor e−βH . There are two difficulties. One is purely
technical and liked to the fact that Hkin and Hint are operators and that these operators do
not commute (in general). So performing the expansion of the exponentials is clearly more
complicated than for simple numbers. The second difficulty is much more profound in nature.
In the time evolution, we are in principle interested in computing the value of the operators at
all times, thus in principle one can have t→∞. It is thus unclear whether one can perform an
expansion of the exponentials

e−i(H0+H1)t ' e−iH0te−iH1t?'e−iH0t[1− iH1t+ · · · ] (4.46)

or how to do it. Fortunately these problems can be solved and one can construct a perturbation
method for quantum problems at finite temperature. This is the method known as Feynmann
diagrams generalized to finite temperature. We will not pursue more in this direction and refer
the reader to [Mah81] for more details on this technique.

Instead of following a systematic route we will play with the single particle Green function and
determine which parameters can control its shape. It will thus give us, in a phenomenological
way, the properties of interacting systems.



80 Fermi liquid theory Chap. 4

4.4.1 Self energy: lifetime and effective mass

Let us first consider the single particle Green function for an interacting problem. One can
always write it as

G(k, ω) =
1

ω − ξ(k)− Σ(kω) + iδ
(4.47)

where Σ(k, ω) called the self energy is a certain function of momenta and frequency. The
relation (4.47) in fact defines the function Σ. Given the form (4.47) and the expressions (4.32)
one sees that Σ must go to zero in the absence of interactions. To make connection with
the perturbation method Σ(k, ω) is thus an object that is expected to have a well behaved
perturbation expansion in powers of the interactions. However we will not attempt here to
compute the self energy Σ but simply to examine how it controls the spectral function. We
will absorb the small imaginary part iδ in Σ for simplicity, since one can expect in general Σ
to have a finite imaginary part as well. The spectral function is

A(k, ω) = − 1

π

Im Σ(k, ω)

(ω − ξ(k)− Re Σ(k, ω))2 + (Im Σ(k, ω))2
(4.48)

and we thus see that Im Σ and Re Σ have very different actions on the spectral function. We also
see that quite generally (4.48) imposes that Im Σ(k, ω) < 0 to get a positive spectral function.

Imaginary part: lifetime

Let us fist assume that the real part of the spectral function Re Σ(k, ω) is zero to investigate
the consequences of the existence of an imaginary part. Note that doing this kind of crude
approximation might violate some relations between the real and imaginary part of the self
energy, which in general should be related by the Kramers-Kronig relations. There is thus a
chance that we will get some absurd, or incorrect results, due to that, but we will face this
problem if or when it occurs. Moreover let us assume that the imaginary part is a constant.

With these approximations the spectral function would simply be

A(k, ω) = − 1

π

Im Σ

(ω − ξ(k))2 + (Im Σ)2
(4.49)

As shown in Fig. 4.3 a finite imaginary part in the self energy thus gives a Lorentzian shape
for the peaks. The peaks are still centered at ω = ξ(k) but have now a finite width and height
instead of being δ functions. The width is given by the imaginary part of the self energy and
the height in 1/ Im Σ. As usual with a Lorentzian the total spectral weight in the peak is a
constant, hence the height inversely proportional to the width. As we see the peaks are sharper
and sharper when the Im Σ becomes smaller and smaller. In the limit when the Im Σ→ 0 one
recovers, as one should a δ function peak, which is indeed the limit of a zero width Lorentzian.

We thus see that the imaginary part of the self energy controls the spread of the energies of the
particles. One can see the spectral function as a particle which has an average energy ω = ξ(k),
related to its momentum, but with a certain spread Im Σ in energy. To understand the physics
of this spread let us consider the Green function of a free particle in real time (4.31). This
function when Fourier transform would give the perfect δ function. However if one modifies it
by

G(k, t) = −i θ(t)e−iξ(k)te−t/τ (4.50)

the Fourier transform becomes

G(k, ω) =
1

ω − ξ(k) + i/τ
(4.51)
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Figure 4.3: A finite imaginary part in the self energy gives a Lorentzian peak. The width of
the Lorentzian is Im Σ and the height 1/ Im Σ. The smaller the imaginary part, the sharper the
peaks. The imaginary part of the self energy has thus the meaning of an inverse lifetime for a
particle with momentum k.

and the spectral function is

A(k, ω) =
1/τ

(ω − ξ(k))2 + (1/τ)2
(4.52)

which is exactly the one we are considering with the identification

1

τ
= Im Σ (4.53)

We thus see from (4.50) that a Lorentzian spectral function corresponds to a particle with a
well defined energy ξ(k) which defines the center of the peak, but also with a finite lifetime τ .
Of course this does not mean that the electron physically disappears, but simply that it does
not exist as an excitation with the given quantum number k. This is indeed an expected effect
of the interaction since the particle will exchange momenta with the others particles and thus
is able to change its quantum state.

To go back to the more general form of the self energy, which depends on k and ω we see that
we can keep this interpretation in terms of a lifetime, if the peak is narrow enough. Indeed in
that case what will matter is the self energy at the position of the peak Im Σ(k, ω = ξ(k)) if
one assumes that the self energy varies slowly enough with ω compared to ω − ξ(k).

Real part: effective mass and quasiparticle weight

Let us now turn to the real part. Now that we understand that the imaginary part provides a
lifetime for the particle let us turn the imaginary part to zero to focuss on the effects of the real
part of the self energy. Of course in doing so we strongly violated the Kramers-Kronig relation
since the real part should have been zero as well. But this simplification is only to replace the
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Lorentzian peaks by sharp δ functions for simplicity so we do not expect it to drastically affect
the physics driven by the real part.

If we only consider the real part the spectral function becomes

A(k, ω) = δ(ω − ξ(k)− Re Σ(k, ω)) (4.54)

The role of the real part of the self energy is thus to modify the position of the peak. Instead
of having the peak at ω = ξ(k), one has now a new dispersion relation E(k) which is defined by

E(k)− ξ(k)− Re Σ(k, ω = E(k)) = 0 (4.55)

The relation (4.55) defines the new dispersion relation. The interactions, via the real part of
the self-energy are thus leading to a modification of the energy of single particle excitations.
Although we can in principle compute the whole dispersion relation E(k), in practice we do
not need it to characterize the system. Indeed we are only interested in low energy excitations
close to the Fermi level. Close to the Fermi level the energy, with a suitable subtraction of
the chemical potential is zero. One can thus expand it in powers of k. For free electrons with

ξ(k) = k2

2m −
k2

F

2m the corresponding expansion would give

ξ(k) =
kF

m
(k − kF ) (4.56)

A similar expansion for the new dispersion E(k) gives

E(k) = 0 +
kF

m∗
(k − kF) (4.57)

which defines the coefficient m∗. Comparing with (4.56) we see that m∗ has the meaning of a
mass. This is an effective mass which traduces the fact that the dispersion relation has been
changed by the interactions. We thus see that close to the Fermi level we only need to compute
the effective mass m∗ to fully determine (at least for a spherical Fermi surface) the effects of
the interactions on the energy of single particle excitations. To relate the effective mass to the
self energy one computes from (4.55)

dE(k)

dk
=
dξ(k)

dk
+
∂ Re Σ(k, ω)

∂k

∣∣∣∣
ω=E(k)

+
∂ Re Σ(k, ω)

∂ω

∣∣∣∣
ω=E(k)

dE(k)

dk
(4.58)

which can be solved to give (using the fact that one the Fermi

kF

m∗
=

kF

m + ∂ Re Σ(k,ω)
∂k

∣∣∣
ω=E(k)

1− ∂ Re Σ(k,ω)
∂ω

∣∣∣
ω=E(k)

(4.59)

or in a more compact form

m

m∗
=

1 + m
kF

∂ Re Σ(k,ω)
∂k

∣∣∣
ω=E(k)

1− ∂ Re Σ(k,ω)
∂ω

∣∣∣
ω=E(k)

(4.60)

To determine the effective mass these relations should be computed on the Fermi surface
E(kF) = 0. The equation (4.60) indicates how the self energy changes the effective mass of
the particles. We thus see that although one can keep single particle excitations they will have
in general, due to interactions, a different mass than the one of independent electrons. This
renormalization of the mass by interaction is well consistent with the experimental findings of



Sect. 4.5 Fermi liquid theory 83

Section 1.4 where we saw that in the specific heat one had something that was resembling the
behavior of free electrons but with a different mass m∗.

However the interactions have another effects. Indeed if we try to write the relation (4.54)
in the canonical form δ(ω − E(k)) that we would naively expect for a free particle with the
dispersion E(k) we see that we cannot do it. Instead using (A.7) we obtain

A(k, ω) = Zkδ(ω − E(k)) (4.61)

with

Zk =

[
∂

∂ω
(ω − ξ(k)− Re Σ(k, ω))

∣∣∣∣
ω=E(k)

]−1

=
1

1− ∂ Re Σ(k,ω)
∂ω

∣∣∣
ω=E(k)

(4.62)

Because of the frequency dependence of the real part of the self energy, we see that the total
spectral weight in the peak is not one any more but the total weight is now Zk, which is in
general a number smaller than one. It is thus as if not the whole electron (or rather the total
spectral weight of an electron) was converted into something that looks like a free particle with
a new dispersion relation, but only a faction Zk of it. With our crude approximation the rest
of the spectral function has totally vanished and the sum rule (4.38) is violated. This is the
consequence of our crude approximation for the self energy that violates the Kramers-Kronig
relation. However the effect that we found is quite real, and what becomes of the remaining
spectral weight will be described in the next section.

To conclude we see that the real part of the self energy controls the dispersion relation and the
total weight of excitations which in the spectral function would produce peaks exactly like free
particles. The frequency and momentum dependence of the real part of the self energy lead to
the two independent quantities m∗ the effective mass of the excitations and Zk the weight. In
the particular case when the momentum dependence of the self energy is small on can see from
(4.62) and (4.60)

m

m∗
= ZkF

(4.63)

4.5 Fermi liquid theory

4.5.1 Landau quasiparticles

From the previous analysis of the spectral function and its connection with the self energy we
have a schematic idea of the excitations as summarized in Fig. 4.4. Quite generally we can
thus distinguish two parts in the spectral function. There is a continuous background, without
any specific feature for which the probability to find a particle with energy ω is practically
independent of its momentum k. This part of the spectrum cannot be easily identified with
excitations resembling free or quasi-free particles. One the other hand, in addition to this part,
which carries a total spectral weight 1 − Zk, another part of the excitations gives a spectral
weight with a lorentzian peak, well centered around a certain energy E(k). This part of the
spectrum can thus be identified with a “particle”, called Landau quasiparticle, with a well
defined relation between its momentum k and energy ω = E(k), but which has a only a finite
lifetime, which determined the width and height of the peak. The dispersion relation and the
total weight of the quasiparticle peak are controlled by the real part of the self energy, while
the lifetime is inversely proportional to the imaginary part. Depending on the self energy, and
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Figure 4.4: A cartoon of the spectral function for interacting particle. One can recognize
several features. There is a continuous background of excitations of total weight 1− Zk. This
part of the spectrum cannot be identified with excitations that resemble quasi-free particles.
In addition to this continuous background there can be a quasiparticle peak. The total weight
of the peak is Zk determined by the real part of the self energy. The center of the peak is at
energy E(k) which is renormalized by the interactions compared to the independent electron
dispersion ξ(k). This change of dispersion defines an effective mass m∗ determined also by the
real part of the self energy. The quasiparticle peak has a lorentzian lineshape that traduces the
finite lifetime of the quasiparticles. The lifetime is inversely proportional to the imaginary part
of the self energy.
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Figure 4.5: For particles with an energy E(k) and a finite lifetime τ , the energy controls the
oscillations in time of the wavefunction. In order to properly identify an excitation as a particle
it is mandatory that the wavefunction can oscillate several time before being damped by the
lifetime, otherwise it is impossible to precisely define the frequency of the oscillations. This is
illustrated on the left part of the figure. On the contrary if the damping is too fast, one cannot
define an average energy and thus identify the excitation with a particle.

thus the interactions, we thus see that we can still have objects that we could identify with
“free” particles, solving our problem of why the free electron picture works qualitatively so well
with just a renormalization of the parameters such as the mass into an effective mass.

However it is not clear that in the presence of interactions one can have sharp quasiparticles. In
fact one would naively expect exactly the opposite. Indeed we would like to identify the peak
in the spectral function with the existence of a quasiparticle. The energy of this excitation is
E(k) which of course tends towards zero at the Fermi level, while the imaginary part of the self
energy is the inverse lifetime 1/τ . Since E(k) gives the oscillations in time of the wavefunction
of the particle e−iE(k)t, in order to be able to identify properly a particle it is mandatory, as
shown in Fig. 4.5 that there are many oscillations by the time the lifetime has damped the
wavefunction. This imposes

E(k)� τ (4.64)

Since 1/τ is the imaginary part of the self energy and controlled by energy scales of the order of
the interactions, one would expect the life time to be roughly constant close to the Fermi level.
On the other hand one has always E(k) → 0 when k → kF, and thus the relation (4.64) to be
violated when one gets close to the Fermi level. This would mean that for weak interactions one
has perhaps excitations that resemble particles far from the Fermi level, but that this becomes
worse and worse as one looks at low energy properties, with finally all the excitations close to
Fermi level being quite different from particles.

Quite remarkably, as was first shown by Landau, this “intuitive” picture is totally incorrect and
the lifetime has a quite different behavior when one approaches the Fermi level.

4.5.2 Lifetime

In order to estimate the lifetime let us look at what excitations can lead to the scattering of
a particle from the state k to another state. Let us start from the non interacting ground
state in the spirit of a perturbative calculation in the interactions. As shown in Fig. 4.6 a
particle coming in the system with an energy ω and a momentum k can excite a particle-hole
excitation, taking a particle below the Fermi surface with an energy ω1 and putting it above
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Figure 4.6: Cartoon of the lifetime of a particle with energy ω. It can interact with the ground
state of the system, which has all single particle states filled below the Fermi energy EF. The
excitations are thus particle hole excitations where a particle is promoted from below the Fermi
level to above the Fermi level. Due to the presence of the sharp Fermi level, the phase space
available for making such particle hole excitations is severely restricted.

the Fermi level with an energy ω2. The process is possible if the initial state is occupied and
the final state is empty. One can estimate the probability of transition using the Fermi golden
rule. The probability of the transition gives directly the inverse lifetime of the particle, and
thus the imaginary part of the self energy. We will not care here about the matrix elements of
the transition, assuming that all possible transitions will effectively happen with some matrix
element. The probability of transition is thus the sum over all possible initial states and final
states that respect the constraints (energy conservation and initial state occupied, final state
empty). Since the external particle has an energy ω it can give at most ω in the transition.
Thus ω2 − ω1 ≤ ω. This implies also directly that the initial state cannot go deeper below
the Fermi level than ω otherwise the final state would also be below the Fermi level and the
transition would be forbidden. The probability of transition is thus

P ∝
∫ 0

−ω
dω1

∫ ω+ω1

0

dω2 =
1

2
ω2 (4.65)

One has thus the remarkable result that because of the discontinuity due to the Fermi surface
and the Pauli principle that only allows the transitions from below to above the Fermi surface,
the inverse lifetime behaves as ω2. This has drastic consequences since it means that contrarily
to the naive expectations, when one considers a quasiparticle at the energy ω, the lifetime grows
much faster than the period T ∼ 1/ω characterizing the oscillations of the wavefunction. In
fact

τ

T
=

1

ω
→∞ (4.66)

when one approaches the Fermi level. In other words the Landau quasiparticles become better
and better defined as one gets closer to the Fermi level. This is a remarkable result since it
confirms that we can view the system as composed of single particle excitations that resemble
the original electrons, but with renormalized parameters (effective mass m∗ and quasiparticle
weight Zk). Other quantum numbers are the same than the ones of an electron (charge, spin).
Note that this does not mean that close to the Fermi level the interactions are disappearing from
the system. They are present and can be extremely strong, and can affect both the effective
mass and quasiparticle weight very strongly. It is only the scattering of the quasiparticles that
is going to zero when one is going close to the Fermi level. This is thus a very unusual situation
quite different from what would happen in a classical gas. In such a case diluting the gas would
thus reduce both the interaction between the particles and also their scattering in essentially
the same proportion, as schematically represented in Fig. 4.7. On the contrary in a Fermi liquid
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Figure 4.7: (left) A classical gas: in that case both the interactions among the particles and
their scattering are changed similarly, for example by diluting the gas. (right) In a Fermi liquid,
the few excitations above the ground state can interact strongly with all the other electrons
present in the ground state. The effect of such interactions is strong and lead to a strong change
of the parameters compared to free electrons. The quasiparticles have thus characteristics
depending strongly on the interactions. However the scattering of the quasiparticles is blocked
by the Pauli principle leaving a very small phase space of scattering. The lifetime of the
quasiparticles is thus extremely large. This is the essence of the Fermi liquid theory.

there are many N → ∞ electrons in the ground state, which are in principle strongly affected
by the interactions. Note that computing the ground state would be a very complicated task.
However there are very few excitations above this ground state at low energy. These excitations
ca interact strongly with the other electrons in the soup of the ground state, leading to a very
strong change of the characteristics compared to free electron excitations. This can lead to
very large effective masses or small quasiparticle weight. On the other hand the lifetime of
the quasiparticles is controlled by a totally different mechanism since it is blocked by the Pauli
principle. Thus even if the interaction is strong the phase space available for such a scattering
is going to zero close to the Fermi level, making the quasiparticle in practice infinitely long
lived particles, and allowing to use them to describe the system. This image also gives us
a description of what a quasiparticle is: this is an electron that is surrounded by a cloud of
particle-hole excitations, or in other words density fluctuations since c†k+qck is typically the
type of terms entering the density operator. Such density fluctuations are of course neutral
and do not change the spin. This composite object electron+density fluctuation cloud, thus
represent a tight object (just like an electron does dress with a cloud of photons in quantum
electrodynamics), that is the Landau quasiparticle. Since the electron when moving must carry
with it its polarization cloud, one can guess that its effective mass will indeed be affected.

The Fermi liquid theory is a direct explanation of the fact that “free” electrons theory works
very well qualitatively (such as the specific heat linear in temperature) even when the change
of parameters can be huge. In addition to the parameters already shown in Fig. 1.10 we show
in Fig. 4.8 the case of systems where the renormalization of the mass is about m∗ ∼ 103m
indicating very strong interactions effects. Nevertheless we see that the specific heat varies
linearly with temperature just like for free electrons. The prediction for the quasiparticle peaks
fits very well with the photoemission data of Fig. 1.13, in which one clearly sees the peaks
becoming sharper as one approaches the Fermi level. There is another direct consequence of
the prediction for the lifetime. At finite temperature one can expect the lifetime to vary as
τ ∼ 1/T 2 since T is the relevant energy scale when T � ω. If we put such a lifetime in the
Drude formula for the conductivity we get

σ(T ) =
ne2τ

m
∝ 1

T 2
(4.67)
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Figure 4.8: Physical properties of the compound CeAl3. (left) The specific heat is linear in
temperature T , but the slope gives an effective mass of about 103m showing extremely strong
interaction effects, showing that the Fermi liquid theory applies even when the interaction
effects are strong. (right) The resistivity varies as T 2 in very good agreement with the Fermi
liquid theory. After [AGO75].

This result can be confirmed by a full calculation. This shows that the electron-electron inter-
actions give an intrinsic contribution to the resistivity that varies as ρ(T ) ∼ T 2, and which also
can be taken as a characteristic of Fermi liquid behavior. This is however difficult to test since
this temperature dependence can easily be masked by other scattering phenomena (impurities,
scattering by the phonons etc.) that must be added to the electron-electron scattering and
that have quite different temperature dependence. Nevertheless there are some materials where
the T 2 law can be well observed as shown in Fig. 4.8. Another interesting consequence can be
deduced by looking at the occupation factor n(k). Using the representation (4.44) we see that
if we represent the spectral function as

A(k, ω) = Zkδ(ω − E(k)) +Ainc(k, ω) (4.68)

where the incoherent part is a smooth flattish function without any salient feature, then the
n(k) becomes

n(k) = ZkfF(E(k)) + Cste (4.69)

Thus even in the presence of interaction there is still a discontinuity at the Fermi level, that is
only rounded by the temperature. Contrarily to the case of free electron the amplitude of the
singularity at T = 0 is not 1 anymore but is now ZkF < 1. The existence of this discontinuity
if quasiparticle exists tells us directly that the Fermi liquid theory is internally consistent since
the very existence of the quasi particles (namely the large lifetime) was heavily resting on the
existence of such a discontinuity at the Fermi level. One can thus in a way consider that the
existence of a sharp discontinuity at the Fermi level is a good order parameters to characterize
the existence of a Fermi liquid.

One important question is when the Fermi liquid theory does apply. This is of course a very
delicate issue. One can see both from the arguments given above, and from direct perturbative
calculations that when the interactions are weak the Fermi liquid theory will in general be valid.
There are some notable exceptions that we will examine in the second part of the notes, and for
which the phase space argument given above fails. However the main interest of the Fermi liquid
theory is that it does not rest on the fact that the interactions are small and, as we have seen
through examples, works also remarkably well for the case of strong interactions, even when all
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perturbation theory fails to be controlled. This is specially important for realistic systems since,
as we showed, the interaction is routinely of the same order than the kinetic energy even in very
good metals. The Fermi liquid theory has thus been the cornerstone of our description of most
condensed matter systems in the last 50 years or so. Indeed it tells us that we can “forget” (or
easily treat) the main perturbation, namely the interaction among electrons, by simply writing
what is essentially a free electron Hamiltonian with some parameters changed. It is not even
important to compute microscopically these parameters, but one can simply extract them from
one experiment and then use them consistently in the others. This allows to go much further
and treat effects caused by much smaller perturbations that one would otherwise have been
totally unable to take into account. One of the most spectacular examples is the possibility
to now look at the very tiny (compared to the electron-electron interactions) electron-phonon
coupling, and to obtain from that the solution to the phenomenon of superconductivity.

Of course not all materials follow the Fermi liquid theory. Those who do not are commonly
called “non Fermi liquids” a term that hides our poor knowledge of their properties, since of
course in their case the question of the effects of the electron-electron interactions becomes
again a formidable problem. Most of the actual research in now devoted to such non fermi
liquid systems. There are fortunately some situation where one can understand the physics and
we will examine such cases in the second part of these lectures.





CHAPTER 5

Collective modes

As we saw in the previous section the Fermi liquid theory allows for a very successful under-
standing of the single particle excitations in a solid. For free electrons, single particle excitations
are the only excitations that can exist as we discussed in Section 4.3. However we can imme-
diately see that this cannot be the only excitations that exists when interactions are present.
If this were the case, we would get the same density of states (even if renormalized by the in-
teractions) that would enter in the specific heat, charge compressibility, spin susceptibility (see
Section 1.1.3). As we saw experimentally (see Fig. 1.10) his is not the case, and although the
compressibility and susceptibility are constants at low temperatures, just as for free electrons,
their value are different, and also different from the one one would get from the single particles
excitations.

This strongly suggests that in addition to the single particle excitations that are the quasipar-
ticles, there exits additional modes, absent for the non interacting system. This is the question
that we will investigate in this chapter

5.1 Mean field approximation

As discussed in Section 2.2, we would like to compute the response of the full interacting
Hamiltonian to an external perturbation, for example coupling to the charge or spin density.
One can of course use the general linear response formula (2.29) to obtain the charge and spin
susceptibilities.

Let us take for example a perturbation coupling to the total charge density.∫
drλ(r, t)[ρ(r)− ρ0] (5.1)

where ρ = ρ↑ + ρ↓ is the total charge density, and ρ0 the average density. Let us denote the
deviation from the average value

ρ(r) = ρ(r)− ρ0 (5.2)

In the absence of the perturbation λ one has 〈ρ(r)〉 = 0. One can relate the response in the
density of electrons to this perturbation by the standard linear response formula

〈ρ(r)〉t =

∫
dr1dt1χρρ(r − r1, t− t1)λ(r1, t1) (5.3)

where χρρ is the charge-charge correlation function

χρρ(r, t) = −i θ(t)〈[ρ(r, t), ρ(0, 0)]〉H (5.4)

This expression is exact, but of little use since, when H is a fully interacting Hamiltonian we do
not really know how to compute the susceptibility (5.4). As we saw in exercise we however know
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Figure 5.1: In the presence of an external perturbation the operator representing the density
(or any other observable) will acquire a certain average value. The interaction term gives thus
rise to an effective potential corresponding to the average action at point r1 of the other sites
r2 mediated by the interaction. The mean-field approximation consists in keeping only this
part an neglecting the fluctuations around this average value.

how to compute χ = χ0 when the Hamiltonian H is just the kinetic energy of non-interacting
electrons. We will thus try to find an approximate expression of (5.3) that we can compute
using this fact.

5.1.1 Method

The idea is to find an approximate expression for the interaction part of the Hamiltonian. Up
to a chemical potential term the interaction can be written

Hint =
1

2

∫
dr1dr2V (r1 − r2)ρ(r1)ρ(r2) (5.5)

ρ is an operator so the above expression is a full interaction term. However, in the absence of
external perturbation 〈ρ〉 = 0. One can thus expect that although ρ fluctuates, its fluctuations
will take place around an average values that is non zero only in the presence of the external
perturbation. The interaction will thus contain, as shown in Fig. 5.1, a term coming from this
average value. One can indeed write

ρ(r) = 〈ρ(r)〉t + δρ(r) (5.6)
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where
δρ(r) = ρ(r)− 〈ρ(r)〉t (5.7)

Note that although the operator itself does not depend on time, the average value in presence of
a time dependent external perturbation can in principle depend on time. We can thus rewrite
the interaction term

Hint =
1

2

∫
dr1dr2V (r1 − r2)[〈ρ(r1)〉t + δρ(r1)][〈ρ(r2)〉t + δρ(r2)] (5.8)

The mean field approximation consists in assuming that the fluctuations around the average
value are small, or fast, or uncorrelated enough so that one can neglect the second order term
in the fluctuations. Keeping the first order term is necessary since otherwise the interaction
Hamiltonian would just become a constant in the energy and would not affect the average of
the operators. In the mean field approximation the interaction Hamiltonian thus becomes:

Hint '
1

2

∫
dr1dr2V (r1 − r2)[〈ρ(r1)〉t〈ρ(r2)〉t + δρ(r1)〉t〈ρ(r2)〉t + 〈ρ(r1)〉tδρ(r2)]

=
1

2

∫
dr1dr2V (r1 − r2)[ρ(r1)〈ρ(r2)〉t + 〈ρ(r1)〉tρ(r2)− 〈ρ(r1)〉t〈ρ(r2)〉t

=

∫
dr1dr2V (r1 − r2)ρ(r1)〈ρ(r2)〉t −

1

2

∫
dr1dr2V (r1 − r2)〈ρ(r1)〉t〈ρ(r2)〉t

(5.9)

The last term in the above equation is a simple constant in the energy. Although it is important
if one wants to compute the energy of the ground state or some similar quantity it simply
disappears when one wants to compute averages of any operators. One can thus forget about
this term. We thus see that in the mean field approximation the real interaction between the
electrons is replaced by

HMF =

∫
drρ(r)

∫
dr2V (r − r2)〉t〈ρ(r2)〉t (5.10)

This term is a one body Hamiltonian of electrons subjected to the external potential

γ(r, t) =

∫
dr2V (r − r2)〉t〈ρ(r2)〉t (5.11)

which is created be the average of the deviations in the density in all the points in the system.
Note of course that we do not know this potential explicitly since we do not know what the
average 〉t〈ρ(r2)〉t. However we have now replaced the full interacting Hamiltonian by an
Hamiltonian of electrons subjected to an external potential γ(r, t). Moreover this potential is
small if the external perturbation λ(r, t) is also small. The full Hamiltonian in presence of the
perturbation is thus

H = H0 +

∫
drρ(r)γ(r, t) +

∫
drρ(r)λ(r, t) (5.12)

We thus see that the mean field approximation replaces the problem of interacting electrons
subjected to an external perturbation λ by a problem of non-interacting electrons subjected to
an effective perturbation λ + γ. The field γ is the induced perturbation and comes from the
fact that due to the interactions between particles there will be an induced field that will try
to modify the deviations in the density that would otherwise be created by the external field.
The mean field approximation is a very useful and general approximation that applies to many
physical situations. In many situations it will indeed capture the main effects of the feedback
due to the interactions. For the Hamiltonian (5.12) we can easily compute the average of the
density using linear response

〈ρ(r)〉t =

∫
dr2dt2χ0(r − r2, t− t2)[λ(r2, t2) + γ(r2, t2)] (5.13)
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Since γ depends on 〈ρ(r)〉t we have an integral self consistent equation that will allow to
determine the average value. This is easily done by going in Fourier space

〈ρ(q, ω)〉 = χ0(q, ω)[λ(q, ω) + γ(q, ω)] (5.14)

Using (5.11) one gets
γ(q, ω) = V (q)〈ρ(q, ω)〉 (5.15)

which leads to

〈ρ(q, ω)〉 =
χ0(q, ω)λ(q, ω)

1− V (q)χ0(q, ω)
(5.16)

Comparing (5.16) with (5.3) one obtains an approximate expression for the charge susceptibility
of the interacting electron system

χρρ(q, ω) =
χ0(q, ω)

1− V (q)χ0(q, ω)
(5.17)

This formula is quite remarkable since now the charge susceptibility is expressed in terms
of known quantities namely the Fourier transform of the interaction potential V (q) and the
independent electrons susceptibility χ0(q, ω). This formula will thus allow us to explore in
details the consequences of the interactions between particles on the various susceptibilities.

5.1.2 Spin and charge

Before exploring such physics let us derive both the charge and spin susceptibilities. We start
from the general interaction (4.7) and consider a perturbation that couples separately to the
spin up and down

Hpert =

∫
dr[λ↑(r, t)ρ↑(r) + λ↓(r, t)ρ↓(r)] (5.18)

It is obvious that with such a perturbation we can reproduce the standard coupling to charge
and spin. If one takes

λ↑ = λ↓ = −µ (5.19)

we couple to the total charge density and µ is the chemical potential. On the other hand

λ↑ = −λ↓ =
−h
2

(5.20)

couples to the spin density along z and h is an external magnetic field applied along the z
direction. It is obvious that with the two independent fields λ↑ and λ↓ we can generate any
combination of chemical potential and external magnetic field along z.

Performing the mean field approximation on the Hamiltonian (4.7) we get

HMF =

∫
drρ↑(r, t)γ↑(r, t) + ρ↓(r, t)γ↓(r, t) (5.21)

where

γ↑(r, t) =

∫
dr2V‖(r − r2)〈ρ↑(r2)〉t + V⊥(r − r2)〈ρ↓(r2)〉t

γ↓(r, t) =

∫
dr2V⊥(r − r2)〈ρ↑(r2)〉t + V‖(r − r2)〈ρ↓(r2)〉t

(5.22)

As usual the expressions are much simpler in Fourier space

γ↑(q, ω) = V‖(q)〈ρ↑(q, ω)〉t + V⊥(q)〈ρ↓(q, ω)〉t
γ↓(q, ω) = V⊥(q)〈ρ↑(q, ω)〉t + V‖(q, ω)〈ρ↓(q, ω)〉t

(5.23)
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The response can thus be written as a response to the total field λ + γ for the free electron
gas. Since for the free electrons gas there is no response of the down spins when there is a
perturbation applied to the up spins and vice versa, one has(

〈ρ↑(q, ω)〉
〈ρ↓(q, ω)〉

)
=

(
χ0(q, ω) 0

0 χ0(q, ω)

)(
λ↑(q, ω) + γ↑(q, ω)
λ↓(q, ω) + γ↓(q, ω)

)
(5.24)

where χ0(q, ω) is the susceptibility of e.g. spin up particles

χ0(r, t) = −i θ(t)〈[ρ↑(r, t), ρ↑(0, 0)]〉H0 (5.25)

As we saw in the exercices

χ0(q, ω) =
1

Ω

∑
k

fF(ξ(k))− fF(ξ(k + q))

ω + ξ(k)− ξ(k + q) + iδ
(5.26)

Using the explicit expressions of the γ fields the expression (5.24) becomes(
〈ρ↑(q, ω)〉
〈ρ↓(q, ω)〉

)
=

(
χ0(q, ω) 0

0 χ0(q, ω)

)(
λ↑(q, ω)
λ↓(q, ω)

)
+χ0(q, ω)

(
V‖(q) V⊥(q)
V⊥(q) V‖(q)

)(
〈ρ↑(q, ω)〉
〈ρ↓(q, ω)〉

)
(5.27)

The equation for the average densities can easily be solved by inverting the matrix. This gives(
〈ρ↑〉
〈ρ↓〉

)
=

χ0

[1− V‖χ0]2 − [V⊥χ0]2

(
1− V‖χ0 V⊥χ0

V⊥χ0 1− V‖χ0

)(
λ↑
λ↓

)
(5.28)

where everything is taken at (q, ω) and these indices have been omitted for clarity.

Thus if one takes λ↑ = λ↓ = −µ one finds that 〈ρ↑〉 − 〈ρ↓〉 = 0. This means that even with
interactions there is no spin response to a change in chemical potential as is obvious intuitively.
The total charge response is

〈ρ↑〉+ 〈ρ↓〉 =
χ0

1− [V‖ + V⊥]χ0
λ↑ (5.29)

The charge susceptibility is thus

χρ(q, ω) =
−χ0(q, ω)

1− [V‖(q) + V⊥(q)]χ(q, ω)
(5.30)

The spin response is obtained by setting λ↑ = −λ↓. In the same way 〈ρ↑〉 + 〈ρ↓〉 = 0 showing
that there is no charge response if one applies a magnetic field. The spin response is

〈ρ↑〉 − 〈ρ↓〉 =
χ0

1− [V‖ − V⊥]χ0
λ↑ (5.31)

which gives for the spin susceptibility

χσ(q, ω) =
−χ0(q, ω)/4

1− [V‖(q)− V⊥(q)]χ(q, ω)
(5.32)

5.1.3 Static fields: thermodynamic response

The formulas (5.30) and (5.32) show important properties.

Up to non important numbers, linked to units and to the precise definitions of the charge and
spin densities, we see that for non interacting electrons

χρ(q, ω) ≡ χσ(q, ω) (5.33)
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This is true for all wavevectors, frequencies and temperatures.

To compute the thermodynamic susceptibilities we can use (5.26). Since we want a thermo-
dynamic quantity we must consider the response to a static (i.e. with ω = 0 field). Indeed if
the field has a time dependence the system does not conserve energy and one is not measuring
a thermodynamic observable, i.e. and observable that can be obtained by differentiating the
free energy of the system using the standard thermodynamic relations. On the other hand this
static field can depend a priori on space. So in order to compute thermodynamic quantities one
needs to compute

χ(q, ω = 0) (5.34)

If one wants the response to a uniform field, as is often the case, one lets then q → 0. Taking
the proper order of limits is here crucial since as we will see in the next section the limits q → 0
and ω → 0 do not commute. For ω = 0 (5.26) becomes

χ0(q, ω = 0) =
1

Ω

∑
k

fF(ξ(k))− fF(ξ(k + q))

ξ(k)− ξ(k + q)
(5.35)

The imaginary part is obviously zero. This can be shown by a direct calculation and is also
obvious from the fact that for a static field no dissipation can occur in the system. There is no
need to put the principal part in the above expression since the numerator cancels at the same
place than the denominator. When q → 0 one can expand the difference in energy

χ0(q → 0, ω = 0) =
1

Ω

∑
k

(ξ(k)− ξ(k + q))∂fF(ξ)
∂ξ

ξ(k)− ξ(k + q)

=
1

Ω

∑
k

∂fF(ξ)

∂ξ

=

∫
dξn(ξ)

∂fF(ξ)

∂ξ

(5.36)

at low temperatures ∂fF(ξ)
∂ξ = −δ(ξ) and

χ0(q → 0, ω = 0) = −n(ξ = 0) (5.37)

which is the density of states at the Fermi level. One recovers directly from the linear response
that for noninteracting electrons both the charge and spin susceptibilities are equal, and also
equal to the density of states at the Fermi level, just as was the linear coefficient of the specific
heat.

For interacting electrons the situation changes. As we can see from (5.30) and (5.32) the in-
teractions enter in a different way in the charge and spin susceptibilities. There is thus no
reason that these quantities remain equal. For the static and uniform susceptibilities, since
(5.37) holds, we see that even when interactions are present the spin and charge susceptibilities
go to constants at low temperatures. However this constant is not simply the density of states
anymore but is modified by the interactions according to (5.30) and (5.32). Note that the
interactions enter in a quite different way in the two functions. We thus recover the important
experimental fact that for real systems one has still a behavior similar to the one of free elec-
trons (namely constant spin and charge susceptibilities) but with different parameters. Note
that of course the value of the susceptibilities has no reason to be identical to the change of
effective mass due to the interactions. One has thus three independent numbers as is the case
experimentally (see e.g. Fig. 1.10).

Another important point to notice is that, even if χ0 is featureless because of the denominator
in (5.30) and (5.32), the susceptibilities can in principle diverge. This can happen for either
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specific values of the frequency ω or momentum q or at a given temperature T . For the static
response ω = 0, we will examine in the second part of these lectures the physical meaning of
such a divergence in the susceptibilities. We will examine in the next section what happens
when the divergence occurs at a finite frequency ω.

5.2 Collective modes

Let us examine the case when one of the susceptibilities is divergent. We look in this section to
the case at T = 0, and when the divergence occurs at a finite frequency ω. The physics of such
situation is easy to understand. The susceptibility (say of charge) relates the response of the
system ρ(r, t) to an excitation λ(r, t). If the excitations is at a given momentum and frequency

λ(r, t) = λ0 cos(qr − ωt) (5.38)

it means that the response is of the same form

ρ(r, t) = ρ0 cos(qr − ωt) (5.39)

but with an amplitude that is given by

ρ0 = χ(q, ω)λ0 (5.40)

Thus if the susceptibility χ(q, ω) is very large it means that even if the amplitude of an external
perturbation was extremely small there would be a sizeable fluctuation of the density that would
exist in the system. If the susceptibility diverges it means that even if the external perturbation
vanishes there would be a mode of oscillations of density that would exist in the solid: i.e. even
if λ0 = 0, ρ0 would be finite.

The divergence of a susceptibility thus signals the existence of a collective mode. The charge
and spin susceptibilities give rise to the two collective modes of oscillations of density of charge
and density of spins respectively. A priori other susceptibilities can diverge leading to other
collective modes but the two previous ones are the ones that will in principle occur systematically
in an interacting electronic system. We can thus identify the collective modes by examining
the expressions (5.30) and (5.32) and finding the values (q, ω) for which they diverge. This
condition will give us the dispersion relation of the collective mode. Note that such collective
modes represent oscillations in density (or spin density) of the electron gas. They are thus quite
different from the single particle excitations that we saw in the previous chapter. In a Fermi
liquid we will thus have quite generally three types of excitations:

1. The single particles excitations: they are the Landau quasiparticles, and are characterized
by their effective mass m∗ and quasiparticle weight Zk. They carry a charge e and a spin
1/2, and essentially resemble individual electronic excitations.

2. A collective mode of charge. This is a density oscillation. The total number of particle
is constant but the density redistributes in the system. This is a wave of density with a
wavevector q and a frequency ω that are related by a dispersion relation ω(q) characteristic
of the corresponding mode and given by the divergence of the charge susceptibility. There
is no disturbance in the spin density

3. A collective mode of spin. This is a spin density wave. The charge is uniform and
undisturbed. The dispersion relation of this density wave ω(q) is given by the divergence
of the spin susceptibility
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We can easily write the condition for the divergence of the susceptibility. For example for the
charge susceptibility one finds from (5.30)

1− [V‖(q) + V⊥(q)] Reχ0(q, ω) = 0

Imχ0(q, ω) = 0
(5.41)

and the equivalent relation for the spin density waves

1− [V‖(q)− V⊥(q)] Reχ0(q, ω) = 0

Imχ0(q, ω) = 0
(5.42)

We see that the condition Imχ0(q, ω) = 0 is in any case mandatory for the susceptibility to
diverge. The physical meaning of this condition is clear. Imposing Imχ0(q, ω) is equivalent
to imposing that Imχ(q, ω) = 0 as can be directly seen by writing the imaginary part of χ.
It is thus equivalent to imposing that there is no dissipation taking place in the system. This
is indeed mandatory for a mode to proceed without damping. Indeed in the absence of and
external excitation, if there is dissipation taking place it means that the energy must be taken
from the density oscillation and that the collective mode will cease to propagate undamped.
We thus see that the condition

Imχ0(q, ω) = 0 (5.43)

corresponds to the absence of damping for the collective mode. We will come back to this
condition in the section Section 5.2.3. Let us ignore the possibility of damping of the mode for
the moment and focuss on the first equation which gives the dispersion relation of the collective
mode.

We see that two cases will have to be distinguished depending on whether the interaction is long
range or short range. If the interaction is short range, then V (q) is convergent when q → 0. In
that case if we are interested in the behavior at small q and ω we can essentially replace V (q)
by V (q → 0) which is a constant in the above expressions. This is extremely similar to what
one has if one considers a contact interaction just as was the case in the Hubbard model. Note
that in that case V‖ = 0 and V⊥(q) = U . This would give for the two conditions for the charge
and spin collective modes

1− U Reχ0(q, ω) = 0 (charge, shortrange)

1 + U Reχ0(q, ω) = 0 (spin)
(5.44)

This is for example what happens in systems such as 3He where the atoms being neutral the
interaction is short range. Cold atomic gases in optical lattices are also remarkable systems to
realize such a short range interaction.

On the other hand if the interaction has a long range part, as is the case for the electron
system, the results are different. Indeed in that case V (q → 0) is divergent. For the Coulomb
interaction one has

V‖(q) = V⊥(q) =
e2

εq2
(5.45)

We see that the long range part of the interaction drops out of the spin susceptibility. This
is quite natural on a physical basis since a disturbance in spin density does not induce an
imbalance on charge, and thus cannot feel the Coulomb interaction. For the spin susceptibility
one is thus always controlled by the short range part of the interaction leading back to the
above condition. For the charge susceptibility on the contrary the condition becomes

1− 2e2

εq2
Reχ0(q, ω) = 0 (charge, longrange) (5.46)

We now examine the various solutions for the charge sector.
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5.2.1 Short range interaction: zero sound

Let us start with the condition
1− U Reχ0(q, ω) = 0 (5.47)

In order to satisfy this equation we need to find lines of constant Reχ0(q, ω) in the (q, ω) plane.

Reχ0(q, ω) =
1

U
(5.48)

The susceptibility can be easily calculated for a dispersion relation of free electrons ξ(k) =
k2

2m −
k2

F

2m and the calculation is performed as an exercise. We will quote here only the result.

If one considers small q and ω such that the ratio

s =
mω

kFq
=
ω/q

vF
(5.49)

is a constant. In that case for small ω the susceptibility χ0 goes to a constant that is only
dependent of the number s. One has with the condition (5.49)

Reχ0(q, ω) ' mkF

π2

[
− 1 +

s

2
ln

∣∣∣∣1 + s

1− s

∣∣∣∣ ]
Imχ0(q, ω) '

{
0 , s < 1
−mkFs

2π , s > 1

(5.50)

We thus see that a mode that satisfies (5.49) obeys the equation (5.48), which now fixes the
ratio s. We thus see that the collective mode has a dispersion relation for which the frequency
ω is proportional to the wavevector q. This is identical to what one expects for a sound wave
propagating in the system. Accordingly this collective mode is called zero sound. We will later
compare it to the propagation of a normal sound in the system. If we denote c the sound
velocity of this mode we see that

s =
c

kFvF
(5.51)

is simply the ratio between the (zero) sound velocity and the Fermi velocity. The equation
(5.49) can easily be solved graphically as indicated on Fig. 5.2. We see that two solutions could
in principle exist for repulsive interactions U > 0. However, only one of the mode has a velocity
larger than vF. According to the second condition (5.50) the mode for which c < vF leads to
an imaginary part, and it thus damped.

We thus see that due to the interactions a modulation of the density ρ(r, t) = ρ0 cos(qr − ωt)
can propagate in the system. In order to understand precisely the nature of such wave of
density, let us compare it with the one that would expect for a normal sound in a gas, which
also corresponds to a wave of density and leads to a mode with a finite velocity. The velocity
of the normal sound is determined by the two equations coming from the continuity equation

∂ρ

∂t
+∇ · j = 0 (5.52)

where j is the current and the fundamental equation of mechanics

mρ
∂v

∂t
= F = −∇P (5.53)

where P is the pressure. If one assumes small deviations, compared to the equilibrium situation
where ρ = ρ0 and v = 0, one has (we take for simplicity a one dimensional situation)

ρ(x, t) = ρ0 + ρ(x, t)

j(x, t) = ρ(x, t)v(x, t) ' ρ0v(x, t)
(5.54)
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Figure 5.2: Graphical solutions for the equation (5.48). For repulsive interactions two solutions
are a priori possible but only one of the modes will be undamped and thus corresponds to the
zero sound. When the interaction becomes very small the zero sound velocity tends to F . The
zero sound velocity increases as the repulsion increases and the system becomes stiffer and
stiffer.

Using the definition (1.39) of the compressibility one can relate the pressure and the density.
Indeed one has

1

κ
δΩ = −ωδP (5.55)

from (1.39). Since ω = N/ρ the relation becomes in the lowest order in δρ

1

κ

−δρ
ρ2

0

N = −ΩδP (5.56)

which leads to

δP =
1

κρ0
δρ (5.57)

Injecting this relation in the above equations one obtains

∂tρ(x, t) + ρ0∂xv(x, t) = 0

mρ0∂tv(x, t) = − 1

κρ0
∂xρ(x, t)

(5.58)

which leads to the equation

∂2
t ρ(x, t)

1

mρ0κ
∂2
xρ(x, t) = 0 (5.59)

The normal sound has thus a speed of sound

cs =
1

√
κmρ0

(5.60)
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In order to compare the normal sound (sometimes also called first sound) and the zero sound
let us look at the case when the interactions become very small. In that case one sees that the
speed of the zero sound tends to

c→ vF (5.61)

since s→ 1 as can be seen from Fig. 3.1. Using the expression

1

κ
=

4

9
n(EF)E2

F (5.62)

derived in the exercises and the expression (1.14) for the density of states, one gets

1

κ
=

2

3
ρ0EF (5.63)

Which leads for the sound velocity to

cs =
vF√

3
(5.64)

We thus see that the zero sound and normal sound correspond to two different velocities. They
thus corresponds to two different internal ways of having a wave of density propagating in the
system. The zero sound is thus a novel mode characteristics of a Fermi liquids and not existing
in a normal gas.

To understand the difference between the two type of sound requires not only a determination of
the velocity, and the knowledge that both modes corresponds to a propagating wave of density
but also on how exactly the excitations are distributed in the system to create this type of
density wave. The precise calculation would carry us too far (see [Leg65] for details), so we
will only describe the results qualitatively. The main difference between a Fermi liquid and
a normal gas, is the separation that exists between interaction acting on the quasiparticles
and the scattering among the quasiparticles. In a normal system, both effects are directly
related. In a perfect gas there are no interactions and no scattering, but as the interactions are
reintroduced in a real gas both the interaction effects and the scattering of the particle grow
essentially in the same way. This is not the case, as we already saw, in a Fermi liquid. Since the
excitations interact with the soup of the ground state, one can have strong interaction effects
on the quasiparticles while being in an essentially collisionless regime for the quasiparticles. It
means that contrarily to the case of a normal gas one can have excitations around the Fermi
surface that will be of a particular shape and that will be able to retain their shape without
being “redistributed” by collision. This is summarized in Fig. 5.3. This difference is at the
essence of the difference between the normal sound and the zero sound. The normal sound
corresponds to a situation where the scattering is high. Thus in each portion of the system,
excitations very rapidly reach the only possible equilibrium distribution which is an isotropic
one around the Fermi surface. On the other hand the zero sound corresponds to the limit of low
scattering, and other modes are possible. It is possible to show, either from a phenomenological
description as was initially done by Landau, or more microscopically, that the distribution of
excitation corresponding to the collective mode is of the form

δn0(k) = Cδ(ξ(k))
cos θ

cos θ − s
(5.65)

where θ is the azimuthal angle with respect to the vector q giving the direction of the wave
propagation. This indicates that the excitations are localized close to the Fermi level but
correspond to a redistribution of particles around the Fermi surface that is anisotropic and very
seriously so if s is close to one. The propagation of this wave is the zero sound. A summary
is shown in Fig. 5.4 Of course if the propagation is too long, the zero sound will turn into the
normal sound as the scattering even if small will finish by killing the anisotropic shape. In the
same way if the temperature is too high the scattering is too high (as we saw it essentially
grows as T 2) and only the normal sound will be able to propagate.
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Figure 5.3: (left) In a Fermi liquid a distribution of excitations can take a well defined shape
around the Fermi surface. Because of the absence of collisions this shape can be retained.
(right) In a normal gas the collisions are high, thus even if some initial anisotropic distribution
of excitations was created, it would rapidly be brought back to an isotropic one by scattering
of the excitations.
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Figure 5.4: (top) The zero sound corresponds to an anisotropic deformation of the Fermi
surface that will retain its shape and propagate. (bot) In the normal sound all anisotropies are
washed out by the scattering of the quasiparticles, and thus only expansions and contractions
of the Fermi surface are possible.
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Figure 5.5: Observation of the zero sound in 3He. At high temperature the velocity is the
one of the normal sound, and as the temperature is lowered and the scattering decreases, the
velocity increases to the one of the zero sound. After [AAW66].

The existence of the zero sounds is thus a remarkable prediction and a strong characteristics of
the Fermi liquid. Although the difference of velocity between the two modes is small it can be
observed in 3He for which the parameters are controlled enough. This is shown in Fig. 5.5

Let us finish this section by noting that having a “sound” mode with the energy ω going to zero
as q goes to zero is in fact a quite general property. This will occur each time the Hamiltonian
has a continuous symmetry (here the translation symmetry) and that we consider excitations
that corresponds to a spontaneously breaking of this symmetry. In this case one can show that
there must be low energy modes (so called Goldstone modes) that have to exist. We will come
back on this point in the second part of these lectures.

5.2.2 Long range interations: Plasmon

Let us now consider the case of long range Coulomb interaction. This case is directly relevant
for solids. In that case one has to satisfy the condition (5.46), and one immediately sees that
searching for modes for which ω = cq would not works since χ0(q, ω) constant would not satisfy
the equation. Instead we must find a mode such that χ0(q, ω) ∼ q2. A quite complete solution
of this problem has been given in the exercises. We will just follow here an alternative route to
get part of the results in a simple, if less complete, way.

In order to have χ0 → 0 when q → 0 one must search a mode for which ω remains finite when
q → 0. It is then obvious from (5.26) that this would work. Expanding (5.26) to first order in
q would give

Reχ0(q, ω) ' 1

Ω

∑
k

(ξ(k)− ξ(k + q))∂fF(ξ)
∂ξ

ω
(5.66)

Since

ξ(k)− ξ(k + q) = q · ∇ξ (5.67)
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Figure 5.6: Plasmon mode (blue) for systems with long range Coulomb interaction. The
dispersion relation of the mode tends to a finite frequency ωp when the density distortion
becomes uniform, indicating an oscillation of the density of charge with time. Not that at small
q this mode is indeed undamped. This is to be contrasted with the zero sound mode (green)
that exists for short range interactions. This mode is only undamped if its velocity is large than
vF. Otherwise (red curve) the mode is damped all the way to q → 0.

this expression looks naively to be of the first order in q. However this is not the case since each
term qα corresponds to a term odd in kα in the integral because of the derivative of the even
function of k ξ(k). Because for each systems with time invariant symmetry both states k and
−k have the same energy, the integral over an odd function of k must vanish. The expansion
of χ0(q → 0, ω) thus starts at order q2, which is exactly what we were looking for.

For a free electron dispersion the calculation has been performed in the exercises and give

Reχ0(q → 0, ω)→ k3
F

3π2m

q2

ω2
(5.68)

Using (5.46) we obtain for the frequency ω of the mode

ω2
p =

4πe2ρ0

m
(5.69)

which means that even when q → 0 there is an oscillation of the charge of the system at the
frequency ωp. When q becomes finite this mode disperses in a way that was determined in
the exercises and is schematically represented in Fig. 5.6. Note that at small momentum q
this mode is indeed undamped since the condition ω(q)/q > vF is indeed satisfied. We refer
the reader to the exercises for a more detailed discussion of the dispersion relation and of the
physical properties of this mode.

Let us finish by noting that, as for the zero sound, the existence of the Plasmon is a quite
general and important phenomena. It corresponds to a situation of a system that has a contin-
uum symmetry but is in addition coupled to a gauge field (here the electromagnetic field, since
there is the Coulomb interaction). This situation occurs in many physical situation, such as
for superconductivity (U(1) symmetry of changing the phase of the wave function)) or particle
physics for the standard model. In that case, it is possible to show that the Goldstone modes
that one would expect in the absence of gauge field do not appear, but that they are absorbed
by the gauge field that becomes massive. This mechanism was identified by P. W. Anderson as
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Figure 5.7: (a) An excitation close to q ∼ 0 costing the maximum energy. One uses all the
q to raise in energy away from the Fermi surface. (b) Excitations of essentially zero energy
take an electron just below the Fermi surface and recreate it just above the Fermi surface with
a different q this is possible for q < 2kF. (c) For q > 2kF the remaining of the wavevector
must be used to increase the energy of the particle giving a minimum value before particle-hole
excitations can be created.

being responsible for the existence of the Meissner effect in a superconductor (massive electro-
magnetic field). It has been extended by Higgs to general symmetry group and is at the heart
of the properties of the standard model. It is widely knows as the Higgs (or Anderson-Higgs)
mechanism, and we will encounter it in several other situations.

5.2.3 Landau Damping

To finish this chapter on collective modes let us go back to the condition giving the damping
of the collective modes

Imχ0(q, ω) 6= 0 (5.70)

Although one can compute it explicitly for some specific dispersion relationξ as we did in the
previous section, let us examine it in general. Writing explicitly the imaginary part one gets

Imχ0(q, ω) =
π

Ω

∑
k

[fF(ξ(k + q))− fF(ξ(k))]δ(ω + ξ(k)− ξ(k + q)) (5.71)

If one is at T = 0 one thus sees that the imaginary part consists in creating particle hole
excitations where one take a particle with momentum k below the Fermi surface, and brings
it at a higher energy ξ(k + q) = ξ(k) + ω above the Fermi surface. All other excitations are
blocked by the Pauli principle. Since the sum over k is made of positive terms, to identify the
region in the plane (q, ω) where the imaginary part is non zero one must thus find for which
values of ω and q one can make such particle-hole excitations. It is easy to see, as shown in
Fig. 5.7. that the worse one can make in terms of energy is to use all the available wavevector
to “climb” in energy. The maximum difference in energy is in that case

ξk + q − ξ(k) ' vF(k + q − k) = vFq (5.72)

This provides an upper limit above which particle-hole excitations of small momentum cannot
be created. Note that this condition coincides with the one we found for the free electrons
dispersions relation (5.50). This result is in fact quite general. Then it is clear that, as shown
in Fig. 5.7 one can make for 0 < q < 2kF excitations of arbitrarily low energy simply by bringing
the particle from one point of the Fermi surface to the other. When q > 2kF one is in a similar
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Figure 5.8: Particle-hole continuum. In this region single particle excitations can be excited.
If a collective mode enters this zone, it will thus be damped by Landau damping by exciting
particle hole pairs.

situation than the one for q ∼ 0 since in that case q − 2kF can only be used to “climb” away
from the Fermi surface. This time this gives a minimum value for the energy below which a
particle-hole excitation cannot exist. These criteria define the particle-hole continuum showed
in Fig. 5.8. In this region the imaginary part of χ0 is non zero and a collective mode entering
this region will thus be damped.

On could however wonder on why a collective mode would be damped at all. Indeed we only
considered interaction that conserves energy so it is unclear where such a damping could come
on a physical basis, even if the formalism tells us that it should occur. The mechanism of
damping of such a collective mode is in fact quite general, and has been explained by Landau
and thus termed Landau damping. We can give a very simple physical description of it. If
there is a collective mode propagating in the system at a velocity c it can potentially couple
to single particle excitations if such single particle excitations are also present in the system,
and thus exchange (gain or loose) energy with the single particle excitations. In order to get
a coupling between the collective mode and the single particles it is necessary for the single
particle excitations to be able to “surf” on the collective mode to ensure the time for the energy
transfer. This needs that the velocity of the single particle excitation match the ones of the
collective mode. The single particle excitations have a velocity vs, but they need not go in the
same direction than the collective mode. Thus the effective velocity seen by the collective mode
will be v < vs. In order to ensure the coupling on must thus have

c < vs (5.73)

otherwise the collective mode will go too fast for even the fastest quasiparticles. This is exactly
the condition that we have found, at small q and ω for a collective mode to enter the quasiparticle
continuum and give Imχ0 6= 0. We thus see that this physical argument gives back the correct
criterion on the velocities. Now we have to check that when there is coupling of the collective
modes to the single particle excitations this indeed corresponds to a damping.
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Figure 5.9: Some equilibrium distribution function for the velocities of the single particle
excitations. The probability of finding an excitation decreases with the velocity in reasonable
equilibrium distributions. There are thus more particles that will get energy from a collective
mode at velocity c than particles that can give energy to it, leading to a damping of the
collective mode, despite having only energy conserving processes. (red) If the distribution was
not remaining at equilibrium the transfer of energy would accelerate particles and change the
distribution till a point when the transfer of energy between the single particles and collective
mode would be equilibrated.

The collective mode will gain or loose energy from the single particle excitations depending
on their respective velocities. If c > vs the collective mode will accelerate the single particle
excitations and thus loose energy, on the other hand if the collective mode is moving slower
c < vs then the single particle excitations will slow down and give energy to the collective mode.
We thus see that the total energy in the system is perfectly conserved. However damping comes
from the fact that we assume that the system remains in thermodynamic equilibrium and that
the single particle excitations distribution function remains the equilibrium one. Given the large
number of single particle excitations this is a reasonable physical assumption. If this is the case
then the distribution function for the velocity of quasiparticles must decrease with velocity as
shown in Fig. 5.9. There will thus be more particles getting energy from the collective modes
than particles able to give energy to it. This leads to a damping of the collective mode. Note
that the Landau damping is a very general process since the only assumption there is that the
distribution of the single particle excitations remains at equilibrium. It can thus occur in many
physical situations when a single mode can couple to many single particle excitations. If the
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distribution was not remaining at equilibrium the slow going particles would be accelerated
leading to an flattening of the velocity distribution, up to a point when the transfer of energy
between the single particle excitations and the collective mode would stop.
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CHAPTER 6

Instabilities of the Fermi liquid

As we saw in the previous section the Fermi liquid theory allows for a very successful under-
standing of the single particle excitations in a solid. We will now look on how the Fermi liquid
can have a phase transition into another state, usually with some degree of order.

6.1 Susceptibilities and phase transitions

In section Section 5 we saw how the susceptibilities give access to the collective modes of the
Fermi liquid. Susceptibilities also give an indication on the possible phase transitions that the
Fermi liquid can undergo. Indeed is there is a certain perturbation h which induces a variation
of a certain quantity O (charge, spin, current, etc.) the susceptibility gives

〈O〉q,ω = χ(q, ω)h(q, ω) (6.1)

If we look at the ω = 0 part of the perturbation and response, it means that we have applied a
static perturbation and that we are looking at the static response. We are thus computing the
thermodynamic state of the system. An increasing susceptibility would thus mean that even an
extremely small perturbation h would be able to induce a sizeable response in the system. The
temperature Tc at which the susceptibility χ(q, ω = 0, T ) diverges, would thus be the one at
which even a perturbation of infinitesimal amplitude would be able to induce a finite response
in the system. In other words the system wants to spontaneously order, and for T < Tc would
have a spontaneous symmetry breaking with a finite value of 〈O〉, even in the absence of an
external perturbation.

Calculation of the susceptibilities thus allows to predict starting from the Fermi liquid phase,
where no symmetry is broken to which state the system would like to go when the temperature
is lowered. In general, as indicated in Fig. 6.1 various instabilities can diverge. The phase
which is realized is the one with the higher Tc. Below this critical temperature the ground
state breaks now a symmetry. Thus the calculation of all the other susceptibilities that was
made in the Fermi liquid phase is not valid any more. The other susceptibilities must thus be
recomputed, taking into account the new ground state, in general a much more complicated
calculation than in the symmetric Fermi liquid phase. This can change completely the behavior
of the susceptibilities, and remove or enhance divergence.

Many order are possible. The most common ones involve a modulation of the spin or charge
density of the system. The wavevector of the order parameter q is determined by the one of the
most divergent susceptibility. Some examples are indicated in Fig. 6.2. The most common type
of order corresponding respectively to a divergence of the spin or charge susceptibilities are the
ferro- or antiferro-magnetic order. These correspond respectively to a divergence of the q = 0
or q = π/a (or the suitable generalization to high dimension) of the spin susceptibility. Charge
instabilities corresponding to a modulation of the charge density (“charge density wave”) are

111
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Figure 6.1: Static (ω = 0) susceptibilities can diverge when the temperature is lowered. In
general different susceptibilities (shown by different colors) can diverge. This signals a phase
transition towards an ordered state. The only one that one can take into consideration is the
one with the higher critical temperature. Below this first critical temperature, the ground state
breaks a symmetry, and thus all the calculation of the other susceptibilities that were made in
the Fermi liquid phase, without such a symmetry breaking must be redone.
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Figure 6.2: Some examples of ordered states. If the spin susceptibility at q = 0 diverges one
has a ferromagnetic state. If q = π/a then the spin order parameter changes sign on each
site of the lattice and this is an antiferromagnetic state. More general modulations of the
spin density with an incommensurate wavevector q are possible and are generally called “spin
density waves”. Similarly if the charge susceptibility diverges at a wavevector q then one has
a modulation of the charge density also called “charge density wave”. Other types of order
involving other physical observables than charge or spin are of course possible.
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also possible and correspond to a divergence of the charge susceptibility. We will also examine
the susceptibilities corresponding to more exotic orders. For example one could measure the
order parameter corresponding to the existence of pairs in the system

〈
∑
k

c†k,↑c
†
−k,↓〉 (6.2)

The ordered state corresponding such an order is the superconducting ground state.

6.2 Spin and charge instabilities

6.2.1 Ferromagnetism

Let us start by first looking at the possibility of spin instabilities. Since getting the exact spin
susceptibility of an interacting system is extremely difficult, we will take as an approximation
the RPA result that was obtained in (5.32), and that we already used to compute the collective
modes. This time we need to evaluate this expression at ω = 0 and finite temperature T . For
simplicity we will consider that we deal with a purely local interaction U , thus leading to V‖ = 0
and V⊥(q) = U as was discussed when the criterion for instability (5.44) was established. The
criterion for a divergence of the static spin susceptibility is thus

1 + U Reχ0(q, ω = 0, Tc) = 0 (6.3)

where the free susceptibility is given in (5.35).

In order to determine the nature of the instability we should in principle compute all the
susceptibilities as a function of the wavevector q and then determine the one which solves (6.3)
with the higher temperature. Since the denominator in (5.35) grows when q grows one can
naively expect that the largest χ0 will be the one with q = 0, and thus that the ferromagnetic
instability would be the most favored of all the spin ones. Let us thus first start by examining
the possibilities to get such a ferromagnetic instability, and we will come back the other q
instabilities later.

As was shown in (5.36), one has

χ0(q → 0, ω = 0, T ) =

∫
dξn(ξ)

∂fF(ξ)

∂ξ
(6.4)

At T = 0 ∂fF(ξ)
∂ξ = −δ(ξ) and the above expression leads readily to

χ0(q → 0, ω = 0, T → 0) = −n(0) (6.5)

More generally at finite temperature one has

χ0(q → 0, ω = 0, T ) = −
∫
dξn(ξ)

β

4 cosh2(βξ/2)
(6.6)

which can in principle be evaluated for a realistic density of states as a function of the temper-
ature. In order to make a crude estimate of the susceptibility we will make the approximation
that the density of state is totally flat within the band n(ξ) = n(0), and we call Λ the bandwidth
of the system. This leads to the approximation∫

dξn(ξ) ' n(0)

∫ Λ

−Λ

dξ (6.7)
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Figure 6.3: The ferromagnetic critical temperature as given by the RPA approximation. If U
is not large enough, there is no solution and the system remains paramagnetic. Above a certain
threshold of interaction there is a finite temperature Tc below which the system develops a
ferromagnetic instability.

This allows to evaluate

χ0(q → 0, ω = 0, T ) ' n(0)

∫ Λ

−Λ

dξ
∂fF(ξ)

∂ξ

= n(0)[fF(Λ)− fF(−Λ)]

= −n(0) tanh(
βΛ

2
)

(6.8)

The solution of the equation (6.3) is thus given graphically as shown in Fig. 6.3. Clearly an
instability only exits for repulsive interactions. There is no solution to the equation is the
strength of the interaction is below

U < Uc = 1/n(0) (6.9)

If this is the case the system has no ferromagnetic instability and thus remains paramagnetic
down to zero temperature (provided no other instability occurs). Above this value U > Uc, a
ferromagnetic instability does occur, starting at T = 0 for U = Uc, and with a growing Tc and
the interaction is growing. This criterion deciding on the existence of a ferromagnetic instability
is known as the Stoner criterion.

What is the reason for such an instability ? We can understand the physics behind it by a
more primitive argument. Let us compare the energy of an unpolarized Fermi sea with the
one in which one has partly polarized it, as shown in Fig. 6.4. In the absence of interactions
the minimum of energy is clearly reached if one fills in an equal way the up and down Fermi
sea. If a local repulsion exists between the particles such a state will lead to a large repulsion
cost since spin up and down electrons can be at the same place and thus feel the repulsion.
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Figure 6.4: In the absence of repulsion the unpolarized Fermi sea allows to reach the minimum
of energy while obeying to the Pauli exclusion principle. To avoid a local repulsion between
particles one solution is to polarize the Fermi sea, since the Pauli principle will now prevent
particles to be at the same place. This however costs kinetic energy. The competition between
these two effects determines wether a ferromagnetic instability occurs.

One solution to avoid this would be to have only spin up particles since in that case the Pauli
principle would prevent them to be at the same place and thus to feel the repulsion. However
doing so would force to fill much more one of the Fermi sea and would thus cost a lot of kinetic
energy. To estimate this competition let us assume that one put a small magnetic field on the
system which leads to an imbalance of chemical potential δµ for the spin up and down electrons.
The excess of kinetic energy per unit volume reads

HK/Ω =

∫ δµ

0

dεnεε−
∫ δµ

0

dεnε

' n02

∫ δµ

0

dεnεε

= n0(δµ)2

(6.10)

The interaction cost per unit volume is

HU/Ω =
U

Ω

∫
dx〈(ρ↑(x)− ρ0)(ρ↓(x)− ρ0)〉

= U(+

∫ δµ

0

dεnε)(−
∫ δµ

0

dεnε)

' −Un02(δµ)2

(6.11)

Both terms vary (at the lowest order) as (δµ)2. Thus two cases are possible If the cost in kinetic
energy is the largest, then one indeed needs to put an external magnetic field to polarize the
system, but the minimum of energy in the absence of external field remains the unpolarized
state. On the contrary if the gain in interaction dominates, then there is clearly an instability
of the unpolarized state and the system will spontaneously polarize. We just computed the
lowest order term in δµ and thus can only compute the instability but higher order term will
lead to a finite value of the polarization for a given interaction. The instability occurs when

Un02 = n0 (6.12)

which is exactly the Stoner criterion that we found by the more general method of the divergence
of the susceptibilities.
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The existence of such a ferromagnetic instability illustrate a quite important concept that we
will encounter several times in correlated materials. The naive expectation for a state that has
some degree of spin order would be that such an order results from a direct magnetic exchange
between the magnetic moments carried by the electrons in the system. However it is easy to
see that such a direct magnetic interaction cannot be responsible for the magnetic order seen in
solids. Indeed, the direct magnetic exchange between the moments in a solid is the dipole-dipole
interactions

H =
µ0

4πr3
[3(m1r̂)(m2r̂)−m1m2] (6.13)

where mi = gµBSi is the magnetic moment corresponding to the spin S. To estimate the order
of magnitude of this term we take g = 2, the magnitude of the spin S = 1/2 and a distance
between the spins r ∼ a where a is the interatomic distance. Rather than using directly
µB = e~/(2me) it is simpler to use the fine structure constant α = e2cµ0/(2h). One has thus

H ∼ ~3α

4cr3m2
e

(6.14)

One can use the fact that in solids kF ∼ π/a one can reexpress the above as

H ∼ α

2π3

kF

c
EF (6.15)

Even if the π3 in the denominator should not be taken too seriously the other factors give
already a factor ∼ 10−4 showing that the dipolar interaction is well below an energy scale of
∼ 1K. It is thus impossible that such an interaction can lead to ordered states able to survive
at the experimentally observed order (ferromagnetism, antiferromagnetism etc.). The source
of magnetic interaction must thus have another source. The above calculation show what the
source is. It is the combination of the kinetic energy of the electrons and the interaction between
them. Indeed due to the Pauli principle a short range interaction will not play similar roles for
two spin up and a spin up and a spin down, even if the interaction itself only depends on the
density of the particles and thus fully respects the spin rotation symmetry. The competition
between the kinetic energy and the interaction will thus lead to spin interaction term and thus
allow for magnetically ordered state. Since the typical energy of the kinetic energy and the
interactions is of the order of the electron Volt, it means that the typical scale for these magnetic
interactions will be similar, leading to a quite high ordering temperature for ferromagnetic
states. We will see that a similar calculation can lead to other type of magnetically ordered
state, such as antiferromagnetism.

Finally we need to discuss whether the instability at q = 0, namely the ferromagnetism is the

dominant one. For a free electron dispersion ξ(k) = ~2k2

2m −
~2k2

F

2m the free susceptibility (5.35)
can be computed exactly. The calculation is left for the exercises. This confirms the intuitive
result we were already mentioning above, namely that χ0(q, ω = 0, T ) decreases with increasing
q. As shown in Fig. 6.5, this ensures that the ferromagnetic instability is the most favored of
all spin instabilities.

6.2.2 Charge instabilities

Let us now briefly discuss whether one can get a charge instability, namely a modulation of the
charge with a wavevector q, also named a charge density wave (CDW).

The charge susceptibility is given by (5.30). Given the change of sign in the denominator
compared to the spin one, no charge instability can occur when U > 0. When U < 0 one could
in principle imagine to have a charge instability, the calculation would be totally similar in
that case to the one for the spin. With a free dispersion relation the vector q = 0 would be
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Figure 6.5: For a free dispersion relation χ0(q, ω = 0, T ) is a decreasing function of q. The
ferromagnetic instability is thus, among all the spin instabilities, the one that will occur at the
higher critical temperature. This result is drastically modified if the dispersion relation has
nesting properties.

the most favored which would correspond to a global shift of the density which is clearly non
physical. As we will see below, for U < 0 another instability (pair instability) occurs at a higher
temperature for U < 0, and thus such a corresponding divergence of the charge susceptibility
is meaningless.

However this will not be the case when the energy ξ(k) has special properties as we will now
see.

6.3 Nesting of the Fermi surface

So far we have focussed on the susceptibilities computed for a dispersion relation close to the
free electron dispersion.

6.3.1 Basic concept

Let us now suppose that the energy obeys the following property: there exists a given vector
Q such that for an ensemble of vector k (around the Fermi wavevector) one has

ξ(Q+ k) = −ξ(k) (6.16)

In particular this means that if one has a portion of the Fermi surface ξ(k) = 0 this portion
can be translated by the vector Q to fall on another portion of the Fermi surface ξ(Q + k) =
−ξ(k) = 0. Hence the name of the property (6.16), which is the nesting of the Fermi surface.
It is important to keep in mind that the full property (6.16) implies much more than just the
fact that one can superimpose two portions of the Fermi surface.

Some examples of nesting are indicated in Fig. 6.6 As is quite obvious in Fig. 6.6, the free
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Figure 6.6: Some examples of nesting of Fermi surface. a) for a free electron dispersion there is
no nesting of the Fermi surface. b) In one dimension the Fermi “surface” is in fact the two points
at±kF, except for pathological dispersion relations the nesting is always taking place close to the
Fermi surface with Q = 2kF. c) In some cases, in higher dimensions nesting occurs. Here is the
example of a two dimensional tight binding dispersion relation ξ(k) = −t cos(kxa)− t cos(kya).
The nesting vector is Q = (π/a, π/a).

dispersion relation ξ(k) = k2/(2m)−k2
F/(2m) has no good nesting properties. One the contrary

if one looks in one dimension, the Fermi surface is reduced to two points. If one considers the
expansion of the dispersion close to the Fermi points one has

ξ+(k) = ε(k)− ε(kF) ' a(k − kF) = aδk+ (6.17)

around k ∼ kF, whith δk+ = k − kF and

ξ−(k) = ε(k)− ε(−kF) ' −a(k + kF) = −aδk− (6.18)

and δk− = k − (−kF) around k ∼ −kF. For all systems with an inversion center ε(k) = ε(−k)
and thus the linear coefficient a is the same in the two cases. It is thus easy to see that for
example if k ∼ −kF (see Fig. 6.6)

ξ(k + 2kF) = ξ(δk− − kF + 2kF) = ξ(δk− + kF) = aδk− (6.19)

and one has thus ξ(k + 2kF) = −ξ(k). The nesting is thus the rule (for any dispersion that
allows a linear expansion close to the Fermi surface) in one dimension.

In higher dimensions special dispersions can also lead to nesting. Let us consider for example
the case of a two dimensional tight binding dispersion relation

ε(k) = −2tx cos(kxa)− 2ty cos(kya) (6.20)

Clearly such a dispersion relation verifies ξ(kx + π/a, ky + π/a) = −ξ(kx, ky). The possibility
to have nesting or not will thus depend on the filling since ξ(k) = ε(k)− EF. Thus if EF = 0,
namely if the band is half filled, one has a perfect nesting (working for all k) in the dispersion
relation. If EF 6= 0 then the nesting does not occur, or rather becomes worse and worse as one
deviates from half filling.

Let us now investigate the consequence of the existence of nesting on the various susceptibilities.
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The free susceptibility (5.26) becomes at the nesting vector Q

χ0(Q, ω = 0, T ) =
1

Ω

∑
k

fF(ξ(k))− fF(ξ(k +Q))

ξ(k)− ξ(k +Q)

=
1

Ω

∑
k

fF(ξ(k))− fF(−ξ(k))

2ξ(k)

=

∫
dξn(ξ)

− tanh(βξ/2)

2ξ

' −n(0)

∫ λ

−Λ

dξ
− tanh(βξ/2)

2ξ
= −n(0)

∫ λ

0

dξ
tanh(βξ/2)

ξ

(6.21)

where one has made the usual approximation of a constant density of states over a band of
width 2Λ. To evaluate the integral one notice that in the absence of the tanh the integral would
be divergent at small ξ. One thus split the integral in two parts βξ � 1 where the tanh can
be approximated by 1 and small values of ξ such that βξ � 1 for which tanh(x) ∼ x. One has
thus (with C a constant of order one)

χ0(Q, ω = 0, T ) = −n(0)

∫ λ

0

dξ
tanh(βξ/2)

ξ

' −n(0)[

∫ 2C/β

0

dξβ/2 +

∫ Λ

2C/β

dξ
1

ξ

= −n(0)[C + log(Λβ/(2C))]

= −n(0) log(Λβ/(2C ′))

(6.22)

where C ′ is a number of order one. The main consequence is that now, contrarily to what
happened for the free dispersion relation (except in d = 1), in presence of nesting, the free
susceptibility is divergent when the temperature is lowered. The difference is emphasized in
Fig. 6.7

6.3.2 Spin susceptibility

Since in presence of nesting the free susceptibility is divergent atQ, this is usually the wavevector
for which the instability will occur. The instability equation (6.3) now becomes

1 +−Un(0) log(Λβ/(2C ′)) = 0 (6.23)

Since the free susceptibility is divergent, now one as a finite Tc regardless of the strength of
the interactions. The critical temperature is given by (absorbing the various constants in the
bandwidth Λ)

Tc ∼ Λe−1/(n(0)U) (6.24)

This is a remarkable result since it shows that now a spin instability can develop even for a
very weak interaction. Of course (6.24) shows that the critical temperature will fall very fast
when the interaction is weak compared to the density of states. If one keeps in mind that
roughly n(0) ∼ 1/EF, since one spread one or two states over a spread of energy of order
EF, the characteristic ratio is U/EF. Because of the exponential dependence in this parameter
this explain why one can also find critical temperatures in a solid which are several orders of
magnitude smaller than the typical energy scales of the interactions or kinetic energies. This is
in particular the case for the superconducting instability on which we will come back later. Note
also that (6.24) is non analytic in U and thus cannot be obtained by any simple perturbative
expansion in the coupling U .
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Figure 6.7: a) In the absence of nesting the susceptibility is in general maximum at Q = 0 and
when the temperature is lowered saturates to a maximum value. One thus needs a critical value
of the interaction to get an instability b) In presence of nesting there is a divergence of the free
susceptibility when the temperature is lowered at the nesting vector Q. Since the susceptibility
is unbounded at that wavevector it means that in general instabilities will always occur at the
nesting wavevector, regardless of the strength of the interactions.

Physically this means that systems for which there is a nesting of the Fermi surface will have
a spin instability at the nesting wavevector Q. This wavevector can be incommensurate with
the lattice of the system, for example for one dimensional systems for which Q = 2kF. In that
case one has a modulation of the spin density, and one speaks of a spin density wave (SDW).
In many case the nesting vector is Q = (π/a, π/a, . . .). This is for example the case of the
half filled band on a square lattice. The spin modulation is thus of the form cos(Qr). Since
r = (nxa, nya, . . .), the magnetization is thus simply

S = (−1)nx(−1)ny · · · (6.25)

and thus one has an antiferromagnetic order, for which the uniform magnetization remains
zero, but there is a staggered magnetization that appears.

As a rule of thumb one can thus consider that in the absence of nesting, a ferromagnetic
instability would rather be favored by repulsive interactions, while it would be antiferromagnetic
in the presence of nesting. Of course this is an oversimplification and one has to compute the
susceptibilities for a given system to know the precise type of order.

6.3.3 Charge instability

In the presence of nesting one has, in a similar way than for repulsive interactions, the possibility
to get a charge instability at the vector Q for attractive interactions. The calculations are
exactly the same so I will not repeat them here. The phase that is realized is a phase in
which the charge density is spatially modulated at the wavevector Q (a charge density wave).
Because of the nesting this instability is strongly reinforced and can now beat the pair formation
(superconducting instability) that we will examine later.

Physically an attractive interaction can be mediated by the vibration of the lattice of the
material (phonons) in a similar way than the attractive interactions which is at the root of the
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superconductivity. In the case of nesting superconducting and charge density wave instabilities
will thus be in competition. Which one is realized depends in a detailed way on the material.

6.4 Pair instabilities

Let us now examine a very special (but very important) case of instability. This one is less
obvious than an order in charge or spin and corresponds to the tendency that the Fermi liquid
would have to form electron pairs.

6.4.1 Susceptibility

Let us first look at the susceptibility of the free electron gas for a perturbation that would like
to create pairs. We consider the Hamiltonian

H = H0 + [λ(t)
∑
k

c†k↑c
†
−k↓ + h.c.] (6.26)

the perturbation λ(t) is thus creating (or destroying for the hermitian conjugate) pairs. We
want to compute, in linear response the average number of pairs

〈
∑
k

c−k↓ck↑〉t0 =

∫
dtχ̄p(t0 − t)λ(t) (6.27)

Using linear response the susceptibility to pair creation χ̄p is given by

χ̄0
p(t) = −i θ(t)〈[

∑
k

c−k↓(t)ck↑(t),
∑
k′

c†k′↑c
†
−k′↓]〉H0

(6.28)

In order to compute this susceptibility we use the time dependence of the destruction operators
for free particles (4.30) to obtain

ck(t) = e−iξ(k)tck (6.29)

This leads for the susceptibility (6.28)

χ̄0
p(t) = −i θ(t)

∑
k, k′e−i(ξ(k)+ξ(−k))t〈[c−k↓ck↑, c†k′↑c

†
−k′↓]〉H0

= −i θ(t)
∑

ke−i(ξ(k)+ξ(−k))t[〈ck↓cdaggerk↓〉 − 〈cdaggerk↑ckup〉]

= −i θ(t)
∑

ke−i(ξ(k)+ξ(−k))t[1− 2fF(ξ(k))]

= −i θ(t)
∑

ke−i2ξ(k)t tanh(βξ(k)/2)

(6.30)

where we have used that ξ(k) = ξ(−k) for systems with an inversion center. The Fourier
transform can be easily performed to give

χ̄0
p(ω) =

∫ ∞
0

dtχp(t)e
i(ω+iδ)t

=
∑
k

tanh(βξ(k)/2)

ω − 2ξ(k) + iδ

(6.31)

and the susceptibility per unit volume is

χp(ω) =
1

Ω

∑
k

tanh(βξ(k)/2)

ω − 2ξ(k) + iδ
(6.32)
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From this form we can compute the static susceptibility. As usual at ω = 0 only the real part
remains. One can push the calculation by again assuming that the density of states is roughly
constant over a band of width Λ. One thus obtains

χ0
p(ω = 0, T ) = − 1

Ω

∑
k

tanh(βξ(k)/2)

2ξ(k)

= −
∫
dξn(ξ)

tanh(βξ/2)

2ξ

' −n(0)

∫ Λ

−Λ

dξ
tanh(βξ/2)

2ξ

= −n(0)

∫ Λ

0

dξ
tanh(βξ/2)

ξ

= −n(0) log(Λβ/(2C ′))

(6.33)

One recognizes exactly the expression that was obtained for the free charge or spin susceptibility
in presence of nesting (6.22). This is not a coincidence and has deep reasons. One can view
the pair susceptibility as resulting from the nesting “time” of the dispersion relation, namely
that two states that are related by time reversal symmetry have the same energy. This is the
nesting that is important for a particle-particle susceptibility. As one can readily guess such
a nesting always take place, at least for non pathological systems, regardless of the precise
form of ξ(k). This ensures that the pair susceptibility will always diverge, showing the natural
tendency of the free electron gas to such an instability. By contrast the divergence of a charge
or spin susceptibility, which corresponds to a particle-hole excitation, needs a special dispersion
form ξ(k) verifying the nesting condition. This is why the divergence of the charge or spin
susceptibility only occurs for special forms of the Fermi surface and dispersion.

The fact that the pair susceptibility for the free electron gas diverges, means that the electron
gas is on the verge of such an instability. Some interactions should thus be able to induce a
true phase transition to a pair ordered state. This is the point we now examine.

6.4.2 Attractive interaction, BCS instability

Let us now consider an interacting electronic system. We take the standard interaction (6.34)

Hint =
1

2Ω

∑
k1k2q,
σ1σ2

V (q)c†k1+q,σ1
c†k2−q,σ2

ck2σ2
ck1σ1

(6.34)

which for simplicity we reduce to a contact interaction. In that case the interaction rewrites,
as discussed in Section 4.1 as

HU =
U

Ω

∑
k1k2q

c†k1+q,↑c
†
k2−q,↓ck2↓ck1↑ (6.35)

Let us now treat this interaction in a way that will illustrate how we can make use of the Fermi
liquid concept. We will split it in two parts HU = HBCS +Hrest

HBCS =
U

Ω

∑
k2=−k1,q

c†k1+q,↑c
†
k2−q,↓ck2↓ck1↑ (6.36)

In the first term we have restricted the interaction to terms such that k2 = −k1, the second
term represent all the remaining interaction process. As we will see in a moment the first
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term is specially important since it will directly be the interaction that will correspond to the
coupling between the pairs. Given that the corresponding susceptibility in the free electron gas
is divergent it is important to treat this term extremely carefully. The other process Hrest are
also important, but we know from Landau Fermi liquid theory that if we consider H0 + Hrest

the whole excitations of this Hamiltonian will be Landau quasiparticles. We will thus consider
that we get rid of Hrest. We can thus consider now that the system is described only by
H0 + HBCS . Of course now H0 does not represent “true” free electrons anymore, but the
Landau quasiparticles. The difference however is only hidden in the parameters m∗ etc. This
allows us to focuss on the part of the interaction that is producing a singular effect due to the
particularly large susceptibility of the free system for pairs.

We can rewrite HBCS as

HBCS =
U

Ω
(
∑
k1

c†k1,↑c
†
−k1,↓)(

∑
k2

c−k2↓ck2↑) (6.37)

which makes apparent the operator creating pairs

O†p =
∑
k1

c†k1,↑c
†
−k1,↓ (6.38)

In order to study the response of the system described by H0 +HBCS to the perturbation (6.26)
we follow the same mean field method than already described in Section 5.1.1. We approximate
the interaction term by its mean-field expression

HBCS '
U

Ω
[O†p〈Op〉+ 〈O†p〉Op] (6.39)

The full Hamiltonian in presence of the pair perturbation (6.26) is thus

H0 + [λ(t) +
U

Ω
〈Op〉]O†p + h.c. (6.40)

where of course the averages have to be determined self-consistently. One can then, in a
similar way than in Section 5.1.1 use the linear response with the free (or rather Fermi liquid)
Hamiltonian H0 to obtain

〈Op〉ω = χ̄0
p(ω)[λ(ω) +

U

Ω
〈Op〉ω] (6.41)

where we denoted by the subscript ω the Fourier transform of the time dependent functions.
Solving the self consistent equation leads to

〈Op〉ω =
χ̄0
p(ω)

1− U
Ω χ̄

0
p(ω)

(6.42)

The full (in the mean field approximation) susceptibility per unit volume is thus given by

χp(ω) =
χ0
p(ω)

1− Uχ0
p(ω)

(6.43)

We thus see that interactions are in principle able to induce a phase transition towards an
ordered state in which the pair operator has a non zero average value. This state is the
superconducting state. From the expression (6.43) and the free susceptibility (6.33) we see
that the pair instability can occur when the interaction is attractive. Moreover since the
free susceptibility is divergent it will always occur in that case, unless superseded by another
instability that could occur at a higher temperature, such as a charge instability if the Fermi
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surface is nested. An attractive interaction can be mediated via the electron-phonon coupling
but we will not enter into more details on that mechanism at that point and refer the reader
to the literature for more on that point [Tin75]. The critical temperature to pair formation
is given by the expression (6.24). For the particular case of the electron-phonon attractive
interaction the bandwidth Λ has to be replaced by a smaller energy scale which is the Debye
energy since the interaction is not attractive beyond such a scale. Other systems, in particular
cold atomic system can lead to a realization of Fermions with attractive interaction without
phonons [BDZ08]. The expression (6.24) is exactly the BCS form for the superconducting
temperature.

This example thus illustrated the general procedure that one can follow to determine the various
instabilities of the Fermi liquid. Of course in more complex cases it is not so easy to determine
which order parameter can occur or to compute the corresponding susceptibilities.

6.5 Ordered state

So far we started from the high temperature unbroken Fermi liquid phase and by computing
the susceptibilities looked at the temperature at which such a phase becomes unstable. Since
we were mostly using linear response, it is impossible to describe what happens in the ordered
regime, in which the order parameter is non-zero. In this section we will illustrate on one exam-
ple, namely the antiferromagnetic instability, how one can extend the calculation to describe,
within some mean-field approximation, the ordered state as well.

Let us consider the Hubbard Hamiltonian (4.9) on a cubic lattice. The dispersion relation of
the tight binding model on such a lattice is

ε(k) = −2t

d∑
j=1

cos(kja) (6.44)

where d is the spatial dimension and we have for simplicity considered that all hopping integrals
t are identical. Depending on the filling of the band one has a chemical potential µ such that
ξ(k) = ε(k) − µ. It is easy to check that for the free Hamiltonian µ = 0 corresponds to a
half-filled band. Compared to (4.9) we rewrite the interaction term in the form

HU = U
∑
i

(ni↑ − 1/2)(ni↓ − 1/2) (6.45)

IT is easy to see that the difference between this form and the form (4.9) are simply chemical
potential and constant energy terms, that can be safely be absorbed in the definition of µ.

We will in the following focuss on the case where the band is half-filled, so that the average
density per spin on each site is 〈niσ〉 = 1/2. Since, as discussed in Section 6.3.1 the free electron
dispersion has for half-filling of the band a nested dispersion relation with a nesting wavevector
Q = (π/a, π/a, . . .), one can expect, for repulsive interactions that this model will have an
antiferromagnetic instability at a certain temperature Tc. It means that in the antiferromagnetic
case, the average total density on each site remains unchanged while the spin density varies.
One thus has

〈nj↑ − 1/2〉 = (−1)jm0

〈nj↓ − 1/2〉 = −(−1)jm0

(6.46)

where (−1)j = (−1)jx+jy+··· changes sign when one goes from one site to the next. m0 is the
staggered magnetization, since

mz =
1

2
(nj↑ − nj↓) = (−1)jm0 (6.47)
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Using the fact that such order parameter is realized in the ordered phase we make the usual
mean-field approximation to the interaction (6.45)

HU ' U
∑
i

(ni↑ − 1/2)〈ni↓ − 1/2〉+ 〈ni↑ − 1/2〉(ni↓ − 1/2)

= U
∑
i

[(−1)im0(ni↓ − 1/2)− (−1)im0(ni↑ − 1/2)]
(6.48)

After this mean field approximation the full Hamiltonian H0 +HU decouples into two separate
Hamiltonians involving separately (but self consistently) the spin up and down

H↑ =
∑
k

ξ(k)c†k↑ck↑ − Um0

∑
i

(−1)im0(ni↑ − 1/2)

H↓ =
∑
k

ξ(k)c†k↓ck↓ + Um0

∑
i

(−1)im0(ni↓ − 1/2)
(6.49)

Each spin species sees thus a periodic potential that is self-consistently generated by the inter-
action with the other species. Such a periodic potential would naturally favor the presence of
spin up on even sites and reduce their presence on odd sites, while for the spin down it will be
the opposite since the amplitude of the two periodic terms for the two spin species are opposite.
We now need to solve the problem of free electrons in such a periodic potential and then solve
the self consistent equations giving the amplitude of the potential as a function of the average
occupation on each site.

Fortunately this is a problem we already solved in Section 3.6.2, so we can simply follow
exactly the steps of the solution. Let us solve for the spin down, that have exactly the same
Hamiltonian than studied in Section 3.6.2, with V = Um0. The solution for the spin up can
trivially be obtained by replacing m0 → −m0. Given the periodicity we have to reduce the
zone and thus introduce the new operators in the reduced zone αk, βk related to the original
operators by the relation (3.125). Then in order to diagonalize the Hamiltonian we perform the
Bogoliubov transformation (3.133), leading to the operators γk± with the respective eigenvalues
E±(k) given by (3.141). Since we now know the eigenvalues and operators diagonalizing the
Hamiltonian we can compute the average number of particle per site for the spin up

〈nj↓ − 1/2〉 (6.50)

In order to compute the order parameter we simply need the value for j = 0. One can of course
check directly because of the invariance by translation of he Hamiltonian in the reduced zone
(i.e. with a doubled unit cell) that the j dependence of the average has exactly the periodic
form expected for (6.46). Using the result (3.150) we get

〈n0↓ − 1/2〉 =
1

Ω

∑
k∈Z′B

(
1− Um0√

ξ(k)2 + (Um0)2
tanh(

βE(k)

2
)

)
− 1/2 (6.51)

Using the fact that the reduced zone contains exactly Ω/2 states, one can rewrite the above
expression as

〈n0↑ − 1/2〉 = − 1

Ω

∑
k∈Z′B

Um0√
ξ(k)2 + (Um0)2

tanh(
βE(k)

2
) (6.52)

where the energy E(k) is given by (3.141)

E(k) = [ξ(k)2 + (Um0)2]1/2 (6.53)

The self consistent equation for the order parameter m0 is thus, using (6.46)

−m0 = − 1

Ω

∑
k∈Z′B

Um0√
ξ(k)2 + (Um0)2

tanh(
βE(k)

2
) (6.54)



126 Instabilities of the Fermi liquid Chap. 6

It can be simply rewritten in terms of the quantity ∆ = Um0 as

∆ =
U

Ω

∑
k∈Z′B

∆√
ξ(k)2 + ∆2

tanh(
β[ξ(k)2 + ∆2]1/2

2
) (6.55)

Such an equation and the Bogoliubov transformation that give now all the physical quantities
in terms of the parameter ∆ allow to get the physical properties in the ordered state.

Several important physical quantities can be extracted from (6.55). First one note that ∆ = 0 is
always a solution of this equation. This corresponds to the phase without the antiferromagnetic
order, and is clearly the correct solution of the equation at high temperature. Of course in
that phase the mean field approximation treats poorly the interaction since the mean-field
Hamiltonian with ∆ = 0 would simply become the free Hamiltonian. This is clearly an artefact
of the mean-field approximation used, but the fact that at high temperature we do recover a
phase for which m0 = 0 is quite natural. When the temperature is lowered another solution
of the equation has to exist for the antiferromagnetic phase to be possible. One has then in
principle to verify which one of the two solutions ∆ = 0 and ∆ 6= 0 has the lowest free energy
to know which phase is realized. Since we have all the eigenvalues of the Hamiltonian, such
calculation is easy and we will leave it as an exercise.

In the phase for which ∆ 6= 0 we can extract the physics from the solution that we already
obtained in Section 3.6.2. The periodic potential, that is here the result of the antiferromagnetic
order and the interaction between the spin species, open a gap in the spectrum. We see that
below Tc a system of half filled electrons with an interaction on a square (cubic, etc.) lattice is
thus not a metal as the band theory would naively have predicted but an insulator. We have
here the first example of drastic modifications that interactions can give to the transport and
physical properties of the system, compared to free electrons or Fermi liquids. This question of
whether interactions can turn an half filled system from a metal into an insulator is an extremely
important and general phenomenon that we will examine in details in the next chapter. Within
our mean-field approximation we know for this problem the gap between the two bands, which
is simply 2∆. ∆ is thus a physically important quantity. Let us again emphasize that this
particular gap is the direct consequence of the interactions between the particles. If we look for
a solution with ∆ 6= 0 the equation simplifies to

1

U
=

1

Ω

∑
k∈Z′B

1√
ξ(k)2 + ∆2

tanh(
β[ξ(k)2 + ∆2]1/2

2
) (6.56)

from which we can extract several interesting quantities. First if we are right at the critical
temperature we want the order parameter to go to zero. This is assuming that the order
parameter is continuous at the transition (second order transition), and can be confirmed by a
full solution of the equation. If we use that ∆(Tc) → 0 then we have the equation giving the
critical temperature as a function of the interaction. Replacing in (6.56) we get

1

U
=

1

Ω

∑
k∈Z′B

1√
ξ(k)2

tanh(
β[ξ(k)2]1/2

2
)

=
1

Ω

∑
k∈Z′B

tanh(βcξ(k)
2 )

ξ(k)

(6.57)

which is exactly the equation for the critical temperature that we obtained from the susceptibil-
ity criterion using (6.3) and (6.21) – the factor of 2 coming from the difference over the Brillouin
zones over which the k sum is performed. We thus see that the mean field approximation gives
us the same Tc. We have however now the possibility to track down the order parameter as the
temperature is lowered.
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In particular we can compute ∆ at zero temperature. In that case the equation (6.56) becomes

1

U
=

1

Ω

∑
k∈Z′B

1√
ξ(k)2 + ∆2

=

∫
dξn′(ξ)

1√
ξ2 + ∆2

(6.58)

This equation can be easily solved numerically but we can easily some limiting cases. Fist let
us assume that ∆ is small. In that case the integral is dominated by the singularity at small
ξ. As usual we make the approximation that the density of states is roughly constant, which
leads to

1

U
= n(0)

∫ Λ′

0

dξ
1√

ξ2 + ∆2
(6.59)

which we can solve by splitting the integral as we did before∫ Λ′

0

dξ
1√

ξ2 + ∆2
'
∫ C∆

0

dξ
1

∆
+

∫ Λ′

C∆

dξ
1

ξ

= C + log(Λ′/(C∆)) = log(Λ′′/∆)

(6.60)

∆(T = 0) is thus given, for small ∆ by

δ(T = 0) ' Λ′′e−1/(n(0)U) (6.61)

The condition of small ∆ is obviously realized when U is small. As discussed before n(0) ∼ EF ∼
Λ since one is at half-filling. On thus see that when the interaction is small compared to the
bandwidth of the system, although the system becomes immediately an insulator, regardless of
the strength of the interaction U the gap is exponentially small in the interaction. It becomes
progressively of the order of the bandwidth itself when U ∼ Λ. Note that the functional
form of the zero temperature order parameter (6.61) is the same than the one for the critical
temperature (6.24). A more precise calculation of the integrals shows that one has indeed
2∆(T = 0) = 3.52Tc a relation known as the BCS relation [Tin75], and is valid if the mean-field
theory is an adequate description of the transition and the order parameter. In general this
ratio can deviate from the value indicated here.

For small interaction our calculation of ∆ immediately indicates that we have an exponentially
small, but finite staggered (antiferromagnetic) magnetization, since m0 = ∆/U . Clearly the
exponentially small behavior of ∆ dominates.

Let us now turn to the case of very large interactions. In that case one can expect ∆ to be
large compared to all the energies of the band. One can thus simply replace the denominator
in (6.58) by ∆ to obtain

1

U
=

1

Ω

∑
k∈Z′B

1

∆
=

1

2∆
(6.62)

and thus ∆ = U/2, and thus m0 = ∆/U = 1/2. This means that in the large U limit one has
a localized spin 1/2 on each site. This is a quite physical result: if the interaction is very large
the particles will sit on the sites of the lattice the spin up on the even sites and the spin down
on the odd sites. Creating an excitation would bring two spins on one site and this would cost
an energy U which is exactly the gap 2∆ that we have computed. A schematic plot of the gap
and of the order parameter is indicated on Fig. 6.8.

We thus found that interactions are able to turn an half filled metal into an antiferromagnetic
insulator. In the language of the Bogoliubov transformation this corresponds to a state where
all γk− states have been filled. There is now a gap to start filling the band of the γk+ states.
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Figure 6.8: Gap 2∆ and staggered magnetization m0 as a function of the interaction U . Two
main regimes must be distinguished. If the interaction is smaller than the bandwidth U � Λ,
there is an exponentially small gap and staggered magnetization. Although the system is an
antiferromagnetic insulator spin up and down are essentially sharing all the sites of the lattice,
practically as in a normal metal. For interactions larger than the bandwidth U � Λ the gap
grows as U and the order parameter is very close to m0 = 1/2 indicating that the spins are
essentially localized on each site of the lattice. The resulting state is a Mott insulator as we
will discuss in the next chapter.

This solution gives us also an indication of what happens when the system is not exactly half
filled. Because we are now starting to fill the band of γk+ states or making holes in the band of
γk− we now recover a gapless ground state, where the excitations have both a good momentum
k and a good energy E+(k) (e.g. assuming we are filling the upper band). Let us look for
example what would happen in one dimension. The energy of these states is

E+(k) =
√

4t2 cos2(kxa) + ∆2 (6.63)

one thus start filling the band around k = ±π/2a which is the lowest energy state. If one sets
k = π/(2a) + δk one has

E+(δk) ' ∆ +
2a2t2(δk)2

∆
(6.64)

One thus sees that one can define an effective mass m∗ ∼ 1/∆ for these particles. The properties
of the doped system are thus very close to the ones of a band insulator where only the extra
carriers compared to n = 1 will matter. These particles (or holes) can have a large effective
mass if the gap is large.



CHAPTER 7

Mott transition

The previous chapter has shown that, because of interactions, the Fermi liquid could be de-
stroyed and lead at low temperatures to an ordered state, with charge, magnetic, supercon-
ducting or even potentially more exotic order. One important result was the realization that,
because of the interaction an half filled system could develop an antiferromagnetic order, open
a gap at the Fermi level and turn into an insulator.

This is the first encounter with an interaction mechanism that can change the credo of band
theory that systems with empty or filled band are band insulators while systems with partial
band filling are metals or semiconductors. Let us explore this type of physics more in details
in this chapter and see how much of this can be generic.

7.1 Basic idea

We obtained in the previous chapter the remarkable result that on a cubic (or hypercubic)
lattice an half filled system of interacting fermions would develop an antiferromagnetic order
below a certain temperature TN and as a result would open a gap at the Fermi level and
become an insulator. This is a very appealing result since from an experimental point of
view, many materials with reasonably strong interactions such as oxides indeed exhibit an
insulating behavior for a half filled band. One of the historic examples, shown in Fig. 7.1 is
vanadium oxides, whole insulating behavior at half filling is in complete disagreement with
the bandstructure predictions. The fact that these properties are linked to interaction effects
can be seen experimentally since these insulating properties disappear when the system is put
under pressure. The pressure brings the atoms slightly closer together. Its main effect is thus
to increase the wavefunction overlap between atomic orbitals on different atoms. As a result
the hopping amplitude increases and thus the kinetic energy of the system increases. It also can
modify slightly the interactions but the change of wavefunction overlap is much more sensitive
to distance and is thus the main effect. Upon pressure the ratio of interactions versus kinetic
energy is thus decreased, leading to a less strongly correlated system. At high pressure one
recovers a metal, with reasonably normal Fermi liquid behavior.

Although at first glance the solution we found in the previous chapter could seem an explanation
of this type of phenomena, it is clear that there must be more to it that this simple solution.
Indeed the solution we found has very distinctive features:

1. The insulating character and the existence of an antiferromagnetic ground states are to-
tally linked. It is the existence of the antiferromagnetic order that leads to the doubling
of the unit cell and to the opening of an interaction driven gap at the Fermi level. Al-
though the large majority of the systems that are insulating at half filling show indeed
an antiferromagnetic order, this is not necessarily the case for all materials. In particu-
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Figure 7.1: Phase diagram of Vanadium oxide as a function of pressure. The filling of the
system correspond to half filling. At variance with the predictions of bandstructure theory the
system can become an insulator with or without magnetic order.
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lar for Vanadium oxides, a clear insulating behavior is observed while the system is still
paramagnetic. It is thus clear that there must be a more general mechanism in which the
magnetic order and insulating or metallic character are no necessarily linked.

2. The solution we have found was (at least in our derivation) drastically resting on the
fact that we had a cubic (or hypercubic) lattice. For other systems (such as a triangular
lattice) it is not obvious on how to build such a solution. This does not prevent systems
with triangular lattice to be excellent insulators at half filling (for example the cobaltates).

3. The solution we found lead to an insulator for all repulsive interactions (even if the gap
is quite small for U/t� 1. From an experimental point of view it seems that at least for
some compounds a critical and relatively large value of the interactions is needed to get
the insulating behavior. This for example obvious with the vanadium oxides.

We thus need to find a more general theory that could explain why systems with a commensurate
filling (for example one particle per site – half filling) would turn into insulators. Such a theory
was given by Sir Nevill Mott, and the corresponding insulators are known as Mott insulators.
It rests on the fact that two particles would pay a heavy price in energy if they are on the same
site. Such a situation occurs often if the particles are delocalized, as in a metal. To avoid paying
such a penalty another state can be more favorable where the particles are localized on each
site. This is a mechanism which is totally dominated by the charge properties of the system.
In order to illustrate it on a simple example let us consider the Hubbard model (4.9). Indeed
this model contains the minimum necessary ingredients to describe the effects of interactions
in solids

1. the tight-binding description contains the essential qualitative properties of the bands:
finite bandwidth, filling of the band, proper analytic structure of the energy dispersion.

2. the interaction, which is the simplest that one can have for a two species fermionic system.

This is not to say that this Hamiltonian is realistic nor describes all the situations, but it is a
very good starting point to understand these phenomena.

In order to have a qualitative idea of what happens let us compare the energy of two different
types of wavefunction, which could be potential candidates for the ground state of such a
system. The idea is that the wavefunction which has the lowest energy is the one that has the
largest overlap with the group state. The first wavefunction is the Fermi sea (3.56). This is
obviously the exact ground state if U = 0. Let us compute the energy of such a state. The
average energy is given by

EFS = 〈F|H |F〉 = 〈F|Hkin |F〉+ U
∑
i

〈F|ni↑ni↓ |F〉 (7.1)

The kinetic energy is easy to evaluate and is simply

Ekin = 2
∑
k∈FS

ξ(k) = 2

∫ EF

dξN (ξ)ξ (7.2)

where the factor of 2 comes from the spin summation. The precise value depends on the
dispersion relation, but some general feature can be easily seen. Let us take for simplicity a
constant density of sites N (ξ) = Nn(0) if ξ ∈ [−W,W ], where N is the number of sites. This
mimics the presence of a finite bandwidth while keeping the calculations simple. The kinetic
energy is thus

Ekin = N(E2
F −W 2)n(0) (7.3)
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Figure 7.2: Kinetic energy of free fermions with a constant density of states as a function of
the filling of one of the spin species n. The kinetic energy is negative indicating the gain due
to the delocalization of the particles. The gain is maximum for half filling n = 1/2 and zero for
an empty band or a filled band.

a simpler expression can be obtained by the number of particles of one spin species per site.
Using again the simplified from of the density of states, the total number of particles is given
by

Ntot = N(EF +W )n(0) (7.4)

thus if we define the filling of one spin species by n↑ = Ntot/N we obtain n↑ = n(0)(EF +W ).
From this we can determine the density of state since we want that for a filled band (EF = W )
we have n↑ = 1. This imposes n(0) = 1/(2W ). One thus obtains

Ekin/N = 2Wn↑(n↑ − 1) (7.5)

Thus the kinetic energy has the form indicated in Fig. 7.2. It is zero for an empty (n = 1) or
filled (n = 1) band since in that case there is no energy gain due to the delocalization of the
particles. For all other filling he average energy is negative, which is due to the delocalization
of the particles compared to independent sites. The maximum gain is n = 1/2, i.e. half filling.

The interaction energy can also be easily computed since the particles are independent. The
energy per site is

EU/N = U〈F|ni↑ni↓ |F〉 = U〈F|ni↑ |F〉 〈F|ni↓ |F〉 = Un2 (7.6)

The particles, being in plane wave states are fully delocalized and there is a high probability to
find at the same site both a spin up and a spin down. There is a thus an interaction price to
pay for that. The total energy looks at depicted in Fig. 7.3. Let us now consider another type
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Figure 7.3: Total energy for the Hubbard model for two type of wavefunction. Green: the usual
Fermi sea which is the ground state for U = 0. The particle gain kinetic energy because of the
delocalization, but at the same time have to pay a price ∼ U because there are many doubly
occupied states. The energy of this function thus becomes increasingly bad as U increases.
One the contrary a totally localized wave function (red) has a worse energy at U = 0 because
particles have to stay on each site, but does not pay the repulsion. The energy of this localized
state becomes thus better when U is large. This suggests the possibility of a metal-insulator
transition for a critical value of U .
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of wavefunction where the particles are localized on each site. For the moment let us restrict
to one particle per site (n = 1/2). Such a wavefunction is

|M〉 =

N∏
i=1

c†i,σi |∅〉 (7.7)

Note that there are many such functions (CNN/2) depending on the choice one makes for the
spin orientations σi. In the same way one can compute the energy of this function. The kinetic
energy is clearly zero since the kinetic term is make of terms such as c†jci and is moving a particle
from one site to the neighboring one. If one applies this term to a function with exactly one
particle per site is it clear that one has cannot go back to a function with exactly one particle
per site and thus the average of the kinetic energy is zero

〈M|Hkin |M〉 = 0 (7.8)

This is traducing the fact that in a localized wavefunction no kinetic energy is gained by the
delocalization of the particle. Clearly for zero interaction this state has a much worse energy
than the Fermi sea. However because the particles are localized one at each site, there is no
interaction due to double occupation. One thus has

〈M|H |M〉 = 0 (7.9)

As shown in Fig. 7.3, this function becomes more favorable energetically than the Fermi sea
one when

Uc = 2W (7.10)

The precise value depends of course on the precise evaluation of the kinetic energy, but all results
will be of the order of the bandwidth of the system. If we trust our very primitive variational
estimate this strongly suggests that the ground state of the system would have a character
that would be similar to the one of the Fermi sea, namely a metallic Fermi liquid like behavior
when U < 2W , while the system would be described by a localized wave function where the
particle are well positioned one on each side to avoid repulsion. This describes an insulator.
This thus strongly suggests that a metal-insulator transition could occur as a function of the
strength of the interactions when there is one particle per site in the system. Note that this
transition would require, at variance with the derivation of the previous chapters, a finite value
of the interaction of the order of the bandwidth of the system. It is also important to note that
the transition never needed to know what are the magnetic properties of the system, and in
particular does not need a specific long range magnetic order to be present in the system. It
is purely based on the fact that two particle do not like to be on the same site because of the
repulsion they feel.

It seems that we are thus on the right tracks since these arguments properly address the concerns
and deviations from the experimental facts that the previous derivation encountered. Note that
this does not mean that this derivation was incorrect, simply that it might describe a particular
case, and that a more general Mott mechanism does exist. We will come back to that point.

7.2 Mott transition

Although the previous arguments are appealing there are of course many objections to them.
In particular we have treated very badly the Fermi liquid side by just considering the free Fermi
sea as a tentative wavefunction. One could easily imagine that a more complex wavefunction
exists in the presence of interactions which manages to avoid paying the interaction price, but at
the same time remains metallic. In order to decide whether the Mott transition exists we thus
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have to use more sophisticated approximations than just the comparison of two wavefunctions.
It is of course a very complex problem and no generic solution exists. Strictly speaking the
problem is only solved in d = 1 and d =∞, and has been tackled by a large variety of numerical
and analytical methods. In this course we will examine of of such approximate method, known
as the Gutzwiller approximation. It allows relatively simply to illustrate some of the concepts
with moderately complicated calculations. Of course more sophisticated approaches exist.

7.2.1 Gutzwiller wavefunction

Let us introduce a better wavefunction than the free Fermi sea. For this we follow the proposal of
M. Gutzwiller. The idea is that any wavefunction can be decomposed on the basis of eigenstates
of the operator counting the number of doubly occupied sites. Of course such a complete
basis is at that stage purely formal since it is extremely complicated to determine explicitly.
Nevertheless it allows to represent any wavefunction, so in particular the Fermi sea is

|F〉 =

d=∞∑
d=0,ν

Ad,ν |d, ν〉 (7.11)

where ν is the set of quantum numbers besides the double occupation number d in order to have
complete basis and the A as the proper coefficients. Now if we want to form a wavefunction
in which we want to keep the character of the Fermi sea but at the same time avoid double
occupation, the idea would be to simply reduce the weight of the states with a large number of
doubly occupied sites in the above decomposition. One way of doing it would be to take the
following wavefunction

=

d=∞∑
d=0,ν

Ad,νg
d |d, ν〉 (7.12)

If g = 1 one recovers the Fermi sea, while if g < 1 the weight of doubly occupied state is strongly
reduced in the wave function. If g = 0 no doubly occupied state survives, so for one particle per
site this function describes the above insulating state. This wavefunction, known as Gutzwiller
wavefunction is thus a nice way to interpolate as a function of g between the free Fermi sea and
the insulating state. One can write it in a formal way using the double occupation operator

Nd =
∑
i

ni↑ni↓ (7.13)

as
= gNd |F〉 (7.14)

One can thus in principle undertake a variational study as before but with this more sophisti-
cated function

E(g) = H (7.15)

and then determine the optimal g by minimizing E(g). If g > 0 the system is metallic. If above
a certain value of U the optimal solution is g = 0 it means one has a metal-insulator transition.
The previous variational study we did was limited to a comparison between g = 1 and g = 0.
Note again that there is no reason why this function should be exact nor give the right physics
for this transition. It is a convenient wavefunction to try and one must then compare the results
one obtains with other techniques or experiments.

Computing the above average is extremely complicated. We will see in the next section how to
approximate the wavefunction in order to be able to do the the calculation analytically. But
one can illustrate on this wavefunction a numerical technique known as variational monte-carlo
which will be explained in the next chapter. In practice the evaluation of the average can be
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done quite accurately. The result is that g is a smooth function tending to zero when U →∞
so based on the wavefunction itself there would be no metal-insulator transition. This is clearly
an artefact of this wavefunction. However the curve shows a sharp drop of g nearly to zero at
Uc ∼ 2W as expected. Let us now look at another way of formulating the same problem which
will allow us to extract an analytical solution.

7.2.2 Gutzwiller approximation (Nozières formulation)

The average energy with the Gutzwiller wavefunction is too difficult to evaluate analytically.
One can make additional approximations (known as Gutzwiller approximation) which allow to
perform the calculation. Quite funnily the additional approximation gives results that are more
physical than the exact treatment of the original wavefunction. This illustrates again that a
variational calculation is not necessarily giving the right physics and has always to be checked
by other methods, good common sense or comparison with experiments.

Instead of proceeding with the historical line, and make further approximations on the wave-
function, let us follow an alternative derivation, much more transparent, due to P. Nozires. The
idea is to use the density matrix of the system. Indeed any observable can be computed as

〈O〉 = Tr[ρO] =
∑
α

〈α|ρO|α〉 (7.16)

where |α〉 is a complete basis of the system, which we will take as the position of all the particles
and ρ the density matrix of the system. Introducing another closure relation leads to

〈O〉 =
∑
α,β

ρ(α, β)〈β|O|α〉 (7.17)

where
ρ(α, β) = 〈α|ρ|β〉 (7.18)

are the matrix elements of the density matrix.

Of course we do not know the density matrix of the interacting system, so we need to find
an approximation for it. We will build this approximation by imposing that the approximate
density matrix must give exactly the averages of the operators that are diagonal operators in
the basis of position of the particles i.e. the operators for which

〈α|ρO|α〉 = Oαδα,β (7.19)

This class of operators includes the number of particles of spin up N↑ the number of particles
of spin down N↓ and quite importantly the number of doubly occupied sites Nd. Note that for
such an operator

〈O〉 =
∑
α

ρ(α, α)Oα =
∑
α

p(α)Oα (7.20)

where p(α) = ρ(α, α) is the probability to have the configuration |α〉.
Since one of the density matrix we know very well is the density matrix for free particles ρ0 one
will simply take it as the basis of our approximation for ρ. One possible ansatz is

ρ(α, β) = ρ0(α, β)

√
p(α)p(β)

p0(α)p0(β)
(7.21)

In this ansatz one keeps for the density matrix ρ the phases of the free one. The amplitudes of
each elements have been modified such that one the diagonal one has

ρ(α, α) = ρ0(α, α)
p(α)

p0(α)
= p(α) (7.22)
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Figure 7.4: The kinetic energy terms only couple configurations α and β which differ by the
position of a single particle of, say spin up. The opposite spins are left untouched.

ensuring that the diagonal elements are exact.

Let us now compute the average of the total energy with such density matrix. The interaction
energy is very easy since diagonal operators such as the number of doubly occupied sites are
exacts

〈HU 〉 = U
∑
i

〈Nd〉 = UNd (7.23)

where d is the exact (and for the moment unknown) number of doubly occupied sites. The
kinetic energy is more complex to compute. Each term of the kinetic energy is of the form

c†i↑cj↑ (7.24)

where i and j are two neighboring sites and there is of course a corresponding term for spin
down. The average of such a term

〈c†i↑cj↑〉 =
∑
α,β

ρ(α, β)〈β|c†i↑cj↑|α〉 (7.25)

Thus as indicated in Fig. 7.4, the two configurations α and β are identical for all the spin down
and differ by one spin up which has been moved to a neighboring site. Let us compute, for the
above mentioned configurations α and β which are coupled in (7.25)

A = ρ0(α, β)
1√

p0(α)p0(β)
(7.26)

Because we are dealing with the density matrix of free particles, matrix density factorize in
a product of the density matrices for the spin up and the spin down. Since the spin down
configuration is identical in α and β, the spin down part is purely diagonal and thus cancels
between the numerator and denominator. In a similar way, for the spin up, all the sites which
are different from i and j are identical in α and β and cancel in the same way. One can thus
compute (7.26) by just considering the two sites i and j. Note that this is of course only true
because we only consider quantities corresponding to free particles. For the two sites i and j
one has the configuration described in Fig. 7.5. One has thus

p0(α) = p0(β)n↑(1− n↑) (7.27)

where n↑ is the faction of the sites occupied by a spin up.

In order to finish the calculation let us distinguish in the configurations the parts corresponding
to spin up and down. Let us denote α = α↑α↓ and a similar expression for β. The α↑ and α↓
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Figure 7.5: Configurations that are coupled by the subpart of the kinetic energy entering in
the calculation of the term A (see text).lundi 6 juin 2011

11:56
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Figure 7.6: All the configurations corresponding to the two sites for which a single spin up has
been moved.

denote respectively the positions of the up and down particles respectively. One has

〈c†i↑cj↑〉 =
∑
α,β

ρ(α, β)〈β|c†i↑cj↑|α〉

=
∑

α↑α↓,β↑β↓

ρ(α↑α↓, β↑β↓)〈β↑β↓|c†i↑cj↑|α↑α↓〉

=
∑

α↑,β↑α↓

ρ(α↑α↓, β↑α↓)〈β↑|c†i↑cj↑|α↑〉

=
∑
α↑,β↑

ρ0(α↑, α↓)

n↑(1− n↑)
〈β↑|c†i↑cj↑|α↑〉

∑
α↓

√
p(α↑α↓)p(β↑α↓)


(7.28)

The crucial quantity to compute is, for the two configurations for which a single spin up has
been moved to compute

C =
∑
α↓

√
p(α↑α↓)p(β↑α↓) (7.29)

Note that because now we are dealing with the density matrix of the interacting system the
spin up and the spin down are not independent. The probabilities will thus depend on both
the α↑, βup and α↓ configurations. We thus need to enumerate, for the two sites i and j all
the possible configurations. This enumeration is shown in Fig. 7.6. We need to compute the
factor (7.29) for each of the possibilities shown in Fig. 7.6. We will express the corresponding
probabilities in terms of n↑ (resp. n↓) the fraction of sites with a spin up (resp. down), and d
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the fraction of double occupied sites. Note that since the system is interacting d 6= n↑n↓ and is
an independent parameter. The different factors B entering in the sum in (7.29) corresponding
the four cases of Fig. 7.6 are (noting n = n↑ + n↓)

B1 = (n↑ − d)(1− n+ d)

B2 =
√

(n↑ − d)(n↓ − d)d(1− n+ d)

B3 =
√

(n↑ − d)(n↓ − d)d(1− n+ d)

B4 = d(n↓ − d)

(7.30)

These factors and thus the sum (7.29) is totally independent of the sites i and j. Thus one can
simplify (7.28)

〈c†i↑cj↑〉 =
∑
α↑,β↑

ρ0(α↑, α↓)

n↑(1− n↑)
〈β↑|c†i↑cj↑|α↑〉

∑
α↓

√
p(α↑α↓)p(β↑α↓)


=

C

n↑(1− n↑)
∑
α↑,β↑

ρ0(α↑, α↓)〈β↑|c†i↑cj↑|α↑〉

=
C

n↑(1− n↑)
〈c†i↑cj↑〉free

(7.31)

where 〈〉free denote the averages for free particles. We thus obtained the remarkable results
that with our approximation for the density matrix the kinetic energy is identical to the kinetic
energy of free particles but with a renormalized amplitude. For the spin up it is multiplied by
a factor

q↑ =
C

n↑(1− n↑)
=

[√
(1− n+ d)(n↑ − d) +

√
d(n↓ − d)

]2
n↑(1− n↑)

(7.32)

and of course a similar expression for the spin down, in which the roles of n↑ and d↓ have been
exchanged. It is easy to check that if one sets in the above expression d = n↑n↓ which would be
the case for free particles then one indeed recovers from (7.32) that q↑ = 1, as it should since
one should recover the kinetic energy of free particles.

7.2.3 Half-filling

The above expressions are quite general. Let us now specialize to the case of half filling (n = 1)
and unpolarized systems n↑ = n↓). In that case the expressions simplify considerably and one
has

q↑ = q↓ = q = 8d(1− 2d) (7.33)

The parameters n↑ = n↓ = 1/2 are fixed. In order to determine the last unknown parameter,
namely the fraction of doubly occupied sites d, we will minimize the total energy of the system
with respect to d. We thus see that the formulation with the density matrix is a variational
calculation similar to the Gutzwiller approach. Instead of using the factor g in the wavefunction
(7.14) as a variational parameter, one uses directly the number of doubly occupied sites. Of
course if d > 0 the system will stay metallic while a state with d = 0 denotes an insulator.

The total energy of the system is given by

〈H〉 = q〈Hkin〉0 + UNd (7.34)

An estimate of the kinetic energy for free particles was done in (7.5). For half filling this crude
estimate gives

〈Hkin〉0 = −NW/2 = −Nε0 (7.35)
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Figure 7.7: The total energy of an interacting system as a function of the fraction d of doubly
occupied sites. Depending on the value of U a minimum of the energy exists for d > 0, or above
U = Uc the minimum only exists for q = 0. This signals a metal-insulator transition. With this
particular approximation scheme the transition is continuous.

where W is the half bandwidth. We will use quite generally ε0 for this gain in kinetic energy
coming from the delocalization of the particles. ε0 is of the order of the bandwidth of the system
(quarter bandwidth with the above approximations)

Thus the energy per site is given by

〈H〉/N = −8d(1− 2d)ε0 + Ud (7.36)

The corresponding curve is shown in Fig. 7.7. For a non interacting system U = 0, the minimum
of energy is located at d = 1/4 and one recovers the expected result for noninteracting particles.
For finite U two cases must be distinguished: i) if U < Uc the interaction term is shifting the
minimum to a smaller value of d but d > 0. One thus has a system in which the number of
doubly occupied sites is finite. This is a metallic state since in that case the factor q > 0, and
kinetic energy remains; ii) if U > Uc then the minimum occurs at d = 0. In that case one
has a localized wavefunction where one has exactly one particle per site. The factor q = 0 and
there is no kinetic energy, the system is an insulator. Our Gutzwiller approximation scheme
thus gives a metal-insulator transition, known as the Brinkmann-Rice transition. Within this
approximation scheme the transition is continuous and the number of doubly occupied sites d
can be used as an order parameter, in the same way than for example the magnetization would
be an order parameter of the ferromagnetic transition: d is zero in the insulating region and
finite in the metallic one.

The critical value Uc can be determined by looking at the slope of the energy around d = 0 in
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(). One finds
U = 8ε0 (7.37)

as expected the metal-insulator transition occurs when the value of the interactions is of the
order of the bandwidth of the system. It is interesting to note several points concerning the
above results:

1. We have thus a convincing study showing that even if one takes into account interactions
in the metallic state, above a certain critical value of the interaction Uc and for a filling of
one particle per site the system will turn into an insulator. This shows that interaction will
indeed lead to Mott insulators, and put serious flesh on the bones of our first oversimplified
comparison. The physics is however essentially the same.

2. The mechanism does not rely in any essential way to the presence or not of a magnetic
order, but based on the competition between kinetic energy and the repulsion energy.
This is in agreement with the experimental result. The presence of a critical value Uc
seems also to be compatible with several experimental results. We will comment more
on the connection between this solution of the Mott transition towards the end of this
chapter.

3. This corresponding transition is different from the usual transitions. In particular this ia a
transition that occurs at T = 0 upon variation of a parameter of the system (for example
the interaction). It thus does not result from an energy-entropy competition as usual
phase transitions in classical systems, but directly from an energy-energy competition.
This type of transition is called a quantum phase transition to distinguish it from the
“classical” phase transition. We will come back on such transitions in the next chapter.

Using our approximate density matrix we can now compute the physical properties. One
example is the momentum distribution

n↑(k) = 〈c†↑(k)c↑(k)〉 =
1

Ω

∑
i,j

eik(ri−rj)〈c†i↑cj↑〉

=
1

Ω

∑
i 6=j

eik(ri−rj)〈c†i↑cj↑〉+
1

Ω

∑
i

〈c†i↑ci↑〉

=
1

Ω

∑
i 6=j

eik(ri−rj)〈c†i↑cj↑〉+ n↑

=
q↑
Ω

∑
i 6=j

eik(ri−rj)〈c†i↑cj↑〉0 + n↑

=
q↑
Ω

∑
i,j

eik(ri−rj)〈c†i↑cj↑〉0 + n↑(1− q↑)

= q↑n
0
↑(k) + n↑(1− q↑)

(7.38)

where n0
↑(k) is the momentum distribution of free particle, i.e. at T = 0 the Fermi step. Since

everything is independent of the spin orientation the spin down distribution is identical. We
thus see that below kF one has for T = 0 (recall that n↑ = 1/2):

n↑(k < kF) = 1/2 + q↑/2

n↑(k > kF) = 1/2− q↑/2
(7.39)

As shown in Fig. 7.8 the discontinuity on the Fermi surface is now q↑. We thus see that although
the system remains a metal, it feels strongly the effects of the interactions and become more and
more correlated. Remember from (4.69) that the jump is directly related to the quasiparticle
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Figure 7.8: Momentum distribution for one spin species in the Brinkmann-Rice approximation.
The jump at k = kF gets smaller and smaller leading to a smaller quasiparticle residue until
the Metal-Insulator transition is reached. As the result the metal becomes more and more
correlated.
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residue in the Fermi liquid One has thus Z↑ = q↑. Since q↑ → 0 at the metal insulator transition
we see that the metal becomes a less and less good Fermi liquid when approaching the critical
point. We have not examined here the momentum dependence of the self-energy but the relation
(4.63) which would be valid if the self energy is reasonably momentum independent strongly
suggests that the effective mass will diverge at the transition as 1/q↑.

In the insulator, one has localized particles on each site. If one tries to create and excitation
by putting two particles on each site, then there is a finite energy price to pay. For very large
repulsion, this difference of energy between the ground state and the first excited state is ∼ U .
When one approaches the transition it is not U but a certain function of U that we would call
∆. This quantity is called the Mott gap. In the previous chapter using our mean-field theory we
had computed such a quantity. The fact that in the insulator there is a finite energy difference
between the ground state and the first excited state, and in particular that adding a particle
costs an energy ∆ means that to add one particle one has to change the chemical potential µ
by a finite amount. This implies that

dN

dµ
= 0 (7.40)

and the system is incompressible. We will summarize the properties in Section 7.2.5.

7.2.4 Doped case

Let us now look what would happen if instead of being exactly at half filling we were slightly
doped, i.e. if n = 1 + δ with δ � 1. An interesting question is of course whether such a state
would be a metal or an insulator. If U < Uc we can readily guess that the system is very likely
to stay a metal and thus a little bit of charges is not doing much.

One would thus have a “normal” albeit strongly correlated Fermi liquid, where the total number
of charges is n. In that regime there is not much difference between n = 1 and n = 1 + δ. The
situation is very different for U > Uc in that case we know that for n = 1 the system is an
insulator. In order to get an idea of the physics let us evaluate the factor (7.32) for n = 1δ
assuming that U is large enough so that d = 1. One gets for δ � 1

q↑ =
(1− n)n↑
n↑(1− n↑)

' 2δ (7.41)

This results immediately suggests that even for U > Uc the system would remain a metal. But
we see that the kinetic energy would be strongly reduced and correspond only to the excess
part of particles (or holes depending on the sign) δ. One can push the calculation to the first
order in d and get

q↑ =
2δ

1 + δ
+

4
√
δ

1 + δ

√
d (7.42)

Minimizing the total energy (7.34) leads to

d∗ =
4δε20
U2

(7.43)

Thus there is a (very) small amount of doubly occupied states, but since d∗ ∼ 1/U2 it means
that at large U the contribution of the interaction energy Ud∗ in the total energy tends to zero.
In the same way the contribution of the second term in (7.42) tends to zero. For large U we can
thus see the system as a system of free particles where only the excess particles δ exist and are
behaving essentially as free objects. This is a very important result, since it shows that a doped
Mott insulator will behave as a metal, but with a number of charges that is fixed by δ and
not the total number of particles. This is something that is directly testable experimentally by
using for example a Hall measurement which is giving access to the number of carriers (although
one has to keep in mind that Hall effect in a correlated system might be more complex).
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Figure 7.9: Phase diagram as a function of ratio of hopping to interactions t/U , and chemical
potential (left) and number of particles (right). In the Mott insulator phase, there is a gap ∆
to excitations.

7.2.5 Summary of the properties

Let us summarize here the properties of Mott insulators We show in Fig. 7.9 the phase diagram
of the system both as a function of the chemical potential and as a function of the number of
particles. In the metallic phase, there is no gap to excitations it is thus possible to change the
number of particles by an infinitesimal variation of the chemical potential. On the contrary in
the Mott phase there is a gap ∆ towards excitations and the system is incompressible. The
relation between the chemical potential µ and the number of particles n is shown in Fig. 7.10.

Based on the above it is important to note that there are two very different type of transitions
that are linked to the Mott phenomenon and that are in two different universality classes.

1. The transition that occurs at commensurate filling n = 1, upon increasing the interactions
or reducing the kinetic energy.

2. The transition that occurs for U > Uc when going from a state with n = 1 to a state with
a different number of particles n = 1 + δ

Finally let us comment on the connection between the result that we have obtained in this
chapter and the ones we got using the mean-field theory on the Hubbard model in Section 6.5.
The two have of course many similarities and must be connected. In the previous study we
also find that for n = 1 we had an insulator, but for any value of U . However the gap was
exponentially small for small U while it was ∼ U for large U . It thus seems that at large U the
two studies are essentially the same, In addition upon doping our system was also becoming
a metal again, just as we have found there. The two gaps are represented in Fig. 7.11. In
fact the case we considered in this chapter is the generic case, The Mott transition is driven
by the charge fluctuations and does not care in any essential way on what the spin degrees of
freedom are doing. In that case we have a critical value of U to get the Mott insulating state.
The insulator can or cannot acquire magnetic properties, and the question of the magnetic
features of the Mott insulator is something we will address in the next chapter. On the other
hand on some special lattices, which lead to a nesting of the Fermi surface, we know from the
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Figure 7.10: Relation between the number of particles n and the chemical potential µ. In the
metal (dashed line) there is no gap to excitations and the system is compressible. In the Mott
insulator there is a finite gap ∆ to excitations so the number of particles does not change until
the chemical potential exceeds the gap, and the system is incompressible.
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Figure 7.11: Schematic of the gap as a function of the interaction U . For a generic system (full
line), one needs a finite value of the interaction to open the Mott gap. On some special lattices
(dashed line), the nesting of the Fermi surface allows the immediate appearance of magnetic
order and thus the appearance of a Mott gap even for small U .
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results of the previous chapter that the spin susceptibility at the nesting vector diverges. If
this vector corresponds to a half-filled Fermi surface there will thus be an instability even for
infinitesimal U . In that case the appearance of the gap is directly linked to this magnetic (in
general antiferromagnetic) instability. This in these cases (for example for the square, cubic
etc.) lattices, one gets an antiferromagnetic Mott insulator immediately. As U increases charge
is more and more frozen independently of the spin and at large U one recovers the same physics
than the one we discussed in this chapter.





CHAPTER 8

Localized magnetism

8.1 Basic Ideas

In the previous chapter we have seen that a new form of insulators, driven by the interactions,
could exist: the Mott insulators. The existence of such systems opens the way to new magnetic
phases. Indeed if we consider band insulators, they occur when the band is either empty or
totally filled, which means that there are two electrons per quantum state of the band. It is thus
obvious that such an insulator has no magnetic properties as well. For an empty band this is
trivial, and for a filled band because there are two electrons in each one of the quantum number,
the Pauli principle which imposes that the wavefunction is totally antisymmetric imposes thus
to put the two electrons in an antisymmetric state of spin. The corresponding state is thus the
singlet state

c†k,↑c
†
k,↓ |∅〉 =

1√
2

[|↑↓〉 − |↓↑〉] (8.1)

A singlet state corresponds to S = 0 and thus to an absence of magnetic properties. Band
insulators have thus both no charge properties and spin properties.

The situation is quite different for Mott insulators. Indeed in that case there is one electron per
site which is localized. It means that on each site there is potentially a spin 1/2 that remains.
Thus although a Mott insulator has no charge excitations (below the Mott gap ∆M ), there
remains the possibility of highly not trivial magnetic excitations at low energy since on each
site the spin can be up or down. There is thus a very large Hilbert space of low energy magnetic
excitations of size 2N . It is thus important to understand the processes that control the physics
of these magnetic excitations. This field, in which the charge degrees of freedom are essentially
blocked and only the localized magnetic remains is an important branch of solid state physics
and goes under the name of localized magnetism.

8.1.1 Reminder of spin properties

Before we determine the Hamiltonian of the system in the low energy sector as shown in Fig. 8.1
let us remind some of the basics of spin 1/2.

On each site the system is described by a spin 1/2. This corresponds to a magnetic moment
given by

Mα = gµBS
α = gµB

1

2
σα (8.2)

where α = x, y, z are the three components of the moment and spin, g is the gyromagnetic
factor, µB the Bohr magneton, and the σα are the three Pauli matrices.

Sx =

(
0 1
1 0

)
, Sy =

(
0 −i
i 0

)
, Sz =

(
1 0
0 −1

)
(8.3)

149
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Figure 8.1: In a Mott insulator the charge excitations need a finite energy of the order of
the Mott gap ∆. On the contrary since there is on each site a residual spin 1/2 there is a low
energy sector of spin excitations corresponding to a Hilbert space of size 2N . The degeneracy
that would occur if each particle was totally localized on a site is lifted by the superexchange
(see text).

The three component of the spin obey the commutation relations

[Sα, Sβ ] = iεαβγS
γ (8.4)

where εαβγ is the fully antisymmetric tensor (i.e. [Sx, Sy] = iSz and circular permutations).

A complete basis of the Hilbert space is provided by the two eigenstates of one of the spin
components, for example the one of the Sz operator |↑〉 and |↓〉.
It is convenient to introduce the raising and lowering spin operators, which are hermitian
conjugate operators defined by

S± = Sx ± iSy (8.5)

These operators are raising or lowering the spin. For example

S+ |↑〉 = 0 , S+ |↓〉 = |↑〉 (8.6)

These operators also obey
[S+, S−] = 2Sz (8.7)

as can be computed using the commutation relations (8.4).

8.1.2 Superexchange

As shown in Fig. 8.1 we have, in a Mott insulator, a spin 1/2 on each site of a lattice. If the
wavefunction of each electron is fully localized on a site, each spin is independent and one has
to face a huge degeneracy of the ground state since each spin can be either up or down. It is
thus important to understand the properties of such a system and in particular the interactions
that could exist between the spins.

The most naive interacting that could be taken into account is the direct magnetic moment
interaction between the magnetic moments located on the different sites. This is the standard
dipolar interaction

HD =
µ0

4π

[
M1 ·M2

r3
− 3(M1 · r)(M2 · r)

r5

]
(8.8)

This interaction would lead to a an (anisotropic) interaction between the spins. However it
is easy to see by putting for r the typical interatomic distance that the typical value of such
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UU

t t

(a) (b)

Figure 8.2: (a) The hopping between two neighboring identical spins is totally blocked by the
Pauli principle. The system cannot gain some residual kinetic energy in this case. (b) If the
spins are antiparallel then the kinetic energy can allow virtual hopping through an intermediate
state of energy U . This state comes back either to the original state or to a configuration in
which the spins have been exchanged. This is the mechanism of superexchange leading to
dominant antiferromagnetic correlations for fermionic Mott insulators.

interaction would correspond to energies of the order to less than a Kelvin. Such interaction,
although present, would not explain the various magnetic properties of Mott insulators that
are observed at temperatures of the order of hundredth of Kelvins.

Another interaction must therefore exist. As we saw for the case of the itinerant ferromagnetism
in Section 6.2.1 the source of such interaction between the spins will have its roots in the
competition between the Pauli principle, kinetic energy and interaction. This is a mechanism
called superexchange.

In order to describe such an interaction, let us examine the case of two sites. The total Hilbert
space is

|↑, ↓〉 , |↓, ↑〉 , |↑↓, 0〉 , |0, ↑↓〉 , |↑, ↑〉 , |↓, ↓〉 (8.9)

Since the states are composed of Fermions one should be careful with the order of operators to
avoid minus signs. Let us take the convention that

|↑, ↓〉 = c†1↑c
†
2↓ |∅〉 , |↓↑〉 = c†1↓c

†
2↑ |∅〉

|↑↓, 0〉 = c†1↑c
†
1↓ |∅〉 , |0, ↑↓〉 = c†2↑c

†
2↓ |∅〉

(8.10)

The states with two particles per site are states of energy ∼ U and therefore strongly suppressed.
We thus need to find what is the form of the Hamiltonian when restricted to the states with
only one particle per site. It is easy to check that the two states |↑↑〉 and |↓↓〉 are eigenstates
of H

H |↑↑〉 = 0 (8.11)

and a similar equation for |↓↓〉. The reason why the kinetic energy does not act on such a state
is shown in Fig. 8.2.

The Pauli principle block the hopping if the two spins are equal. On the contrary, if the two
spins are opposite the particles can make a virtual jump on the neighboring site. Since this state
is of high energy U the particles must come back to the original position, or the two particles
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can exchange leading to a term similar to a spin exchange (see Fig. 8.2). The kinetic energy
thus leads to a magnetic exchange, named superexchange, that will clearly favor configurations
with opposite neighboring spins, namely will be antiferromagnetic.

Let us now quantify the mechanism. The Hamiltonian can be written in the basis (8.9) (only
the action on the first four states is shown since |↑↑〉 and |↓↓〉 are eigenstates and thus are
uncoupled to the other ones)

H =


0 0 −t −t
0 0 t t
−t t U 0
−t t 0 U

 (8.12)

This Hamiltonian couples the low energy states with one particle per site to high energy states
of energy U . We now need to find the restriction of this Hamiltonian to the low energy sector
that does not involve excitations of order U . Since the ground state is degenerate we cannot
use the usual perturbation theory formulas. Let us thus adapt them to our case.

In order to find the restriction of H to the low energy sector, let us first make a canonical
transformation of H

H ′ = eiSHe−iS ' H + i[S,H] +
i2

2
[S, [S,H]] + · · · (8.13)

where the matrix S is expected to be perturbative in t/U . Such a canonical transformation,
being unitary will not affect the energies of the system but merely rotate the vectors of the
system by

|ψ〉 → eiS |ψ〉 (8.14)

In this transformation one wants to chose the matrix S such that

Ht + i[S,HU ] = 0 (8.15)

This will ensure that H ′ has no elements connecting the low energy sector with the sector of
energy U . The restriction of H ′ to the low energy sector will thus be the Hamiltonian we need
to diagonalize to find the spin properties.

Using the condition (8.15) and keeping only terms up to order t2/U it is easy to check that

H ′ = HU +
i

2
[S,Ht] (8.16)

Since H is block diagonal one can easily determine S to be

S =
i

U


0 0 −t −t
0 0 t t
t −t 0 0
t −t 0 0

 (8.17)

This leads using (8.16) to

H ′ =
4t2

U
[
1

2
[|↑↓〉 〈↓↑ |+ |↓↑〉 〈↑↓ |]− 1

2
[|↑↓〉 〈↑↓ |+ |↓↑〉 〈↓↑ |] (8.18)

This Hamiltonian must be complemented by the fact that H ′ |↑↑〉 = 0. Since there is one particle
per site, it can now be represented by a spin 1/2 operator as defined in the Section 8.1.1.

One obtains in terms of the spin operators

H ′ =
4t2

U
[
1

2
[S+

1 S
−
2 + S−1 S

+
2 ] + Sz1S

z
2 −

1

4
] (8.19)
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Up to a constant which is a simple shift of the origin of energies, the final Hamiltonian is thus
the Heisenberg Hamiltonian

H = J
∑
〈ij〉

Si · Sj (8.20)

where the magnetic exchange is J = 4t2/U . Note that the exchange J is positive and thus the
system has dominant antiferromagnetic correlations.

The formula (8.20) shows that the combination of Pauli principle, kinetic energy and interaction
lead to an effective interaction between the spins that take the form of a spin spin interaction.
Since the typical values of t are ∼ 1eV while in a Mott insulator U ∼ 10eV one can expect
values for the (super)-exchange J ∼ 0.4eV which corresponds to about J ∼ 5000K. Such value
of the exchange can easily explain the strong antiferromagnetic tendency that is found in many
of the Mott insulators.

Of course the final properties of the system depend on the lattice and thus the Hamiltonian
(8.20) can potentially lead to very rich physics [Aue98]. It is important to note that we are
dealing here with quantum spins for which [Sx, Sy] = iSz and thus the three component of the
spins cannot be determined simultaneously. Quantum fluctuation will thus drastically affect
the possible spin orders. Depending on the lattice various ground states are possible ranging
from spin liquids to ordered states. This is the physics that we will examine in the coming
sections.

8.2 Dimer systems

Let us start by investigating the simplest quantum system, made of two spins. In a way this
is also one of the ones on which the quantum effects will manifest themselves in the strongest
way and thus will serve to clearly illustrate the differences that can exist between classical and
quantum spins.

Let us consider a system made of two spins. In that case the Heisenberg Hamiltonian (8.20)
simply reduces to

H = J [Sx1S
x
2 + Sy1S

y
2 + Sz1S

z
2 ] (8.21)

Let us first consider the classical version of such a system. In that case it is easy to see that if
the exchange J is positive then the lowest energy of obtained if the two spins point in opposite
direction. In that case the energy is E = −J/4. Note also that if the system has a ferromagnetic
exchange one can go directly from the antiferromagnetic ground state to the ferromagnetic one
by simply reversing one of the two spins

Sα2 → −Sα2 (8.22)

and the energy is still E = −|J |/4. For a classical system of dimer there is thus no essential
difference between the solution of the ferromagnetic ground state and the antiferromagnetic
one, since one can simply go from one to the other by reversing one of the spins.

8.2.1 Ground state

The situation changes drastically when one as to consider quantum spins. Let us first look at
the ferromagnetic case which is the simplest. In that case J < 0. Note that in the previous
section we showed that for fermions in the simple case of one particle per site we obtained the
opposite sign for the exchange. We will thus not dwell here on which type of systems one could
get a ferromagnetic J but simply consider it as a mathematical case. There are however systems
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in which the intra-atomic interactions and the orbital structure is such that the superexchange
mechanism can also lead to ferromagnetic exchange, thus corresponding to physical situations.
In that case we have to diagonalize the Hamiltonian in the complete Hilbert space of two spins,
which contains now four states

|↑↑〉 , |↑↓〉 |↓↑〉 |↓↓〉 (8.23)

It is easy to check that for J < 0 the two states in which the spins are parallel is an eigenstate
of the problem with the energy −|J |/4. To do so let us rewrite the Hamiltonian as

H =
J

2
[S+

1 S
−
2 + S−1 S

+
2 ] + JSz1S

z
2 (8.24)

and it is easy now to check that
H |↑↑〉 = −|J |/4 |↑↑〉 (8.25)

Thus if the exchange is ferromagnetic the quantum solution and the classical one look very
much alike and lead to the same energy and also the same naive representation of the ground
state in which the spins point in parallel direction.

Note however that one cannot go as naively from the ferromagnetic solution to the antiferro-
magnetic one. Indeed the transformation (8.22) is forbidden since it would lead to a violation
of the canonical commutation relation of the spins (8.4). It would be only possible to change
two of the spin coordinates into their opposite but not the three of them. One has thus to
examine the antiferromagnetic case separately.

In order to understand the antiferromagnetic side, let us perform a full diagonalization of the
Hamiltonian (8.21). This will serve to illustrate some general principles. Since the full Hilbert
space is of size 4 one would have normally to diagonalize a 4 × 4 matrix. But doing so would
be totally inefficient and would not use the symmetries of the problem. Indeed one can use the
fact that if we find an operator that commutes with the Hamiltonian then we can diagonalize
both this operator and the Hamiltonian in the same basis. In other words the Hamiltonian
will be block diagonal in the basis of eigenstates of this operator. The Hamiltonian (8.21) is
clearly invariant by spin rotation. We can thus use the fact that the total spin S = S1 + S2 of
the system is conserved. This means in particular that the z component of this operator is a
conserved quantity. One can also use the fact that S2 is also conserved.

Let us start with the second quantity. The total spin resulting from the addition of two spin
1/2 can take two values S = 0 and S = 1. The first case S = 0 the singlet has only one possible
eigenvector, and thus this eigenvector must also be an eigenvector of the total Hamiltonian.
The singlet is

|S = 0, Sz = 0〉 =
1√
2

[|↑↓〉 − |↓↑〉] (8.26)

In order to find the energy of this state let us apply the Hamiltonian (8.21) or more simply
(8.24). One obtains

H |S = 0, Sz = 0〉 = −3J

4
|S = 0, Sz = 0〉 (8.27)

This confirms that the singlet is indeed an eigenstate of H. The triplet state corresponds to
S = 1. Such state can have three values of the component Sz of the spin leading to three
different states |S = 1, Sz = 1, 0,−1〉. Since Sz is also conserved each one of this state is also an
eigenstate of H since they are the only one with these quantum numbers. The corresponding
eigenvalues is, applying again the Hamiltonian H

H |S = 1, Sz = 1, 0,−1〉 J
4
|S = 1, Sz = 1, 0,−1〉 (8.28)

This leads to the eigenstates and eigenenergies shown in Fig. 8.3 Note that even without having
the conservation of the total spin, the simple conservation of the Sz component would simplify
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Figure 8.3: The energies and eigenvectors of the dimer Hamiltonian. The ground state is a
singlet, and there is a triply degenerate excited state of S = 1 triplet. (b) When a magnetic
field is applied the triplet splits. The ground state remains non magnetic until a critical field
is reached, at which point the system goes to the triplet state. The magnetization jumps from
m = 0 to m = 1 at that field.

considerably the diagonalization of the Hamiltonian. Indeed one can immediately identify the
two unique states of Sz = ±1 as |↑↑〉 and |↓↓〉, which are thus eigenstates of the Hamiltonian.
This simply leaves the two states with Sz = 0, |↑↓〉 and |↓↑〉. One has thus a single 2×2 matrix
to diagonalize to find the two eigenstates (S = 0 and S = 1, Sz = 0).

The above results for the antiferromagnetic case are quite remarkable and, contrarily to the
ferromagnetic case, quite different from the classical ones. One sees that the antiferromagnetic
ground state has no real classical equivalent. It is made from a quantum superposition of
the two states with opposite spins |↑↓〉 and |↓↑〉, with the proper phase. The net result is a
state without any magnetic moment S = 0. Quite surprisingly the energy of the resulting
quantum state is much lower (E = −3J/4) than the one one would have expected from the
corresponding classical state Ec = −J/4 obtained by putting the spins in opposite direction
along one given direction. It is more or less as if the spin could be opposite along the three
directions simultaneously leading to a further lowering of the energy. It is also important to
note that the first excitations above this non-magnetic singlet state are separated by a finite
energy gap ∆ = J .

8.2.2 Magnetic field

The difference between the quantum spin system an classical ones is even more apparent when
one applies a magnetic field to the system. Let us add to (8.21) a term

Hz = −gµBhz(Sz1 + Sz2 ) = −gµBhzSz (8.29)

Such a term corresponds to the coupling of an external magnetic field hz along a direction that
we will choose as the z axis to the two magnetic moments that are corresponding to the two
spins. Since each one of the eigenstates found in the previous section is also an eigenstate of
Sz it is very easy to take this term into account. The effects are shown in Fig. 8.3. The singlet
state, which corresponds to Sz = 0 is totally insensitive to the magnetic field and its energy
does not change. The three state of the triplet corresponding respectively to Sz = 1, 0,−1 see
their energy shifted by the term (8.29) in which Sz has been replaced by the corresponding
eigenvalue. The resulting energy diagram is shown in Fig. 8.3. As a result the ground state
remains the singlet one up to a critical field which corresponds to the energy gap between the
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Figure 8.4: Two classical antiferromagnetically coupled spins orient perpendicularly to an
externally applied magnetic field. This allows to cant the spins by an angle θ to generate a
ferromagnetic component while retaining most of the antiferromagnetic coupling. The angle
varies continuously as a function of the external magnetic field. This is at strong variance with
the quantum solution in which the non-magnetic ground state remains totally insensitive to the
magnetic field up to a critical field.

singlet and triplet state.

J = gµbh
c
z (8.30)

Above this critical field hz > hcz the ground state becomes the lowest triplet |↑↑〉. The magne-
tization along the z direction thus jumps discontinuously from Sz = 0 for hz < hcz to Sz = 1
for hz > hcz.

Let us compare these results with the ones one would get for a classical antiferromagnetic dimer.
In that case the two spins are opposite. The system being invariant by spin rotation the pair
can point in any direction. If a magnetic field is present it is clear that pointing the pair in
the magnetic field direction would be extremely unfavorable since in that case the magnetic
field contribution would simply cancel between the two spins. It is much more favorable to put
the pair essentially perpendicular to the magnetic field and tilt the two spins by an angle θ
as indicated on Fig. 8.4 We thus have S1 = 1/2(cos(θ), sin(θ)) and S1 = 1/2(− cos(θ), sin(θ)),
which corresponds to the energy

H =
J

4
[sin2(θ)− cos2(θ)]− gµBhz sin(θ)

=
J

4
[2 sin2(θ)− 1]− gµBhz sin(θ)

(8.31)

The optimal angle is determined by minimizing the energy with respect to the angle:

J sin(θ) = gµBhz (8.32)

Thus for hz < hcz there is a solution for which the angle θ goes from θ = 0 to the full polarization
θ = π/2. The magnetization being proportional to sin(θ) varies continuously with the applied
magnetic field. At very small field

m =
(gµB)2

J
hz (8.33)

The classical system has a finite susceptibility to an external magnetic field. As can be expected
the susceptibility is inversely proportional to the strength of the antiferromagnetic exchange but
remains finite nevertheless. On the contrary the quantum problem has a zero susceptibility.
As already indicated above this is true to all orders in the magnetic field. This is quite a
remarkable result and difference between the classical and quantum behavior of the spins.
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Figure 8.5: An example of a material made of dimers with a strong antiferromagnetic exchange
J⊥. These dimers are weakly coupled by another and weaker antiferromagnetic exchange J . In
the compound shown J⊥ ∼ 13K while J ∼ 3K. The magnetization is shown on the right. One
note that there is indeed a critical field below which the magnetization remains strictly zero.
Instead of the abrupt jump in magnetization the coupling between dimers split the jump in a
continuous growth for hc1 < hz < hc2.

The properties of the dimer are one of the striking examples of quantum magnetism. Quite
remarkable some compounds are a very good realization of such systems. An example is shown
in Fig. 8.5 together with the corresponding magnetization curve. For more details on such
systems we refer the reader to [GRT08].

8.3 Macroscopic number of spins

Although we could solve fully the case of the quantum dimer, if one has to deal with N coupled
spins it is clear that one has to resort to more sophisticated methods to find the ground state
and excitations of the system. Spins being neither fermions nor bosons, one cannot use all the
the many body formulas that have been so useful is solving interacting quantum problems. It
is thus very interesting to see if one could find ways to relate the spins to standard fermionic or
bosonic “particles”. We will see such methods in the present section and then use them to study
a large number of spins coupled with ferromagnetic and then antiferromagnetic interactions.
As we did with the dimer we will compare our results with the classical equivalents such as
Ising or Heisenberg classical models.
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8.3.1 Holstein-Primakoff representation

Spins have strange commutation relations since they commute on different sites, a little bit
like bosons, but on the same site they have strange commutation relations which are neither
bosonic nor fermionic. For a general angular moment (spin S) one has:

[Sαi , S
β
j ] = 0 , i 6= j

[S+
i , S

−
i ] = 2Szi

(8.34)

In order to avoid this problem, a very nice representation for the spins has been introduced
by Holstein and Primakov [HP40] in term of bosons. For a spin S the representation goes as
follows. The fully polarized state |Sz = S〉 is considered as the vacuum of bosons |∅〉. Each
decrease by one of the Sz value corresponds to the addition of a boson. It is thus easy to check
that one must have essentially

S+
i → bi

S−i → b†i

Szi = S −Ni = S − b†i bi

(8.35)

However such a representation would be incorrect. Indeed, the Hilbert space of the bosons is
infinite while it is impossible for the Sz component to go below −S. It is thus imperative to
add factors that will make sure that S− |−S〉 = 0. Let us check that the representation

S+
i →

√
2S −Nibi (8.36)

S−i → b†i
√

2S −Ni (8.37)

Szi = S −Ni = S − b†i bi (8.38)

does indeed respect all commutation relations and all constraints on the limitations on the
Hilbert space with b being bosonic operators.

It is clear from (8.36) and (8.37) that

S+
i |S

z
i = S〉 =

√
2S −Nibi |∅〉 = 0

S−i |S
z
i = −S〉 = b†i

√
2S −Ni |Ni = 2S〉 = 0

(8.39)

as one should for angular momentum operators. Thus if one starts from any state that belongs
to the proper Hilbert space of angular momenta (i.e. 0 ≤ nb ≤ 2S) it is impossible with the
representation (8.36-8.38) to leave this Hilbert space. One should thus now check that the
proper commutation relations (8.34) are obeyed. Clearly the spins on different sites commute
since the boson operators on different sites commute. Let us thus check only the second relation
on the same site. One has (using the canonical commutations relations for boson operators):

S+
i S
−
i =

√
2S −Nibib†i

√
2S −Ni

=
√

2S −Ni(1 +Ni)
√

2S −Ni
= (2S −Ni)(1 +Ni)

(8.40)

and

[S+
i , S

−
i ] = (2S −Ni)(1 +Ni)− b†i (2S −Ni)bi

= 2S −Ni(1 +Ni) + b†i b
†
i bibi

= 2S −Ni(1 +Ni) + b†i (bib
†
i − 1)bi

= 2S −Ni −Ni = 2Szi

(8.41)
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which is the correct commutation relation. One can thus fully represent the spins in terms
of boson operators, which opens the way to use all the second quantization formalism that
we introduced in the first part. The price to pay is of course that the representation is quite
complicated in terms of bosons.

For spin 1/2 there is a considerable simplification to this representation [MM56]. In that case the
Hilbert space can only contain either zero bosons or one boson per site, since the Sz component
can be only +1/2 or −1/2. As a result the factors

√
2S −Ni can only take the value 1 within

the Hilbert space. The mapping between spins and bosons thus becomes, for spin 1/2

S+
i → bi

S−i → b†i
Szi = 1/2−Ni

(8.42)

and the constraint that there can be at most one boson on each site. To remind of this constraint
one sometimes speaks of “hard core” bosons to indicate bosons which repel so strongly that
only one boson can exist on a site. This constraint can also be taken into account by putting
an on-site repulsion of the Hubbard form

HU =
U

2

∑
i

Ni(Ni − 1) (8.43)

which ensures that zero or one boson per site do not pay any repulsion, while two, three, etc.
bosons per site woudl pay the repulsion U, 3U, etc. Letting U →∞ thus ensure the hard core
constraints.

Using the Matsubara and Mastuda representation one can get a very physically transparent
representation of the Heisenberg model in term of bosons. Let us write the Heisenberg model
as

H =
Jxy
2

∑
〈i,j〉

[S+
i S
−
j + S−i S

+
j ] + Jz

∑
〈i,j〉

Szi S
z
j (8.44)

where we hare made explicit the separation between the x, y component and the z one. Of course
in the isotropic Heisenberg model Jxy = Jz = J . Here we have introduced the possibility to get
different exchanges in the xy plane and along the z axis (single axis anisotropy). In addition to
the fact that in a solid such an anisotropy can exist, it is interesting from the theoretical point
of view, since as will be seen, in the boson language the x, y and z parts of the Hamiltonian have
quite different physical interpretations. Sometimes such a model is called the XXZ model. If
we use the representation (??), the XXZ Hamiltonian becomes

H =
Jxy
2

∑
〈i,j〉

[b†i bj + b†i bj ]

+ Jz
∑
〈i,j〉

(Ni − 1/2)(Nj − 1/2)

+ U
∑
i

Ni(Ni − 1) (8.45)

The first line in (8.45) is thus tight binding bosons jumping on the sites of the lattice with a

hopping amplitude
Jxy
2 . Note that if Jxy < 0 (ferromagnetic case) the minimum of energy of

this part will be at k = 0 while it would be at k = π for Jxy > 0. In the later case it will
thus be useful to first make a canonical transformation to bring back the minimum around
k = 0. We will come back to this point later. The second line comes from the Jz term. In the
boson language this is a nearest neighbor repulsion (or attraction depending on the sign of Jz)
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Figure 8.6: As an example the classical antiferromagnetic state with the Sz component of the
spins alternating maps on a crystal of bosons.

betweem the bosons. We thus see that the representation has quite different physical meanings
for the Jxy and Jz terms, one being the kinetic energy of the bosons, and the second their
nearest neighbor interactions. Of course this is simply due to the explict choice of quantization
axis and for Jxy = Jz the model is still fully symmetric by spin rotation. But such a symetry
is more difficult to see in the boson representation. On the other hand since we now very well
how to solve free bosons on a lattice, one can guess that models with small Jz or for which we
can make approximations for the Jz term shoulb tractable in such a representation. Finally
the third line, with U → ∞ is implementing the hard core constraint for the bosons. Since
this interaction is getting very large, it is clearly a term that will pose difficulties to treat
analytically.

Finally let us consider the magnetization along the z direction. If the system is non magnetized

〈Szi 〉 = 〈Ni − 1/2〉 = 0 (8.46)

which means for the bosons Ni = 1/2. The system is thus at half filling. A magnetic field in
the spin representation gives

H = −gµBh
∑
i

Szi = +gµB
∑
i

(Ni − 1/2) (8.47)

and thus acts as a chemical potential for the bosons. Similarly the various states can easily be
mapped onto one another. For example, as shown in Fig. 8.6 the classical antiferromagnetic
state where the spins are alternating from one site of the lattice to the next along the z direction,
maps onto a crystal state of bosons. One and thus use the intuition and knowledge of the phases
of one representation to deduce possible phases and properties in the other language.

Using such a representation we are now able to deal with many spins coupled together.

8.3.2 Localized Ferromagnetism

Let us first consider the ferromagnetic case J = −Jf < 0. We will consider the generic case
of a spin S. In that case it is quite natural to check if the “classical” ferromagnetic state
|Fer〉 = |↑, ↑, ↑, . . . , ↑〉 would be the ground state of the system described by the quantum
Hamiltonian (8.44).

Let us first check that it is an eigenstate. Using (8.44) and Jxy = Jz = −Jf one has clearly

H |Fer〉 = −Jf
∑
〈i,j〉

Szi S
z
j |fer〉 = −Jf

NsZ
2

S2 |Fer〉 (8.48)
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where Ns is the number of sites of the lattice, Z the coordination number (i.e. the number of
neighbors of one given site – 2 in dimension one, 4 in dimension two, 6 in dimension three etc.
for a square lattice). This state is thus an eigenstate. Proving that this is the state of lowest
energy is a little bit more tricky [Aue98] and we will not do it here, but this is the case. We have
thus found “the” ground state of the ferromagnetic system. This answer is physically intuitive,
this is indeed the state in which all the spins are aligned along the z direction. This is the state
of total spin Sz = NsS and thus of total spin NsS. Although the problem is fully quantum
is identical to what we would have for a fully classical version of the Heisenberg Hamiltonian.
Of course having said that one realizes immediately that the ground state cannot be unique.
Indeed the choice of the quantization axis is totally arbitrary and thus we can have the total
spin pointing in any direction. Said differently any (quantized) rotation of the state |Fer〉 is
also an eigenstate with the same energy since the Heisenberg Hamiltonian is fully invariant by
spin rotation. This huge degeneracy of the ground state is quite rare in quantum mechanics for
coupled systems since usually any coupling between two states leads to a splitting of the levels
and a lift of the degeneracy.

Having now found the ground state(s) we need to understand the excitations and the first
excited states. For that we will assume that we choose the quantization axis along the direction
of the total spin, so that the ground state is indeed |Fer〉 where all the spins point up in the z
direction. To analyze the excitations we will make use of the representation (8.36-8.38). We will
furthermore assume that we are only interested in states of energy close to the ground state,
and thus hopefully states for which the spins have not deviated too much from the direction
of the ground state. This is an hypothesis that will need to be checked at the end, but let us
proceed with it for the moment. In the boson language it means that we want the number
of bosons on each site to be small compared to S. This allows to considerably simplify (8.36)
which becomes

S+
i '

√
2Sbi (8.49)

This allows to rewrite the xy part of the Heisenberg Hamiltonian as

Hxy = −Jf (2S)

2

∑
〈i,j〉

[b†i bj + b†jbi ] (8.50)

which is simply free tight binding bosons moving on a lattice. One notices that this term is of
order b†b . One will thus need to be carefull in the term Jz to retain the linear order in b†b
(i.e. for this term the Ni terms) to be consistent. This term thus becomes:

Hz = −Jf
∑
〈i,j〉

(S −Ni)(S −Nj)

' −Jf
∑
〈i,j〉

(S2 − 2SNi)

= EFer +
JfZ(2S)

2

∑
i

Ni

(8.51)

where EFer is the energy of the ground state as defined in (8.48). The finally gives for the full
Hamiltonian

H = −(JfS)
∑
〈i,j〉

[b†i bj + b†jbi ] + (JfZS)
∑
i

Ni + EFer (8.52)

We thus have, with the approximation of a small number of bosons, a tight binding Hamiltonian
of free bosons moving on the lattice, with a chemical potential for the bosons which is given by
the Jz term. Since the system is invariant by translation, a Fourier transform is the good way
to diagonalize the Hamiltonian. Let us do it on a square lattice in d dimensions. We use the
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Fourier transform (3.72) which in this case reads

bi =
1√
Ns

∑
k

bke
ikr (8.53)

and thus

H = −JfS
2

∑
z

∑
k

2 cos(kz)b†kbk + (JfZS)
∑
k

b†kbk + EFer (8.54)

where z is the vector connecting to the neighbors of a given site (and thus there are Z such
vectors). If one is on a square lattice these vectors are simply the unit vectors of the lattice
along the x, y, z, . . . directions. One has thus (a being the lattice spacing)

H = (JfSZ)
∑
k

[1− 2

Z
(cos(kxa) + cos(kya) + . . .)]b†kbk + EFer (8.55)

The excitations are thus free bosonic particles with the momentum k and the energy E(k)
above the ground state energy, where

E(k) = (JfS2d)[1− 1

d

d∑
j=1

cos(kja)] (8.56)

This is a remarkable result since we have established that the spin excitations in a ferromagnet
are bosonic in nature, they carry the quantum number ∆Sz = 1 since they correspond to the
creation of a boson they lower the total spin along z by one unit, and they have a well defined
dispersion (i.e. relation between the momentum of the excitation and the energy) given by
(8.56). The dispersion is represented, for d = 1 on Fig. 8.7. We notice several remarkable
feature. The first one is that the energy is minimum at k = 0. Quite remarkably the difference
of energy between such excitation with ∆Sz = −1 and the ground state is exactly zero. This
sounds surprising but is in fact a consequence of the invariance by rotation of the Hamiltonian.
Indeed let us consider the state that corresponds to such an excitation. It is given by

b†k=0 |∅〉 =
1√
N

∑
i

S−i |S, S, S, S, S, . . . , S〉

=
1√
N

[|S − 1, S, S, S, S, . . . , S〉+ |S, S − 1, S, S, S, . . . , S〉+ · · ·+ |S, S, S, S, S, . . . , S − 1〉]

(8.57)

which is a uniform superposition of all states with one spin tilted by one quantum of angular
momentum. Such a state in in fact the one that corresponds to an infinitesimal rotation applied
to the ground state. A rotation of the angular momentum around the vector n can be expressed
as [CTDL77]

R(n, α) = e−iαnL (8.58)

where α is the angle and L the angular momentum operator. Let us take the x axis and do an
infinitesimal rotation on each site by the same angle. In that case it is clear that the state

|α〉 = |R(x, α)S,R(x, α)S, . . . , R(x, α)S〉 (8.59)

has the same energy than the ground state. Expanding (8.58) one finds

|α〉 ' |S, S, . . . , S〉 − iα[|S − 1, S, . . . , S〉+ |S, S − 1, . . . , S〉+ · · ·+ |S, S, . . . , S − 1〉] (8.60)

and thus for this state to have the energy EFer the action of the Hamiltonian on the second
term must give an eigenstate of energy EFer. This is an important point on which we will come
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Figure 8.7: Dispersion relations of the spin excitations (magnons) in a ferromagnet. The
minimum of energy is at k = 0 and is zero since such a uniform excitation would simply
correspond to a rotation of the ground state. For small k the energy grows quadratically with
k (in any dimension).

back. There are cases for which there is a symmetry of the Hamiltonian which is spontaneously
broken in the ground state. This is the case for ferromagnetism since when we pick one of the
ground states we break the invariance by rotation. In such a situation applying the symmetry
uniformly to the ground state must give a different state with the same energy. This means that
there exists uniform “excitations” that have zero energy. If now instead of doing the excitation
with k = 0 one does it with a long wavelength (k small) the energy must be small and tend to
zero. This is obviously the case for the magnons here. It is easy to check from (8.56) that for
small k the energy behaves as

E(k) = (JfS)k2a2 (8.61)

and is thus quadratic in k.

The magnon excitations will thus control the properties of localized ferromagnets. Within
the approximations that we have made, they are non-interacting and thus any excited state
is obtained by exciting a certain number of such magnons. The number will condition the
deviations from the fully polarized 〈Szi 〉 = S value since each magnon decreases the total
magnetization by −1. We will postpone the question of the observation of such excitations
until Section 8.5.

One final remaining step is to check the self consistency of our assumptions, namely that the
number of magnons is small. Of course at zero temperature the system is in its ground state,
but finite temperature allows to thermally excite magnons. Let us thus compute the resulting
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Figure 8.8: Schematic temperature dependence of the magnetization for a ferromagnet. At
T = 0 the system is fully polarized and the magnetization is the maximum value of the spin S
per site. For d = 1 and d = 2 the magnetization is zero at any finite temperature. For d = 3 the
magnetization decreases with temperature. Although this is beyond the range of the calculation
this strongly suggests the existence of a critical temperature Tc above which the magnetization
is zero and the system is in the paramagnetic state. In d = 3 a spontaneously broken symmetry
state with a finite ferromagnetic order can thus exist at low enough temperature.

magnetization. We have

〈Szi=0〉 = S − 1

N

∑
k

〈b†kbk〉

= S − 1

(2π)d

∫
BZ

ddk
1

eE(k)−1

(8.62)

The integral is limited on the Brillouin zone, thus the only possible divergence is coming from
small momenta. Since the integrand is behaving as 1/k2 the behavior is strongly dependent on
the dimension of the system. For d = 1 the integral diverges. This means that our assumptions
of a small number of magnon are violated as soon as the temperature is infinitesimal. Within
our assumptions the number of magnons would diverge. Of course this divergence is artificial
and will be stopped when we take again into account the terms NiNj that were neglected in
(8.51). Although it is of course not possible to rigorously extract from the present calculation
what will happen, the proliferation of magnon that one finds strongly suggests that the ordered
state is unstable and thus that at any finite temperature 〈Szi 〉 = 0. It is thus impossible to get
an ordered antiferromagnetic state at any finite temperature in d = 1. In d = 2 a similar effect
occurs, although the divergence of the integral is only logarithmic. An ordered ferromagnetic
state is also forbidden in d = 2. In d = 3 on the contrary the integral is convergent. It is very
easy to analyze the temperature dependence of the integral for very low temperatures by simple
dimensional analysis. Rescaling each k component by 1/

√
β to eliminate the temperature in

the bose factor one finds
〈Szi=0〉 ∼ S − T 3/2Cste (8.63)

As can be expected and is schematically shown in Fig. 8.8 the magnetization decreases with
temperature since magnons are thermally created. At a finite temperature Tc the magnetization
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will go to zero (this is beyond the scope of (8.63)) and the system becomes paramegnetic. We
will come back in Section 8.4 on the generality of these results.

8.3.3 Localized antiferromagnetism

Now that we understand the ferromagnetic case let us turn to the more complex antiferromag-
netic situation J > 0. For the sake of simplicity we will restrict ourselves in this course to the
case of bipartite lattices, such as the square or the hexagonal lattice in which no frustration is
present.

Let us try to follow the same route than for the ferromagnet and determine first the ground
state. A good candidate would be the classical antiferromagnetic state where the Sz component
of the magnetization alternates from one site to the next:

|AFc〉 = |S,−S, S,−S, . . . , S〉 (8.64)

Let us check whether such a state is an eigenstate by applying (8.44) on it. Although the Jz
part of the Hamiltonian clearly leave the state unchanged it is clear that in the xy part terms
such as S−i S

+
j will not destroy the state, as was the case for the ferromagnet, but will give

S−i S
+
j |S,−S, S,−S, . . . , S〉 = |S − 1,−S + 1, S,−S, . . . , S〉 (8.65)

and many similar terms. The classical antiferromagnetic state is thus not an eigenstate of the
Hamiltonian. We thus need to find both the ground state and the excitations of the systems.
This difference between the ferromagnetic case and the antiferro one is again an illustration
of the fact that for a quantum system one cannot simply change S → −S (on every other
site) and thus go from a ferromagnetic coupling to the antiferromagnetic one by this simple
transformation. Quantum ferromagnetic states and quantum antiferromagnetic ones are thus
fundamentally different.

In order to study the antiferromagnetic case, we will still follow the same route and map the
system using the Holstein-Primakoff representation. In order to avoid dealing with an order
parameter which oscillate from site to site we will do transformation (only possible to do on a
bipartite lattice)

Sxi → S x
i

Syi → (−1)iS y
i

Szi → (−1)iS z
i

(8.66)

This transformation which respects the canonical commutation relations for the spins changes
the classical antiferromagnetic state for the spins S |S,−S, S,−S, . . . ,−S〉 into a ferromagnetic
state for the spins S namely |S, S, S, S, . . . , S〉. It will thus provide a starting point, in the
language of the spins S which is invariant by translation and thus on which it will be more easy
to make approximations. Note that in fourier transform it means simply that we have shifted
the momentum of the y and z components of the spins by π. Let us write the Hamiltonian in
term of the new spins.

H = J
∑
〈i,j〉

[Sxi S
x
j + Syi S

y
j ] + J

∑
〈i,j〉

Szi S
z
j

= J
∑
〈i,j〉

[S x
i S x

j −S y
i S y

j ]− J
∑
〈i,j〉

S z
i S z

j

=
J

2

∑
〈i,j〉

[S +
i S +

j + S −i S −j ]− J
∑
〈i,j〉

S z
i S z

j

(8.67)
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We see that in the new spins S the Hamiltonian takes a new form. The Jz part of the
Hamiltonian is now the conventional ferromagnetic coupling between the z components of two
neighboring spins. This term will clearly favor a classical ferromagnetic ground state. The first
part however is now able to flip up or down two neighboring spins, making clear that the action
of such a term on a fully polarized state would not give zero. As for the ferromagnetic case
we now proceed with the Holstein-Primakoff mapping. In a similar way we will assume that
the number of bosons in the ground state is small. This was clear at zero temperature for the
ferromagnetic case, since this number was zero. For the antiferromagnetic one, this is clearly
not the case, and we can expect that a finite number of bosons will be present in the ground
state even at zero temperature. However the classical state should not be a too bad starting
point, and thus we can expect this number to be reasonably small. We will thus proceed with
this assumption and test it at the end. Using the representation (8.49) one has:

H = JS
∑
〈i,j〉

[b†i b
†
j + bi bj ] + (JfZS)

∑
i

Ni + EFer (8.68)

using the same linearization of the Jz term than for the ferromagnetic case, to be consistent
with the first term. Since we have now thanks to the transformation (8.66) a starting point
which is invariant by translation we can proceed with the Fourier transform and find using
(8.53)

H =
JS

2

∑
k,z

[e−ikzb†kb
†
−k + eikzb−kbk] + (JZS)

∑
k

b†kbk + EFer (8.69)

This expression shows that our approximation reduce the Hamiltonian to a quadratic form for
the bosons. However contrarily to the case of ferromagnetism this form is not diagonal and has
terms that can create or destroy two bosons. This will clearly lead to a ground state containing
a finite number of bosons. Nevertheless since the form is quadratic it can still be diagonalized
by a Bogoliubov transformation. This will allow us to determine the excitations of the system,
and thus also the ground state. If order to perform the transformation let us first rewrite the
Hamiltonian (8.69). Clearly the transformation will have to couple terms bk and b†−k. Since
in the

∑
k such terms would be counted twice, it is important to make sure that such double

counting will not occur. We will thus restrict the sum over k to the “positive” values. In one
dimension this means that we restrict the sum to k ∈ [0, π]. For higher dimensions we simply
take only half of the Brillouin zone such that if a point k is kept, the point vk is not excluded.
Using this restricted zone one obtains

H = 2JS

′∑
k

d∑
j=1

cos(kja)[b†kb
†
−k + b−kbk] + (J2dS)

′∑
k

[b†kbk + b†−kb−k] + EFer (8.70)

where
∑′

denotes the restricted sum. This can be put in a matrix form

H = (JS2d)

′∑
k

(
b†k b−k

)( 1 γ(k)
γ(k) 1

)(
bk
b†−k

)
− (J2dS)

Ns
2

+ EFer (8.71)

where

γ(k) =
1

d

d∑
j1

cos(kja) (8.72)

Note that in (8.71) the operators bk and b−k′ now correspond to different values of their index
regardless of the values of k and k′, and thus the corresponding operators commute. We can
thus make a Bogoliubov transformation of the form(

bk
b†−k

)
=

(
uk −vk
−vk uk

)(
αk

β†k

)
(8.73)
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One should keep in mind that k is restricted to half the Brillouin zone in the above expressions.
One could thus have also used α−k instead of βk. The above expression emphasizes the differ-
ence between the two operators α and β (as the original operators bk and b†−k which correspond
to two different objects). If one wants that the new excitations αk and βk to have standard

bosonic commutation relations, then it is easy to check that the commutator [bk, b
†
k] = 1 im-

poses u2
k− v2

k = 1 if one takes the u and v reals. The other relations are automatically satisfied
by the form (8.73). One can thus also use the parametrization

uk = cosh(θk) , vk = sinh(θk) (8.74)

which automatically ensures the constraint. Note the difference between this transformation
and the one we used in Section 3.6.2. The difference is mainly due to the difference of statistics
(bosons vs fermions) in the operators.

Using the transformation (8.73) we obtain for the matrix in the Hamiltonian(
cosh(2θk)− sinh(2θk)γ(k) − sinh(2θk) + cosh(2θk)γ(k)
− sinh(2θk) + cosh(2θk)γ(k) cosh(2θk)− sinh(2θk)γ(k)

)
(8.75)

This gives the condition
tanh(2θk) = γ(k) (8.76)

This condition can always be satisfied since we see from (8.72) that −1 ≤ γ(k) ≤ 1. Using this
condition we obtain for the Hamiltonian

H = (JS2d)

′∑
k

√
1− γ2(k)[α†kαk + βkβ

†
k]− (J2dS)

Ns
2

+ EFer (8.77)

One can rewrite this expression in a more compact form by reintroducing the −k excitations
α−k = βk. Using the fact that

∑′
k 1 = 1

2

∑
k 1 one can go back to a sum over the whole

Brillouin zone with “only” excitations αk (where now k is unrestricted) to obtain

H = (JS2d)
∑
k

√
1− γ2(k)[α†kαk +

1

2
]− (J2dS)

Ns
2

+ EFer

= (JS2d)
∑
k

√
1− γ2(k)α†kαk + EFer

(8.78)

The αk operators and the Hamiltonian (8.78) fully define the excitations and the ground state
of the antiferromagnet. The ground state |AF 〉 is defined by

αk |AF 〉 = 0 , ∀k (8.79)

since the energies of the αk excitations are positive for the whole Brillouin zone. Computing
|AF 〉 explicitly is not obvious but as usual we don’t need to do it, since we know the action of
the operators α on it, which is sufficient to compute any observable of the problem. What we
can say, given the fact that the operator α contains both creation and destruction of bosons,
is that the ground state contains already a certain number of bosons. We thus why the fully
polarized classical ground state |AFc〉 was not a good solution. There are quantum fluctuations
that make the spin fluctuate and partly reduce the polarization of the staggered order parameter
on each site. The above solution allows us to take this effect into account.

In addition to the ground state we get the excitations. We see that, in the same way that for the
ferromagnet the excitations (also called spin-waves or magnons) are free bosons. Their relation
dispersion is E(k) =

√
1− γ2(k) which is shown in Fig. 8.9 The first thing we can note from

Fig. 8.9 is the periodicity of the energy dispersion. It is not periodic with period π instead of
2π for the ferromagnet. This halving of the Brillouin zone is quite logical since the presence of



168 Localized magnetism Chap. 8

Screen clipping taken: 01.06.2013 20:51

samedi 1 juin 2013 20:51

   Unfiled Notes Page 1    

Figure 8.9: Dispersion relation for an antiferromagnet. Because of the doubling of the zone due
to the antiferromagnetic order the energy is now periodic with a period π/a, instead of 2π/a.
The energy goes to zero at k = 0 again as a consequence of the invariance by spin rotation of
the original model. However for an antiferromagnet the dispersion relation is linear around the
point of zero energy.

an antiferromagnetic order imposes a doubling of the minimal periodic cell in real space. We
also note that the energy goes to zero at k = 0 and k = π/a (which are now equivalent). This
is again a consequence of the full rotation symmetry of the Hamiltonian and the fact that the
ground state breaks this symmetry. We thus recover the presence of Goldstone modes. Around
the zero energy point the dispersion relation is linear E(k) ∼ V |k| where V has the dimensions
of a velocity. For example in one dimension V = JS2a and is thus proportional to J . The spin
excitations are thus, for small k (or k ∼ π) bosonic particles with a Dirac-like dispersion. The
larger the exchange is the faster this particles can move. Compare to the ferromagnet for which
the dispersion was ∼ k2 we thus see that in a way the antiferromagnet is more “rigid” since
creating excitation of the same wavelength would cost a higher energy. As for the ferromagnet,
any excited state can thus be realized by creating several magnon excitations, which within our
approximations behave as free particles.

Let us now turn to the check of our initial hypothesis, namely that the number of bosons N is
small in the ground state |AF 〉. To do so let us compute the staggered magnetization in the
ground state. Given the invariance by translation we can simply compute the magnetization at
site i = 0. It is given by

〈Szi=0〉 = S − 〈AF |b†0b0|AF 〉 (8.80)

The number of bosons must be reexpressed in terms of the α and β excitations

b†0b0 =
1

Ns

∑
k1,k2

b†k1
bk2

=
1

Ns

′∑
k1,k2

(b†k1
+ b†−k1

)(bk2 + b−k2)

=
1

Ns

′∑
k1,k2

[uk1
(α†k1

+ β†k1
)− vk1

(βk1
+ αk1

)][uk2
(αk2

+ βk2
)− vk2

(β†k2
+ α†k2

)]

(8.81)

Using the fact that the ground state |AF 〉 is annihilated by the α and β destruction operators
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one obtains for the average in the ground state

〈AF |b†0b0|AF 〉 =
1

Ns

′∑
k1

v2
k1

2

=
1

Ns

′∑
k

[
1√

1− γ2(k)
− 1

] (8.82)

Note that the finite temperature could have been obtained in the same way using that 〈α†kαk〉 =
fB(E(k)).

Based on (8.82) we can now check what happens as a function of the dimensionality. For d = 1
the integral in (8.82) is divergent which means that the number of bosons in the ground state
would diverge. This is of course an artefact of our approximations but it strongly indicates,
as for the ferromagnet, that the staggered magnetization will be reduced to zero. There is
thus no possibility to have a spontaneously broken symmetry state with antiferromagnetic
order in one dimension. Note that here we are talking about zero temperature. The presence of
excitations is not due to thermal excitations of the magnons but to the presence of the quantum
fluctuations. These fluctuations are enough to prevent the AF order to appear. In d ≥ 2 the
integral is convergent and thus AF order can appear at T = 0. Of course a finite temperature
will contribute to generating more excitations and can also destroy the order. Here we see
a new phenomenon: for quantum problems, the fact that there are uncertainty relations and
thus quantum fluctuations can prevent the presence of order even at T = 0. The effect of
the quantum fluctuations is thus a little bit similar to the one of thermal fluctuations for a
classical system. This strongly suggests that there is the possibility of having quantum phase
transitions, even at T = 0, by varying parameters in the Hamiltonian. We will come back to
that point in the next section.

A remarkable consequence of the previous calculation is the fact that even at T = 0 the
staggered magnetization in the ground state is reduced by the quantum fluctuations. For spin
1/2 systems this effect can be quite important, and for example on a two dimensional square
lattice the actual staggered magnetization is only about 60% of the fully saturated one. On
other lattices this reduction of the AF order can make other type of spin order more competitive
than one would naively think from looking at the corresponding classical system.

8.4 Broken symetries for classical and quantum systems

In the previous sections we have explicitly computed the properties of ferromagnets and antifer-
romagnets and found that depending on the dimension, order could exist or not. In addition we
saw that to some extent the presence of quantum fluctuations had striking similarities in their
effect on the presence of long range order to the ones of thermal fluctuations. These results are
in fact rather general and go beyond the precise models that we have examined here. We will
cast them in this chapter in a more general framework.

8.4.1 Symetries and presence of long range order

One important question is whether we can predict the presence or not of long range order.
As was investigated by Landau the presence of second order phase transitions is linked to the
existence of a spontaneous symmetry breaking. The Hamiltonian possesses a certain symmetry
but the configurations of the system that are relevant choose to spontaneously violate this
symmetry. One can then define an order parameter which is non zero in the phase with the
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broken symmetry and zero otherwise. The simplest example of this is for the classical Ising
model, where on each site there is a spin σi = ±1 and the Hamiltonian is

H = −J
∑
〈i,j,〉

σiσj (8.83)

In that case the Hamitlonian is invariant by the discrete symmetry σi → −σi. One the other
hand if a spontaneous magnetization

m =
1

Ns

∑
i

σi (8.84)

develops it clearly means that this symmetry has been violated, since otherwise we would have
necessarily m = 0 by summing over all configurations given the fact that two configurations with
all σi → −σi have the same energy and thus the same Boltzmann weight. Such spontaneous
symmetry breaking can of course only occur in the thermodynamic limit Ns → ∞. It is thus
natural to ask whether the possibility of having long range order depends on the nature of such
symmetries.

A simple argument, to address this question, is to start from the assumption that at zero
temperature (we are dealing here with classical problems) an ordered state exists that breaks
the symmetry and to examine the free energy of defects in this state, which would tend to
restore the symmetry. If such a free energy is negative, then defects will proliferate and the
broken symmetry state will be destroyed. If on the other hand the free energy of defects is
positive, then defects will not occur and the broken symmetry state can exist.

Let us look fist at the case of a system with a discrete symmetry such as the Ising model. In
that case at T = 0 we can start from the fully polarized state. If we want to create a defect that
reduces the magnetization we can invert a block of spins of linear size L as shown in Fig. 8.10.
In order for the defect to have an impact on the magnetization in the thermodynamic limit,
the size L must be macroscopic and thus grow together with the total size of the system Lt.
We can thus consider than L ∝ Lt →∞. Because all the spins are turned inside the block the
energy cost of such a defect in the block is zero (this is a consequence of the symmetry of the
Hamiltonian). However at the surface of the defects we have replaces a bond with an energy
−J by a bond with an energy +J in comparison with the ground state. The energy cost ofthe
defect is thus 2J times the surface of the defect which for a large block is growing as Ld−1

where d is the spatial dimension. Thus

∆E ∝ JLd−1 (8.85)

The fact that we have a brutal variation of the order parameter is a consequence of the discrete
symmetry of the Hamiltonian. If we have created such a defect its entropy is the log of the
number of configurations which is roughly the number of positions that this defect can take in
the whole system. This entropy is thus growing as

∆S ∝ log(Ldt ) ∝ log(L) (8.86)

Putting the two results together we find for the variation of the free energy due to the presence
of a defect

∆F ' JLd−1 − T log(L) (8.87)

We thus see from (8.87) that in one dimension the energy cost is constant while the entropy
grows logarithmically. There will thus be at any finite temperature proliferation of defect (and
defects within defects etc.) until the initial order is completely destroyed. We thus immediately
recover the fact that at any finite temperature a one dimensional system (without long range
interactions) cannot have a finite order parameter. On the other hand we see that for d = 2
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Figure 8.10: A defect of size L is created in the fully polarized state of the Ising model. Since
the order parameter must vary brutally at the boundary because of the discrete symmetry, the
cost of this defect is proportional to its surface Ld−1.
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Figure 8.11: For systems with a continuous symmetry there is the possibility to spread the
surface of the defect. This leads to a considerable reduction of the energy cost.

and above the energy cost of the defect wins over the entropy gain, and thus provided the
temperature is small enough, the ordered state is stable. There is thus for d ≥ 2 the possibility
for systems with a discrete symmetry to have a finite order parameter at low temperature.

The situation is different if the Hamiltonian has a continuous symmetry. Let us take as
an example the so-called XY model which corresponds to spins with two components S =
(cos(θ), sin(θ)). In that case the Hamitlonian is

H = −J
∑
〈i,j,〉

Si · Sj = −J
∑
〈i,j,〉

cos(θi − θj) (8.88)

and the system is invariant under the continuous symmetry of spin rotation. This is also the
case of the Heisenberg model. In that case there is the possibility to spread the surface of the
defect by turning the spin gradually from the configuration outside the defect to the one inside.
Let us see the energy cost if we perform such a gradual rotation. We look at a single bond, for
which the spins goes from fully polarized up to fully polarized down over a length l as shown
in Fig. 8.11 For the XY model this would mean that θi = 0 + i

lπ. If l is large we can expand
the cosine to get

∆E = −J
∑
i=0

l − 1[cos(
1

l
π)− 1]

=
Jπ2

2

∑
i=0

l − 1
1

l2

' J

l

(8.89)

We thus see that the presence of the continuous symmetry leads to a drastic reduction of the
energy cost at the surface of the defect which is now of order J/l instead of J for a brutal
variation of the order parameter. We can thus spread the surface over a size which is of order
L which is the largest size we can reach for a defect of size L. In that case the energy cost for
the defect becomes ∆E ∝ JLd−2 leading to a free energy

∆F ' JLd−2 − T log(L) (8.90)

We thus see that for systems with a continuous symmetry, both d = 1 and d = 2 situations
lead to an absence of a finite order parameter. The XY model, as the Heisenberg one cannot
have an ordered state in d = 1 and d = 2 dimensions. It is only in d = 3 and above that a finite
order parameter can exist at sufficiently low temperatures.

We thus see that the nature of the symmetries have drastic consequences for the presence or
not of an order parameter. For classical systems the above arguments allow to classify this
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physics. For quantum problems the situation is more complex due to the presence of quantum
fluctuations. We will thus now examine how one can relate such quantum problems to the
classical ones and thus use similar arguments.

8.4.2 Link between classical and quantum systems

The results of the previous chapters suggest that there should be some deep links between
the behavior of classical and of quantum systems. Indeed these links can be put on a formal
basis in a quite general way. Let us first recall what looking at a classical system means.
We have a system described by an Hamiltonian Hcl[{σ}] which is a function of an infinite
number of parameters {σ} = (σ1, σ2, . . . , σNs). The partition function of the problem consists
in integrating over this infinite set of variables the Boltzmann weight of each configuation

Zcl =
∑
{σ}

e
− 1
Tcl

Hcl[{σ}] (8.91)

The important parameters are thus the size if the system in all dimensions Lx, Ly, Lz, . . .,
the classical temperature Tcl and of course the Hamiltonian H itself giving the energy of a
configuration.

For quantum problems the phase transition properties are also determined by looking at the
partition function which is now

Z = Tr[e−βQHQ ] (8.92)

the trace is taken on a set of variables (for example the positions of the particles) |{x}〉. Of
course HQ is an operator containing usually non commuting terms. Let us assume for the sake
of simplicity that HQ = Hp +Hx where Hp only depends on momenta, while Hx only depends
on positions. This is in fact the case for many Hamiltonians such as the Hubbard model for
example. Using this it is possible to bring the quantum partition function in a form that is
very similar to a classical one. The idea is to cut βQ in slices

Z = Tr[e−
βQ
N HQ . . . e−

βQ
N HQ ]

=
∑

{x0},{x1},...,{xN−1}

〈{x0}|e−
βQ
N HQ |{x1}〉〈{x1}|e−

βQ
N HQ |{x2}〉 . . . 〈{xN−1}|e−

βQ
N HQ |{x0}〉

(8.93)

If one chooses N large enough (in fact N → ∞) then ε = βQ/N is small enough so that one
can make the approximation

e−εHQ ' e−εHpe−εHx (8.94)

this neglects terms of higher order in ε and allows now to evaluate the matrix elements by
introducing a complete basis of the momenta

A = 〈{x0}|e−εHpe−εHx |{x1}〉 =
∑
{p}0

〈{x0}|e−εHp |{p0}〉〈{p0}|e−εHx |{x1}〉 (8.95)

Now in this term all the matrix elements can be easily computed since the Hamiltonian acts
on a state made of eigenstates of either position or momenta. One can thus simply replace the
operators by the corresponding eigenvalues. The final result is thus

A = 〈{x0}|{p0}〉e−εHp[{p0}]〈{p0}|{x1}〉e−εHx[{p0}] (8.96)

where one has only numbers. One can thus recast it as a kind of Boltzmann weight

A = e[ − εH[{x0}, {p0}, {x1}] (8.97)
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Figure 8.12: Correspondence between classical and quantum problems.

One thus sees that by cutting the “temperature” direction in slices, one can reexpress the
partition function of a quantum problem as the partition function of some kind of classical
problem. The partition function now reads

Z =
∑

{x0},{p0},{x1},{p1},...,{xN−1},{pN−1}

e−εH[{x0},{p0},{x1}]e−εH[{x1},{p1},{x2}] · · · e−εH[{xN−1},{pN−1},{x0}]

(8.98)
It is like of the temperature direction was acting a an additional dimension for the the classical
problem. Of course the Hamiltonian of the classical problem is not the original HQ but the

modified function
∫ βQ
τ=0
H[τ ]. We thus see that the correspondence is rather subtle and is

detailed in Fig. 8.12. Let us detail our findings. A quantum problem in spatial dimension d is
thus equivalent to a classical problem in a priori d+ 1 dimensions, where the extra dimension
is coming from the slicing of βQ in the partition function. In fact one has to be more careful.
Indeed βQ has the dimensions of an energy, and in general this “direction” is not equivalent to
a simple spatial dimension. This will depend between the relation between the energy and the
momenta, i.e. of the dispersion relation of the excitations. Let us for simplicity assume that
the dispersion relation is of the form

E(k) ∼ kz (8.99)

then it means that space and time (inverse of energy) are related (using the uncertainty rela-
tions) by

Lτ ∼ Lzx (8.100)

The slicing of βQ thus gives in fact z additional directions, z itself depending on the nature of
the quantum problem. We can thus say that a quantum problem of d spatial dimensions will be
equivalent to a classical problem of d+z dimensions, z being called the dynamical exponent and
being directly determined by the nature of the excitations of the quantum problem. Moreover
because of the trace, the slicing of βQ has to be periodical, which means that for the classical
problem these additional z direction are of finite size which is determined by the quantum
temperature βQ. The classical problem is defined on a torus along those directions. On the
contrary the equivalent of the classical temperature is played by 1/~ in the classical-quantum
mapping. We thus see that this mapping makes precisely the connection that we had obtained
intuitively before that the quantum fluctuations were playing at βQ = ∞ a little bit the same
role than the classical thermal fluctuations.

The above mapping is extremely powerful and allows us to relate quantum problems both at
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zero and finite temperatures, to classical problems. We can thus borrow from the vast knowledge
of phase transitions for classical problems to study the properties of the associated quantum
problem. As a simple example let us recover the existence or absence of magnetic order that
we had derived directly.

For a ferromagnetic model, we can map it onto a classical model with d + 2 dimension since
the dispersion relation is quadratic. The resulting classical model will of course also have a
continuous symmetry corresponding to the spin rotation symmetry for the quantum one. We
can thus immediately infer that at βQ =∞ (zero temperature for the quantum problem), this
will correspond to classical problems in dcl = 3, 4, . . . for d = 1, 2, . . . for the quantum problem.
There is thus the possibility to have a non zero order parameter. This is what we found by
the explicit calculations of the previous section. On the contrary when the quantum problem
is at finite temperature, the 2 extra dimensions become of finite size. They thus essentially
do not contribute for a critical phenomenon, and we are back to dcl = 1, 2, 3 and find that
no order parameter can exist below three dimensions, which was exactly our results. For the
antiferromagnet, we can make the mapping to a classical model with d+ 1 dimensions because
of the linear dispersion relation. As a result we see that even at βQ = ∞ the quantum model
would correspond to a d = 2 classical model with a continuous symmetry and thus must loose
the order parameter. For d = 2 and above one can have a broken symmetry ground state as
we had found. At finite temperature the extra dimension, being of finite size disappears. As a
consequence we can have an ordered antiferromagnet at finite (quantum) temperature only for
dimension three and above.

Since varying the 1/~ is equivalent to varying the temperature of the associated classical problem
we see that we can obtain quantum phase transitions at βQ =∞ which will be the equivalent
of classical phase transitions as a function of the temperature for the associated classical model.
We will not enter too deep in this direction and refer the reader to [Sac00] for more details.

Let us finish this section by mentioning a few points. The mapping we have shown is a particular
case of something names path integral which allows a representation of quantum mechanics in
term of the action. This formalism developed by Feynman [FH65, NO87] is extremely useful
and allows many impressive treatments of quantum and classical problems alike. It would
however take us too far from the main topic of this book and we refer the reader to the existing
literature. One of the very useful consequences of the formula (8.98) is to open the path to a
numerical evaluation of the partition function of quantum problems. Indeed we see that the
problem reduces to a large but straightforward integral which can be computed, just as for
classical problems, by a monte-Carlo evaluation as will be detailed in the next part. For bosons
the procedure is working extremely well. For fermions however there are complications due to
the fact that the weights are in fact a priori not positive for the antisymmetric configurations
that are acceptable for the fermions. Since the symmetric configurations have a lower energy,
the monte-Carlo procedure must eliminate all those. It means that the signal to noise ratio of
such a calculation is decreasing as

e−β∆E (8.101)

where β is the inverse temperature and ∆E is the difference in energy between a symmetric
ground state and an antisymmetric one, since this corresponds roughly to the probability to
draw an antisymmetric configuration (useful) among all the other ones. This number is usually
quite large. For example for free bosons the minimum of energy is zero (all bosons in k = 0
momentum state, while for fermions it is EF. It means that the error of the Monte-Carlo
procedure grows exponentially fast when lowering the temperature, needing exponentially large
computational time to compensate. For realistic numbers (e.g. EF = 10000K and T = 100
this is humongously long times, beyond the actual possibilities. This is something known as
the sign problem, which limits the possibility to use these methods for fermions. Nevertheless
depending on the temperature one can obtain, just as for classical problems, extremely useful
information from such a procedure.
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Figure 8.13: Principle of the NMR method. In an external magnetic field it is possible to
induce rabi oscillations between the two level of a nuclear spin. Measurement of the spitting
frequency gives information on the local magnetic field.

8.5 Experimental probes

Let us now briefly look at some experimental probes for the localized magnetism. We will not
discuss the macroscopic ones, but rather focuss on the microscopic ones able to give information
at the level of the lattice spacing. We will mostly concentrate on two: the Nuclear Magnetic
Resonnance (NMR) and the neutron scattering.

8.5.1 Nuclear Magnetic Resonnance

We will not enter in details but just give the main results. We refer the reader to [Abr61, Sli89]
for more details.

The basic idea is to use the presence of a nuclear spin. Such a spin is weakly coupled to the
magnetic fields in the material and in particular the ones created by the electronic spins, which
make it an ideal probe for magnetism in solids. Let us for example consider a nuclear spin
which would be a spin 1/2. In that case, as indicated in Fig. 8.14 under an external field the
two spin level would split. It is then possible to perform Rabi oscillations between these two
levels by sending microwaves on the system. Typically this occurs at frequencies which are
of the order of 1/2 GHz for external field of the order of 10T , depending on the material. If
the two levels are separated enough, the thermal population of the upper level is small enough
so that the population is determined by the rabi oscillations. The measure of the oscillation
frequency is directly giving the field which is acting on the nuclear spin. Such as field is the sum
of the externally applied field Bext and the local static field existing in the system and which is
influencing the nuclear spin. For sake of simplicity let us assume that only magnetic field created
on the same atom can influence the nuclear spin, the measurement of the resonnance frequency
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is thus a direct measure of the static internal magnetic field which exists in a solid. Some cases
are shown in Fig. ??. If the material is paramagnetic then no local static field exists. Then the
resonnance occurs at the place one would expect for an isolated nuclear spin. On the contrary
if the material is ferromagnetic, then each atom sees an additional magnetic field, proportional
to the order parameter. The resonance is thus shifted compared to the paramagnetic case. This
shift, known as Knight shift, is a direct measure of the local field. In that case it is directly
proportional to the uniform magnetization. It is thus easy with NMR to extract, e.g. the
temperature dependence of the magnetization. If the material is antiferromagnetic then half of
the atoms will see a positive field, half a negative field. The line will thus split and the splitting
is proportional to the staggered magnetization. It is thus very convenient to extract such order
parameters from the NMR. An example is shown in Fig. 8.15.

In addition to the Knight shift one can extract other information from the NMR signal. One
useful information is the so-called relaxation time 1/T1. Let us assume that the system starts
in the lowest level |↑〉 as shown in Fig. 8.15. One can then apply a Rabi pulse that leaves the
system in an intermediate state |↑〉+ |↓〉 by timing the time of the pulse (so called π/2 pulses).
The nuclear system would then precess in the XY plane and thus have no Sz component any
more. However, if electronic spins can flip an interaction of the form

H = Sel · Snuc (8.102)

would allow to let the nuclear spin relax towards the polarized most stable configuration. One
should thus have

Mnuc(t) = Mmax
nuc [1− e−t/T1 ] (8.103)

the characteristic time 1/T1 will tell how many electronic spin flips can occur by unit time. One
can show that

1

T1
∝ T 1

ω
Im(−i

∫ ∞
t=0

eiωt〈[S+(r = 0, t), S−(r = 0, 0)]〉 (8.104)

In the above equation the last term is the retarded transverse spin-spin correlation function.
The fact that it is local in space comes from our approximation that only electronic spins on the
same atom can influence the nuclear spin. This formula should be taken at the frequency which
corresponds to the NMR frequency. However since we are dealing here with the electronic
spins, and that the NMR frequencies are usually only in the MHz range, it is a very good
approximation to simply replace the frequency by zero. This gives the canonical formula for
the relaxation time

1

T1
= T lim

ω→0

Imχ+−(r = 0, ω)

ω
(8.105)

The 1/T1 thus gives information on how the electronic spins are correlated in time. We will
examine several examples in the exercises.

8.5.2 Neutron diffraction

Another important probe for magnetism is provided by neutron diffraction. The idea is exactly
similar to the one of X-ray diffraction to probe the nature and periodicity of crystals. This time
we want a probe which is not sensitive to the charge of the electrons but to their spin. The
perfect particle/wave to use for that is the neutron. Being neutral it will not be sensitive to the
charge distributions inside the solids, but having a spin 1/2 will be diffracted by the electronic
(and nuclear) spins.

The principle of the measurement is simple and shown in Fig. 8.16. One sends a beam of
neutrons of known momentum (and thus energy since it is in the vaccuum) and also potentially
of known spin orientation. These neutrons enter the solid and interact with the electronic spins.
As a result of this interaction they change their quantum numbers. One measures the neutrons
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Figure 8.14: Knight shift in NMR. a) the material is paramagnetic, the resonnance occurs at
the expected place. b) the material is ferromagnetic. Each atom sees the same magnetic field,
then the resonnance is shifted. The shift is proportional to the magnetization. c) the material
is antiferromagnetic. In that case the line splits depending on whether the local magnetic field
is positive or negative. The splitting is proportional to the staggered magnetization.
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Figure 8.15: An example of NMR signal on the various N sites of the ladder compound BPCB
discussed previously. One sees clearly the splitting of the lines at low temperatures indicating
the presence of an antiferromagnetic phase transition. From [KMB+08].
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Figure 8.16: Principle of neutron diffraction. A monochromatic neutron beam of known spin
orientation is sent to the target. Neutrons diffracted in a certain direction, with a certain
spin and a certain energy is measured. This gives the scattering cross section for a change
of momentum, energy and spin of the neutrons that gives information on the corresponding
excitations in the solid.
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that are diffracted with a given momentum (usually given from the diffraction angle), a given
energy and a given spin orientation. This is giving the cross section of diffraction by the solid.
The change of quantum numbers of the neutrons reflects which excitations they have created
in the solid and thus give information on the magnetism.

The scattering cross section can be computed from the Fermi golden rule. It is proportional
(up to terms of incident flux etc.) to the probability of transition

P (kin → kout, E
n
in → Enout,S

n
in → Snout) =

∑
f,i

|〈f |H|i〉|2δ(Enout − Enin + Esolout − Esolin ) (8.106)

where |f〉 and |i〉 are the final and initial state of the combined neutron-solid system. The
interaction Hamiltonian between the neutron and the spins in the solid is simply the dipolar
one

H =

∫
dRdr

Sn(R+ r) · S(R)

r3
− S

n(R+ r) · r)(S(r2) · r
(r5

(8.107)

which can be put in a diagonal form by a Fourier transform

H =
∑
αβ

∫
dqAαβ [q]Snα(q)Sβ(−q) (8.108)

where α, β = x, y, z are the three spin components. We will not explicit the form factor Aαβ [q]
which is easily computable.

To compute (8.106) we realize that the initial and final state can be factorized into a part that
contains only the solid and one only the neutrons The matrix element can thus be simplified
considerably

〈f |H|i〉 =
∑
αβ

∫
dqAαβ [q]〈fn|Snα(q)|in〉〈fsol|Sβ(−q)|isol〉 (8.109)

since we know the initial and final state of the neutron momentum we have immediately q =
kf − ki which fixes fully the momentum. In the same way knowing the initial and final state
of the spin of the neutron fixes essentially α and thus the corresponding sums that must be
performed on β. We will assume here for simplicity (not true in general) that the form factor
is diagonal and only retain one value for β. In general several values are possible and must
be summed accordingly. This is however a purely technical complication. The probability of
transition would thus become

P (kin → kin − q, Enin → Enin − ω, α) =
∑
fsol

Aαα[q]|〈νsol|Sα(q)|GS〉|2δ(ω +EGS −Eν) (8.110)

where |GS〉 is the ground state of the solid. |ν〉 is one of the excited states of energy Eν , and
α = x, y, z one of the spins orientations. The physical interpretation of the formula (8.110)
is quite transparent. The neutrons deposit a momentum q and an energy ω in the solid. In
addition they had to create a spin excitation of component α, since this corresponds to the
difference of quantum numbers measured for the outgoing neutron. It is thus necessary to
create in the solid a spin excitation of momentum q and of component α. The probability of
transition is thus given by the probability of creating such an excitation. The amplitude is given
by the matrix element of transition from the ground state to an excited state 〈νsol|Sα(q)|GS〉
whose energy matches the energy conservation. Finally as with any diffraction experiment
the form factor of the potential A modifies the final result. This last point must be taken
into account to compare with experiment but is not fundamental. The important part is the
previous one. The neutron are thus measureing the probability to create a spin excitation with
a given momentum and given energy. This can simply be related to the retarded spin-spin
correlations

χ(α, β, q, ω) = −i
∫ ∞
t=0

dteiωt〈[Sα(−q, t), Sβ(q, 0)]〉 (8.111)
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Figure 8.17: Neutron scattering on ferromagnetic nickel. left: peak of diffraction obtained by
varying the angle of the detector and thus momentum. right: energy of the peak as a function
of the momentum at which the maximum occurs. One see that the relation is quadratic, which
is consistent with the existence of the sharply defined magnon excitations in a ferromagnet.
Note on the left the neutron count, and gasp at what must have been the signal to noise ratio
and experimental time then. From [PAM+67].

We thus see that neutron and NMR measure essentially the same objects. The main difference
is that the NMR measures the local correlation (hence the sum over all q) at zero frequency,
while the neutrons have in principle both momentum and frequency resolution. However the
resolution is not as good in the later case and it is difficult to reach below 0.2meV with neutrons.
Another limitation is that it is usually inconvenient (for reasons of flux and signal to noise ratio)
to polarize the incoming neutron beam. It means that an average of all spin orientations is
present, which means that one also has to average over all the correlation functions. This is
not necessarily a very serious limitation for systems for which the correlation functions can be
obtained by a symmetry operation.

As can be seen from (8.110) the neutrons will tell us where in energy-momentum space the
spin excitations can live. If there are sharply defined excitations (a good relation between the
momentum and energy) then the δ-function constraint on the conservation of the energy can
only be satisfied for well given pairs of momenta-energy. We thus expect in that case a narrow
peak positioned on the dispersion relation. The weight in the peak will depend on the matrix
elements, but the position of the peak itself is a direct measure of the dispersion relation. For
more complex case, for which there are no sharply defined spin excitations one can have a
continuum of absorption whose intensity will be modulated by the form factors.

Let us see two examples in connection with our study of ferromagnetism and antiferromag-
netism. The first spectrum shown in Fig. 8.18 we see peaks which signal sharp magnetic
excitations. Their dispersion relation which is quadratic in momentum is perfectly consistent
with the magnons in a ferromagnet.

The second curves shown in Fig. ?? This time the energy shows minima in other positions
than q = (0, 0) the position of the minima at (π, π) indicate and antiferromagnetic ordering.
In addition the dispersion shows clearly the linear dispersion that one expects for the spin
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Figure 8.18: Neutron diffraction in the La2CuO4 two dimensional system. One sees clearly
the zero of the energy at (π, π) as well as the linear dispersion relation compatible with the
existence of sharply defined magnetic excitations in an antiferromagnet. From [CHA+01].
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excitations inside an antiferromagnet.
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CHAPTER 9

Monte-Carlo method

The goal of this chapter is to introduce some of the numerical methods that are useful in dealing
with interacting quantum systems. Before embarking on the more refined techniques for such
systems, let us first consider classical systems and illustrate on them one of the most powerful
numerical techniques, the Monte-Carlo technique. A good description of such algorithms can
be found in [Kra06].

9.1 Purpose and basic idea

Let us consider the calculation of an integral I =
∫ b
a
dxf(x). One efficient numerical method is

to approximate the integral by the Riemann sum

IN =

N−1∑
i=0

(
b− a
N

)
f(xi = a+ i

b− a
N

) (9.1)

If the function is a smooth one, even this crude approximation is excellent since the error is of
order

|IN − I| ∼
1

N
(9.2)

Of course more refined versions (middle point sums etc.) can even improve on this result.

Problems with this way of evaluating integrals appear when the dimension of space increases.
For example if one has to evaluate a two dimensional integral then one would cover the interval
with a grid of N = N2

x points, and then sum the discrete elements on the grid

IN =
∑

i = 0, N − 1∆Sf(ri) (9.3)

where ∆S is the surface of one little square in the grid and ri is one point inside such a little
square. Unfortunately, as can be readily seen by taking a function f(x, y) that is strictly
constant along e.g. y, the error that is made on the integral is a function of the size of the grid
along one of the directions. In other words

|IN − I| ∼
1

Nx
=

1√
N

(9.4)

and of course the generalization to an integral in d dimensions is obvious

|IN − I| ∼
1

Nx
=

1

N1/d
(9.5)

It is thus easy to see that if one has to evaluate an integral by the Riemann method in a space
of dimension, say 100 and one would like an reasonable error of 10% one would need a number
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of points in the grid to be 10100 an astronomical number and it would take forever to compute
the integral in such a deterministic way. Unfortunately such large dimensional integrals are the
rule when one is dealing with statistical systems. Let us for example consider an evaluation of
the partition function of the Ising model. It is given by

Z =
∑

σ1 = ±, σ2 = ±, . . . , σN = ±e−βH[{σ}] (9.6)

where N is the number of spins σ in the system and the Hamiltonian is

H = −J
∑
〈ij〉

σiσj (9.7)

If one wants to deal with a system that is reasonably close to a a thermodynamic limit one
needs a “large” number N of spins, which means that partition function can be viewed as a
result of a sum, in a space of very large dimension (here N). It is thus totally unrealistic to try
to evaluate this sum directly by enumerating all the configurations. This is also the case if one
wants to evaluate one physical observable. For example the average of the spin on one site i0
would be given by

〈σi0〉 =
1

Z

∑
σ1=±,σ2=±,...,σN=±

σi0e
−βH[{σ}] (9.8)

A smarter way to evaluate such an integral would be to evaluate the integral around the points
where the function is the largest. This would ensure that with a reasonable number of points
one has an a good evaluation of the integral. Of course finding such regions is not so easy and
is the purpose of the Monte-Carlo technique that we now describe.

9.2 Monte-Carlo technique: basic principle

Let us assume that we want to evaluate a sum or an integral (we will use the integral notations,
but of course this covers discrete sums as well). Let us take for example∫ b

a

dxf(x) (9.9)

We introduce a probability weight P (x) which is positive over the interval. One can always
rewrite the integral as ∫ b

a

dxP (x)
f(x)

P (x)
(9.10)

Given that P (x) is a probability it satisfies∫ b

a

dxP (x) = 1 (9.11)

At that stage the choice of P (x) is totally arbitrary. If one considers the Ising model average
(9.8), one possible choice would be to take

P (x)
1

Z
e−βH[{σ}] (9.12)

since in that case f(x)/P (x) is simply the spin σi0 . But of course other choices are in principle
possible.
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With such a probability distribution, let us assume that we have a random number generator
that can generate random numbers with the probability P (x). In that case, if one generates N
random numbers xi with the distribution P (x)

IN =
1

N

∑
i = 0N1

f(xi)

P (xi)
(9.13)

is a random variable. Its average is given by

IN =
1

N

∑
i = 0N1

f(xi)

P (xi)

=
1

N

∑
i = 0N1

∫ b

a

dxP (x)
f(x)

P (x)

=

∫ b

a

dxP (x)
f(x)

P (x)

(9.14)

The average of the random variable IN is thus exactly the integral I that we want to evaluate.
Even more interesting is the distribution itself of this random variable IN . It is made by the
sum of N random variables, for whom the distribution is difficult to evaluate. This is however
not important since the central limit theorem tells us that regardless of the distribution of
the random variable f(xi)/P (xi), if we sum many of such variables they will have a gaussian
distribution. Let us briefly derive this result again without any purpose of mathematical rigor.
If we have variables xi with the probability distribution P (x), let us compute the probability

distribution P(X) where X = 1
N

∑N
i=1 xi. For simplicity we assume that the xi are of zero

average xi = 0. The probability distribution P(X) is given by

P(X) =
∏
i

∫
dxiP (xi)δ(X −

1

N

N∑
i=1

xi)

=

∫
dλ

2π

∏
i

∫
dxiP (xi)e

iλ(X− 1
N

∑N
i=1 xi)

=

∫
dλ

2π
eiλX

∏
i

(∫
dxiP (xi)e

−i λN xi
)

=

∫
dλ

2π
eiλX

(∫
dxP (x)e−i

λ
N x

)N
(9.15)

One has thus the Fourier transform P (q = λ
N ) of the distribution function, at very small

argument λ/N if the number of terms in the sum is large. One can thus expand the Fourier
transform around q = 0. Since

∫
dxP (x) = P (q = 0) = 1, and assuming the function P (x) is

even to ensure that x = 0 one has

P (q =
λ

N
)N =

[
1−

(
λ

2N

)2

P ′′(0)

]N
= e−

λ2

2N P
′′(0)

(9.16)

Inserting in (9.15) one gets

P(X) =

∫
dλ

2π
eiλX−

λ2

2N P
′′(0) =

√
N

2πP ′′(0)
e
− NX2

2P ′′(0) (9.17)
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As can be seen the standard deviation of around the average value is decreasing as 1/
√
N ,

namely √
[IN − I]2

I
∼ 1√

N
(9.18)

In practice this means that the probability that the difference between the exact result I and
the approximate result IN can be larger than 1/

√
N is quite small. One can thus consider as

rule of thumb consider that approximate sum IN is getting the value of the integral with an
error of the order of ±1/

√
N . Note that such an error is independent of the dimension of the

integral or the sum. This statistic method of evaluating integrals thus gives an error which is
much less good than the simple Riemann sums for low dimensional integral but which will be
vastly superior when the dimension of the integral will be large. One can control de accuracy
of the result by getting more terms in the sum.

Of course one of the main question is to generate the random numbers with the probability
P (x). In general it is easy to find pseudo-random number generators with flat distributions,
but getting numbers with an arbitrary distribution is exactly the point we examine in the next
section.

9.3 Markov’s chains

In order to determine the algorithm to compute our random numbers let us introduce the
concept of Markov’s chains.

9.3.1 Definition

Let us give ourselves a random variable Xt depending on an index t and an evolution law which
gives the variable Xt+1 if we know the variable Xt. This defines a set of random variables
known as a Markov chain.

Note that the evolution law can be probabilistic as well. Loosely speaking the index t can
be viewed as a kind of discrete time. To define the evolution law we give P (X → Y ) the
probability to go from the variable X to the variable Y . Since P are probabilities one has
0 ≤ P (X → Y ) ≤ 1 and ∑

Y

P (X → Y ) = 1 (9.19)

where the sum can be replaced by an integral if the variables are continuous. If we call πt(X)
the probability to find the value X for the random variable in the Markov chain at “time” t
then one must have

πt+1(Y ) =
∑
X

πt(X)P (X → Y ) (9.20)

In the following we will restrict to a special class of Markov chains, which obey a more restrictive
condition known as detailed balance condition, which reads (for all X,Y )

πt(X)P (X → Y ) = πt+1(Y )P (Y → X) (9.21)

This condition expresses the fact that in the evolution the flow of probability going from X to
Y is compensated by the opposite flow. This let us expect that a steady state can easily be
reached by such Markov chains.
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9.3.2 Steady state

Let us now examine whether the Markov chain can reach a steady state. This means that the
probability distribution πt(X) will converge to a steady state probability distribution P(X) as
the time is growing.

Let us assume that such a distribution does exist. If this is the case it must obey the detailed
balance condition (9.21) which becomes

P(X)P (X → Y ) = P(Y )P (Y → X) (9.22)

Let us thus show that a distribution that obeys such a condition corresponds indeed to a steady
state distribution for the Markov chain. If the distribution at time t is given by P(X) then the
evolution condition (9.20) gives us for the distribution at time t+ 1

πt+1(Y ) =
∑
X

P(X)P (X → Y ) (9.23)

Using the condition (9.22) this becomes

πt+1(Y ) =
∑
X

P(X)P (X → Y ) =
∑
X

P(Y )P (Y → X) = P(Y ) (9.24)

which proves that the distribution P(X) that obeys the condition (9.22) is indeed a steady
state of the Markov chain. It also means that we can determine the steady state of the Markov
chain by simply looking at the condition (9.22).

Of course showing that such a steady state distribution exists, and we also have to show that
the probability distribution πt(X) does converge to it. For this let us define a “distance” to
such a steady state. Several choices are possible but let us take for simplicity the distance D
defined as

Dt =
∑
X

|πt(X)− P(X)| (9.25)

Let us now examine the distance at time t+ 1. It is given by

Dt+1 =
∑
X

|πt+1(X)− P(X)| (9.26)

By definition of the evolution and the fact that P is a steady state distribution one has

πt+1(X) =
∑
X

πt(X)P (X → Y )

P(X) =
∑
X

P(X)P (X → Y )
(9.27)

which inserted in (9.26) give

Dt+1 =
∑
X

|
∑
Z

(πt(Z)− P(Z))P (Z → X)|

≤
∑
X

∑
Z

|(πt(Z)− P(Z))|P (Z → X)

≤
∑
Z

|(πt(Z)− P(Z))|

≤ Dt

(9.28)
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the distance is thus reducing at each step of the Markov chain. The distribution πt(X) will
thus converge to the steady state distribution that obeys the detailed balance condition (9.22).

We now have a practical algorithm to generate random numbers with any distribution P(X).
The algorithm goes as follows:

1. We choose an evolution rule P (X → Y ) such that the condition (9.22) is fulfilled. For a
given distribution P(X) there can be of course many choices for such evolution.

2. We initialize the Markov chain with an arbitrary initial condition and let it evolve ac-
cording to the evolution rule P (X → Y ) chosen above.

3. After a certain time t0 the probability distribution πt(X) of the Markov chain should be
close enough to the distribution we want P(X). It means that the random numbers that
are generated by the evolution of the Markov chain will be generated according to the
distribution P(X). We can thus use these numbers.

Of course in practice there are a lot of subtle points that can influence the quality and speed
with which one can obtain the result with a given accuracy: the initial value of the Markov
chain, how many configurations are discarded initially etc.

9.4 Metropolis algorithm and simple example

Let us illustrate the above concepts on the very simple example of the calculation of

Ap =

∑
n n

pe−n
2∑

n e
−n2 (9.29)

where p is a fixed integer and n runs on all the relative integer numbers. Of course doing such
a simple sum using the Monte-Carlo technique is not the most efficient way to do it, but this
example is a baby version of the kind of calculations one would have to do in the more realistic
case of the Ising model.

In order to evaluate Ap we can use the formula (9.10) with the probability

P (n) =
e−n

2∑
n e
−n2 (9.30)

It means we have to generate integer random numbers with this probability. Once we have a
set n1, n2, . . . , nN of such numbers we can use them to compute

Sp =
1

N

N∑
i=1

npi (9.31)

which will be an approximation of the sum Ap.

Let us thus create our Markov chain. We introduce at each “time” a number nt that will be the
variable. We can start with any value for this number. Clearly the terms with weight in the
sum are for numbers not too different from zero so it might be a good idea to start with n0 = 0
but this is absolutely not mandatory. Then we have to make sure that we have an evolution
that can explore all the possible configurations, otherwise there would be terms in our sum
that we would simply and totally miss. There are of course many ways to ensure that, so let us
just choose one. We will first decide wether the system wants to increase or decrease nt by one
unity. For that we can use a uniform random number generator to decide on which direction
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(nt + 1 or nt − 1) the system would like to move. We generate a random number uniformly
distributed between say x ∈ [0, 1[ and then move on the left if 0 ≤ x < 1/2 and on the right
otherwise. Clearly such moves allow to reach any value of n after a certain number of steps.

To decide on what is the evolution law between nt and nt+1 we want it to obey (9.22), namely

e−n
2
tP (nt → nt+1) = e−n

2
t+1P (nt+1 → nt) (9.32)

Note that the normalization condition of the probability disappear, which simplifies considerably
the condition. There are several ways to obey this condition. We will give here the one that
was introduced by Metropolis et al. Let us assume that we make a move from a configuration
X to a configuration Y , with their respective probabilities π(X) and π(Y ). There are two
possibilities

1. π(Y ) > π(X): the new configuration is more probable. In that case one makes systemat-
ically the move. In other words P (X → Y ) = 1 in that case.

2. π(Y ) < π(X): the new configuration is less probably than the old one. In that case one
makes the move with the probability

P (X → Y ) =
π(Y )

π(X)
(9.33)

It is easy to see that this choice of evolution directly satisfy the condition

π(X)P (X → Y ) = π(Y )P (Y → X) (9.34)

In practice one performs the move in the following way. One computes the ratio of the prob-
abilities r = π(Y )/π(X). If it is greater than one the move is done. If not, one draws again
a random number x uniformly in the interval x ∈ [0, 1[, and one compares the two numbers r
and x. The move is done if x ≤ r, which indeed corresponds to a probability r.

The appendix Appendix B give an extremely simple and non-optimized version of a program
implementing this calculation.

A more sophisticated example is to look at the Ising model. The Hamiltonian is

H = −J
∑
i,z

σiσi+z (9.35)

where z is the set of vectors of nearest neighbors. and one wants to compute observables such
as the magnetization on one site which is given by

〈σi0〉 =
1

Z

∑
{σi}σi0e−βH (9.36)

One can compute the average by a monte-carlo technique. The idea is a simple generalization
of the above simple example

1. Pick a spin at random

2. Flip it and compute the difference of energy between the two configurations. Note that
this difference of energy only involves the spin and its neighbors and not the whole lattice.
It can thus be evaluated very quickly.

3. if the move is energetically favorable, do it, if not do it with the proper probability as
defined by the Metropolis algorithm

4. use these configurations to compute the sum 1
T

∑
t=1 Tσi0(t).
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9.5 Variational monte-Carlo

One can directly apply the above concepts to the quantum world. The simplest is the evaluation
of variational wavefunctions. This is known as variational monte-carlo. We will just describe
here the basic ideas. Let us imagine that one gives oneself a wavefunction |ψ〉. One example
is the Gutzwiller wavefunction (7.14). One needs to compute the average of some operator, for
example the Hamiltonian

E = 〈ψ|H |ψ〉 (9.37)

In order to do it let us introduce a complete basis |α〉 of the states of the system. A convenient
basis is for example the position of all the particles. In that case the above expressions can be
rewritten as

E =
∑
α

〈ψ|α〉〈α|H|ψ〉 =
∑
α

|〈ψ|α〉|2 〈α|H|ψ〉
〈α|ψ〉

(9.38)

One thus sees that it is perfectly possible to evaluate the sum over all the elements of the
complete basis |α〉 by a monte-carlo procedure. One can take |〈ψ|α〉|2 as the probability and
〈α|H|ψ〉
〈α|ψ〉 as the quantity that ones wants to compute. Each one of these quantity is quite simple

to compute in itself. For example if one has for |ψ〉 the wavefunction of free fermions, it is simply
a Slater determinant, which can be computed by a standard procedure in a time growing as
N3 where N is the number of particles (in fact here a trick allows to do the calculation faster).

The calculation is thus essentially exact, even if lengthy, since the evaluation of the probability
will cost a computer time which will grow quite fast with the number of particles.
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Useful formulas

We recall in this appendix some very useful formulas.

A.1 Normalizations in a finite volume

We consider a system in a box of volume Ω = Lx · · ·Lz in a space of d dimensions. In the
thermodynamic limit the boundary conditions are irrelevant and it is convenient to take periodic
ones. In that case the eigenstates for free particles are plane waves, whose wave-function satisfies

(r|k) =
1√
Ω
eir·k (A.1)

ensuring the normalization of the wave function over the volume Ω. To satisfy the periodic
condition one must have for each direction

kiLi = 2πp (A.2)

where p is a relative integer. This allows to go from a discrete sum over momenta to a continuous
sum using ∑

k

→ Ω

(2π)d

∫
ddk (A.3)

The allowed values of k depend on the nature of x. In the continuum all the values of k
satisfying the quantization condition are allowed. On a discrete lattice were x is stemming
from a basis vector set (i.e. on a square lattice x = (nxax, nyay, · · · , nzaz) where the ni are
relative integers and ai the lattice spacing) one must make sure not to double count. Only the
k belonging to the Brillouin zone should be counted. For the above square lattice this means
ki ∈ [− π

ai
, πai ].

In a same way using this representation we can define the Fourier transform over a finite volume.
If we have a function V (x) then

V (k) =

∫
ddx, e−ik·xV (x) (A.4)

with k spanning the first Brillouin zone. The inverse Fourier transform is defined by

V (x) =
1

Ω

∑
k

eik·xV (k) (A.5)
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A.2 Delta functions

One has often to use the δ function in various forms. Here are some useful formulas with it.

For a nice function f(x) one has ∫
f(x)δ(x) = f(0) (A.6)

To make change of variables

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi) (A.7)

where the xi are the zeros of the function f(x). i.e. f(xi) = 0.

The δ function has several integral representations, one of the most useful being∫
eiλx = (2π)δ(x) (A.8)

Essentially any function that has a peak whose height is going to infinity and width is going
to zero as a function of a parameter tends to a δ function (with the proper weight). This is in
particular the case of the Lorentzian

lim
λ→

λ

λ2 + x2
→ (2π)δ(x) (A.9)

Finally one has
1

x+ iλ
= P 1

x
− iπδ(x) (A.10)

when λ = 0+. Pf(x) denotes the principal part of the function f(x) (see below).

A.3 Complex plane integration

One often uses complex plane integration to compute several integrals difficult to compute
directly using standard integration.

The most useful formula is the Cauchy theorem. If one has a function f(z) of a complex variable
z. Then ∮

C

dzf(z) = ±2iπ
∑
zi

Res.f(zi) (A.11)

where C is a contour of integration in the complex plane that does not encounter any singularity
of the function f(z). In other words f(z) is an analytical function on the contour C. The sign
plus in the above formula is if the contour is done in the trigonometric direction, and the sign
minus if it is done in the anti-trigonometric (clockwise) direction. Even if f(z) is analytic on
the contour C is can have singularities (poles) elsewhere on the complex plane. In the above
sum, zi are the poles of the function f(z). Only the poles zi that are inside the area delimited
by the contour C must be counted in the sum. Res. f(zi) is the residue of the function f(z) at
the pole zi. Its value depends on the nature of the pole.

1. Simple pole: in that case in the vicinity of the pole zi, f(z) can be cast in the form

f(z) =
g(z)

z − zi
+ freg(z) (A.12)
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where g(z) and freg(z) are regular functions around zi. In that case

Res.f(zi) = g(zi) (A.13)

2. Double pole: in that case in the vicinity of the pole zi, f(z) can be cast in the form

f(z) =
g(z)

(z − zi)2
+ freg(z) (A.14)

where g(z) and freg(z) are regular functions around zi. In that case

Res.f(zi) = g′(zi) (A.15)

Similar formulas can be derived for higher order poles. The residue for a pole of order n being

1

(n− 1)!

dn−1g(z)

dzn−1

∣∣∣∣
zi

(A.16)

A.4 Some properties of operators

Let us denote |α) a complete basis of a vectorial space. The trace of the operator Â is defined
by

Tr[Â] =
∑
α

(α|Â|α) (A.17)

the value of the trace does not depend on the complete basis used. Operator order is important
in the trace, but the trace is invariant by cyclic permutation

Tr[ÂB̂Ĉ] = Tr[B̂ĈÂ] (A.18)

One denotes the commutators and anticommutator of two operators by

[Â, B̂]± = ÂB̂ ± B̂Â (A.19)

where the minus sign is for the commutator and the plus sign for the anticommutator. The com-
mutator is commonly denoted [, ] while the anticommutator will be denoted [, ]+. Commutators
and anticommutators verify the simple relations

[A,B]± = ±[B,A]±

[AB,C]± = A[B,C]± + [A,C]±B

[AB,C] = A[B,C]+ − [A,C]+B

(A.20)





CHAPTER B

Example of Monte Carlo program

Here is an example, in C, of a Monte Carlo program computing

Af =

∑
n f(n)e−n

2∑
n e
−n2 (B.1)

In the example given below f(n) =
√
|n|.

#include <cstdio>

#include <cstdlib>

#include <iostream>

#include <stdlib.h>

#include <time.h>

#include <math.h>

using namespace std;

double func(long);

int main ()

{

long n,nn,aa;

long disc,count,i;

double a,value;

char quit;

n = 0;

disc = 20000;

count = 100000000;

value = 0.0;

srand( (unsigned)time( NULL ) ); // init Rand() function

for(i=0;i < disc;i++)

{aa = rand() % 2;

if(aa == 0){

nn = n+1;}

else{

nn = n-1;

}

if(func(nn) > func(n)){n = nn;}
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else{a = (double)rand() / (double)RAND_MAX;

if(a < func(nn)/func(n)){n = nn;}

}

}

for(i=0;i < count;i++)

{aa = rand() % 2;

if(aa == 0){

nn = n+1;}

else{

nn = n-1;

}

if(func(nn) > func(n)){n = nn;}

else{a = (double)rand() / (double)RAND_MAX;

if(a < func(nn)/func(n)){n = nn;}

}

value = value + sqrt(abs(n));

}

value = value/count;

cout << "Integrale = " << value << endl;

cin >> quit;

return 0;

}

double func(long n)

{ double a;

a = n;

return exp(-a*a);

}
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