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We analyze the relaxation dynamics in an open system, composed by a quantum gas of bosons in a
lattice interacting via both contact and global interactions. We report the onset of periodic oscillations of
the atomic coherences exhibiting hallmarks of synchronization after a quantum quench. The dynamical
behavior exhibits the many-body collapse and revival of atomic coherences and emerges from the interplay
of the quantum dissipative nature of the cavity field and the presence of a (approximate) strong symmetry
in the dissipative system. We further show that the approximate symmetry can dynamically self-organize.
We argue that the approximate symmetry can be tailored to obtain long-lived coherences. These insights
provide a general recipe to engineer the dynamics of globally interacting systems.
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Open system and measurement control have attracted an
enormous interest in the last decade for the engineering of
many-body quantum systems [1–6]. Most proposals target
the creation of interesting steady states, e.g., topological
states of fermionic matter [7], nontrivial transport proper-
ties [8], quantum phases stemming from long-range spin
interactions [9–13] or exhibiting dynamical synthetic gauge
fields [14–19]. Much less attention has been devoted to the
design of environments affecting the dynamical properties
of a quantum system [20–24]. In this case, the dynamics
of correlations needs to be carefully considered [21].
For example, even though the BCS superconducting state
itself can be prepared using dissipative dynamics [25],
nevertheless, the desired superconducting current-current
correlations are not present as long as the dissipative
coupling is applied [21].
In this Letter, we present a general recipe on how to use

the intricate interplay of dissipation and symmetries to
engineer intriguing metastable and dynamical phenomena
in open quantum systems. We exemplify this by designing
long-lived synchronized oscillations of interacting bosonic
atoms coupled to an optical cavity. The realization of long-
lived coherences relies on employing dissipative state
engineering and protecting the dynamics via strong sym-
metries, being related to purely imaginary eigenvalues of
the Liouvillian operator, i.e., rotating coherences [26]. The
coupling between atoms and cavity selectively stabilizes
the atomic correlations, which can exhibit synchronization
[27,28]. In the considered example, we select a spatiotem-
poral pattern such that the coherences between sites at even
distances exhibit long-lived oscillations, while the coher-
ences at odd distances are strongly suppressed [see sketch,
Fig. 1(a)]. We show that the quantum nature of the cavity
field is essential in determining this dynamics and that the

self-organization of the approximate symmetry can lead to
a similar behavior.
One important element for understanding and tailoring

the dissipative dynamics is the spectrum of the Liouvillian
governing the evolution of the density matrix. The dis-
sipative processes determine the complex nature of the

FIG. 1. (a) Sketch of ultracold atoms in an optical lattice
potential. The operator Oe probes the coherence between sites
at even distance and Oo at odd distance. (b)–(d) Eigenvalues
spectra of the Liouvillian modeling the Bose-Hubbard model
coupled to a dissipative cavity mode, Eq. (1), obtained with ED
for L ¼ 4 sites, N ¼ 2 particles, ℏΩ

ffiffiffiffi
N

p
=J ¼ 1323, ℏδ=J ¼

5000, ℏΓ=J ¼ 750, U=J ¼ 10. We show the lowest (b) 1000
(c) 50 (d) 34 eigenvalues, where panels (c) and (d) are zoom ins
of (b) and (c) at the right of the vertical dashed gray lines (as
depicted by the gray arrows). Pn marks the subspaces contain-
ing n photonic excitations, with Λ0 and Λ1 corresponding to the
decoherence free subspace and the first excited subspace for
vanishing J. Oe couples mainly to states in Λ0 and Oo to states
in Λ1. (e) The dependence on the on-site interaction U of the
imaginary part of the lowest eigenvalue whose imaginary part is
in the range ½0.75U; 1.25U�.
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eigenvalues, which in the case of large dissipation rates Γ,
are clustered in bands, with gaps between the real parts
proportional to Γ. However, in many-body and hybrid
systems, the situation can be much more complex and
eigenstates can exist with decay rates smaller than Γ. For an
atomic gas coupled to a lossy bosonic mode the Liouvillian
L is given by [29,30]

∂

∂t
ρ ¼ Lρ ¼ −

i
ℏ
½H; ρ� þ Γ

2
ð2aρa† − a†aρ − ρa†aÞ; ð1Þ

where a is the annihilation operator for the bosonic mode.
An exemplary spectrum of L, when H describes a Bose-
Hubbard model coupled to a dissipative cavity, is shown
in Fig. 1(b), determined using exact diagonalization (ED).
Due to the direct dissipative coupling to the photon losses,
most eigenstates of L have eigenvalues whose real part
is ∝ Γ, e.g., in the subspaces P1 and P2, signaling an
exponential decay of their contribution to the time depen-
dent density matrix. Instead, subspace P0 contains coherent
photonic states that do not couple directly to dissipation and
have a metastable nature, protected from the fast decay.
Dissipative engineering [3] often employs the decoherence
free subspace Λ0 (subspace of P0), i.e., corresponding to
eigenvalues with vanishing real parts.
Generically, the Hamiltonian in Eq. (1) can be written as

H ¼ Hc þHac þHð1Þ
a þHð2Þ

a , where Hc describes the free
bosonic mode, Hac ∝ ðaþ a†ÞΔ contains the coupling of
the mode to an atomic operator Δ, and the other terms

describing the atomic processes include Hð1Þ
a , which

commutes with Δ, and Hð2Þ
a , which does not commute

with Δ. In the limit of vanishing Hð2Þ
a , exciting possibilities

arise to engineer dynamical features within the metastable
subspace P0, as in its absence a strong symmetry is present
[26,31]. The symmetry generator Δ commutes with both
the Hamiltonian and the jump operator. This gives another
handle on controlling the dynamics, as the evolution in
distinct symmetry sectors is independent, each with its
own steady or rotating states. Within P0, the subspace Λ1 is
generated by coherences between eigenstates of Δ at
different eigenvalues [32], while Λ0 contains steady states
and coherences between degenerate eigenstates of Δ.
Furthermore, Hð1Þ

a can lift the degeneracy within the
eigenspaces of Δ. As a result, the Liouvillian can exhibit
purely imaginary eigenvalues [32,45], offering a route for
realizing synchronization. Thus, by designing the dissipa-
tive coupling, here via Hac, we can choose which dynami-
cal features are rapidly suppressed [e.g., in Fig. 1(c)
correlations probing the excited subspace Λ1] and which
are protected up to long times (with dynamics dominated
by the lowest subspace Λ0). For example, the expectation
value of an operator Oo coupling only distinct eigenstates
of Δ [subspace Λ1 in Fig. 1(c)] experiences fast oscillations
and rapid decay to its steady value, compared to Oe, which

only couples degenerate eigenstates of Δ [subspace Λ0 in
Figs. 1(c) and 1(d)].
In the presence of the strong symmetry to probe the

dynamics of the different symmetry sector one needs to
carefully prepare the initial state. To circumvent this

problem, we consider a finite contribution fromHð2Þ
a , which

breaks the symmetry. If one slightly breaks a strong
symmetry [46], it generally reduces the number of steady
states, giving rise to slowly decaying states forming the
subspace Λ0 within P0. The decay timescale of these
symmetry protected metastable states depends on the
magnitude of the symmetry breaking term and can poten-
tially be much smaller than the dissipative gaps of the
Liouvillian in the presence of the strong symmetry. For
example, the states shown in Fig. 1(e) would have zero real

part in the limit Hð2Þ
a ¼ 0; however, even with a finite

contribution their real parts are still much smaller than the
gap to Λ1. We envision these approximate strong sym-
metries as a tool for the design of metastable states of the
Liouvillian [22,47–49], where we can control their lifetime
by the magnitude of the symmetry breaking term. Thus, we
consider a protocol in which we start from the ground state

of Hð1Þ
a þHð2Þ

a , containing the coherences of interest, and
quench the coupling to the bosonic mode, considering a
separation of scales with respect to the atomic processes.
This induces the dissipative dynamics in the presence of the
approximate strong symmetry.
We exemplify the recipe for a one-dimensional lattice of

interacting bosonic atoms inside a high finesse cavity,
transversely pumped with a standing-wave laser beam and
exhibiting photon losses [50–52]. This showcases a dis-
sipative many-body realization of the collapse and revival
of coherences. Such dynamics has been discussed in closed
systems for both matter and light fields [53–56], and has
been observed for the matter field of a Bose-Einstein
condensate [57], or nuclear spins [58]. For our example,
the Hamiltonian contains Hc ¼ ℏδa†a, with δ the cavity-
pump detuning. The period of the lattice is chosen to
be twice the period of the cavity mode, such that the
cavity effectively couples to the even-odd atomic density
imbalance, Hac ¼ −ℏΩðaþ a†ÞΔ;Δ ¼ P

jð−1Þjnj, with
the coupling strength Ω. The coupling commutes with

the atomic repulsive on-site interactions, Hð1Þ
a ≡Hint ¼

ðU=2ÞPL
j¼1 njðnj − 1Þ, of strength U, and competes with

the kinetic processes, Hð2Þ
a ≡Hkin ¼ −J

P
L−1
j¼1 ðb†jbjþ1þ

H:c:Þ, with amplitude J. Interacting bosonic lattice models
coupled to an optical cavity have been realized experi-
mentally [59–61], while theoretical studies focused mostly
on steady state properties [46,51,52,62–74].
We analyze the quench scenario with the atoms in their

ground state and the atoms-cavity coupling suddenly turned
on. We perform the exact time evolution of Eq. (1) using
a recently developed method based on time-dependent
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matrix product states (tMPS); see Refs. [32,75]. We
complement our understanding with analytical results in
the limit J → 0 [32,75] and ED for small systems. These
approaches go beyond the often employed mean-field
treatment of the cavity-atoms coupling [52]. To emphasize
the role of the cavity field, we contrast our tMPS results of
the atom-cavity system with the dynamics of a Bose-
Hubbard model in the presence of a classical light field, i.e.,
a superlattice potential. The superlattice potential VðtÞ can
be obtained as a mean-field description of the coupled
dynamics, Eq. (1), when the cavity is assumed to be a
coherent state. The Hamiltonian in this situation is given by
HMF ¼ Hint þHkin − VðtÞΔ [32], and we refer to it as the
classical field approach.
Results in the presence of the approximate strong

symmetry—Our analysis begins in the regime of vanishing
tunneling J ¼ 0, where analytical results can be obtained
[32]. This is motivated by the strong symmetry arising at
J ¼ 0, as local densities are conserved quantities, commut-
ing with bothH and a [26,31]. These results provide crucial
information to our understanding also at small finite J,
where the sectors of the symmetry are a good approximate
description. We show the ED spectra ofL in Figs. 1(b)–1(d)
for a small system, for parameters similar to the experiment
performed in [60].
The subspaces Pn, in Fig. 1(b), correspond to excitations

on top of the photonic coherent state, for which the main
contribution to the real part is given by nℏΓ=2 and by ℏδ to
the imaginary part. The subspaces with n > 0 show a fast
decay and are important only for the short time dynamics.
Therefore, we focus the analysis on P0, and in particular on
the lowest two subspaces Λ1 and Λ0, Fig. 1(c). Here the
photons are in a coherent state determined by the atomic
density distribution. Λ1 contains excited states capturing
the coherence between different atomic distribution char-
acterized by imbalances Δ and Δ� 2. These coherences
decay with a rate depending, at large dissipation strength,
inversely on Γ [32], as known from the Zeno effect. In
contrast, Λ0 consists of eigenstates with vanishing real part,
protected by the strong symmetry for J ¼ 0. As detailed
in [32], there are several types of states in Λ0, steady states
of the form ρ0;st ¼ jαðΔÞ; fnjgi hαðΔÞ; fnjgj, or traceless
coherences ρ0 ¼ jαðΔÞ; fnjgi hαðΔÞ; fn0jgj between states
with different density distribution and the same odd-even
imbalance. When the latter describes a coherence between
states with different interaction energies, its eigenvalue has
a finite imaginary part [orange line in Fig. 1(d)]. Such states
are called rotating coherences and lead to persistent
synchronized oscillations in the long-time limit [26–28].
We checked the dependence of the imaginary part on U for
the ED results for small J in Fig. 1(e), recovering the linear
dependence expected for J ¼ 0.
We observe that a finite J, smaller than the J ¼ 0 gap

between Λ1 and Λ0, induces a finite real part to all
eigenvalues, except one, lying in Λ0, in Fig. 1(d). This

marks the transition from multiple steady states due the
strong symmetry to a single steady state in absence of the
symmetry. The slight breaking of the symmetry creates a
subspace of long-lived metastable states only weakly
coupled to dissipation, which dominate the long-time
dynamics, as seen in the time-evolution of the atomic
correlations, Figs. 2(a) and 2(b) [same parameters as
Figs. 1(b)–1(e)]. We depict the time-evolution of the single
particle correlations, Re hb†4b4þdi, obtained with the tMPS
approach of simulating Eq. (1), for a larger system [32].
For odd distances d the correlations probe the evolution of
the states contained in Λ1, while for even distances d they
probe the states in the subspace Λ0. We observe extremely
different timescales for odd and even correlations, repro-
ducing very well the dynamics we aimed to engineer and
characterized in terms of the approximate strong symmetry.
At even distances the single particle correlations show
oscillations [Fig. 2(a)], whose frequencies are determined
by the value of U [red points and line in Fig. 2(e)]. The
oscillations are only weakly damped on the tunneling

FIG. 2. Time evolution of the single particle correlations
Re hb†4b4þdi. (a),(b) The exact description of the cavity,
Eq. (1), and (c),(d) classical field approach, for ℏΩ

ffiffiffiffi
N

p
=J ¼

1323, ℏδ=J ¼ 5000, ℏΓ=J ¼ 750, U=J ¼ 10, N ¼ 7, L ¼ 14.
The dashed black curve in (a),(b) represents an exponential fit of
the decay of the maxima for Re hb†4b5i. The dashed black curve in
(c),(d) represents the interpolated behavior of the maxima of
Re hb†4b5i for the classical field case. (e) Inverse timescales for
dissipative quantum dynamics, the data is extracted from the
tMPS evolution and the lines are the J ¼ 0 eigenvalues [32], with
red jImλ0j ¼ U, brown jRe λ1j ¼ ½ð2ℏΩ2ΓÞ=ðδ2 þ Γ2=4Þ�, and
jImλ1j ¼ ½ð4ℏΩ2δÞ=ðδ2 þ Γ2=4Þ�ð1 − ΔÞ in green (Δ ¼ 7), pur-
ple (Δ ¼ 5) and orange (Δ ¼ 3). (f) Inverse timescales for
classical field dynamics, extracted from the numerical simula-
tions with circles and the late time value of the potential
V0 ¼ Vðt ≈ 5Þ and V0 � U with squares.
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timescale J. In contrast, for odd distances both the
frequencies of the oscillations and their exponential decay
to a small value occur on much faster timescales [Figs. 2(a)
and 2(b)]. We extract these timescales and obtain very good
agreement with the analytical eigenvalues of Λ1 in Fig. 2(e)
(brown for the decay rate and green, purple and orange for
the frequencies). We note that at J ¼ 0 the synchronized
oscillations are related to the fact that the operators b†i biþd,
for d even, can be used to construct the eigenstates with
purely imaginary eigenvalues [27,28,32]. Similar dynami-
cal behavior can also be observed in evolution of the pair
correlations [32].
We highlight the importance of the dissipative quantum

nature of the cavity by comparing with the case
of a classical field realizing a superlattice potential HMF
[Figs. 2(a) and 2(b) in contrast to Figs. 2(c) and 2(d)].
For the single particle correlations at even distances the
oscillation frequency is the same for the quantum and
classical cases, given by U, but for the classical potential
the oscillations do not show an attenuation for the times
shown [Fig. 2(c)]. For odd distances the difference in
behavior is even more striking, for the classical field the
frequencies of the oscillations are given by the height of the
potential and on-site interactions [see Figs. 2(d) and 2(e)],
and the oscillations do not decay up to long times [dashed
black line in Fig. 2(c)]. Thus, the suppression of the
correlations at odd distances is due to the open quantum
nature of the cavity and cannot be explained at a mean-
field level by a classical superlattice potential. We note
that the dynamical behavior cannot be recovered even if
one adds stochastic noise in the dynamics of the classical
coherent field [32].
Photon number dynamics—An interesting question is

which timescales are reflected in the relaxation of the
photon number. We observe in Fig. 3(a) that after an initial
fast increase the photon number exhibits damped oscil-
lations followed by a plateau. The oscillations frequency is

consistent with the value of δ and the fast decay with the
inverse timescale of Γ=2 [see Fig. 3(b) and [32] ], corre-
sponding to P1 [Fig. 1(b)]. We note that the photon number
has not reached the steady state for the latest time shown; in
Fig. 3(a), the long time dynamics corresponds to timescales
set by the subspace Λ0. Additional information is obtained
by investigating the single quantum trajectories sampled in
our numerical method. The photon number indicates that
the trajectories are projected quickly to subspaces spanned
by states with the same imbalance Δ [32]. These results
can be interpreted in connection with the phenomenon of
dissipative freezing for the case of an approximate strong
symmetry [46,76,77].
Cavity-induced self-organized synchronization—So far

we made the connection between the timescales observed
in the single particle correlations and the eigenvalues of the
Liouvillian for small J in the regime of large detuning and
dissipation. Next, we show that even in regimes initially far
from the strong symmetry, due to the self-organization of
the cavity-atom system, an approximate symmetry arises,
protecting synchronized long-lived coherences. To show
this, we consider the very challenging regime where all
parameters are comparable; see Fig. 4. In this situation, it is
much harder to obtain analytical insights or track individual
eigenvalues in the spectrum, however, the tMPS method
allows for simulations up to long times.
At strong atoms-cavity coupling, deep in the self-

organized phase [71,72], we observe very similar synchron-
ized oscillations in the atomic correlations at even distances
as before, surviving up to very long times [Fig. 4(a)].
In contrast, for a coupling close to the self-organization
threshold the oscillations are absent [Fig. 4(b)]. In order to

FIG. 3. (a) Time evolution of the photon number, Eq. (1).
Dashed orange line corresponds to an exponential fit of the
decay of the short time oscillations, with a decay rate τ−1=J¼
261�12≈ℏΓ=2J. (b) The frequency (magenta) and decay
rate (gray) of the short time oscillations of the photon number
versus ℏΓ=J, the points correspond to the tMPS simulations
and the lines are given by jRe λP1

j ¼ ℏΓ=2 and jImλP1
j ¼ ℏδ.

Parameters used are L ¼ 14, N ¼ 7, ℏδ=J ¼ 5000, U=J ¼ 10,
(a) ℏΩ

ffiffiffiffi
N

p
=J ¼ 6614, ℏΓ=J ¼ 500, (b) ℏΩ

ffiffiffiffi
N

p
=J ¼ 1323.

FIG. 4. (a),(b) Time evolution of the single particle correlations
Re hb†4b4þdi (a) for a strong coupling ℏΩ

ffiffiffiffi
N

p
=J ¼ 3.35, (b) for

weak ℏΩ
ffiffiffiffi
N

p
=J ¼ 1.72 and U=J ¼ 2, L ¼ 14, N ¼ 7,

ℏΓ=J ¼ 1, ℏδ=J ¼ 2. (c),(d) Frequencies extracted from the
dynamics of correlations as a function of U and Ω. The lines
at ω ¼ U (brown) and ω ¼ V0 (dark red) represent the expect-
ation for the collapse and revival dynamics for a deep superlattice,
where V0 ¼ Vðt ≈ 75Þ.
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verify that the oscillations occurring in this regime are
induced by coherences between states with different inter-
action energies, we compute the scaling of their frequency
withU [Fig. 4(b)]. We obtain the linear scaling withU as for
the ED results in Fig. 1(e) in the regime of small J.
Furthermore, going deeper into the self-organized phase
by increasing ℏΩ

ffiffiffiffi
N

p
=J, the higher value of the two

frequencies approaches the value U; see Fig. 4(d). This
implies that the states with coherences between configura-
tions with the same imbalance, but different interaction
energies, are long lived metastable states, producing the
oscillations observed. For large Ω the atoms feel a strong
self-organized potential, suppressing the atomic tunneling
and giving rise to an emergent approximate strong sym-
metry, similarly to small J regime. In contrast to the small J
case, in this situation a similar synchronized oscillatory
behavior and dependence of the frequencies is recovered
from the simulations in a classical potential [Figs. 4(a)–4(d)]
and the correlations at odd distances are not suppressed to
such a small value as before, Fig. 4(a). After an initial decay
the correlations saturate to a finite value comparable to the
value obtained in the classical potential. However, in the
classical potential the correlations at odd distances exhibit
oscillations induced by the height of the potential [Fig. 4(d)
upper part], not present for the coupling to the cavity.
Conclusions—We investigated how the dynamical prop-

erties of interacting atoms can be controlled by the coupling
to the quantum field of a dissipative cavity. We show that by
engineering the coupling to the cavity the dynamics of
atomic correlations strongly depends on the distance
between the sites they probe. In particular, for the single
particle correlations at even distances we recover a dis-
sipative analog of the collapse and revival behavior,
exhibiting metastable synchronization, i.e., oscillatory
evolution up to long times, with the frequency set by the
atomic interactions. In contrast, the coherences at odd
distances are strongly suppressed on short times, with the
timescales set by the cavity parameters and atoms-cavity
coupling strength. Important insights are obtain by con-
sidering the approximate strong symmetries of the open
atoms-cavity system. The suppression of the odd correla-
tions stems from the fact that they probe subspaces of the
Liovillian with large decay rates, while the dynamics of
even correlations is contained close to the decoherence
free subspace protected by the symmetry. This offers the
opportunity to induce nontrivial dynamical behavior in
other many-body dissipative quantum systems. We further
show that the approximate symmetry can arise dynamically
in self-organized regime. Experimentally, the synchroniza-
tion dynamics of the coherences would be visible in the
momentum distribution [32] obtained in time-of-flight
measurements [57]. However, the momentum occupations
have contributions from all single particle correlations,
thus, to probe their very different evolution in situ coher-
ence measurements would be needed.
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