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We investigate the steady state phase diagram of fermionic atoms subjected to an optical lattice and
coupled to a high finesse optical cavity with photon losses. The coupling between the atoms and the cavity
field is induced by a transverse pump beam. Taking fluctuations around the mean-field solutions into
account, we find that a transition to a self-organized phase takes place at a critical value of the pump
strength. In the self-organized phase the cavity field takes a finite expectation value and the atoms show a
modulation in the density. Surprisingly, at even larger pump strengths two self-organized stable solutions of
the cavity field and the atoms occur, signaling the presence of a bistability. We show that the bistable
behavior is induced by the atoms-cavity fluctuations and is not captured by the mean-field approach.
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The emergence of a bistability is a fascinating effect
often occurring in nature. Such bistable systems can reach
two distinct stable states depending on their history, i.e. the
preparation procedure, or their previous dynamics. This
concept is important in many scientific fields as for
example in biology, chemistry, engineering, and physics.
The presence of a bistability leads to profound implica-
tions, since the dynamics of the system can become highly
sensitive to the initial conditions and external perturbations.
One very well known bistability in physics is the optical

bistability [1]. This phenomenon occurs due to nonlinear
effects, causing the existence of two stable states with
different light intensities. A typical device is the Fabry-
Perot cavity containing a nonlinear optical medium with
a refractive index depending on the light intensity.
Furthermore, the underlying nonlinearity can also emerge
from the optomechanical interactions of a cold atomic gas
coupled to the field of the optical cavity [2], e.g., as it has
been recently investigated for the fermionic atoms in
optical cavities throughout the BEC-BCS crossover [3].
Whether bistabilities can also occur in presence of

dissipation is of course an important question. Bistable
behaviors have been indeed identified around dissipative
quantum phase transitions, either due to the spontaneous
breaking of a weak-symmetry [2,4–14], or due to the first
order character of the transition [15–25]. In the latter, a
hysteresis behavior between the two competing phases can
appear, depending on the nature of the initially prepared
state. However, typically in these cases the bistability
occurs within a mean-field approach and the competing
states resolve to metastable states when quantum fluctua-
tions around the mean-field solutions are taken into account
[7,26–28]. In such cases the quantum dynamics exhibits a
unique steady state, with the density matrix consisting of
the admixture of the mean-field bistable states. This is in

contrast to the presence of multiple stable steady states
occurring from the presence of a strong symmetry [29–32].
Intriguingly, in equilibrium, for classical systems or

systems described by Ginzburg-Landau type theories, such
as magnets, superconductors, or liquid crystals, fluctua-
tions have been shown to change the nature of a phase
transition from second-order to a first-order character
[33–37], with a coexistence of phases possible around
the critical point [38].
Here we show a novel mechanism, which we refer to as

fluctuation-induced bistability, in which bistability occurs
in a dissipative quantum system, only if quantum fluctua-
tions around a mean-field solution are taken into account.
We identify this phenomenon for interacting spinful fer-
mionic atoms confined to optical lattices and coupled to the
field of a dissipative cavity, a paradigmatic example of an
open quantum system. We include the fluctuations in the
atoms-cavity coupling on top of the mean-field solution
resulting from the adiabatic elimination of the cavity field.
The fluctuations induce a thermalization process resulting
in steady states with a self-consistently determined temper-
ature. In the strong atoms-cavity coupling regime two
(several) different self-organized states exist, which differ
in their effective self-consistently determined temperatures.
Whereas the dominant contribution is the same in both
bistable solutions, the nature of the admixed excited states
change. In particular, in the second steady solution, excited
states with double occupied sites become crucial, with a
cooling mechanism emerging due to resonant photon-
assisted transitions between states with double occupancies
and other atomic excitations [see sketch Fig. 1(c)]. Thus,
we pinpoint the origin of the multistability in the inter-
play between the short-range atomic interactions and
the global-range coupling via the cavity-induced self-
consistent potential. We show the existence of the

PHYSICAL REVIEW LETTERS 134, 133602 (2025)

0031-9007=25=134(13)=133602(8) 133602-1 © 2025 American Physical Society

https://orcid.org/0009-0009-6235-8802
https://orcid.org/0000-0002-2738-955X
https://orcid.org/0000-0001-7409-5071
https://orcid.org/0009-0001-3014-748X
https://orcid.org/0000-0002-8344-5595
https://ror.org/041nas322
https://ror.org/01swzsf04
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.133602&domain=pdf&date_stamp=2025-03-31
https://doi.org/10.1103/PhysRevLett.134.133602
https://doi.org/10.1103/PhysRevLett.134.133602
https://doi.org/10.1103/PhysRevLett.134.133602
https://doi.org/10.1103/PhysRevLett.134.133602


fluctuation-induced bistability is independent of the dimen-
sionality of the atomic gas and we expect that the under-
lying mechanism is present in a large class of atoms-cavity
models with comparable atomic and photonic energy
scales. The need to consider the fluctuations around the
mean-field solution is even more remarkable, due to the
general belief of the validity of mean-field methods for
long-range couplings.
The considered platform of ultracold atoms coupled to

optical cavities has established itself for the study of
dissipative phenomena [2,39]. Experimentally, bosonic
atoms have been placed in cavities both as three-dimen-
sional Bose-Einstein condensates [4,40–45], or confined
additionally to an optical lattice [46–49], more recently also
the coupling between cavities and cold fermionic gases has
been realized [3,50–53]. Generally, these type of systems
exhibit a phase transition between a normal phase with an
empty cavity and a self-organized phase exhibiting a finite

cavity occupation [2]. The theoretical studies for fermionic
systems have focused on the nature of the self-organization
phase transition [54–61], employing the attractor dynamics
to stabilize exotic states of matter [62–70], topological
effects [71–76], pairing in superfluids [77], or aspects of the
nonequilibrium dynamics [78,79].
The dissipative dynamics of the cold atomic gas in an

optical cavity [as sketched in Fig. 1(a)], pumped with a
standing-wave transverse laser beam far-detuned from the
atomic resonance, can be described by a Lindblad master
equation [2,39,80–82]

d
dt

ρ̂ ¼ −
i
ℏ
½Ĥ; ρ̂� þ Γ

2
ð2â ρ̂ â† − â†â ρ̂−ρ̂â†âÞ: ð1Þ

Here ρ̂ is the density matrix containing both the atomic and
photonic degrees of freedom. The dissipator with amplitude
Γ describes photon losses from the cavity mode by the
photon annihilation jump operator â. The Hamiltonian is
given by Ĥ ¼ ĤFH þ Ĥcav þ Ĥac [2,39]. The first term is
the Hubbard model ĤFH ¼ −J

P
hj;li;σðĉ†jσ ĉlσ þ H:c:Þþ

U
P

j n̂j↑n̂j↓, where ĉjσ and ĉ†jσ are fermionic operators
for the atoms on site j and spin σ ∈ f↑;↓g, hj; li denotes
neighbouring sites, and the local density operator is
n̂j;σ ¼ ĉ†j;σ ĉj;σ . L is the number of sites along each
dimension of the lattice system d and N the total number
of atoms. J is the tunneling amplitude and U > 0 the
repulsive on-site interaction strength. The second term
Ĥcav ¼ ℏδâ†â, describes the cavity mode in the rotating
frame of the pump beam, with δ the detuning between
the cavity mode and the transverse pump beam. The
laser-assisted dispersive atoms-cavity coupling, Ĥac ¼
−ðℏg=

ffiffiffiffiffiffi
Ld

p
Þðâþ â†ÞΔ̂, is chosen such that the cavity mode

is commensurable with twice the periodicity of the lattice
spacing. This effectively creates a bipartite lattice with
different sublattices A;B and a coupling of the cavity field
to the imbalance between the occupation of the different
sublattices Δ̂ ¼ P

j∈A;σ n̂jσ −
P

l∈B;σ n̂lσ with the effec-
tive pump strength g [82]. We note that we do not consider
in Ĥac the dispersive coupling ∝ â†â Δ̂ [2], which often
leads to bistabilities due to optical nonlinearities.
A common method for dealing with cavity-atoms sys-

tems is to adiabatically eliminate the cavity mode and
perform a mean-field approximation for the coupling term
Ĥac [in the following called zero-temperature mean-field
method (T ¼ 0MF)] [2,39]. After a fast decay, the photons
are assumed to be in a coherent state with λ≡ hâþ
â†i=

ffiffiffiffiffiffi
Ld

p
¼ f2gδ=½δ2 þ ðΓ=2Þ2�gðhΔ̂i=LdÞ and the atoms

in the self-consistently determined ground state of the
effective Hamiltonian Ĥeff ¼ ĤFH − ℏgλΔ̂. We note that
the MF treatment breaks the weak Z2 symmetry of the
model, ðâ; Δ̂Þ → ð−â;−Δ̂Þ, thus, in the following we

FIG. 1. (a) Fermi-Hubbard system coupled to a single-mode
cavity. The two fermion species have an on-site interaction U and
a tunneling amplitude J. They are coupled globally to the cavity
mode, strength g, by pumping with a retroreflected transverse
laser beam. Photons with a detuning δ leak through the mirrors at
rate Γ. (b), (c) Sketches of important excited-state transitions in
the cavity potential with effective energy difference 2gλ, where
the rescaled cavity field λ ¼ hâþ â†i=Ld is the order parameter.
Resonances between the higher energy sites and doubly occupied
sites play a crucial role in the physics (see text). (d) Scaled photon
number Npho as a function of atom-cavity coupling g. The color
of the points represents the effective self-consistently determined
temperature T=Tmax. The black line is the atom-cavity mean-field
result (T ¼ 0 MF). The sketches highlight the dominant occu-
pations contributing to the different steady states. The yellow-
colored contribution is the dominant excited state admixed by the
self-consistent effective temperature.
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restrict ourselves to the solution with hâi ≥ 0, resulting in
the A sublattice to have the lower energy.
However, the fluctuations in the coupling were shown to

play an important role in the determination of the steady
state in several setups [28,32,83–87]. Therefore, we employ
a recently developed method, based on the many-body
adiabatic elimination technique [88–93], to include per-
turbatively the fluctuations on top of the atoms-cavity
mean-field [32,85]. Because of the complexity of the resul-
ting equations, we perform a further approximation assum-
ing the atomic steady state to be a thermal state, ρ̂at ¼
e−βĤeffðλÞ=Z. This is motivated by the level spacing dis-
tribution of Ĥeff obeying Gaussian orthogonal ensemble
(GOE) statistics in the presence of the staggered
potential [94].
Importantly, the fluctuations in the atoms-cavity cou-

pling determine the effective temperature at which
the atomic system thermalizes and by this causes the
admixture of excited states of the effective Hamiltonian
in the density matrix of the system, in contrast to the
T ¼ 0 MF method. The effective inverse temperature β ¼
1=kBT and the cavity field strength λ are determined self-
consistently from the mean-field relation and the steady
state condition of the energy transfer ð∂=∂tÞhĤeffiT ¼ 0
[85,95], given by

∂

∂t
hĤeffiT ∝

Z
dω

ℏω Im ½χTðωÞ�
1 − e−βℏω

Γ=ð2πÞ
ðωþ δÞ2 þ ðΓ=2Þ2 ; ð2Þ

with self-consistently computed retarded susceptibility of
the operator Δ̂, χTðωÞ ¼ −ði=ℏÞ R∞

0 dteiωth½Δ̂ðtÞ; Δ̂ð0Þ�iT ,
which is evaluated for the thermal state ρ̂at. As sketched in
Fig. 1(d), this approach leads to different values of the
temperature throughout the phase diagram and, as we
discuss in the following, is one of the crucial ingredients
for the occurrence of the bistability. To gain further insights
regarding the self-consistent solutions, it is useful to go to
the spectral representation of the energy transfer, namely,

∂

∂t
hĤeffiT ∝

X
n;m

jΔnmj2
e−βEmðEn − EmÞΓ

ðEn − Em þ ℏδÞ2 þ ðℏΓ=2Þ2 ;

with En the energy of the eigenstate jni of Ĥeff and Δnm ¼
hnjΔ̂jmi [85,97].
In the following, we investigate the case of equal number

of spin-up and spin-down particles. While we do not
explicitly consider the total spin symmetry sectors, we
checked that we obtain the same effective temperatures in
typical spin sectors.
The nontrivial self-consistent solution(s) obtained might

not be stable. Thus, we generalized the criterion of their
stability [2,98,99] for finite temperature states [95]. We
determine the stability under variation of the cavity field
quadratures, considering the λ dependence of EnðλÞ; βðλÞ
and ΔnmðλÞ, and obtain that for stable solutions the
following holds

δ2þðΓ=2Þ2
2δg

>
X
n

e−βEn

LdZ

�
∂Δnn

∂λ
−Δnn

�
∂β

∂λ
Enþβ

∂En

∂λ

��

þ
X
n;m

e−βðEnþEmÞ

L2dZ2
Δnn

�
∂β

∂λ
Emþβ

∂Em

∂λ

�
: ð3Þ

In order to obtain the steady state solutions we need to
determine the eigenstates of Ĥeff , which we compute by
two approaches. In the numerical approach, we employ the
exact diagonalization (ED) method of Ĥeff in the case of
small one-dimensional systems at fixed particle number.
Analytically, we perform a perturbation theory in the
kinetic energy J ≪ U, which allows us to go to the
thermodynamic limit in any dimension. Here, the atom
number is conserved only on average by introducing a
chemical potential term in the Hamiltonian, −μ

P
j n̂j, and

solving hn̂iT ≡ N=Ld for μ [95]. The energy transfer in this
perturbative approach is given by

∂

∂t
hĤeffiT ∝ J2

�
eβμ þ eβð3μ−UÞ

2gλ

�
−eβℏgλ

ð2gλþ δÞ2 þ ðΓ=2Þ2 þ
e−βℏgλ

ð2gλ − δÞ2 þ ðΓ=2Þ2
�

þ
X
p¼�1

e2βμ

2gλ − pU=ℏ

�
−eβð2ℏgλ−pUÞ

ð2gλ − pU=ℏþ δÞ2 þ ðΓ=2Þ2 þ
1

ð2gλ − pU=ℏ − δÞ2 þ ðΓ=2Þ2
��

: ð4Þ

Our results for an atomic filling of n ¼ 1=2 show a very
rich steady state diagram, see Fig. 1(d). At low pump power
g the system is in the normal phase, with a vanishing photon
number. Above a critical value gcr the transition to the self-
organized phase occurs, signaled by the emergence of a
finite cavity field and a corresponding increase of the
atomic sublattice density imbalance. Surprisingly, for even

larger pump powers a novel type of bistability occurs
within the self-organized phase, which we call fluctuation-
induced bistability. We emphasize that the bistability is not
present in the atoms-cavity mean-field approach [black
line, Fig. 1(d)] and only occurs determining the effective
temperature self-consistently. We show its absence for an
externally fixed finite temperature, see Ref. [95].
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The interplay of the cavity field and the interaction
energy of the atoms is crucial for the presence of the
bistability.
The first solution with the lower scaled photon number

(marked by subscript 1) is mainly determined by the
balance of the processes originating from transitions
between eigenstates of Ĥeff , which are singly occupied
on the lower or upper potential sublattice, i.e., En − Em≈
2ℏgλ1, contributing to Eq. (4) by the terms in the first line.
The sign of the terms in Eq. (4) implies either a cooling or a
heating nature of the processes in the self-consistent
dynamics towards the steady state. Close to the self-
organization threshold gcr, the resonance between atomic
excited states [sketched in Fig. 1(d)] and the photon energy
leads to a decrease in the self-consistent temperature, see
Ref. [95]. For large pump strength in the first solution, to
balance the cooling (first term upper line) and heating
(second term upper line) the temperature becomes rela-
tively high kBT1 > 8zJ [see color coding in Fig. 1(d)], with
z the lattice coordination number. In contrast, for the
second solution with higher scaled photon number (marked
by subscript 2) the effective temperature is much lower.
Transitions between states with either double occupancy, or
two singly occupied sites [see Fig. 1(c)] captured by the
lower line in Eq. (4) with p ¼ 1 become important. The
interaction energy is crucial, i.e., En − Em ≈ 2ℏgλ2 −U. In
particular, the efficient transfer of energy from the atoms to
the cavity mode due to the resonances between excited
states and the photonic energy δ leads to a cooling
mechanism, driving the atoms to a steady state with a
much lower temperature in the bistable region. The two
stable solutions are connected by a third unstable solution
[smaller dots in Fig. 1(d)]. The occurrence of two stable
solutions signals the fluctuation-induced bistability (blue
hatched region).
To investigate this behavior in more detail, in Fig. 2 we

show the results for the photon number, the sublattice
imbalance, the atomic temperature, and the double occu-
pancy of the atomic state versus the pump power for the two
different methods. Let us focus first on the perturbative
results for small J in the thermodynamic limit (red and
purple symbols). The scaled photon number is zero below a
critical pump strength, here approximately ℏgcr=J ∼ 3.85.
Above gcr we see a rapid increase of the cavity field
creating an effective staggered potential and therefore a
sublattice imbalance which signals the transition to the self-
organized phase. Although such a transition to a self-orga-
nized staggered pattern has been known from the T ¼ 0
MF approach [2,39], the critical pump strength found is
considerably lower due to the absence of the fluctuations
compared to the value from the finite temperature transition
observed here. Additionally, a nonmonotonous behavior is
observed in the sublattice imbalance for the fermionic
atoms [Fig. 2(b)]. In the self-organized regime Δ has a
maximum around 2gλ1 ¼ δ (cyan vertical line) and

decreases for larger values of the pump strength. This
decrease is mainly due to the quick rise of the finite
temperature of the system [Fig. 2(c)] to a value of the order
of the effective staggered potential 2ℏgλ1 via the coupling
to the cavity. At this temperature, reached at intermediate
pump strength, ℏg=J ≳ 5, atoms can be excited to the
effectively higher lattice sites leading to the decrease of the
sublattice imbalance compared to the atoms-cavity mean-
field. This causes a relatively low number of photons per
site that only weakly depends on the coupling strength g.
As mentioned, around ℏgbi;1=J ¼ 9.65 a second stable
solution appears, with much larger number of photons,
an almost maximal value of the atomic density imbalance
and a low effective temperature [Fig. 2(c)].
We can understand the importance of the on-site inter-

action for the bistability by analyzing Eq. (4). We recover
the first solution by neglecting all double occupancy, taking
only the first two lines in Eq. (4), corresponding to U → ∞
[gray dashed lines in Fig. 2]. However, the ending of the
first solution and occurrence of the second one can only be
obtained by considering terms corresponding to resonances
2gλ2 ¼ U=ℏ� δ [95]. Thus, the bistability is related to
processes stemming from the intricate interplay of the
short-range atomic interactions and the global coupling to
the self-organized photonic field.
For higher values of the pump strength, a drastic rise of

the temperature can be found, determining an increase in
the occupation of the excited states for the second solution,

FIG. 2. (a) Scaled cavity photon number hNphoi ¼ hâ†âi=Ld ¼
f½δ2 þ ðΓ=2Þ2�=4δ2gλ2, (b) atomic even-odd imbalance hΔ̂i=Ld,
(c) effective temperature and (d) average double occupancy as a
function of the atoms-cavity coupling strength ℏg=J. We show
the following results: in the thermodynamic limit, L → ∞ for
U ≫ J stable solutions 1 (red) and 2 (purple), and for U → ∞
(gray, dashed); for L ¼ 8 the solution stable (blue), unstable
(green); for L ¼ 8, within the T ¼ 0 MF approximation (black).
The other parameters used are U=J ¼ 40;ℏδ=J ¼ 5;ℏΓ=J ¼ 3.
Vertical lines denote the resonances, 2gλ1 ¼ δ (cyan), 2gλ ¼ U=ℏ
(black, dashed), 2gλ2 ¼ U=ℏ� δ (orange, short or long-dashed),
4gλ2 ¼ U=ℏ − δ (green, dashed).
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leading to the presence of double occupancies [Fig. 2(d)]
and to a strong decrease of the scaled photon number and
the atomic imbalance [Figs. 2(a) and 2(b)]. At even larger
values of the pump strength ℏgbi;2=J ¼ 14.45 the lower
solution and the bistability region end. So far we focused on
the description of the perturbative solution for small
hopping J valid in the thermodynamic limit regardless
of dimensionality. However, multistable solutions are
observed also using ED to compute the energies and
eigenstates of small one-dimensional systems L ≤ 8 and
solve fully Eq. (4) (blue, green symbols in Fig. 2). We
associate this multistable region with the splitting of the
resonances by finite size effects and find that the multi-
stable region depends strongly on the system size.
Nevertheless, the finite size systems capture qualitatively
the same phenomenon of a multi-stable region caused by
resonances, giving us confidence that it is not an artifact of
the perturbative approach.
In Fig. 3 we show the dependence of the self-

organization transition and the fluctuation-induced bist-
ability region on U=J and ℏδ=J. The critical pump strength
increases approximately linearly with the detuning gcr ∼ δ
at large detuning, similarly to the result obtained for
bosonic atoms [85]. As the pump gets further detuned,
the effective coupling to the cavity field decreases. Thus, to
reach the same effective atom-cavity coupling, a larger
amplitude of the pump field is required.
In contrast, the region of the bistability shows a very

strong dependence on the interaction strength. We can
obtain an approximate position of the lower onset [95]

gbi;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU=ℏ − δÞ½ðΓ=2Þ2 þ δ2�=ð2δÞ

q
: ð5Þ

In particular, the relative strong dependence on U=J is not
present in the onset of the self-organization phase for which
gcr is almost independent on U=J for the considered
parameters. The upper boundary seems to evolve almost
linearly with U=J, such that a wider bistable region is
present at larger interactions. In contrast, increasing δ
causes the bistability region to become smaller and to
disappear beyond a certain large value. Whereas the lower
boundary of the bistability region shows a similar rise with
δ than the self-organization transition, the upper boundary
becomes almost independent of the detuning above Γ.
To summarize, we have investigated fermionic atoms in

optical lattices coupled to an optical cavity taking fluctua-
tions beyond the mean-field decoupling into account. We
find a transition between a normal and a self-organized
phase and more surprisingly, the occurrence of a fluc-
tuation-induced bistability region, which does not exist in
the T ¼ 0 MF solution. Within the bistable regime, an
efficient cooling of the atomic ensemble takes place by a
facilitated energy transfer between excited eigenstates of
the atomic system to the photonic mode close to reso-
nances. Many questions remain open, in particular on the
dissipative dynamics of such systems, which might show
nonthermal behavior in their approach towards the steady
state, caused by the importance of these resonances.
We expect that the emergence of the fluctuation-induced

bistability to be a generic feature of hybrid atoms-cavity
systems in which one can control independently the
coupling to the cavity and the atomic energies. As in
our equations of motion we mainly use the spectrum of
effective atomic Hamiltonian, the bistability should emerge
for coupled systems where the resonances between the
atomic levels and photonic excitations can be obtained.
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