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Angular momentum of vortex-core Majorana zero modes
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Majorana zero modes (MZMs) are highly sought-after states with a possible application in quantum computa-
tion. Here, we show that vortex-core MZMs can carry a nontrivial angular momentum. This establishes distinct
“flavors” of Majorana modes, independent of the Chern classification of topological superconductors. The MZM
angular momentum is explicitly calculated for a microscopic model of a d + id superconductor placed on a
three-dimensional topological insulator (the d + id + Dirac model) using both exact diagonalization and the
Chebyshev expansion. We classify all possible quantum numbers of MZMs depending on the windings of the
order parameter and underlying normal state. The topological protection of the MZM is set by the bulk gap,
quasiparticle poisoning by trivial in-gap states, and its localization length. All these severely limit the stability of
MZMs in the d + id + Dirac model, in contrast to earlier claims. Nevertheless, the possibility of having different
flavors of MZM—in the form of angular momentum or something else—can provide a unique path forward for
the study of MZMs.
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I. INTRODUCTION

The search for Majorana particles [1] is important both
for fundamental understanding and possible topological quan-
tum computation [2]. Since Majorana particles are an equal
superposition of particle and antiparticle, they are naturally
sought in superconductors, in the form of Majorana zero
modes (MZMs). From Kitaev’s seminal paper [3], the quest
to engineer devices capable of hosting MZMs is still ongoing.

Fu and Kane proposed to find MZMs in a vortex core at
the interface between an s-wave superconductor and a strong
topological insulator (STI) [4]. Evidence for such MZMs in
vortex cores has been found in the iron-based FeTe0.55Se0.45

[5–8], providing a natural platform for the Fu–Kane model,
and in heterostructures of Bi2Te3/NbSe2 [9,10], and SnTe/Pb
[11]. The big challenge, however, is to separate the MZMs
from other in-gap states, a phenomenon that has been col-
orfully called “quasiparticle poisoning” of the Majorana.
Naturally, a larger critical Tc of the superconductor and thus
a larger gap can provide a more stable platform to engineer
MZMs. As such, it is natural to look at the systems with a
higher Tc, such as the cuprates. This deviates from the original
Fu–Kane proposal, however, as the cuprates’ d-wave pairing
should be taken into account [12–17]. Experimental studies
have been performed with Bi2Se3 or Bi2Te3 combined with
the cuprate Bi2Sr2CaCu2O8+δ [15,16,18]. However, quasipar-
ticle poisoning is an even bigger problem in d-wave cuprates,
since they are nodal (gapless) superconductors.

A recent proposal for “high-temperature” MZMs sought
to alleviate this problem by putting a fully gapped d + id
superconductor on the surface of a STI [19]. This
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superconducting order parameter might be realized in twisted
cuprates [20–25], but also in elemental tin [26–28]. A d +
id order parameter was also predicted for graphene het-
erostructures [29–31], as well as twisted bilayer WSe2 [32],
where superconductivity was recently discovered [33,34]. In
Sr2RuO4, the possibility of time reversal symmetry breaking
and spin-singlet superconductivity could also provide a d + id
platform, although the symmetry of the order parameter is still
debated [35,36].

From the theoretical point of view, a close inspection of
the vortex-core MZM in such a d + id + Dirac system reveals
novel properties of the zero mode itself. In this paper we show
that, depending on microscopic parameters, the MZM carries
a nontrivial angular momentum. Specifically, this angular mo-
mentum will be a consequence of the three chiralities involved
in the system: the Dirac cone winding number, the d + id
order parameter winding, and the winding of the vortex. The
Bogoliubov–de Gennes equation now puts constraints on the
relation between these chiralities and the real-space phase
winding of the electron and hole components of the MZM.
Surprisingly, the angular momentum of the MZM is indepen-
dent of the Chern number of the topological superconducting
phase, which in this setup can be C = ±1 (p ± ip symmetry)
or C = ±3 ( f ± i f symmetry). The theory of MZM angular
momentum is developed in Sec. II.

Having established the existence of the MZM and their
angular momentum, we revisit the question of their topolog-
ical protection. In other words, what are the limits of the
MZM stability? Given the unusual combination of d + id
with a Dirac cone, it turns out that not Tc, but the much lower
gap at the Fermi level, governs the stability and localization
length of the MZM. Moreover, the stability of MZMs is fur-
ther limited by additional in-gap states within vortices, the
Caroli–de Gennes–Matricon (CdGM) states [37]. Both effects
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are discussed in Sec. III. The resulting enormous size of the
MZM wavefunction provides another challenge for the accu-
rate numerical solution of a lattice model, which we address
in two ways discussed in Sec. IV: by redefining appropriate
values of the parameters involved in the pairing, and by using
an expansion on Chebyshev polynomials.

We end this paper with a brief outlook on how realistic
the detection and use of vortex-core MZM can be, including
the role of the previously unrecognized angular momentum
(Sec. V).

II. THEORY OF ZERO-MODE ANGULAR MOMENTUM

The core result of this paper is that vortex MZMs in topo-
logical superconductors carry an angular momentum quantum
number �. This number is in principle independent of the
Chern number C of the superconductor. While the existence
of the MZM requires an odd Chern number, the value of the
angular momentum � depends on a nontrivial combination of
microscopic parameters and the winding of the vortex.

In this section, we derive the theory of MZM angular
momentum, starting with a continuum model of MZM in
a d + id superconductor on top of the surface of a three-
dimensional topological insulator, inspired by Ref. [19]. The
general derivation of the angular-momentum quantum number
� is supplemented by a numerical calculation on a lattice
model, which includes a generalization of the notion of angu-
lar momentum of vortex states to the case of a square lattice
with discrete rotational symmetry.

A. Continuum model of d+id+Dirac

Our starting point is a continuum description of a specific
model with a spin-Dirac cone and a d + id pairing interaction
[38], summarized as “d + id + Dirac”. Both the Dirac cone
and the pairing term have a winding number, which we will
use to derive the Chern number of the corresponding topolog-
ical superconducting phase. Since the total Chern number is
odd, there will be MZMs in vortex cores. We finally analyze
the nontrivial angular momentum � of those modes.

1. Winding numbers of a Dirac cone with d ± id pairing

Let us consider a general model with a dispersion hk and
a singlet superconducting order parameter �k induced by
proximity effect, which is a generalization of the Fu–Kane
model [4]. The Bogoliubov–de Gennes (BdG) Hamiltonian is
explicitly written as

HBdG(k) = �
†
k

(
hk − μσ 0 �kσ

0

�∗
kσ

0 −hk + μσ 0

)
�k, (1)

where we have introduced a chemical potential μ, while the
Nambu spinor

�k = (ck↑, ck↓, c†
−k↓,−c†

−k↑)ᵀ (2)

follows the convention adopted in Ref. [4]. With this conven-
tion, the superconducting terms are diagonal (proportional to
σ 0) in Nambu space for spin-singlet superconductivity.

The dispersion hk represents the surface of a three-
dimensional topological insulator, which can be described by

a single Dirac cone,

hk = v(σ ykx + nX σ xky)

=
(

0 −iv|k|einX θk

iv|k|e−inX θk 0

)
, (3)

where v is the Dirac velocity (setting h̄ = 1), σ are Pauli ma-
trices referring to the electron spin [39], tan θk = ky/kx, and
nX = ±1. With nX = −1, this is equivalent to the often-used
notation

h′
k = v σ · k. (4)

A π/2 rotation Rπ/2 = ei(π/4)σ z
of the spin along the z axis

changes one dispersion relation into the other, according to
hk = R†

π/2h′
kRπ/2. Both expressions are therefore interchange-

able. Refs. [4] and [39] use Eq. (4), while we will use Eq. (3)
like in Ref. [19]. Note that the normal-state Hamiltonian
hk carries a winding number nX , as manifested in the off-
diagonal matrix elements that are proportional to e±inX θk . We
shall refer to nX as the winding number of the Dirac cone.

The superconducting order parameter is momentum inde-
pendent for s-wave pairing, whereas in the case of d ± id
pairing it reads

�k = �

4

(
k2

x − k2
y

)+ i
n�

2
�′kxky, (5)

where kx and ky are dimensionless coordinates in reciprocal
space and n� = ±2. The factor 1/4 is chosen for consistency
with the lattice model (Sec. II B), which gives a peak-to-peak
spectral gap of 2� in accordance with the general cuprate
literature. Similar to the Dirac cone, the d ± id pairing carries
a winding number. This is most clearly seen in the chiral limit
�′ = �/2, where Eq. (5) can be rewritten as

�k = �

4
|k|2ein�θk (6)

with winding n� = ±2.
The Hamiltonian defined by Eqs. (1) to (5) has an anti-

unitary anticommuting particle-hole symmetry {P, H} = 0,
where the particle-hole symmetry operator is defined as P =
σ yτ yK with P2 = 1, K the complex conjugation, and τ are
the Pauli matrices in the particle-hole sector. Time-reversal
symmetry is broken in the case of d ± id pairing, which
makes the system fall into symmetry class D according to
Ref. [40].

Finally, the spectrum of the Hamiltonian is

Ek = ±
√

(±v|k| − μ)2 + |�k|2. (7)

2. Effective order-parameter winding and Chern number

The combination of the Dirac cone dispersion with the
singlet d ± id pairing gives rise on the Fermi surface to
an effective triplet pairing. Indeed, upon diagonalizing the
normal-state Hamiltonian, the winding of the Dirac cone is
transferred to the pairing term, changing its winding from ±2
to ±1 or ±3. To show this, we diagonalize the normal-state
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TABLE I. Chern number (C) as given by Eq. (10) for the topo-
logical superconducting state arising from a hole-doped (μ < 0) or
electron-doped (μ > 0) Dirac cone with winding number nX and a
d ± id pairing with winding n�.

nX n� C (μ < 0) C (μ > 0)

+1 +2 +1 p + ip −3 f − i f
−2 −3 f − i f +1 p + ip

−1 +2 +3 f + i f −1 p − ip
−2 −1 p − ip +3 f + i f

part of the Hamiltonian with the transformation [41]

UBdG =
(
Uk 0
0 σ y U∗

−k

)
(8a)

Uk = 1√
2

(
1 ieinX θk

ie−inX θk 1

)
, (8b)

which is such that U†
k hkUk = (

v|k| 0
0 −v|k|). The trans-

formed Hamiltonian is

H ′
BdG

= U†
BdGHBdGUBdG

=

⎛⎜⎜⎝
v|k| − μ 0 �keinX θk 0

0 −v|k| − μ 0 −�ke−inX θk

�∗
ke−inX θk 0 −v|k| + μ 0

0 −�∗
keinX θk 0 v|k| + μ

⎞⎟⎟⎠,

where we have used the relation eiθ−k = −eiθk . Upon reorder-
ing, we obtain two 2 × 2 blocks, one corresponding to the
electron band with order parameter �keinX θk , the other corre-
sponding to the hole band with order parameter −�ke−inX θk .
If μ < 0, the pairing opens a gap in the hole band and the
effective winding of the order parameter on the Fermi surface
is therefore n� − nX . If μ > 0, the electron band is gapped
with effective winding number n� + nX . The two cases can
be summarized as

n′
� = n� + sgn(μ)nX . (9)

The Chern number C of the topological superconducting
phase corresponds to the order-parameter winding contained
within the Fermi surface. For the hole band, C is equal to
the order-parameter winding, while for the electron band C
is opposite to the winding. Collecting both cases, we get

C = −nX − sgn(μ)n�. (10)

The same argument applies to the original Fu–Kane model
[4] where, starting from n� = 0 (s wave), one can recover an
effective p + ip (p − ip) superconductor with linear electron
(hole) dispersion. In the case of a d ± id order parameter
discussed here, the transformation can lead to either p ± ip
or f ± i f .

The Chern numbers of the d + id + Dirac model are sum-
marized in Table I. We have verified these Chern numbers
using the lattice model introduced in Sec. II B, using the
gauge-independent numerical method of Ref. [42].

FIG. 1. Origin of vortex Majorana zero modes (MZMs) in a
chiral superconductor. (a) A superconductor with a nonzero Chern
number has chiral edge states. (b) The Chern number derives from
a winding of the complex order-parameter phase around the Fermi
surface in momentum space. (c) In real space, a vortex adds an
additional winding to the order parameter. Behaving as a void in the
superconductor, the vortex core must have edge modes around the
void (blue arrows).

3. Existence of MZMs in vortex cores

We just found that the combination of a d ± id supercon-
ductor and a normal-state Dirac cone yields a topological
superconductor characterized by an odd Chern number C. It
has been known for some time [4,43–46] that C = 1 p + ip
superconductors host a Majorana zero mode in the core of a
vortex. In fact, this is true for all topological superconductors
with an odd Chern number [47–51]. Intuitively, the idea is that
since all Chern superconductors have topologically protected
edge states [see Fig. 1(a)], we can treat the vortex core as
an “edge” which, therefore, should host gapless modes. Let
us now show the mathematical reasoning behind this intuitive
picture.

A nonzero Chern number arises from a winding of the
order-parameter phase around the Fermi surface [52]. A rep-
resentative topological superconductor can thus be described
by a BdG Hamiltonian in momentum space, where the Chern
number C is captured in a winding of the order parameter,

�k = |�k|ei C θk , (11)

similar to Eq. (6) [Fig. 1(b)]. For example, a p + ip supercon-
ductor has �k ∝ kx + iky = |k|eiθk .

To add a vortex structure, we need to express the corre-
sponding BdG Hamiltonian in real space, which amounts to
transforming eiCθk in momentum space to eiCϑ in real space.
In addition, a vortex configuration has a phase winding of the
order parameter, �(r, ϑ ) = �(r)einV ϑ with nV = ±1, and a
vortex core where the order-parameter amplitude �(r) van-
ishes, see Fig. 1(c). Note that nV sets how many magnetic
flux quanta are trapped and is also called vorticity. Combining
these two sources of winding, the order parameter term in the
real-space BdG Hamiltonian has an angular dependence of the
form ei(C+nV )ϑ . The vortex core, at the same time, acts as a
“puncture” in the superconductor, around which we expect
edge states. This is the same angular momentum along the
edge of a nanoflake [53].

The problem of finding vortex-core bound states is thus
the same as finding edge modes of the chiral superconductor
around such a puncture, with the constraint that the electron
u(r, ϑ ) and hole v(r, ϑ ) components’ angular phase winding
differs by ei(C+nV )ϑ . Chiral edge modes have a well-defined en-
ergy dispersion E ∼ k with k the momentum along the edge;
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FIG. 2. (a) Energy of the edge modes around a puncture in a
topological p + ip superconductor on a square lattice, vs angular
momentum Lz. For odd Chern number C, Lz is half-integer in the
absence of vortex (nV = 0) and integer in the presence of a vortex of
vorticity nV = ±1, Lz = 0 corresponding to a MZM. (Inset) Example
of edge mode. (b) Vortex MZM carrying an angular winding and
without amplitude at the center of the vortex when nV has the same
sign as C. (c) MZM carrying no winding and with amplitude at the
center of the vortex when nV and C have opposite signs.

this translates for the circular puncture into E ∼ Lz, where Lz

is the angular momentum around the puncture. These puncture
edge states are thus described by the wavefunction Ansatz[

u(r, ϑ )
v(r, ϑ )

]
= g(r) eiLzϑ

[−ei(C+nV )ϑ/2

e−i(C+nV )ϑ/2

]
(12)

with g(r) containing the radial properties of the edge mode.
In Fig. 2, we show how this works for a p + ip supercon-

ductor on a square lattice with nearest-neighbor hopping t and
with model parameters μ = −0.5t , �p = 0.2t . By cutting out
a circular region as a “puncture”, we gain edge states [inset
of Fig. 2(a)] with a well-defined linear dependence on Lz

[Fig. 2(a)]. These results display a general property of the
wavefunctions in Eq. (12): When there is no vortex (nV = 0),
Lz ± C/2 must be an integer for the wavefunctions to be single
valued and it follows that the angular momentum must be
half-integer. Therefore, there is no state with zero-energy in
the absence of a vortex. On the other hand, with an odd
vorticity the same condition on single-valuedness implies that
the angular momentum Lz must be integer. This includes the
Lz = 0 state, which we now identify as the Majorana zero
mode (MZM).

When shrinking the vortex core to a point, the windings
of the components u and v become relevant for the shape of

the MZM. When C = nV = 1, even though the total angular
momentum is zero (Lz = 0), the separate components u(r, ϑ )
and v(r, ϑ ) still have a nonzero angular winding ∝ e±iϑ . This
implies that the radial component g(r) must go to zero when
r → 0, to avoid multivaluedness of the wavefunction. By
contrast, in the case where C + nV = 0, there is no angular
winding in u and v and the radial component g(r) can stay
nonzero at the vortex center. This difference can be seen in
Figs. 2(b) and 2(c), where we show the MZM wavefunctions
for a p + ip superconductor for a vortex and an antivortex,
where the MZM does or does not exhibit spectral weight at
the center of the vortex.

4. Angular momentum of Majorana vortex states

Having discussed the general case of MZMs appearing in
the vortex cores of odd-C superconductors, we now go back
to the d + id + Dirac model and add the vortex structure.
Compared to the simple p + ip case, the resulting physics
is much richer, including nontrivial relations for the MZM
angular momentum.

To describe the vortex states, we use the real-space
representation of the normal-state Hamiltonian Eq. (3),
ĥ(r) = v(σ y p̂x + nX σ x p̂y), with p̂x,y = −i∂x,y. By means of
the operator ∂nX = ∂x + inX ∂y, the Bogoliubov–de Gennes
Hamiltonian can be recast as

ĤBdG(r) =

⎛⎜⎜⎝
−μ −v∂nX �̂(r) 0

v∂−nX −μ 0 �̂(r)
�̂∗(r) 0 μ v∂nX

0 �̂∗(r) −v∂−nX μ

⎞⎟⎟⎠. (13)

With the components of the wavefunction written as � =
(u↑, u↓, v↓,−v↑)ᵀ, one readily verifies that for each solution
� with energy E , there exists a solution with energy −E and
components (v∗

↑, v∗
↓, u∗

↓,−u∗
↑)ᵀ, which expresses the builtin

particle-hole symmetry of ĤBdG. We have seen in the previous
section that such a pair of states with energy E = 0 exists in
our case. The sum of both states in this pair yields a state
whose components obey the relations v↑ = u∗

↑ and v↓ = u∗
↓

and whose eigenvalue under particle-hole transformation is
+1. This eigenstate has the property of a Majorana mode. For
this zero-energy state, Eq. (13) reduces to the pair of equations

−μu↑ − v∂nX u↓ + �̂u∗
↓ = 0, (14a)

−μu↓ + v∂−nX u↑ − �̂u∗
↑ = 0. (14b)

We study these equations in a polar-coordinates system
(r, ϑ ), as appropriate in the presence of a vortex at the origin.
We have ∂nX = einX ϑ (∂r + inX ∂ϑ/r). On the other hand, we
show in Appendix A that the continuum limit of a vortex order
parameter on the lattice with d + i(n�/2)d symmetry in the
chiral limit, neglecting the spatial variation of the amplitude,
is �̂ = −|�|ei(n�+nV )ϑ D̂, where nV = ±1 for a vortex or an-
tivortex and D̂ is a differential operator that does not change
the phase of the wavefunctions. With this, we see that the
angular part of Eq. (14) is solved by the Ansatz

u↑/↓(r, ϑ ) = u↑/↓(r)ein↑/↓ϑ , (15)
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TABLE II. Angular quantum numbers n↑ and n↓ of the Majorana
zero mode in a vortex (nV = +1) or antivortex (nV = −1) for a Dirac
cone with winding number nX and d ± id pairing with winding n�,
as given by Eq. (16). The last column shows the index defined in
Eq. (19), which is nonzero when the MZM has no intensity at the
vortex/antivortex core.

nX n� nV n↑ n↓ �

+1 +2 +1 +2 +1 +2
−1 +1 0 0

−2 +1 0 −1 0
−1 −1 −2 −2

−1 +2 +1 +1 +2 −2
−1 0 +1 0

−2 +1 −1 0 0
−1 −2 −1 +2

provided that the angular momentum is the same in each of the
terms, i.e., n↑ = nX + n↓ = n� + nV − n↓ and n↓ = −nX +
n↑ = n� + nV − n↑. Combining these relations, we deduce

n↑ + n↓ = n� + nV , (16a)

n↑ − n↓ = nX . (16b)

The possible values of n↑ and n↓ are collected in Table II.
The wavefunction components u↑/↓(r, ϑ ) are eigenstates of

the angular momentum L̂z = x̂ p̂y − ŷ p̂x = −i∂ϑ with eigen-
values n↑/↓. It follows that the Majorana mode as a whole is
not an eigenstate of L̂z unless n↑ = n↓, which is forbidden by
Eq. (16b). This is expected, because L̂z is not a symmetry of
the Hamiltonian. However, it is possible to construct a true
rotational symmetry of the BdG Hamiltonian, by combining
the regular angular momentum operator L̂z with specific phase
factors for the different u/v components. The lattice version
of this rotational symmetry is discussed later, in Sec. II B 3.

The radial structure of the MZM wavefunction can be stud-
ied in a simplified picture, if we modify the order-parameter
operator to �̂ = −|�|ei(n�+nV )ϑ , which amounts to replacing
D̂ by the identity. Introducing the localization length ξ =
v/|�| and the Fermi wavelength 1/kF = v/μ, the radial part
of the BdG Eq. (14) simplifies to(

1 + ξ

r
nX n↑ + ξ ∂r

)
u↑(r) = kFξ u↓(r), (17a)(

1 − ξ

r
nX n↓ + ξ ∂r

)
u↓(r) = −kFξ u↑(r). (17b)

The solution that is regular at the origin r = 0 is

u↑(r) = N e−r/ξ Jn↑ (kFr), (18a)

u↓(r) = −N e−r/ξ Jn↓ (kFr), (18b)

where N is a normalization, Jn(x) = J−n(x) is the Bessel
function of the first kind, and use has been made of Eq. (16).
Since Jn(x) ∼ xn for small x and the local density of states at
E = 0 is proportional to |u↑(r)|2 + |u↓(r)|2, only J0 is able to
provide intensity at the center of the vortex. Therefore, in this
simplified description, the MZM has its maximum probability
at the center of the vortex only if n↑n↓ = 0, or equiva-
lently |n� + nV | = 1. This is consistent with the requirement

of single-valuedness imposing that, whenever n↑/↓ 
= 0, the
wavefunction amplitude must vanish at r = 0. The numerical
simulations on the lattice support this qualitative picture.

We conclude this section with formulating a quantum num-
ber that, in the d + id + Dirac model, tells us whether the
MZM has a nonzero amplitude in the vortex core. This num-
ber is

� = nX

(n�

2
+ nV

)
, (19)

which vanishes whenever n↑n↓ = 0 and otherwise takes the
values ±2 (see Table II). A nonzero value of this index implies
that the MZM has no intensity at the vortex/antivortex core.
One sees that although both vortices and antivortices host
MZMs, their physical properties are systematically different:
Whenever the configuration of the windings nX and n� is such
that the vortex hosts a MZM with maximum at the vortex
center, the antivortex does not, and conversely. In the next
subsection, we show that the same qualitative conclusions can
be drawn from the analysis and numerical simulation of a
lattice model.

B. Lattice model

Although numerical simulations of vortex-core states in the
continuum are possible (see, e.g., Refs. [54–56]), lattice mod-
els provide a more practical and controllable approach. Lattice
simulations are physically relevant as real superconductors are
almost always crystalline solids.

When addressing the very existence and the topological
protection of MZMs, finite-size effects must be dealt with.
Here, we will use exact diagonalization (ED) when work-
ing with sufficiently small lattices—typically � 200 × 200
sites—and the kernel polynomial method (KPM) [57,58]
when treating large lattices, up to ∼1000 × 1000 sites. In
this subsection, we first describe the model and our numerical
approaches, and then use ED to confirm the predictions based
on the continuum model, which requires us to generalize the
notion of angular momentum to our square-lattice system with
discrete 90◦-rotation symmetry. In the subsequent section,
we will use both ED and the KPM to study the topological
protection of the MZMs.

1. Definition

A reliable lattice model that faithfully computes the low-
energy spectrum of an anomalous Dirac cone, without fermion
doubling [59], can be constructed as follows on a square
lattice [19]:

HBdG(k) =
(

hlatt
k �kσ

0,

�∗
kσ

0 −σ y
(
hlatt

−k

)ᵀ
σ y

)
, (20)

hlatt
k = v(σ y sin kx + nX σ x sin ky) + mkσ

z − μσ 0,

�k = −1

2
�d (cos kx − cos ky) + i

n�

2
�′

d sin kx sin ky,

mk = m(2 − cos kx − cos ky),

where n� = ±2 for a d ± id order parameter and we have
set the lattice parameter to unity. The addition of the time-
reversal symmetry breaking mass term mk is negligible near
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the 
 point and is thus not expected to affect the main physics
of in-gap states [59]. A topological transition does occur as m
decreases (see Sec. II B 4). With the minus sign of the dx2−y2

term, the above lattice model returns to the continuum model
defined by Eqs. (1), (3), and (5) in the continuum limit k → 0.
Note that there is a factor 2 difference with respect to Eq. (13)
of Ref. [19].

In real space, the hopping amplitudes take direction-
dependent complex values. For instance, the term t↑↓

rr′ c†
r↑cr′↓

has t↑↓
r r+x̂ = v/2 and t↑↓

r r+ŷ = inX v/2, with x̂ and ŷ unit
vectors. Like the hopping terms, the order parameter now
lives on the links of the square lattice. In the homo-
geneous superconducting phase, the term �rr′c

†
r↑c†

r′↓ has
�r r+x = −�d/4, �r r+x+y = −in��′

d/8, �r r+y = �d/4,
and �r r+y−x = in��′

d/8. To define a vortex with winding
number nV centered in (0, 0), we multiply each �rr′ by the
phase factor einV ϑrr′ , where tan ϑrr′ = (y + y′)/(x + x′). We
ignore the radial variation of the order parameter, that would
appear in a self-consistent solution, as this dependence does
not influence the properties of the vortex states qualitatively,
but only quantitatively.

2. Numerical methods

The Hamiltonian is defined on a square lattice of L × L
sites with open boundary conditions. We take L odd, such that
the vortex sits at a symmetric position in the center of the
system. The size of the BdG Hamiltonian is 4L2 × 4L2, which
enables ED up to L ∼ 201 with desktop-level resources. Note
that for reliable results, the system size must be much big-
ger than the localization length of the MZM, preventing
hybridization between the zero mode localized in the vortex
and its partner living at the system’s boundaries. We will
elaborate on the localization length further in Sec. III A. The
eigenvalues En and eigenvectors �n give access to the electron
local density of states (LDOS)

ρ(E , r) =
∑
En�0

{[|un↑(r)|2 + |un↓(r)|2]δ(E − En)

+ [|vn↑(r)|2 + |vn↓(r)|2]δ(E + En)}. (21)

The main advantage of ED is that it is free of systematic
numerical errors, yielding a clear and global real-space picture
of the simulated system. In favorable situations, it furthermore
enables extrapolation to the thermodynamic limit through
finite-size scaling.

In parameter regimes where the localization length reaches
hundreds of lattice spacings—which happens in the proposal
of Ref. [19], see Sec. III—we switch from ED to the KPM,
using Chebyshev polynomials Tn(x) [58,60]. For a lattice with
two degrees of freedom per site, the LDOS is evaluated as

ρ(E , r) ≈ 2

πa
Re

{
1√

1 − Ẽ2

[
1 +

N∑
n=1

e−in arccos(Ẽ )cn

]}
,

cn =
∑
s=↑↓

〈rs|Tn(H̃BdG)|rs〉. (22)

This representation is exact if N = ∞. The energy a is an
upper bound for the half-width of the spectrum of HBdG, such
that the spectrum of the dimensionless matrix H̃BdG = HBdG/a

falls entirely within [−1, 1], where the polynomials Tn(x) are
defined. Similarly, Ẽ = E/a. The coefficients cn are evaluated
recursively using the property Tn(x) = 2xTn−1(x) − Tn−2(x),
starting from a state |rs〉 representing an electron with spin s
localized at site r, and applying H̃BdG repeatedly. The practical
use of a finite expansion order N introduces a systematic error
and an energy resolution �EN ∼ a/N [61], as well as Gibbs
oscillations of the LDOS, that we correct using the Jackson
kernel [57].

As it only computes the LDOS for a given site at a time,
the KPM gets impractical if the full real-space information is
required. It furthermore discards the phase information of the
wavefunctions. We have checked that our implementations of
ED and the KPM give the same results in the regimes where
they can be compared.

3. Effective angular momentum of the MZMs

On a square lattice, the rotation group is generated by 90◦
counterclockwise rotations Rπ/2 acting on the unit vectors as

Rπ/2 x̂ = ŷ, Rπ/2 ŷ = −x̂. (23)

The result is a reshuffling of the lattice sites. This rotation is
not a symmetry of the lattice Hamiltonian Eq. (20), since it
changes the Dirac cone and the superconducting term. Un-
der the rotation Rπ/2, the Dirac term σ y sin kx + nX σ x sin ky

turns into σ y sin ky − nX σ x sin kx. To make this term invari-
ant, we must perform a π/2 spin rotation around the spin z
axis, with direction depending on nX . This can be realized
by multiplying all spin up components with e−i(π/4)nX and
all down-components with e+i(π/4)nX . Similarly, one has to
account for the sign change in the d-wave order parameter
by multiplying the hole components with −1. In the case of
a vortex or antivortex with winding number nV , performing
a 90◦ rotation adds a phase nV π/2 to the u components
of the eigenstates and −nV π/2 to the v components. These
must be countered by the rotation operator. As a result, the
operator

Rtot = R̃ Rπ/2 (24)

is a symmetry of the lattice BdG Hamiltonian, with

R̃ = e−i
π
4 [nX τ 0σ z + (n� + nV )τ zσ 0]

. (25)

We verified numerically that this operator indeed commutes
with the Hamiltonian. It satisfies all the properties of a 90◦
rotation, including R4

tot = 1. Consequently, the possible eigen-
values of the rotation are 1, i, −1, and −i, that we can write as
ei(π/2)nR with nR = 0, 1, 2, or 3. The winding number nR char-
acterizes the action of Rtot on the nondegenerate eigenstates �

of HBdG according to Rtot� = ei(π/2)nR�. The action of Rπ/2

on � follows from Eqs. (24) and (25):

Rπ/2� = ei
π
2 nRei

π
4 [nX τ 0σ z + (n� + nV )τ zσ 0]

�. (26)

By analogy with the continuum description, we charac-
terize the behavior of � = (u↑, u↓, v↓,−v↑)ᵀ under a 90◦
rotation by four numbers {nu

↑, nu
↓, nv

↓, nv
↑}, defined such that

u↑(Rπ/2 r) = ei(π/2)nu
↑u↑(r) and similarly for the other three
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FIG. 3. Spin-resolved LDOS of the MZM near the vortex center for all values of nX , n�, and nV , calculated with L = 201 at negative
μ. Similar results are obtained at positive μ. The columns labeled n↑ (n↓) show |u↑(r)|2 [|u↓(r)|2] and the numbers on the images are the
numerically determined values of n↑ and n↓. The color scale covers the whole data range in all images.

components. Comparing with Eq. (26), these numbers can be
deduced as

2nu
↑ = 2nR + nX + (n� + nV ), (27a)

2nu
↓ = 2nR − nX + (n� + nV ), (27b)

2nv
↓ = 2nR + nX − (n� + nV ), (27c)

2nv
↑ = 2nR − nX − (n� + nV ). (27d)

Because of the particle-hole symmetry, a Majorana state
has only two independent winding numbers n↑ ≡ nu

↑ = −nv
↑

and n↓ ≡ nu
↓ = −nv

↓. The four relations above reduce to the
same two relations that were found in the continuum model,
Eq. (16). In addition, they give the constraint that nR = 0 [62].
In other words, the MZMs are invariant under the action of
the rotational symmetry Rtot [63–69]. However, the winding
numbers n↑/↓ of the individual components u↑/↓ can still be
nontrivial, depending on the microscopic properties of the
model.

We have performed ED simulations to confirm these ex-
pectations. We use the parameters defined for unit velocity
v as m = 0.8, μ = −0.8, �d = 0.9, �′

d = 0.6. The gap val-
ues are in the same ratio but larger than those of Ref. [19],
which allows us to obtain sufficiently well-converged results
on small lattices L � 41. See the discussion in Sec. III A. We
compute the eigenstate with the smallest positive eigenenergy
and confirm that it has unit eigenvalue (nR = 0) under Rtot. We
will show in the next section how this eigenenergy approaches
zero with increasing system size and how this dependence
varies with �d and �′

d . From the components u↑ and u↓,
we determine n↑ and n↓ by applying Rπ/2 and checking
that the relation u↑/↓(Rπ/2 r) = ei(π/2)n↑/↓u↑/↓(r) is obeyed

consistently with a single value of n↑/↓ for all lattice sites,
within machine accuracy.

Our results are collected in Fig. 3. For each value or nX , n�,
and nV , we show maps of |u↑(r)|2 and |u↓(r)|2 in the central
part of the lattice, together with the calculated values of n↑
and n↓. We recast these values between −2 and +2, as they
are defined modulo 4, which allows one to readily check that
they satisfy Eq. (16). Hence, the numerical results on the lat-
tice are fully consistent with the conclusions drawn from the
continuum model. At the qualitative level, changing the sign
of nX is equivalent to exchanging the ↑ and ↓ components,
consistently with Table II. At the quantitative level, however,
the exact symmetry also requires flipping the sign of v, i.e.,
{v, nX ,↑,↓} is equivalent to {−v,−nX ,↓,↑}, as can be seen
e.g. from Eq. (13). Another exact symmetry of the MZM
LDOS is that {nX , n�, nV } is equivalent to {−nX ,−n�,−nV },
as seen in Fig. 3.

The spin imbalance visible in Fig. 3 was already observ-
able in the scenario with s-wave pairing [4]. The additional
unique feature in the d ± id scenario is the possibility of
having an “empty” vortex core in the total LDOS, in those
cases where both n↑ and n↓ are nonzero. In this situation,
searching a zero-energy peak at the vortex center is not ap-
propriate to detect a MZM. We illustrate this in Fig. 4 for
the case (nX , n�) = (−1,−2). In the vortex (nV = 1), the
energy-dependent LDOS at r = (0, 0) peaks at E = 0, which
is the behavior expected for a “conventional” vortex MZM.
The LDOS is entirely spin-↓ polarized (blue curve), because
n↑ 
= 0. At r = (1, 0), the LDOS shows weak intensity at
E = 0, illustrating the fast decay of the MZM upon moving
away from the vortex center, with a small admixture of spin-↑
polarization. In the antivortex (nV = −1), the LDOS vanishes
identically at r = (0, 0) and E ≈ 0. A zero-energy peak is,

014502-7



VENDITTI, BERTHOD, AND RADEMAKER PHYSICAL REVIEW B 113, 014502 (2026)

FIG. 4. Total (left panels) and spin-resolved (center and right
panels) LDOS at r = (0, 0) and r = (1, 0) for Dirac-cone winding
nX = −1, pairing winding n� = −2, and vorticity (a) nV = +1 and
(b) nV = −1. At r = (0, 0), there is no spin-↑ intensity in the vortex
and neither spin-↑, nor spin-↓ intensity in the antivortex. The insets
display the total LDOS in the vortex- and antivortex-core region.
Calculations are made with L = 1001 using the KPM at order N =
20000. The horizontal bar in (a) indicates the energy resolution of
the calculation.

however, visible at r = (1, 0), manifesting an “anomalous”
vortex MZM, which in this particular case is also dominantly
spin-↓ polarized (red curve), since the spin-↑ wavefunction
has larger angular momentum (n↑ = −2).

4. Topological transition in the lattice model

The lattice model undergoes a topological phase transition
when �d crosses the value �c

d =
√

(2m)2 − μ2, because of
a gap closing and band inversion at the (π, 0) and (0, π )
points of the Brillouin zone. It is important to realize that
this topological transition is the result of the introduction of
the lattice; it is manifestly absent in the continuum model.
At this transition, the Chern numbers of the superconducting
state switch from ±1 to ±3, and conversely. We also find
that the flavor of the vortex MZM changes at the transition,
zero-angular momentum MZMs becoming nonzero-angular
momentum ones, and conversely. These behaviors may be ra-
tionalized if the band inversion is equivalent to changing nX to
−nX , μ to −μ, and n� to −n�. With these changes, Eqs. (10)
and (16) predict the Chern numbers and the flavors in the new
topological phase. Given the qualitative changes occurring
at �c

d , for our numerical results we choose parameters that
place the lattice model in the small-gap phase, �d < �c

d . This
allows a direct comparison with the continuum model.

III. TOPOLOGICAL PROTECTION OF d + id
VORTEX-CORE MZMS

The quality of the topological protection is the main fig-
ure of merit in view of a practical application of MZMs for

FIG. 5. Low-energy spectrum of the lattice Hamiltonian,
Eq. (20), for (a) s-wave pairing (�k ≡ 0.3v) and (b) d ± id pairing
(�d = 0.3v, �′

d = 0.2v). The tiny spectral gap in (b) is given ap-
proximately by Eq. (28), as better seen by zooming in (c). The other
model parameters are m = 0.5 and μ = −0.3. The thin lines show
the spectrum for m = 0.

fault-tolerant quantum computing [1,2]. The key protective
factor is the energy separation between the MZM and other
electronic states. One such scale is the energy associated with
the superconducting gap �. On top of that, vortices host
conventional CdGM bound states whose lowest energy varies
as �2/EF [37].

In addition to energy scales, the protection of the MZMs is
set by a length scale, namely their localization length. MZMs
in different vortices hybridize if their localization length ex-
ceeds the intervortex distance. As the localization length is
inversely proportional to �, a large gap is again an asset. On
the other hand, a large localization length would possibly al-
low for the detection of the different MZMs flavors discussed
above.

In this section, we discuss the topological protection owing
to the actual topological gap �F and the localization length
in the d ± id scenario. To enable a direct comparison with
Ref. [19], we use here the lattice model with the same gap
parameters as used therein, which corresponds to �d = 0.3v

and �′
d = 0.2v with our convention. These parameters are

suggested to be relevant for twisted cuprate bilayers deposited
on top of Bi2Se3.

A. Topological gap and localization of MZMs

Upon moving the chemical potential away from the Dirac
point in the absence of a superconducting order parameter, a
small Fermi surface forms with a Fermi wavevector given by
kF = |μ|/v at small |μ|. The spectral gap 2�F of the topo-
logical superconducting state is, to lowest order in the order
parameter �d , set by the value of �k on the Fermi surface.
Because the order parameter vanishes at the zone center for a
d-wave superconductor, the spectral gap remains small. In the
chiral limit �′

d = �d/2, it is given by

�F = �d

4

(μ
v

)2
. (28)

This is typically two orders of magnitude smaller than the
main d-wave gap amplitude �d . Figure 5 illustrates the qual-
itative difference between s-wave pairing, where �F is equal
to the magnitude of the order parameter, and d ± id pairing,
where it is much smaller. For the parameters used in Ref. [19]
and in this section, �F is only ∼2% of �d .
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FIG. 6. Numerically determined MZM localization length for
various values of μ and �d in the chiral limit �′

d = �d/2. The
squares show ξE extracted from finite-size scaling of the MZM
energy. The circles show ξr extracted from the spatial decay of the
zero-energy LDOS.

The localization length of the vortex MZM is set by the gap
to the bulk excitations, hence by �F,

ξd ≈ v

�F
= 4v3

μ2�d
. (29)

Thus, the very small �F in the d ± id model leads to very
large values of ξd , e.g., ξd ∼ 150 lattice spacings with the
parameters considered in this section. This is orders of mag-
nitude longer than the Majorana localization length of the
Fu–Kane model [4], ξs = v/�, e.g., ξs ∼ 3 for � = 0.3v.
The very large value of ξd puts severe demands on numerical
calculations, since reliable results can only be obtained with
system sizes L � ξd .

We have tested Eq. (29) numerically using two different ap-
proaches. When using ED on finite lattices, the MZM comes
out with a small finite energy, which is expected to approach
zero as δE ∼ e−L/ξE with increasing system size. The actual
dependence on L displays more structure (see Appendix B for
details), but nevertheless follows an overall exponential decay.
The values of ξE obtained in this way are plotted in Fig. 6 as
squares. On a lattice of size L � ξd , the zero-energy LDOS is
expected to decay as ρ(0, r) ∼ e−2r/ξr . Using the KPM with
L = 1001, we calculate ρ(0, r) along the diagonal direction
x̂ + ŷ and deduce ξr as shown in Fig. 6 with circles. Again,
while consistent with an exponential decay, the LDOS has
more structure; see Appendix B for details. For both ξE and ξr ,
we vary the data range used to fit an exponential, which leads
to a distribution of values whose standard deviation is used as
the error bars in Fig. 6. Larger error bars signal stronger devi-
ations from a pure exponential behavior. The figure confirms
that Eq. (29) correctly captures the localization of the vortex
MZMs.

FIG. 7. LDOS at the center of a vortex hosting a MZM for
the parameters �d = 0.3v, �′

d = 0.2v, and μ = −0.3. The spectral
gap �F � �d is marked by red bars. (Left inset) Zoom-in of the
gap, showing the zero-energy peak resulting from the sum of two
elementary peaks. (Right inset) Evolution of the in-gap spectrum
with increasing �d with �′

d/�d = 2/3. The vertical bars indicate
the energy �F�d/(8|μ|).

B. Quasiparticle poisoning

Abrikosov vortices host subgap electronic states in their
core, known as CdGM states [37]. In a superconductor with a
hard gap, like in the case of s and d ± id pairing, these states
are truly bound (exponentially localized) with discrete ener-
gies, while for nodal pairings like dx2−y2 they are quasibound
and form a continuum [56,60]. In first approximation, the dis-
crete vortex-core states have energies En = (n + 1/2)�2/EF,
where n ∈ N and � is the spectral gap. Hence, one expects
quasiparticles at energies ∼�2

F/μ in the d ± id scenario.
Since this energy is a small fraction of �F, the hybridization
with conventional vortex-core states becomes the most strin-
gent factor limiting the topological protection [50].

We illustrate this in Fig. 7. The main panel shows the
LDOS ρ(E , 0) at the center of a vortex (winding numbers
nX = +1, n� = −2, and nV = +1), calculated on a large lat-
tice of size L = 1001 using the KPM with order N = 20000.
The vortex hosts a “conventional” MZM with finite amplitude
at the core, yielding a tall zero-energy peak in the LDOS.
The width of this peak reflects the energy resolution of the
calculation, which is set by the expansion order as �EN =
2π

√
ln 4a/N ≈ 10−3v [61]. The resolution is sufficient to

distinguish the gap edges and the in-gap states from the con-
tinuum, where the apparent noise is in fact a manifestation of
the finite-lattice discrete levels, broadened to a width �EN .
The left inset is a zoom-in of the spectral-gap range, show-
ing the zero-energy peak. Clearly, this peak results from the
superposition of two discrete states. The state at E = 0 is the
MZM, while the state at E ≈ 10−3v is a CdGM bound state.

The right inset of Fig. 7 shows that, indeed, the CdGM state
and the MZM split further as �d increases, while at the same
time the MZM peak sharpens, indicating that the localization
of the MZM in the core improves because of the weakened
hybridization with the CdGM state. The energy of the CdGM
state grows roughly as �F�d/(8|μ|), which indicates a
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FIG. 8. LDOS at r = 0 (a) in the absence and (b) in the presence of a vortex with d ± id pairing (winding numbers nX = +1, n� = +2,
nV = −1) for a lattice of size L = 65. Panels (d) and (e) show the corresponding LDOS for an s-wave order parameter �k = 0.3v. The shaded
areas denote the total DOS in a translationally invariant system with L → ∞. The insets show |u↑|2 + |u↓|2 for the lowest-energy eigenstate.
(c), (f) Lattice-size dependence of the lowest eigenenergy with and without the vortex. The red and black lines show fits of the form e−L/ξ and
1/L, respectively. The model parameters in units of v are m = 0.5, μ = −0.3, �d = 0.3, and �′

d = 0.2. A Lorentzian broadening 0.002v was
used for the LDOS.

renormalization of the simple dependence (1/2)�2
F/|μ| by

a factor (v/μ)2. We conclude that the energy of the lowest
poisoning quasiparticle is

E0 = μ�2
d

32v2
. (30)

With the parameters adopted here, this gives a tiny energy
∼8 × 10−4v.

IV. CHALLENGES IN THE NUMERICAL
IDENTIFICATION OF d + id VORTEX MZMS

We have seen that the protection of d ± id vortex MZMs
depends on two energy scales, the bulk gap �F and the
quasiparticle poisoning energy E0, and a localization length
scale ξd . Numerical calculations performed on a finite lattice
insert a new length scale L, a new energy scale �EL ∝ 1/L2

corresponding, e.g., to the average interlevel spacing, and in
the case of the KPM, an energy resolution �EN . From a spec-
troscopic point of view, a MZM at E = 0 can be distinguished
from a CdGM state at E0 only if �EN < E0, which sets a
lower bound for the expansion order N . This is not an issue
for ED, which has perfect energy resolution. Yet, the energy
of the MZM delivered by ED of a finite lattice is shifted from
zero to δE , because of the hybridization of the MZM with the
partner edge state. As the MZM is exponentially localized, it
is expected that δE approaches zero like δE ∼ exp(−L/ξd ). A
problem arises when δE > �EL, as the state with the lowest
energy may not be the Majorana. Another problem comes
about if �EL > �F, as the density of levels is not sufficient
to resolve the topological gap.

For lattice sizes up to L = 99, our ED simulations of the
lattice model with d + id pairing at �d = 0.3v and �′

d =
0.2v [19] show no clear signature of a MZM in the vortex,
because �EL > �F. As an example, we show the LDOS
calculated for L = 65 and nX = +1, n� = +2, without and
with a nV = −1 vortex in Figs. 8(a) and 8(b), respectively.
The density of levels is not sufficient to reveal the presence
of a vortex and the LDOS is qualitatively identical with it
and without it. For comparison, a very clear resolution of
the vortex MZM is possible with the same system size but
for s-wave pairing [Figs. 8(d) and 8(e)], because in that case
�EL � �F.

In Figs. 8(c) and 8(f), we display the smallest eigenen-
ergy with and without a vortex, for d + id and s pairing,
respectively. In the s-wave case, the lowest energy varies as
1/L in the absence of vortex, while it decays exponentially
with system size in the presence of a vortex, as expected
for a MZM with energy δE ∼ exp(−L/ξs). In contrast, no
significant exponential decay is seen in the d + id case up to
L = 99. More importantly, at these sizes there is no qualitative
difference between having a vortex or not.

In view of this, the lattice simulations reported in Ref. [19]
with L < 60, for parameters leading to a tiny spectral gap
�F ∼ 0.0068v, comparable to the empirical peak broadening
∼0.01v, cannot be expected to provide convincing evidence
for the existence of vortex MZMs.

V. DISCUSSION AND OUTLOOK

We showed that when combining a d + id superconduct-
ing order parameter with a Dirac cone on the surface of a
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three-dimensional topological insulator, the Majorana zero
modes (MZMs) appearing inside vortices can have a non-
trivial angular momentum that is absent in simpler s-wave
structures. The MZMs with nonzero angular momenta reside
in the vicinity of the vortex core, with zero wavefunction
amplitude at the phase singularity point. The MZM angular
momentum results from the interplay of three distinct wind-
ing numbers in the d + id + Dirac model, one characterizing
the Dirac cone in the normal state (nX ), one the d ± id or-
der parameter (n�), and one the vorticity (nV ). The MZM
angular momentum is often not appreciated in the existing
literature: Even though all Chern-odd chiral superconductors
have MZMs in vortex cores, the existence of MZM angular
momentum suggests the existence of different “flavors” of
MZMs. Because it depends on the specific components of
the Hamiltonian, this additional angular momentum quantum
number is not set solely by the Chern number but is influenced
by microscopic details.

We have classified all possible cases for the d + id + Dirac
model in terms of the resulting angular momentum quantum
numbers n↑ and n↓ of the electron and hole components of
the MZM. We have found, in particular, that for a given con-
figuration of the dispersion (fixed nX and n�), the vortex and
the antivortex systematically present distinct spectral signa-
tures [50,70,71]. This feature is peculiar, because vortices and
antivortices are usually indistinguishable spectroscopically. It
opens up an interesting possibility to investigate the angu-
lar momentum of MZMs in scanning tunneling experiments,
by monitoring the vortex spectroscopy while reversing the
magnetic field. On the one hand, the observation of a finite
tunneling conductance at zero bias in the vicinity of the vortex
core, well separated from the finite-energy excitations, proves
topological superconductivity. A vanishing of this tunneling
conductance at the core signals a finite angular momentum
of the MZM, as already observed for ordinary CdGM states
[8,72–74]. On the other hand, a systematic change of the
conductance upon reversing the magnetic field reveals the
existence of different angular momenta in the two spin sec-
tors. Specifically, if the zero-bias conductance vanishes at the
core in the vortex, it should not vanish in the antivortex, and
conversely. Although challenging, the direct observation of
the two spin sectors via spin-resolved STM is also possible
in principle [75].

The interplay of nX and n� enables f ± i f superconduct-
ing states with Chern numbers C = ±3, which goes beyond
the original Fu–Kane proposal limited to p ± ip with C = ±1.
Indeed, the windings of the Dirac cone and order parameter
either cooperate or compete depending on whether the Fermi
surface is electron-like or hole-like. Interestingly, the angular
momentum of the MZM is unrelated to the Chern number. In
particular, the topological transition occurring when the Fermi
surface changes from electron-like to hole-like does not affect
the vortex MZM qualitatively.

From the point of view of practical applications, we have
argued that the topological protection of vortex MZMs for d +
id order parameters is generically weak, because the hard gap
�F providing the actual protection is much smaller than the
maximum d-wave gap �d . In Ref. [19], the proposed d + id
vortex MZMs were dubbed “high-temperature Majorana zero
modes”, suggesting that the high critical temperature of the

cuprate material with its large d-wave gap would provide a
robust protection. This ignores the smallness of the cuprate
order parameter for small momenta, which results in a value
�F � �d for the twisted cuprate bilayer near the center of
the Brillouin zone. As an illustration, we estimate �F for
the proposed setup, which involves the topological insulator
Bi2Se3 proximitized by a twisted bilayer cuprate [19]. The
lattice parameter of Bi2Se3 is ∼4 Å, v ∼ 3 eV Å, and μ is
limited to ∼250 meV [76]. Assuming ideal proximity transfer
with �d = 45 meV, one gets the most optimistic estimate
�F ∼ 1 meV.

One consequence of the small �F is a large localization
length ∝ 1/�F, leading to MZMs that are much more ex-
tended than in the s-wave scenario. This may be an advantage
in making the MZMs more resistant to disorder and more
easily observable by local probes. For example, if d + id
superconductivity were realized in moiré TMDs [32–34], the
corresponding vortex-core MZMs would span several hun-
dreds of nanometers. However, such large MZMs would be
sensitive to hybridization with zero modes in other vortices, as
the typical intervortex distance falls below 100 nm for fields
exceeding ∼70 mT. How vortex-vortex interactions transform
the MZMs studied here for an isolated vortex is an interesting
and numerically challenging question.

We have argued that poisoning by ordinary Caroli–de
Gennes–Matricon states likely constitutes the most challeng-
ing obstacle in isolating the vortex MZMs. The gap to the first
of these states is only a fraction of �F. For the Bi2Se3/cuprate
system, the optimistic estimate is E0 ∼ 0.3 K, three orders
of magnitude below the cuprate critical temperature. This
casts doubt on the practical advantage of this system, relative
to those based on conventional superconductors with much
smaller—but isotropic—order parameters.

Nevertheless, from a fundamental perspective these non-
trivial MZMs can be interesting. They are, in fact, special
cases of topological edge modes in the presence of su-
percurrents [5,77] and are therefore compelling targets for
experimental detection. In addition to the standard scanning-
tunneling microscopy (STM), microwave impedance mi-
croscopy (MIM) has been shown to be able to detect
topological edge states [78]. The angular momentum of the
MZM might be detected using the quantum twisting micro-
scope (QTM) [79], which is both local and also allows for
interference between graphene plane waves and the MZM
wavefunction.

MZMs have been proposed as the basis for topological
quantum computation, using braiding as a way to perform
quantum gates [1,2]. In most proposals, there is only one
flavor of MZM, leading to specific braiding operators. It
would be interesting to study braiding groups for systems with
different flavors of MZMs—such as MZMs with different
angular momenta—to understand how these flavors influence
non-Abelian statistics.

While we have calculated the angular momentum of the
MZMs in the d + id + Dirac model, we expect MZM angular
momentum to be a generic feature that extends to other micro-
scopic models. In fact, beyond angular momentum, one might
construct more types of flavors [80], especially in systems
with multiple orbitals (as was proposed in oxide nanochan-
nels where these flavors originate from the electronic orbital
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character [81]), different types of order-parameter symme-
tries, as well as nontrivial sources of Berry curvature or
chirality in the normal state Hamiltonian. Exploring these pos-
sibilities would open up new paths to topological vortex-core
state engineering, beyond the original p + ip wave proposals.
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APPENDIX A: CONTINUUM LIMIT OF THE d ± id ORDER
PARAMETER

We derive here the continuum limit for the dx2−y2 ± idxy

order parameter, starting from the lattice model and following
the approach of Ref. [83]. In general, the lattice version of the
BdG Hamiltonian in real space is

Hlatt =
∑
rr′ss′

t ss′
rr′ c†

rscr′s′ +
∑
rr′ss′

(
�ss′

rr′c†
rsc

†
r′s′ + H.c.

)
,

where t ss′
rr′ is the hopping matrix between sites r, r′ and spins

s, s′ and �ss′
rr′ is the superconducting order parameter, whose

symmetry is still unspecified. Expressing the eigenstates in
terms of the (u, v)ᵀ spinors, the pairing energy of a state can
be written as (omitting spin indices for brevity)

E� =
∑
rr′

�rr′ (u∗
rvr′ + u∗

r′vr ) + c.c. (A1)

Our goal is to find the correct operator �̂ in the continuum,
such that this energy becomes

E� =
∫

dr u∗(r)�̂v(r) + c.c., (A2)

with �̂ acting on v(r) only. Here and in the following, r as an
index, like in ur, is meant as a discrete lattice vector, while r
in parentheses, like in u(r), is meant as a continuous variable.

In the lattice formulation of the d ± id pairing, the or-
der parameter �rr′ ≡ |�rr′ |eiφrr′ lives on the nearest- and
next-nearest-neighbor links with opposite signs along perpen-
dicular directions. Assuming a constant magnitude |�rr′ | =
|�|, we can then write in the chiral limit

�rr′ = 1

4

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−|�|eiφrr′ if r′ = r ± x̂

+|�|eiφrr′ if r′ = r ± ŷ

−i n�

4 |�|eiφrr′ if r′ = r ± (x̂ + ŷ)

+i n�

4 |�|eiφrr′ if r′ = r ± (x̂ − ŷ)

0 otherwise,

(A3)

with |�| playing the role of �d = 2�′
d in Eq. (20) and � in

Eq. (5). Upon going to the continuum limit, the phase φrr′

that lives on the bonds can be approximated by the average of
phases associated with the sites r and r′, according to

eiφrr′ → ei(φr+φr′ )/2. (A4)

Redefining the order parameter on the sites as �r = |�|eiφr ,
Eq. (A1) can be explicitly rewritten as

E� = 1

4

∑
r,±

[
− �rei(φr±x̂−φr )/2(u∗

rvr±x̂ + u∗
r±x̂vr )

+ �rei(φr±ŷ−φr )/2(u∗
rvr±ŷ + u∗

r±ŷvr )

− i
n�

4
�rei(φr±(x̂+ŷ)−φr )/2(u∗

rvr±(x̂+ŷ) + u∗
r±(x̂+ŷ)vr )

+ i
n�

4
�rei(φr±(x̂−ŷ)−φr )/2(u∗

rvr±(x̂−ŷ) + u∗
r±(x̂−ŷ)vr )

+ c.c.
]
. (A5)

After expanding up to second order in the lattice parameter a,
we can perform the continuum limit

∑
r → a−2

∫
dr, ur →

au(r), vr → av(r), �r → �(r), φr → φ(r). With this, it is
tedious but straightforward to derive the following expression
for the pairing energy:

E� = −a2

4

∫
dr
{

u∗(r)�(r)

[
∂n�/2 + i

2
(∂n�/2φ(r))

]2

v(r)

+ v(r)�(r)

[
∂n�/2 + i

2
(∂n�/2φ(r))

]2

u∗(r) + c.c.

}
,

where ∂± = ∂x ± i∂y. We need one last step to arrive at the
form in Eq. (A2). This can be obtained using partial integra-
tion to convert the derivatives acting on u∗(r) into derivatives
on v and �. Remember, throughout, that the magnitude of
�(r) is considered to be constant. The operator �̂ can then be
written as

�̂ = a2

2
�(r)

[
1

4
(∂±φ)2 − i

2
(∂2

±φ) − i(∂±φ)∂± − ∂2
±

]
,

(A6)

with ± standing for n�/2.
Finally, let us derive the expression of this operator in the

case of a vortex, where the order-parameter phase expressed in
polar coordinates is φ(r, ϑ ) = nV ϑ and thus �(r) = |�|einV ϑ .
Using ∂± = e±iϑ (∂r ± i

r ∂ϑ ) and replacing again ± by n�/2 to
make contact with the main text, we arrive at

�̂ = −|�|ei(n�+nV )ϑ D̂

D̂ = a2

2

[
(nV + 2n�)nV

4r2
− (2nV + n�)n�

4r

(
∂r + in�

2r
∂ϑ

)

+
(

∂r + in�

2r
∂ϑ

)2
]
. (A7)

When acting on the wavefunction components of the form
u↑/↓(r)ein↑/↓ϑ , the operator D̂ does not change their angular-
momentum quantum number n↑/↓.
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FIG. 9. (a) Lattice-size dependence of the MZM eigenvalue ob-
tained by ED. (b) Spatial dependence of the zero-energy LDOS
calculated with the KPM. In each panel, the lines show the average
value of the fitted ξE (ξr) and the shaded ranges indicate the standard
deviation.

APPENDIX B: CALCULATION OF THE LOCALIZATION
LENGTH

To study the localization length of the MZM, we use the
parameters (nX , n�, nV ) = (+1,±2,±1), m = 0.5v, �′

d =
�d/2, and we vary μ and �d to scan the possible values

provided by Eq. (29). We have checked that equivalent re-
sults are obtained with all possible values of the winding
numbers. We first perform ED as a function of L. By stor-
ing the Hamiltonian in sparse form and computing only the
required eigenvalues, we can reach lattice sizes as large as
L = 201 with desktop-level resources. Figure 9(a) shows how
the MZM eigenvalue approaches zero with increasing system
size. The overall behavior is exponential, with oscillations
of approximate wavelength 2π/kF. We fit the expression
e−L/ξE to these data, using various ranges from [51, 201] to
[119, 201], which delivers a distribution of values for ξE . The
average and standard deviation of this distribution yield our
estimate and error bar for ξE , as displayed in Fig. 6. To probe
larger values of the localization length, we perform calcula-
tions of ρ(0, r) with a lattice of size L = 1001 using the KPM
and we fit the expression e−2r/ξr to these data. We compute
the LDOS at 25 lattice points distributed along the diagonal
of the lattice, in an interval that interpolates linearly between
[ξd , 3ξd ] if ξd � 50 and [ξd − 25, ξd + 25] if ξd = 200, where
ξd is the value returned by Eq. (29). Figure 9(b) shows typical
datasets. Again, we use increasing ranges for fitting, starting
with the three farthest points, and we thus obtain an average
value and a standard deviation for ξr .
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